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ABSTRACT: Within the context of top-down holography, we study a one-parameter family
of regular background solutions of maximal gauged supergravity in seven dimensions, di-
mensionally reduced on a 2-torus. The dual, four-dimensional confining field theory realises
the global (spontaneous as well as explicit) symmetry breaking pattern SO(5) — SO(4).
We compute the complete mass spectrum for the fluctuations of the 128 bosonic degrees of
freedom of the five-dimensional gravity theory, which correspond to scalar, pseudoscalar,
vector, axial-vector, and tensor bound states of the dual field theory, and includes particles
with exotic SO(4) quantum numbers. We confirm the existence of tachyonic instabilities
near the boundaries of the parameter space.

We discuss the interplay between explicit and spontaneous symmetry breaking. The
SO(5)/SO(4) coset might provide a first step towards the realisation of a calculable frame-
work and ultraviolet completion of minimal composite Higgs models, if the four pseudo-
Nambu-Goldstone bosons are identified with the real components of the Higgs doublet in
the standard model (SM), and a subgroup of SO(4) with the SU(2) x U(1) SM gauge group.
We exhibit an example with an additional localised boundary term that mimics the effect
of a weakly-coupled external sector.
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1 Introduction

After the discovery of the Higgs boson [1, 2|, and in preparation for the restart of the
experimental programme of the Large Hadron Collider (LHC), renewed attention in the
literature has focused on Composite Higgs Models (CHMs) [3-5]. In such scenarios, the



standard-model (SM) Higgs doublet scalar fields would arise as pseudo-Nambu-Goldstone
Bosons (pNGBs) in the low-energy Effective Field Theory (EFT) description of a more
fundamental theory. It is usually assumed that the underlying dynamics be strongly cou-
pled, leading to the formation of infinitely many bound states. An overview of the field is
provided by the reviews in refs. [6-8], and by the useful summary tables in refs. [9-11] (see
also the selection of useful papers in refs. [12-56], and references therein).

We want to study the strong-coupling dynamics underlying CHMs, and address calcu-
lability (from first principles), in particular for observable quantities of phenomenological
relevance, such as the mass spectra of bound states. One possible approach to this en-
deavour is provided by lattice gauge theory. There exist lattice studies of SU(2) [57-64]
and Sp(4) [65—67] gauge theories that explore the fundamental origin of CHMs based on
the SU(4)/Sp(4) coset [26], as well as lattice explorations with SU(4) gauge group [68-72]
aimed at capturing some of the dynamical features of models based on the SU(5)/SO(5)
coset. Ref. [73] shows that salient features of CHMs based upon SU(N¢) x SU(N¢)/SU(Ny)
cosets (see also refs. [74-76]) are captured by the lattice studies of the SU(3) gauge theory
with Ny = 8 Dirac fermions in the fundamental representation [77-81], via the application
of the dilaton EFT [82-92].

The SO(5)/SO(4) minimal coset has dimension four and includes custodial symmetry.
It is natural to identify the pNGBs, transforming as 4 of SO(4), with the Higgs doublet
in the standard model [13]. Yet, this coset is conspicuous by its absence in the list of
current lattice explorations, as summarised in the previous paragraph. It is not trivial
to provide a dynamical origin for CHMs based on this coset, in terms of familiar gauge
theories with fermionic matter. An example is provided by ref. [111], which beautifully
exploits supersymmetry and Seiberg duality, though subject to the usual limitations in
terms of calculability within this approach.

A radically different approach to address calculability in strongly coupled gauge the-
ories adopts gauge-gravity dualities (holography) [112-115]. The large-N limit of special
strongly-coupled gauge theories is equivalent to a weakly-coupled theory of gravity in extra
dimensions, amenable to perturbative treatment. Interesting observables are recovered by
applying the dictionary of the correspondence — which requires the implementation of
holographic renormalisation [116-118]. Global symmetries of the field theory are generi-
cally realised as gauge symmetries in the bulk of the gravity theory. Hence, the starting
point for the realisation of the dynamics of CHMs with an SO(5)/SO(4) coset should be a
higher-dimensional theory of gravity supplemented by SO(5) gauge symmetry.

An extensive body of work (see for instance refs. [12, 13, 15-17, 20, 23]) demonstrate
the reach of the bottom-up approach to holography in building a realisation of the CHMs
with SO(5)/SO(4) coset. By choosing a fixed curved background in D = 5 dimensions,
and a set of fields propagating in this background, it is possible to capture the salient
features of the dynamics of the pNGBs and some of the spin-1/2 and spin-1 composite
particles. The spontaneous symmetry breaking SO(5) — SO(4) is implemented by means

!The basic principles underlying the dilaton EFT date far back in the literature [93, 94], and have
previously been applied in the context of dynamical symmetry breaking [95-97], as well as in the more
recent development of dilaton-Higgs models (see, for example, refs. [98-110] and references therein).



of appropriate choices of the field content, background, and boundary conditions. While
calculability is greatly improved by this approach, important properties of the long distance
dynamics are not captured by bottom-up models: for example, demonstrating confinement
requires embedding the gravity theory in string theory, hence allowing for the holographic
treatment of the Wilson loops [119, 120] (see also refs. [121-125]) to recover the area law,
as suggested in ref. [126]. Furthermore, top-down models fix the relation between masses
of the resonances in a predictive way, as it emerges from the dual strong dynamics.

Recently, inspired by sophisticated holographic models exhibiting QCD-like properties
(such as the Sakai-Sugimoto model [127, 128] and its precursors [129-131]), new bottom-
up holographic realisations of CHMs have been developed [132, 133]. The same coset
structures studied on the lattice are here realised by bulk fields, inspired by the DBI
action that describes extended objects probing the curved background (and captures the
quenched approximation for matter fields in the large-N limit of the field theory). In a
parallel direction, ref. [134] includes deformations to mimic the backreaction due to many
such extended objects (edging towards the Veneziano limit of the large-N field theory).

With this paper, we propose an alternative approach, closer in spirit to the original
holographic dualities. Known supergravity theories can provide complete top-down holo-
graphic models, in which the strong-coupling field-theory dynamics is fully captured. We
consider supergravities that include at their core the interesting (gauged) symmetry group,
without the need for additional matter fields and/or stacks of Dp-branes. The resulting
enhanced calculability is a double-edged sword: while the fact that the field content and
phenomenology are rigidly dictated by supergravity leads to greater predictability, it also
makes the task of identifying realistic models a more challenging endeavour. We exemplify
this programme with the maximal SO(5) gauged supergravity theory in seven dimensions,
within which we realise the SO(5)/SO(4) coset of a minimal CHM.

In the rest of this introduction, we summarise the main features of the model, as they
emerge from the relevant technical literature. Our starting point is the established fact that
maximal supergravity in seven dimensions has a gauged SO(5) symmetry [135-143]. It can
be obtained by dimensional reduction on S* of maximal supergravity in D = 11 dimensions,
and the SO(5) originates from the isometry group of the S*. The background solution with
AdS; x S* geometry is interpreted, in the language of gauge-gravity dualities, in terms of
the somewhat mysterious N' = (2, 0) strongly coupled gauge theory living on a stack of M5-
branes, which is a superconformal chiral theory with extended supersymmetry. While the
microscopic details of this field theory are not known in general terms, many of its properties
are established in the literature — for example SO(5) is indeed its global R-symmetry —
and an incomplete selection of interesting studies can be found in refs. [144-151].

One reason why this obsure field theory, and its emergence as the dual of a special
solution in supergravity, is of interest, in the literature on gauge/gravity dualities, is the
observation in ref. [126] that one can identify background solutions in which two of the di-
mensions are compactified on circles, one of which connects the lifts to eleven-dimensional
supergravity and to type-IIA supergravity in ten dimensions. Solutions in which the other
circle — along which fermions have anti-periodic boundary conditions, breaking supersym-
metry — shrinks to zero size, at some finite value of the radial direction (p — p,) in the



geometry, yield in the dual field theory the long distance behaviour of a confining theory in
four dimensions. Not only is there a mass gap, but furthermore the holographic calculation
of the appropriate rectangular Wilson loops [119, 120] (see also refs. [121-125]), yields a
static potential that grows linearly with the displacement between two heavy quarks. This
class of curved backgrounds underlies the D4/D8 system exploited in the aforementioned
Sakai-Sugimoto holographic model of quenched QCD [127, 128].

As a distinctive feature, we do not add probe branes to the smooth geometries that
we study, but instead implement the global symmetry breaking pattern by considering the
supergravity theory on its own. We recall some of the salient aspects of this supergravity
theory here, deferring the technical details to the appropriate sections of the main body
of the paper. The scalar manifold of the supergravity theory describes the 14-dimensional
(right) coset SL(5,R)/SO(5)., and the scalars transform (on the left) as a 2-index symmetric
traceless representation of the gauged SO(5). It has been known from the onset [138]
of the study of this theory that background solutions exist in which one scalar ¢ has a
non-trivial radial profile, breaking conformal symmetry, supersymmetry, and SO(5) to its
SO(4) subgroup. The dynamics of ¢, in particular in relation to the dilatation operator
in the dual field theory, has been discussed extensively, for example in refs. [152-154] and
references therein, for a wide variety of admissible backgrounds. The symmetric traceless
representation of SO(5) decomposes as 14 - 1 &4 6 9 of SO(4). The 4 pNGBs describe
the SO(5)/SO(4) coset, and hence these backgrounds provide a dynamical realisation of
the coset structure underlying the minimal CHM in ref. [13], as desired. The analysis of
the UV asymptotics of the background shows that SO(5) is broken both explicitly as well
as spontaneously.

Besides observing that this structure matches the one postulated in the minimal CHM,
our main contribution is the calculation of the spectra of fluctuations of all bosonic fields
obtained after dimensional reduction on a 2-torus, performed by adopting the formalism
developed in refs. [158-162]. We further generalise the results of refs. [163] to a whole class
of backgrounds, and to include the whole spectrum of p-forms, for which we make use of
the R¢ gauge, along the lines of ref. [164]. There are 23 independent towers of such bosonic
eigenstates, with various degrees of degeneracy governed by the unbroken SO(4) symmetry,
that make up the 128 bosonic degrees of freedom of maximal supergravity.

For the time being, we ignore two model-dependent aspects of the theory, that are
not central to the construction: we consider only the bosonic field content, while ignoring
completely the fermions, and we also disregard the interactions descending from the Chern-
Simons terms, as they do not affect the calculation of the spectra of bound states. The
spectrum of fermionic bound states in the field theory depends on how the compactification
breaks supersymmetry.? We focus instead on model-independent parts of the spectrum,
directly related to the underlying symmetries. The embedding of the standard model
SU(2) x U(1) group must be anomaly free, a requirement that, as in other CHMs, may
be subtle, but not hard to satisfy. We postpone to future studies any phenomenological

2To be precise, our background solutions break supersymmetry locally, as they do not satisfy the first-
order equations mandated by supersymmetry, but also globally, because of the anti-periodic boundary
conditions obeyed by the fermions along the shrinking circle.



considerations, starting from the detailed implementation of the procedure allowing to
(weakly) gauge the SU(2) x U(1) subgroup of SO(4) — which involves some subtlety in the
process of holographic renormalisation — as well as the coupling to the standard-model
matter fields, and the vacuum (mis-)alignment features leading to electroweak symmetry
breaking.

Finally, we notice that similar constructions can in principle be applied also in other
classes of supergravities. For example, in the context of the half-maximal supergravity in
six dimensions, coupled to n vector multiplets [143, 165-168] (see also refs. [169-186]), and
compactified on a circle [152, 164, 187, 188]. Solutions to these systems exist that admit
an interpretation of the long distance dynamics in terms of confining field theories in
four dimensions. The scalar manifold describes the non-trivial and non-compact O(1,1) x
0(4,n)/(SO(4) x O(n)) coset — though it is not immediately apparent how to embed
an interesting CHM into this coset. Alternatively, in the case of these six-dimensional
supergravities it has been shown that the existence of different lifts to ten dimensions can
lead to interesting structures in the dual field theory, with additional flavor symmetry
emerging non-trivially [189].

The paper is organised as follows. In section 2 we define the supergravity theory in
D = 7 dimensions, discussing its field content, couplings, and free parameters. Most of the
material is lifted from the literature, but we find it useful to fix the notation used in the
rest of the paper. In section 3 we perform the reduction on a torus and write the resulting
action in D = 5 dimensions, including all the bosonic degrees of freedom, substantially
extending available results in the literature. In section 3.1 we display the class of solutions
we are interested in, by analysing their asymptotic behaviours and hence illustrating the
process that allows to generate them numerically. We demonstrate that the solutions are
regular, and discuss what we mean by stating that the dual theory confines. In section 4,
we compute the mass spectrum. We start with the linearised equations of gauge invariant
combinations of fluctuations of the metric and of the background scalars in section 4.1.
This section extends and completes some of the results presented in refs. [152-154]. In
sections 4.2, 4.3, and 4.4 we complete the study of the bosonic mass spectrum, by looking
at the fields that are trivial in the background. We discuss the spectra of p-forms, with
p = 0,1,2. We adopt a generalisation of the R¢ gauge to gauge-fix the theory (see also
ref. [164]), and present our numerical results, commenting on the treatment of numerical
artefacts, where appropriate. In section 5, after summarising the main features of the mass
spectrum, we study its dependence on the free adjustment of boundary-localised terms that
preserve the SO(4) symmetry of the system, but may introduce additional explicit breaking
of SO(5). We focus on one particular example of such an admissible term, that affects
the pNGBs and the lightest spin-1 composite states in the dual theory. In section 6 we
summarise our main findings and outline an extensive programme of future investigations.

We relegate to the appendix an extensive selection of technical details, that can be
skipped at first reading of the paper, but would be useful to reproduce our results, or to
apply the same formalism to other classes of background solutions. We devote appendix A
to discussing the self-duality condition of the 3-forms in seven dimensions, and its conse-



quences for the 2-forms in five dimensions. Appendix B contains technical details about
the background solutions and the formalism in which we treat the fluctuations, including
the asymptotic expansions of the fluctuations. Appendix C summarises some elements of
the lift to ten- and eleven-dimensional supergravity, borrowed from the literature. We also
observe that the result of the holographic calculation of the string tension suggests the
existence of a discontinuity, the energetically favoured string configurations qualitatively
differing, depending on the sign of ¢. We leave this observation for future investigations.

We close the paper with appendix D, in which we summarise our numerical results
for the whole spectrum of the toroidal compactification, but now in the case of unbroken
SO(5). We critically compare our results to those of ref. [163], who considered the same
SO(5)-invariant background, but used a different formalism and restricted their analysis
to a different set of supergravity modes. We find good agreement between the two sets of
results, in the common sector, thus providing a useful cross check. Unsurprisingly, we also
find that several of the states in our study, that represent non-trivial SO(5) multiplets, are
lighter than the singlets one would retain in a consistent truncation.

2 Maximal gauged supergravity in seven dimensions

The field content and action of maximal supergravity in D = 7 dimensions are discussed
for example in refs. [136-141] (see also refs. [142, 143, 152, 190]). The seven-dimensional
space-time indexes are denoted by M = 0,1, 2, 3, 5, 6, 7, while we use the Greek indexes
a =1,---,5 to denote the components of the fundamental representation of the SO(5)
gauge group. The bosonic fields in the weakly-coupled action are the following (counting
on-shell degrees of freedom): 14 real scalars, 10 (massless) vectors A i aﬁ (each propagating
5 real degrees of freedom), 5 (massive self-dual) 3-forms S, s 5, (each propagating 10 real
degrees of freedom, rather than 20, because their equation of motion is the first-order self-
duality condition), and the metric (14 degrees of freedom). The 128 degrees of freedom
match the fermionic field content, which consists of 16 gauginos (4 complex components
each) and 4 gravitinos ((D — 3)2[P/21/2 = 16 degrees of freedom each).

The scalar manifold describes the SL(5,R)/SO(5). right coset, and we label by i, =
1, ---,5 the fundamental representation of the global SO(5), symmetry, to retain the
distinction with the indexes of the gauged SO(5). The 14 scalars parametrising the coset
are written in terms of a 5 x 5 real unit-determinant matrix II,° (with det(I1,?) = 1), that
transforms under the action of SO(5). on the right, and of SO(5) on the left.> The 10
vectors transform as the adjoint of SO(5), and the 3-forms in the fundamental. Because
SO(5) ~ Sp(4), the gravitinos transform in the spinorial 4-dimensional representation of
SO(5)., while the gauginos transform as the irreducible part of the product of the vectorial
and the spinorial representation of SO(5). (as 5 ® 4 — 16 © 4 in Sp(4) [191]). We ignore
fermions from here on.

3We could as well use the SO(5) gauge freedom in such a way as to represent each element of the coset
with a symmetric matrix, hence making manifest the fact that the coset is equivalent to the 14 of SO(5)..



The bosonic part of the action is the following:*

R 1 o , m?2 o .
7 7 ~MN gik l kL
Sr = / "z { l = (MNP Pt — S (20787, — 690k Ty TH 4
1 i1 J TP m2 -1\ « 2
+g (I 7y ) — T () Sx0a) | + (2.1)
M _NINOPQRS (S)
Jr96 N SMNOa5aBFPQRSB +
I NINOPQRS ' 58’
—mﬁ Q 6a576n5aa SMNOQ/6 ‘FPQB,’Y(S FRS«&/U} +CS,

where the last term refers to the two Chern-Simons topological interactions, explicitly
written in ref. [137]. The objects appearing in the action are defined as follows:?

1

Py’ =3 (@D g + (i ) (2.2)
Dyl =0 05 +igAy (2.3)
Ty = (1), %1071, (2.4)
B — . B .
Fiifa =2 (8[MAN]a + ZSJA[ AN]v ) (2.5)
S . be
FNinpga = (a[ Sxpga t 19A SNPQ]ﬂ) : (2.6)

The mass scale m is related to the gauge coupling g by ¢ = 2m [137]. In the applications,
we set m = 1. We will return at the appropriate moment to the fact that the gauge
symmetry acting on the 3-forms is not manifest in eq. (2.1).

2.1 SO(5) to SO(4) breaking

We parameterise the scalar manifold by making explicit use of the envisaged breaking
SO(5) — SO(4), and decompose the II. scalar fields into irreducible representations of
SO(4), as 14 = 1 ® 9@ 4. We denote the resulting multiplets with matrix-valued fields
)\ij ~1, Aij ~ 9, and O, ~ 4. The matrix II’ is given by

I=0A\ (= OAA). (2.7)

The diagonal matrix A has the following form

¢ __ o __ __ b 9
A=diag e 2v5 e 2v5 e 2v5 ¢ 2V5 e V5 | | (2.8)

where ¢ is the field responsible for the breaking SO(5) — SO(4) — if (¢) # 0 in the
vacuum. The symmetric matrix A commutes with A. It can be written as

A= (A(4) 0) (2.9)

0 |1

“The action here is 3 of the action in refs. [138, 152], which amounts to a harmless overall rescaling of

the Planck constant in seven dimensions.

5Complete anti-symmetrisation is normalised so that [nins - n,|] = NN+ Ny — NN~ N + -+ + ).
P y p P p

1
p!



with the 4 x 4 matrix-valued field satisfying A4y = Aa) and det(Ay)) = 1, hence making
it explicit that A4 transforms as the 9 of SO(4). Finally, the matrix O is written as

O = exp [iZﬁAtA] 15, (2.10)
A

where we factorise O in the exponential, living in SO(5), and 1s, with elements 6,,° carrying
indexes both in SO(5) and SO(5).. We restrict the matrices tA with A=1,--- .4, to be
the hermitian and traceless (broken) generators of SO(5) such that AN+ )\tAT # 0. The
74 fields describing the SO(5)/SO(4) coset are associated with the pNGBs.

The unbroken generators, denoted as ¢4, with A = 5, ,10, obey the relations
tAX + At2T = 0. We adopt the normalisations Tr (tAtB) 0, Tr (tAtB) = 1(5“Hé and
Tr (tAtB ) = 16AB The 1-forms decompose in terms of vector A and axial-vector A
fields:

Ay l= A () PiaA () . (2.11)
M« M o M a

For the 3-forms, the SO(5)/SO(4) decomposition is simpler, as 5 = 4 @ 1, and we denote
the 4 as Sy 454 With a=1,---4, while S, 155 is the SO(4) singlet.
A minimal amount of algebra leads to the simplifying relation

Tr [ (A'ogA) (A'ogA) | = 0530956 (2.12)
Making use of eq. (2.7), further algebraic manipulations allow to rewrite the action as
follows:
1
Sr = / d'z { {7—4 MN g - 0 6+ (2.13)

~59 MNTr(A A {aagal+
+07'D,0 [ofleoj A?,\ﬂ A2\24
+4ATINT O A0 A+ O 7D, 0 [%Az’ A—z} )+

—”;2 (2”& “) - (T (A‘Q)\_2>)2> +

A
MRGNS Ty (A2N207! By yOAZN* 07! Fipg0) +

L

g7

2

M~ mP _NQ OR T 2y—2—1

o AR (Symor0OA~A 20" SPQR)]JF

NINO
MN(’)}SQRS - saB(S)
+96 S N0a5 FPQRSB +
U NINOPORS ad o ~ <55 n
32\/36 €aByon0 SMNOa5 ‘FPQﬁ'(; Frgs }—I—C’.S..

To make contact with earlier studies (e.g., refs. [142, 152-154]), we observe that it would
be consistent to truncate the theory by setting A = 15 = O, and AMaﬁ =0=Sy506a



identically. The action of the reduced theory becomes

— (R 1 v
& = [y (B - 16" ay0050 - ve(6)) (214)
where the potential is given by
2 2 .
Vo($) = %(2%)\_4 — (Tea?)?) = % <e¢85¢’ _8e VE? 8e¢25¢> . (2.15)

in agreement with egs. (1-2) of ref. [154].

2.2 Truncating the action to quadratic order

We adopt the milder assumptions that in the vacuum (A) = 15 = (O), and (Ay) =
0=(Sy NO>' We will ultimately be interested in computing spectra, which only requires
considering the action to second order in fluctuations around a given background. We
hence retain the full dependence of the action on ¢ and the metric, but expand at the
quadratic order in the fields that are trivial in the vacuum (and their derivatives). We
start by rewriting the matrix-valued Ay as follows:

~ ~ 1 ~ o~ ~ ~

Ay =14+ sATA 4+ §SASBTATB +-, (2.16)

where we omit higher powers of the fields sA. In this expression, which is just the quadratic-

order approximation of the exponential, the nine traceless and symmetric matrices TA
(with A=1,---,9) obey the relation Tr (TAT?) = $545.

We hence arrive to the action that we use in the rest of the paper, in which we retain

the full dependence on the metric, and on the scalar field ¢, but expand and truncate to
quadratic order in all other fields:

. o
57 = /d7x{ o [717 - igMN <5M¢3N¢+ % > 3M3A5N3A) + (2.17)

i
R <\/5 ¢) 24: (0 + 94§15 (0 + g4 1) +

4
M MINOPORS
546 < Suroa%p50rsa + SMNO58PSQRS5> } :
a=1
The topological terms have been omitted, as they appear only at higher orders in the
field expansion. The self-duality condition is evident from the last two terms: along the
equations of motion, the differential of the 3-form must be proportional to the 3-form itself.



3 Toroidal reduction on S* x S?

We recover the (low energy) five-dimensional duals of four-dimensional field theories by
considering solutions that satisfy the following ansatz:

2 2
ds? = e~2X(s2 4 AX "2 (dn + xada ) + ePX T (dC + wydz™ + w6d77> , (3.1)

where yps and wyy are naturally defined as covariant fields, having lower (curved) space-
time indexes M = 0,1,2,3,5 in five dimensions. The compact coordinates 0 < n,( < 27
describe the torus. For all fields, we restrict attention to the case in which derivatives
with respect to n and ( vanish identically, dimensionally reducing the model. The anti-
periodic boundary conditions for all the fermions along the 1 direction, combined with the
dimensional reduction ansatz, sets all the fermionic fields to vanish identically.

The field-strength tensors for xas and wys, obtained by expanding the Einstein-Hilbert
action with the ansatz in eq. (3.1), are given by

FM%) = O XN — ONXM (3.2)

FM(JL{Jf) = Ouwn — Onwm + (XmOnwe — XNOmws) - (3.3)

In the following, consistently with our treatment of the other fields, we ignore the last two

terms in eq. (3.3), because we assume that in the vacuum (xu) = (wyr) = (wes) = 0, and

we retain in the action only terms up to quadratic in the fields that have vanishing VEV.
While we allow (x) # 0 # (w), we consider background solutions of the form:

ds? = 62A(’")dx%73 + dr?. (3.4)

We further restrict the background solutions to obey the constraint A = % X + w, so that
the factors in front of the dxig) and d¢? terms in the metric in eq. (3.1) are identical. By
defining A=A —x = %X + w and dp = e~ Xdr, the background metric reads

ds? = dp? + ¥ (dad 5 + e dn? 4+ d¢?) (3.5)

making it visible that domain-wall (DW) solutions preserving Poincaré invariance in six
dimensions have (w) = 0 and AdS7 solutions have constant d,.A.

We rewrite the 128 bosonic degrees of freedom and their action in terms of fields
in five dimensions. We start this exercise with some counting. The whole field content
is enumerated in table 1. The 14 scalars remain unchanged, but for the fact that they
depend only on the ™ coordinates. Yet, for reasons that we discussed when writing the
quadratic action in eq. (2.17), we find it convenient to treat separately the field ¢, the 4
pNGBs ’7TA, and the 9 scalars s4. The 14 degrees of freedom of the graviton decompose as
14=50303P1d 11, in terms of massless representations of the Poincaré group in
five dimensions. These include the graviton in five dimensions, beside the aforementioned
two vectors x s and wyy, and three real scalars y, w, and wg — as defined in eq. (3.1). The
additional U(1)? gauge symmetry — beside SO(5) — realizes the isometries of the torus.

The decomposition of the fifty degrees of freedom carried by the 1-forms is straight-
forward, as 1005 = (4®6) ® (3@ 1@ 1), where the first factor refers to the decomposition
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D =17, S0(5), D =5, SO(4), D =4, SO(4),
massless irreps. massless irreps. massive irreps.

Field | SO(5) | Naot Field SO(4) | Nao Field SO(4) | Nyo

9NN 1 14 IMN 1 5 Juv 1 5

9us 1 -

gs5 1 -

XM 1 3 Xu 1 3

X5 1 -

Wy 1 3 Wy 1 3

ws 1 —

we 1 1 we 1 1

X 1 1 b% 1 1

w 1 1 w 1 1

m} 14 14 ) 1 1 1) 1 1

A 4 4 A 4 4

sA 9 9 sA 9 9

Al 10 50 At 4 12 Al 4 12

A4 4 -

A 4 4 AgA 4 4

AA 4 4 AA 4 4

A 6 18 Al 6 18

A4 6 -

A 6 6 A 6 6

AA 6 AA 6 6

SNING o 5 50 SemN 5~ Bun g 4 12 Seuv s ~ Buv g 4 12

Seuss ~ X, 5 4 12

SemNs ~ Buns 1 3 S6uvs ~ Buvs 1 3

SGuS 5~ Xus 1 3

SiMNG ™ BMNB 4 12 St~ B:ux,é 4 -

S7H5/§ ~ XL/LB 4 —

Stmns ~ Blyns 1 3 Stuvs ~ By, 5 1 -

Stuss ~ XIL 5 1 —

Sevar 3 4 12 Ser, 5 4 12

Sers3(+25) 4 4

Se7 5 1 3 Se7us 1 3

Se755(+¢s) 1 1

S\No 5 4 4 I 1 -

SHVSB 1 -

SMNO 5 1 1 Suves 1 —

S;LUS 5 1 -

Table 1. The field content of the model, organised in terms of the irreducible representations of the
symmetries in D = 7 dimensions (SO(5) multiplets), as well as D = 5 and D = 4 dimensions (SO(4)
multiplets). In the case of the language in D = 4 dimensions, we indicate the field content in terms
of the massive representations of the Poincaré group, and keep into account the gauge-invariant
combinations only. The irreducible representations for which we indicate Nqof = — refer to cases
where either the degrees of freedom combine into gauge invariant combinations with other fields,
or have already been included due to the self-duality of the 3-forms.

of SO(5) representations onto SO(4) ones, while the second to the (massless) Poincaré
representations decomposed from seven to five dimensions. The 10 vector fields A 1\? are
supplemented by 10+ 10 additional real scalars Ag” and A4, split into 10 = 486 of SO(4).
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Some details about the decomposition of the 3-forms can be found in appendix A. It
is useful to start with massive representations in the counting exercise. The SO(5) indexes
follow the decomposition 5 =14 of SO(4). A massive 3-form in seven dimensions would
decompose as 20 = 4P 6P 6 P 4, where the two 4s denote massive vectors, while the two 6s
refer to massive 2-forms.® Imposing the self-duality condition identifies the pairs of 4s and
6s, and yields, for each 3-form, one massive 1-form and one massive 2-form (10 =4 & 6).

We can as well perform the counting exercise in terms of (on-shell) massless fields.
We have one graviton (5 degrees of freedom), twenty-seven massless vectors (3 degrees of
freedom each), and forty-two scalars, for a grand total of 128 propagating bosonic degrees
of freedom, matching the field content of maximal supergravity in D = 5 dimensions.

The action of eq. (2.1) — and hence its truncated version in eq. (2.17) — is written
in a particular gauge. We now write an action in D = 5 dimensions, which captures all
the degrees of freedom, and restores the gauge invariance (for details, see appendix A).
For convenience, we isolate the three active scalars ®* = {¢,w, x} that have non-trivial
background profiles, from the other scalar fields ®(©¢, to write the action:

Ss = /d% — 05 {f — %gMNGababe“BN@b — V5(DY)+ (3.6)
7%QMNG£)3M¢(0)CL8N¢(0)17 B %mé%)Zq)(O)aq)(O)b+
_%QMNGQ)BH(UAMH(DBN - EQMOQNPHSJ)BFAMNFBOP"’_
_i GMOGNP )T 428 T12 gMPgNQUOR () H(g)FMNOH(g)APQR} .

We now describe in detail each of the terms in eq. (3.6), and provide explicit forms for all
the entries. R is the Ricci scalar in five dimensions, defined with the conventions described
in appendix B. The sigma-model metric for the three active scalars ®* = {¢,w, x} is

G=1| 1 : (3.7)

where (here and in the following) we conventionally leave blank the vanishing entries in
the matrices, in order to lighten the notation. The potential is V5(®?) = e~ 2XV;(¢), and
depends only on ¢ and yx, while w has no potential.

_The thirty ordinary scalars that have trivial background values are denoted by pO)a —

{SA, we, AGA, A7A, A6A, A7A}, and they have sigma-model metric that we find convenient

5While massless 1-forms are equivalent to massless 2-forms in D = 5 dimensions, this is not so for massive
1-forms and 2-forms, that are distinct representations of the Poincaré group in five dimensions. The massive
vector has the same number of propagating degrees of freedom as a massless vector together with a scalar,
while the massive 2-form is obtained by soldering two massless vectors (see for instance refs. [156, 157]).
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to write in block-diagonal form as follows:

1g

4w

&—3x+2w

evs 14

39

e \/g—Sx—Qw 1

4

—22 _3x+2w
e X

_2¢

e \/5—3x—2w

1s

where 19, 14, and 1g are 9 X 9, 4 x 4, and 6 x 6 identity matrices, respectively. The matrix
of the squares of the masses is diagonal as well, and is written as follows:

e~ PXF2w ginh? (é(l)) 1y

m(0)2

e~ X~ 2w ginh? (75c;5) 14

06

(3.9)

where m? = 1 is the mass appearing in eq. (2.1), and 0g is a vanishing 6 x 6 matrix.
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For the seventeen l—form fields, we adopt the convenient choice of basis given by
VA4 = Do, war, A4y, A4y, SG?MB7S67M5}‘ Disregarding the self-interactions, the field
strengths are defined by F%N = 28[MV’?V], and the kinetic terms are controlled by the
following:

e5x—2w

e5x+2w

_29
e \/3-1-2)( 1

HM == . (3.10)

3¢ 49

4y— S
e XV

_ 49
de” Xt Vs

Via the Higgs mechanism, nine among the 1-forms acquire a mass (we will refer to
these as axial-vector fields), by eating up as many pseudoscalar fields. We hence define
gauge-invariant combinations of 1-forms and derivatives of the pseudoscalars:

o A .
7‘[(1) - = {0, 0,0, % + mAAM,aMch + mS67MB’ 8M<,05 + m567M5} . (3.11)

The four fields 74 have been introduced to parameterise the matrix O. We made use of
the relation g = 2m, in writing the first non-trivial entry in eq. (3.11). We introduce here
five additional scalars ¢,, that had been gauge-fixed away in eq. (2.1) — we remind the
Reader the action has been lifted from ref. [137]. By doing so, we reinstate manifest gauge
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invariance. It follows that the mass matrix for the 1-forms is governed by the following:

0

D¢

o

sinh2( 5¢)> 1y

(3.12)

Gyt
e,

The treatment of the massive 2-form fields is provided by defining the following objects:

H(Q)I];A[N = fFMN + mBFMN ; (313)
Fun = 200 A' Yy, (3.14)
H o = 30 B" oy (3.15)

where B,y = {Senrn g Semn s} In analogy with ¢z and s, the vectors ‘A/MB and A 5
had been set to zero in eq. (2.1), as in ref. [137], and their introduction reinstates manifest
gauge invariance. The action of the massive 2-forms is then determined by the two matrices

_ o
X2t 1

H® = : (3.16)

— _ 49
e X+2w N

6X+2w7 v EN

K® = . (3.17)

49
6X+2w+ 75

3.1 Background solutions

In this paper we generalise the study of fluctuations to encompass the whole spectrum of
bosonic fluctuations around the backgrounds presented in ref. [154]. We hence report in

~15 —



this short section only the essential elements that identify the backgrounds, while more
extended discussions can be found in ref. [154] (and references therein).

In seven dimensions, the scalar potential admits two critical points. One with (¢) =
¢uv = 0 plays a central role in this paper, and corresponds to the strongly-coupled fixed
point that defines the dual field theory in six dimensions. At this critical point, with the
current normalisations, one finds that V7(¢yy) = —12. The other critical point has (¢) =
bIR = —% log(2), and V7 (¢1r) = —52%, but is known to be perturbatively unstable [138].

Having implemented the toroidal compactification described in the previous section,
we consider background solutions for which lim, ;. ¢ = ¢yy = 0, obtained by solving
the equations of motion (B.17) and (B.18). In the asymptotic regime of the geometry, one
recovers (locally) Poincaré invariance in six dimensions. These solutions are written as the
following power series expansion in the small coordinate z = e P/2;

2]
B(z) = ¢oz® + <¢4 - 18%\/?@> 2+ (3.18)
162 637¢3 9
+ <5¢§ log(z) — 30¢2 — (/\%54> S+
+$ZB (11921x/5¢§ + 248003 ¢h4 — 180\/5@21) -
6 4862894 log?
+ 5263 log(2) (4504 — 62v/503) — —— ?f/gg () | o210y,
w(z) = wy +wez® + 0219, (3.19)
- 2y 05" 3.20
X(2) = xv — g log(z) = == + (3.20)

6% (6;5X6 — 150 wg + 72V/5¢5 log(z) — 615 — 20¢2¢4) 20+
ZS
1305 (1355¢§ + 1085026, — 4o¢i) +
42 loa(2) (4504 — 2763) — 2220 log(2) + O(=19),
A(z) = Ay — glog(z) - ‘%4 + (3.21)
% (1;’5% — 30we + 144V/5¢3 log(2) — 12v/545 — 40¢2¢4> 28+

271 4 2 2
L (27108 9830n R |
96 85 12

2Beilog?(z) + O(219).

2 4
g (e

NG 20 )

This expansion is characterised by seven integration constants: @2, ¢4, Wy, We, XU, X6,
and Agy.

The DW solutions form a subclass with wy = wg = xg = 0 and xy = %AU, leaving Ay,
¢9 and ¢4 as independent non-trivial free parameters. As anticipated, we impose the milder
constraint A = %X + w: what we call confining solutions have yg = 0, and Ay = % XU +wu.
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We may further require that Ay = 0 = xy, via a rescaling of the coordinates z* and a
shift of p, in such a way as to identify physically equivalent solutions. This would leave ¢,
¢4 and wg as free parameters.

The confining solutions form a l-parameter family: two of the three parameters are
fixed (non-trivially) by requiring that the solutions be regular and smooth at the end of
space, as the geometry closes off at some finite value p,. While the value of ¢(p) evolves,
either towards either positive or negative values, the circle parametrised by n shrinks to
zero size when p — p,, so that ¢(p) is finite for any p, < p < oo.

The IR expansion of the confining solutions depends on two harmless constants x; and
wr (besides p,) and on the physically meaningful parameter ¢;. It reads as follows:

1 —H (V5 2V5
= ¢ — — po)?e” V5 (—3eVOr 4 262V L 1) ... 3.22
Bp) = 61— 5o = po)e ¥ (=3¢ e ) (3.22)
log(p—po) 1 _8op
w@):wf(g@2’)>+mﬁpp@%zv%(&ﬁwf+8¥“wf1)+~~, (3.23)
log(p — po
x(p) = xf-+(p3)-+ (3.24)
1 _160p
500 (P Po)'e ﬁIGm@@%—JmJV%f+2zw&@@+am&V%f—7)+-~,

while A(p) = §x(p) +w(p).
As we restrict attention to solutions flowing from the UV critical point, we must require
¢1 > ¢1R, but without upper bounds on ¢;. As explained in ref. [154], the invariants Rz,
NN P MNQ
possible conical singularity, and the internal angles have periodicity 2.

are finite. The constraint w; = %XI removes a

These solutions are called confining, because the shrinking of the circle parametrised
by 7 is completely smooth, and, upon lifting the theory to type ITA, it is possible to apply
the standard prescription that allows to compute the expectation value of a rectangular
Wilson loop in the boundary theory, from which one can obtain a static potential between
probe quarks that reproduces the expected asymptotic linear dependence on the quark
separation — see appendix C and references therein. The ¢ = 0 solution is the background
discussed by Witten in ref. [126], and the generalisations to the full class discussed here
have been presented in refs. [152] and [154].

We depict examples of both confining and DW solutions in figure 1. It is worth noticing
that, while in the plot showing ¢(p) is it clearly possible to distinguish each non-trivial
solution, including the DW cases for the two critical choices ¢(p) = ¢yyv and ¢(p) = ¢1g,
by contrast, on the scale of the plots for the functions w’(p), X'(p), and A’(p), the difference
between the various confining solutions is too small to be resolved, and so is the difference
in curvature between the two DW solutions.

4 Linearised fluctuations and mass spectra

We devote this section to the calculation of the mass spectra of bound states of the confining
field theory, which the dictionary of gauge-gravity dualities identifies with the spectrum of
fluctuations around the gravity background. We treat the fluctuations of metric and active
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Figure 1. Background fields in illustrative examples of confining solutions with p, = 0. Left to right
and top to bottom: the functions ¢(p), w’'(p), x’'(p), and A’(p). For comparison, the horizontal lines
represent the DW solutions at the ¢y (black, dashing) and ¢;r (purple, continuous). In confining
solutions, w, x, and A diverge at the end of space, but ¢ is finite.

scalars using the gauge-invariant formalism developed in refs. [158-162] (and [153, 164]).
For the p-forms, with p = 0,1, 2, we implement the R gauge and focus only on physical
combinations of the fluctuated fields that do not depend on the gauge-fixing (£) parame-
ters, following the general principles enunciated in ref. [164]. Extended details about the
treatment of the 3-form, in particular in reference to the self-duality conditions, are shown
in appendix A. The technical details on how we perform the calculations are relegated to
appendix B, as well as details about the notation, where appropriate, while in this section
we discuss only the physical results.

In order to perform the numerical calculations yielding the spectrum, we introduce a
regulating procedure, and the extrapolation to the physical results is obtained by a process
that resembles what in the lattice literature is referred to as improvement. We define two
boundaries p; and ps to the holographic coordinate so that p; < p < p2, and add boundary-
localised terms in the action, which determine the boundary conditions obeyed by the
fluctuations. We then compute the spectrum of small fluctuations that obey such boundary
conditions, identifying the discrete values of M? = —¢? (where ¢* is the four-momentum of
the fluctuations) for which the system admits solutions. The physical spectrum is recovered
in the limit p; — p, and py — +00. We could perform the calculations explicitly for finite
p1 and po, and then repeat the calculations and extrapolate towards the physical limits, as
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was done for example in ref. [154]. Instead of doing so, we apply the boundary conditions
to the asymptotic expansions of the fluctuations — see appendix B.3.1 and B.3.2 — and
then use what results in order to set up the boundary conditions in the numerical study.
By doing so, the convergence of the spectra computed at finite cutoffs is much faster, and
as we shall see we obtained improved results in respect to the literature. We notice in
passing that for generic (non fine-tuned) choices of boundary terms this process selects
the subleading behaviors in the solutions of the linearised equations, in agreement with
standard procedures of the gauge-gravity dictionary. We will return to the case of special,
fine-tuned choices, and their consequences, in section 5.1.

When we look at the spectrum of states of the boundary theory, by studying the
fluctuations around the background solutions, it is best to count states in terms of massive
representations of the Poincaré group. We expect the following towers of four-dimensional
composite states to emerge — see also table 1.

o A tower of spin-2 massive tensors, from the graviton (5 dofs each).

o Three towers of scalars, related to gauge invariant combinations of the active scalars
and the trace of the metric.

e Thirty inactive scalars giving rise to as many towers, with the degeneracies of the
SO(4) multiplets they belong to (9194 H4d6 D 6).

e Seventeen massive 1-forms corresponding to towers of spin-1 states, with degeneracies
dictated by the representations of SO(4) (1061®4®6®4®1). Eight of these towers are
referred to as ‘vectors’ in the following, the other nine being dubbed ‘axial-vectors.

o Nine towers of pseudoscalars, transforming as 4@4@ 1 of SO(4) — hence reaching the
total of 42 scalars — closely associated with the nine aforementioned axial-vectors
by the Higgs mechanism.

e Thirty dofs represented by the 2-forms, yielding ten more towers of massive vectors
(3 dofs each), transforming as 4 &1 &4 @ 1 of SO(4).

The degeneracies due to SO(4) representations imply that beside the tower of spin-2 states
(1 sequence of mass eigenstates), there are 12 sequences of masses corresponding to the
spin-0 towers, and 10 different sequences of masses for the spin-1 particles. In summary,
the 128 bosonic degrees of freedom organise themselves in representations of SO(4) and of
the Poincaré group to yield 23 distinct sequences of mass eigenstates.

4.1 Tensor and active scalars

In this subsection, we consider the tower of states associated with the spin-2 massive
graviton, and the three towers of scalars obtained by fluctuating the three active scalars
(¢, X, w). The main results have already been presented elsewhere (see ref. [154] and refer-
ences therein), and this short section serves mostly to make the presentation self-contained,
as well as to cross-check that the results be consistent with the literature.
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Figure 2. Mass spectrum M? = —¢? of tensor modes (left panel) and active scalars (right panel)
as a function of the parameter ¢;, normalised in units of the lightest tensor mode. Numerical
calculations use p; = 10719 and p, = 10.

In figure 2 we display the mass spectrum of fluctuations of the metric and of the three
active scalars. We summarise in the caption of figure 2 and in appendix B, respectively,
the details of the numerical and formal manipulations we implement to compute the mass
spectrum. We notice that while the equations and boundary conditions for this sector of
the spectrum are those in ref. [154], the process by means of which we implemented the
boundary conditions improves the convergence in respect to ref. [154], better removing
spurious cutoff artefacts, and hence the results on display in this paper are a numerical
improvement upon the existing literature.

We normalise the spectra to the mass of the lightest tensor bound state, to remove
spurious dependences on arbitrary additive integration constants in the background values
of A, x and w. The results are in agreement with the literature. In particular, we notice
the emergence of a tachyonic state (with negative M? < 0), for backgrounds generated
with large and positive values of ¢;. We notice however that while the tachyon appears
first at ¢ < 0.447 in ref. [154], with the improvement we implement this is now happening
at ¢; ~ 0.36. In the region in which this state is light, it is also an approximate dilaton,
as in ref. [154] it is shown that its composition consists predominantly of the fluctuations
of the trace of the metric (which holographically corresponds to the dilatation operator).

4.2 All other scalars

To the best of our knowledge, the rest of the spectrum has not been computed before for
general ¢r. In particular, we report here the first calculation of the spectrum of all the
spin-0 states that descend from maximal supergravity.

We start with the three towers of Goldstone bosons, and we report their mass spectra
in figure 3. As anticipated, they transform as 4 & 4 & 1 of SO(4), respectively. The first
of the towers describes the SO(5)/SO(4) coset, and the lightest states of this sequence
correspond to the pNGBs of the dual theory. They acquire a mass in the presence of
explicit symmetry breaking in the dual theory. This is signalled by the presence of ¢ # 0,
in the UV expansion of the background solutions in eq. (3.18). Interestingly, we notice that
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Figure 3. Mass spectrum, with M2 = —g?, of the three groups of pseudoscalar modes and their

excited states as a function of the parameter ¢;, normalised in units of the lightest tensor mode.
The markers are chosen to match the representations under SO(4). Left to right and top to bottom:
the fourth, fifth and sixth element of H'%),* as in eq. (3.11). Numerical calculations use p; = 10~
and p2 = 10.

when ¢; is positive and large, this group of degenerate bound states becomes parametrically
light. We know from refs. [154, 155] that this is the limit in which ¢4 is enhanced with
respect to ¢o. This is the limit in which one intuitively expects to see Goldstone bosons,
and the continuous connection between the region of parameter space with large and small
¢r is the central element suggesting to interpret the lightest excitations in these towers of
states as pPNGBs — in spite of their large mass when ¢ = 0.

The other two towers (5 dofs) correspond to the breaking of the SO(6) to SO(5). This
is somewhat counterintuitive and requires further explanation. We remind the Reader that
SO(6) is the global symmetry of the five-sphere S°, and that maximal supergravity in five
dimensions indeed has such gauged symmetry. We also remind the Reader that the field
content of the ungauged theory is the same as that of the gauged theory. Because there is
no 5% in the geometry, the additional 5 = 4 ® 1 Goldstone bosons have no apparent reason
to be light. Yet, interestingly, when ¢; is large and positive, the SO(4) singlet becomes
parametrically light. As a tangential remark, it may be worth reminding the Reader that
SO(6)/SO(5) ~ SU(4)/Sp(4) is another coset which has attracted some attention in the
literature (see, e.g., refs. [26, 60, 61, 63-67]). While it might be interesting to study
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Figure 4. Mass spectrum, with M? = —¢?, of fluctuations of the scalar fields that vanish on the

backgrounds, as a function of the parameter ¢;. The masses are expressed in units of the lightest
tensor mode in the spectrum. The markers are chosen to match the representations under SO(4).
Left to right and top to bottom, the nine degenerate scalar modes denoted in the main body of the
paper as s“i, the singlet wg, the four degenerate A‘éi, the four degenerate Aé, the six degenerate Aéa
and the six degenerate Aé. Numerical calculations use p; = 1071% and p, = 10.

models based on this coset, this is clearly beyond the purposes of this paper, and requires
a generalisation of the model proposed here.

In figure 4 we display the masses of the other scalar fluctuations. As has been known
for quite a long time [138], the non-supersymmetric critical point of the seven-dimensional
potential is perturbatively unstable. The nine scalars s4 have mass (in seven dimensions)
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below the unitarity bound, when evaluated as a fluctautation around the AdS; solution
with (@) = ¢rr. In the case of this paper, some of the flows we are studying see the scalar
¢ approach this non-supersymmetric critical point, and hence there is a legitimate concern
that tachyons might appear, in spite of the fact that the theory is dimensionally reduced,
and confining solutions do not exhibit local five-dimensional Poincaré invariance. Direct
calculation shows that there are indeed nine degenerate tachyons in the spectrum of the
sA states, which appear for values of the parameter ¢; < —0.26 close to ¢rr. As in the
case of the other dynamically-generated tachyon we discussed in section 4.1 (among the
fluctuations of the active scalars), we expect a phase transition to be present, to separate
the tachyonic phase from the physical one. Contrary to the case of the active scalar for
large and positive ¢y, though, we know that this scalar is not a dilaton, as it is associated
with fluctuations of a field that vanishes in the background, and hence these fluctuations
cannot mix with the trace of the metric, which is the bulk field associated to the boundary
dilatation operator — an extensive discussion of this general argument can be found in
ref. [153].

The other five groups of degenerate scalar fluctuations do not display any qualitative
nor quantitative features that deserve further attention. The towers of states associated
with the singlet wg, the four degenerate AA, the four degenerate Aé, the six degenerate
AGA and the six degenerate AA, all have only mild dependence on ¢;, and have masses that
start around the same value of the spin-2 states, with the 6 particles associated with Agi
showing almost exact degeneracy with the tensors. We will not discuss these five sequences
of masses any further in the following.

4.3 1-forms in five dimensions

Our numerical results for the six towers of excitations of the 1-forms (vectors) are depicted
in figure 5. Two things are worth noticing. First, the unexpected fact that the spin-1
states corresponding to the axial-vector fields 567# 5 and Sg7,5, which together transform
as a b of SO(5), and span the SO(6)/SO(5) coset, are not significantly heavier than the
spin-1 states related to the gauged SO(5). We would have expected the latter, comprising
the vectors along the SO(4), and the (axial-)vectors along the SO(5)/SO(4) directions to
be the lightest spin-1 states, somewhat separated from the others, as in generic QCD-like
theories, in which, aside from the pNGBs, the lightest among the other bound states are
the generalisations of the p and a; mesons. Such separation is not there, and we will also
find additional spin-1 states with comparable masses in the next subsection.

Second, for non-vanishing (¢), the background breaks SO(5) to SO(4), and produces
a splitting between the masses of the corresponding two groups of towers, as expected.
But we find that the sign of the mass splitting depends on the sign of ¢;. The six spin-1
states Aé, broadly speaking corresponding to the p mesons, are lighter than the four Ai‘
for negative values of ¢; < 0. But when ¢; > 0, this ordering is inverted. This effect, if
appearing in the absence of explicit breaking of the global symmetry, would be a possible
signature of violations of unitarity, as it is not what expected from the analysis of dispersion
relations in field theory. But the holographic interpretation of the backgrounds, in field-
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Figure 5. Mass spectrum, with M? = —¢?, of the (gauge-invariant) transverse fluctuations of

the 1-forms, as a function of the parameter ¢;. The masses are normalised to the lightest tensor
mode. The markers are chosen to match the representations under SO(4). Left to right and top
to bottom: x,, w,, the six Aé (all these states are also called vectors elsewhere), the four Af, the
four Sﬁmﬁa and Sg7,5 (the axial-vectors). Numerical calculations use p; = 10719 and py = 10.

theoretical terms, indicates that we are in the presence of explicit symmetry breaking, and
hence the sign of the splitting is a free parameter.

The other 1-forms do not display features of particular physical interest. The fluctu-
ations of x,, w, — or, better, their gauge-invariant, transverse components — all yield
results in which even the lightest mass eigenvalue is no lighter than the strong coupling
scale, which in this paper we conventionally associate with the mass of the lightest spin-2
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tensor mode. The Sgro. fields are related by the self-duality conditions to the Sirno o
fields, and hence we do not need to study the equations of motion and boundary condi-
tions obeyed by the latter, as they cannot yield additional information (for details, see
appendix A).

4.4 Massive 2-forms in five dimensions

The treatment of the massive 2-forms (in five dimensions) starts from the derivation of
the equations of motion for Sgyo and S7yo, which is summarised in appendix A, and
yields four additional towers of spin-1 particles in the dual four-dimensional theory. Along
the lines of thought we followed for the 1-forms, we rewrite the five-dimensional action in
a manifestly gauge-invariant form first, and then implement the 2-form generalisation of
the R¢ gauge, by following the formal treatment in ref. [164]. By doing so, we isolate the
gauge-independent, transverse component — which we generically denote by B, (B;’W)
and X, (X L) — and hence identify the physical spectrum of states without ambiguities.
We summarise only the most important final results in appendix B, in particular the
implications of the fact that the 3-forms obey a self-duality condition, which is necessary
for consistency.

As the resulting equations and boundary conditions are peculiarly affected by the self-
duality conditions, we exhibit them explicitly in the body of the paper, while more detail
is in appendix B. They are the following;:

8, HZ'
lq%‘”‘ 92 + H(ﬁ O +m H@)Hﬁf)’] PH PP B, (q.7), (4.1)
- {ay, +VHPHY m2| PP BA (g,7) I (4.2)
_ [8 8HA o, — —quz mQHI(le)Hg)/] Xﬁ(q”ﬂ)’ (4.3)
- {ar \/—2)’2]XA @n| . (4.4)
where A =1, , 5, and these equations describe both the degrees of freedom contained in

the 2-forms denoted by Sgno and S7nyo. The functions Hi‘) and H @) =1/K; @) are given
in egs. (3.16)—(3.17). We use the identification of B, (and X,) with the gauge-invariant
field containing Sgno, purely as a conventional choice. As shown in appendix B.2, the
corresponding equations for B:L and X/ 1» associated with S7no, can be brought into the
same form after a judicious choice of boundary conditions and the identification of B;,w
with X, and vice versa. This is made possible due to the self-dual nature of Sy;yo, and
hence the entirety of the associated part of the spectrum can be extracted by considering
only the equations for By, and X, given in egs. (4.1)—(4.4).

Once more, we impose these boundary conditions on the asymptotic expansions of
the fluctuations, and then set up the numerical solver to match the resulting asymptotics,
which effectively retains only the subleading terms in the expansions themselves. We
display the results in figure 6. As one can see, all four sets of towers of states show the
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Figure 6. Mass spectrum, with M2 = —¢?, of the spin-1 particles coming from the 2-forms in five

dimensions, as a function of the parameter ¢;, and normalised to the lightest tensor mode. The
markers are chosen to match the representations under SO(4). Left to right and top to bottom: the

four B, 3, the four X, 5, B, 5, and X,,5. Numerical calculations use p; = 10719 and p, = 10.

generic expectation that all these fields, which correspond to spin-1 composite states, are
heavy, their masses being of the order of those of the spin-2 tensors or higher. With one
valuable exception: the lightest mode corresponding to component X5, along the broken
generator of SO(5), becomes parametrically light, for asymptotically large values of ¢;.

5 Towards composite Higgs models

So far in this paper, we reported on the results of the calculation of the complete spectrum
of excitations of the 128 bosonic degrees of freedom of the theory. We start this section
by presenting a summary plot of the physical results of our extensive study, which are
displayed in figure 7.

The number of bosonic states is so large that the sequence of levels densely fills the
positive values of the mass above that of the lightest spin-2 (tensor) state. We remark
on the presence of a degeneracy between the spin-2 states with a tower of spin-1 and of
spin-0 states, which (for ¢; = 0) had been observed before in the literature [163]. In general
terms, looking at heavy states with this formalism is not particularly interesting: in spite of
retaining a significant number of supergravity fields, we are still neglecting the excitations
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Figure 7. Detail of the combined mass spectrum M? = —g? of all the bosons, as a function of

the parameter ¢, normalised to the lightest tensor mode, and restricted to the low-mass region. In
red we depict the spin-2 particles, in black the spin-1, in blue the spin-0. The markers are chosen
to match the representations under SO(4), while the legend refers back to the notation in table 1.
Numerical calculations use p; = 1071 and p, = 10.
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that depend non-trivially on the coordinates on the two circles and on the four-sphere in
the interior of the geometry, and furthermore all the possible other excitations that are
not captured by supergravity. Yet, if we focus our attention on states that are appreciably
lighter than the spin-2 tensors, some interesting patterns emerge, which do not depend on
the aforementioned simplifications and approximations.

We remind the Reader of some of the results already discussed in previous sections.
The first observation we make is that two mass eigenstates for spin-0 particles become
tachyonic in (separate) parts of the parameter space. At negative ¢y, large enough that
the backgrounds approach the non-supersymmetric critical point with (¢) = ¢rg, these
tachyons correspond to the lightest excitations of the nine SA, and their negative mass is
a consequence of the instability of such critical point. Conversely, at large and positive
values of ¢7, the state that becomes tachyonic is a fluctuation of the background active
scalars, and mixes with the trace of the metric, so that this tachyon is also a dilaton, at
least approximately [154].

There is a region of small to moderate values of ¢; over which such (perturbative)
instabilities are absent. We do not know what is the current extent of such region: both
at positive and negative ¢;, a phase transition must be present, separating the stable,
physical branch of confining solutions from the unstable ones. This problem was studied in
ref. [154], which demonstated the existence of a first-order phase transition at a moderate
value of ¢; > 0. This was supported by establishing the metastable nature of the gravity
solutions in the region 0.04 < ¢; < 0.4. No analogous study has, to the best of our
knowledge, been performed for negative values of ¢, and we leave this open question for
future investigations.

As expected, the aforementioned two scalar mass eigenstates become exactly degener-
ate for ¢; = 0 = ¢, where they are both part of the 14 of the enhanced SO(5) symmetry.
Interestingly, they are also close to degenerate with one of the lightest active states that
corresponds to fluctuations of the fields {w, x}. It is also worth noticing that a second fluc-
tuation of the active scalars becomes parameterically light when ¢ is taken to be large, so
that in this limit two of the spin-0 SO(4) singlets become massless.

One of the pseudo-scalar eigenstates, corresponding to the 4 pNGBs of the SO(5) —
SO(4) breaking, becomes massless for ¢; — +o00. Interestingly, also one pseudoscalar SO(4)
singlet, and the degenerate spin-1 SO(4) singlet, become massless in this limit. Asymp-
totically at large ¢;, we find that the spectrum approaches that of a gapped continuum
starting at the threshold set by the mass of the tensors, accompanied by a number of
massless states corresponding to the aforementioned two scalars, five pseudo-scalars and
one vector.

5.1 Boundary terms and pNGBs

We complete this section with an exercise that involves the boundary terms in the action.
We focus on the boundary at p2, and specifically on the boundary term for the four pseudo-
scalars 7. No expllclt mass terms are allowed for these fields, due to gauge invariance, but
the combination 9, 7+ 2mA,; A i gauge invariant, and hence a boundary-localised term
quadratic in this comblnatlon is allowed. Its coefficient is denoted by Cj in eqgs. (B.37)
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and (B.39) in the appendix. We would like to assess how much the spectrum of the spin-0
and spin-1 states would be affected by fine-tuned choices of Cy # 0.

The reason why this is interesting relates to the connection with phenomenological
CHMs. A non-zero Cy might emerge from the coupling of the pNGBs to an external sector
of the theory, as is envisioned in CHMs, for which this sector is the standard model of par-
ticle physics — the lightest excitations of the four 74 fields being related to the Higgs fields
of the standard model. In CHMs, such couplings not only change the dynamics of the pseu-
doscalars, but must induce an instability, that ultimately triggers electroweak symmetry
breaking — SO(4) must break spontaneously to SO(3) in the vacuum. Of course, a realistic
model would require to also embed the SU(2)z x U(1)y gauge group into the SO(4) symme-
try, which would require changing also the appropriate D terms in egs. (B.37) and (B.39).
But we leave this model-building task, together with other model-building considerations,
as well as the whole programme of studying vacuum (mis-)alignment and of assessing the
amount of fine-tuning, to future investigations. Here we just consider whether we can
make the mass of the pNGBs parameterically small, and possibly negative, by dialing Cs,
without further attention to phenomenological and model-building considerations.

To be more precise, let us reconsider the numerical procedure we adopted in the treat-
ment of this particular multiplet of pseudoscalars. For Cy = 0, eq. (B.39), when taking
the limit po — +o00, amounts to selecting the subleading fluctuation in the asymptotic
expansion of p! in eq. (B.59) — effectively restricting the fluctuations to have p!, = 0.
Explicitly, we see that this is the case by making use of the changes of variable 9, = e™X9,
and z = e~?/? to rewrite eq. (B.39) as

0 = [Coe X9, + G (p)| X(q,p)|

- _%Cge*ﬂz)zaz + G(”(z)} X(q,2)

p=p2

2:6_92/2

[ 1
= |—5Ce @l + GO (2) (p10+1og<z>p1l)+~-] , (5.1)

z=—e—P2/2

where we made explicit use of the first line of eq. (B.59), and where G(!) = sinh? (\/gqb/ 2)
is the factor appearing in the fourth block of the diagonal matrix of eq. (3.12). As the
term with the explicit dependence on log(z) is dominant for Cy = 0, by taking the limit
p2 — +0o we are effectively setting pll =0.

. . . . . Co(p2)ex(r2) B
This conclusion holds for any generic choice of Cs such that pllinoo (7(;(1) ) + p2) =

+00. The other extreme case appears if we allow Cs to be a function of p2, such that when

; Ca(pz)e xr2)
we take py — 400 we find that pilié%o ( G (p2)

plo = 0. But we can make a fine-tuned choice, by making C5 a function of ps, and requiring

+ pz) = (. In this case, we are fixing

that for a given ps we dial
1 1
—icz(pz)ﬂ(m = §G(1)(p2) X (p2 + 2¢2) , (5.2)
with co a constant. By doing so, the boundary condition reduces to

0= GN() (bl + 20" (5.3)

z—e—P2/2 )
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This process highlights the presence of an additional free parameter, cs, in the theory, and
this free parameter can be dialed to change the spectrum. Doing so requires fine-tuning,
because the scaling of C has no a priori relation with the bulk warp factors, such as G() (p)
and e X, and hence this mechanism amounts to a somewhat contrived exact calcellation,
in the py — 400 limit, between bulk and boundary-localised physical effects.

We show in figure 8 the dependence of the spectrum, in particular for the four pNGBs,
on cg, for three representative values of ¢;. The spectrum in figure 7 is recovered for
ca — +00. In all cases, we notice the existence of a narrow range of co for which the
pseudoscalars are parametrically light, compared to the rest of the spectrum. This range
appears in proximity of a fine-tuned choice of ¢y below which the pseudoscalar becomes
anomalously light and tachyonic. Depending on the value of ¢, two different cases can be
realised. For generic ¢ (represented here by ¢; = £0.05, as in the top panels of figure 8), by
tuning co one can realise a hierarchy between the mass of the pseudoscalars and the rest of
the spectrum. The little hierarchy of scales that emerges in this way is suggestive of the case
of interest in composite Higgs models: in order to trigger electroweak symmetry breaking
one needs a choice of co that makes the pseudoscalar tachyonic, and the instability would
indicate that the vacuum might further break SO(4) to a SO(3) subgroup. Interestingly,
this scenario is realised both for positive and negative values of ¢;.

For larger and positive values of ¢y, close to the appearance of a tachyon in the scalar
spectrum, but for which the scalar mass squared is still positive, one can realise the scenario
of composite Higgs models in which the low energy effective theory is the dilaton EFT.
In this case one can envisage a low energy spectrum that contains also a pseudo-dilaton,
together with the pNGBs. But to do so requires dialing to special values both ¢; and
ca. We defer the detailed realisation of a phenomenologically viable model of this type to
future work.

Let us return to the rest of the bosonic spectrum. If, as suggested above, we modify
(5 for one of the pseudoscalar multiplets, the boundary term affects the associated axial-
vector field as well, as the same parameter enters eq. (B.37) as (B.39). For Dy = 0, we find
that the UV boundary condition is the following:

) (5.4)

z=e—P2/2

0 = (24() [—;H(l)(Z)e_X(z)zaz + m202} P A% (g, 2)

30
where HW(z) = ie Vs T2 s the factor appearing in the fourth block of the diagonal
matrix of eq. (3.10). By replacing the aforementioned, fine-tuned choice of Cs, as well as
the expansion in eq. (B.71), we find

2m?e>X ) GW (2)(pa +2¢2) | 1 4 2772 4 4
Ozlzaz—l— T oy (14 22M +---)+n4z}zzew/2
= [20: + 1063 (pa + 202" [0y (14 22M% 4 - ) 020 | - (5.5)

Even for the aforementioned, fine-tuned choices of C5, these boundary conditions are equiv-
alent, asymptotically, to setting the coefficient v, = 0 for the leading term emerging from
the fluctuations, and hence this choice does not affect the spectrum of the axial vectors.
In particular, all the 1-forms are massive, with M? # 0.
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Figure 8. Detail of the combined mass spectrum M? = —g? of all the bosons, for the choices of
¢r = —0.05,0.05,0.25 (top-left, top-right, bottom panels), obtained by varying the parameter cy
defined in eq. (5.2). The colour and symbol coding is the same as in the earlier plots of the mass
spectra. Numerical calculations use p; = 1071 and p, = 10.

6 Conclusions and outlook

We reconsidered a holographic model of confining dynamics based upon a l-parameter
family of background solutions in maximal supergravity in seven dimensions, compactified
on a 2-torus. The backgrounds are completely regular and smooth. The holographic
calculation of the Wilson loop yields the static quark-antiquark potential expected in linear
confinement. Furthermore, the 1-parameter family describes the breaking SO(5) — SO(4)
of the global symmetry in the dual field theory. We presented two main, interrelated, sets
of new results.

At first, we computed the spectrum of fluctuations of these models. The complete
bosonic mass spectrum is interpreted in terms of bound states of the dual confining four-
dimensional field theory. For the SO(4) singlets, we improved the numerical treatment
compared to earlier papers, and found agreement with other studies — when the results
for the same states are available. One original part of this paper is that we extended the
literature to include also states that are not singlets of the SO(4) symmetry, and which
had previously been ignored. We found that some of these multiplets are lighter than the
singlets. We presented all the details of the calculations, from the decomposition of all the
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dimensionally reduced fields, to the treatment of the boundary conditions, taking special
care to identify the physical, gauge-invariant degrees of freedom.

The second part of this study concerned the connection of this well established super-
gravity, and its background solutions, to the, superficially remote, CHM context. Having
observed that the SO(5)/SO(4) coset, characterising the field-theory dual of the present
theory, also coincides with the one deployed in the construction of minimal CHMs, we fo-
cused attention on the mass spectrum of the four pNGBs associated with SO(5) — SO(4)
breaking. In a complete CHM, the four fields providing the low-energy description of the
pNGBs would become the four components of the Higgs doublet. As explained elsewhere
(see for instance ref. [13], or reviews of CHMs such as ref. [6]), the coupling to the standard
model fields, within the low energy dynamics, can trigger electroweak symmetry breaking,
via vacuum misalignment. We restricted ourselves to consider a more limited question of
principle. We showed how, by dialing specific boundary-localised terms, that are allowed
by the symmetries and would be naturally generated by coupling the theory to an external
weakly-coupled sector, it is indeed possible to realise a spectrum that resembles that of
minimal CHMs, and ultimately trigger an instability, which appears at scales lower than
that of the strong coupling dynamics. In passing, we also found that, for non-trivial pa-
rameter choices, the low energy spectrum may include also an approximate dilaton, besides
the four pNGBs.

Within the language of gauge-gravity dualities, it is worth noticing that by dialing
the two parameters denoted as ¢; and ¢y in the body of the paper, we gain the freedom
to change the balance between explicit and spontaneous breaking of SO(5). Let us try to
make this statement more precise. Let us start from the case in which we do not include
boundary localised terms, and in which ¢; = 0. The SO(5) symmetry is exact, all of the
spectrum is organised in SO(5) multiplets, there are no pNGBs (see appendix D). When we
turn on ¢; # 0, SO(5) is broken in the background, and the analysis of the UV expansions
shows the presence of both explicit and spontaneous breaking, via the coupling and vacuum
expectation value of the operator dual to the field ¢. The parameter ¢; itself controls the
balance of the two effects. In general, one can dial ¢; to large values, and hence recover a
set of four parametrically light pNGBs in this extreme case. But this appears possible only
at the price of exploring a region of parameter space where a tachyonic instability is present.
In the non-tachyonic region of parameter space, the four pNGBs are not particularly light,
their masses being just marginally smaller compared to other bosons.

The addition of the boundary-localised term (with finite cy) allows to change the
balance between explicit and spontaneous breaking. As a consequence of a cancellation
between intrinsic breaking of SO(5) in the strongly-coupled theory, and additional explicit
breaking due to the weakly-coupled boundary effects, the mass spectrum displays light
pNGBs. The result is not dissimilar from what emerges in other CHMs currently under
investigation on the lattice and with EFT techniques — see the ample list of references
in the introduction — in which the little hierarchy between the strong-coupling scale and
the mass of the lightest scalars emerges in similar ways, from a cancellation requiring some
moderate tuning.
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Our results show that this very special theory provides a completion, in principle,
for minimal CHMs. But let us qualify this statement. This theory provides quantitative
information about the spectrum of states other than the pNGBs, such as the many scalars,
spin-1 and spin-2 states we studied. Yet, to build a realistic model there are at least two
major additional steps to take, before one can consider phenomenological implications and
direct testability. First, one has to embed the SU(2) xU(1) symmetry of the standard model
into SO(4), and gauge it (weakly) by adding appropriate boundary-localised kinetic terms
for the gauge bosons, in such a way that the dual field theory has a gauged, rather than
global, symmetry. One then must study vacuum (mis-)alignment, and explicitly show that
by dialling the appropriate boundary-localised term (generalising the aforementioned cy
parameter to the realistic scenario) one can trigger electroweak symmetry breaking. After
that, one can proceed to describe the full phenomenology of the resulting model, including
the process of mass generation for the SM fermions, the study of the masses and couplings
of the heavier states, and the calculation of precision observables both in the gauge and
scalar sectors of the resulting CHM. The field content of the supergravity theory, and hence
the bound states of its dual, includes towers of particles with non-trivial SO(4) quantum
numbers, and a calculable mass spectrum, making it potentially quite intriguing and well
worth further investigation. This paper establishes the basic tools needed to start carrying
out all these ambitious tasks in the near future.
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A Of self-dual massive 3-forms

In this appendix, we match the action of the self-dual massive 3-forms in seven dimensions
to the action of massive 1-forms and 2-forms that we study in the body of the paper. Let
us start from restricting our attention to the quadratic part of the action for the 3-forms,
borrowed from eq. (2.17):

—~ m= MIPANOAOR < aB
st = | d7l‘{@ [_ g e gOR (wwgmoa(; "Sparst (A1)
4
_|_

@ R . m NMNOPQRS o . . Ba o .
e Vs SMNOSSPQR5)] T o4€ Sx1x6a0" 8PSQRS,B}'

Taking the variation of the action with respect to the fields, one obtains the equations of

motion:
2
_ M — NP.NOOR =bc ., M NNOPQRSH o . _
0= V=017 077577 e Spapp+ 15¢ dpSoas s (A.2)
2
m — NPANOAOR —-= M NINOPORS
0= _7 _g7gMPgNQgORe \/gd)Sﬁ)A]:zg, + EEMNOPQRSaPSQRS'g)? (AS)



where we separated the SO(4) multiplet from the singlet, as they have different ¢-dependent
mass terms. These equations implement the self-duality conditions that are necessary for
massive 3-forms to propagate 10 degrees of freedom on-shell (and not 20). The bulk
equations are of first order, and relate the forms to their first derivative.

We reduce the equations to five dimensions with the ansatz for the metric in eq. (3.1).
The derivatives with respect to n and ¢ vanish for all the fields. We decompose the 3-
forms in their Syyyvo S¢70, Senvo, and S7yo components, and make use of the fact that
V=07 = e"2X\/—gs, as well as that the indexes of the antisymmetric Levi-Civita symbols

eMNOPQRS gnd MNOPQ are lowered using the metrics in D = 7 and D = 5 dimensions,

respectively. This exercise yields the following system of first-order coupled equations:

6y — -
1 XV NOPQ

Serm = 6m /—gs M INSopq s> (A.4)
1
1 6x—2w—%¢ OPQ
SeMNG = Tom g MN 90S7pg 5 » (A.5)

1
1 €X+2w7ﬁ¢

OP
S7MNB = %ﬁeMN QaOSGPQBv (A.6)
1 6_4X qu
SMNOB T =0 N 6MNO 8P567Q5a (A7)
6x+—=¢
1l e NE
Serm 5 = 6%76MN0PQ8NSOPQ5, (A-8)
4
1 eX—2w+ﬁ¢ OP
SGMN5 = - ———— € ans';p 5, A9
om \/_795 MN Q ( )
4
1 6X+2w+ﬁ¢
STMNs = %WGMNOPQGOSGPQEH (A.10)
1e 4X+\[¢
Svunos = P evno. CopSeros , (A.11)

We can decouple the system into second-order equations, by resolving the mixing of
Se7m with Sprvo, and of Sgary with S7arny. A substantial amount of algebra relies on the
use of the following relations, that hold in five dimensions:

GSMNOPGSM/Nlolp/ = (1'4') (5 /(5 /(5 /5 pr 5 /6 /(5 /(SP r+ ) ) (A12)
1
RSNOP Lo = (213)gs ? (5 1096 5 — 6169067 + ), (A.13)
QRSOP ¢ pconpr = (3!2!)g5§ (6%0"5 — 6%0%) (A.14)
We also write [njng--- np] = ]%(nmg -+My — Nang -+ Ny + -+ ) to denote complete anti-

symmetrisation. The equations of motion are hence written in terms of the tensors Sg7o,
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Seno, formulated in the five-dimensional language, and they read as follows:

”Z,XV j = 20p (V(ﬁa[Ps OW) (A.15)
f NG
7955 NOB _ 39p [ Y5 5lPgNOIB (A.16)
X~ 2w——=d o X2 wt =0
7955 05 — 29p (Va[PS 015) : (A.17)
6x+f¢> o — 20
2 —
VTS gNOS 3y, (Y9 _plPg NOIs ) (A.18)
X~ 2w+\f¢> e—xfz 7—¢

The equations for Syyo lead to the same states, ultimately as a consequence of the self-
duality conditions, and we could omit them. They read as follows:

795 SNOB = 39p [ Y92 __plPg,NOIB (A.19)
X+2w—7¢ —x+2w +\f¢

795 S:NO5 = 39, [ — V95 __plPg.NOI5 | (A.20)
X+2w+f¢ —x+2w 77¢

where we highlight the dependence on w. For completeness, we report also the equations
for the Syrno o fields, although we do not use them anywhere in the paper:

my= sMNOﬁ 40p | Y F5_glPgMNOIB ) (A.21)
e X 06X +f¢
VG5 gMNos _ 40p | Y95 plPgMNOI5 ) (A.22)
ot zd o OX— 29

For the next steps, we borrow the conventions from eq. (B.48) of ref. [164]:
1
(2) /d5x — 05 {_ H? )»Hgg[)NH@)MN _ EK(2) Hg\?/’[)NOH(?,) MNO} . (A.23)

where the gauge-invariant combinations are defined as follows:

Hg\?}\f = Fun + mBun, (A.24)
Fun = 201 ANy (A.25)
Hvo = 30 Broy - (A.26)

For the 1-form we follow the notation in eq. (B.27) of ref. [164]:
/ d°x\/g5 {— Dy FMN 4 (A.27)
—§G<1>(6M7r + mApy) (07 + mAM)} ,

with Farny = 20,1 A In both cases, the Lagrangian possessed a gauge symmetry, and we
can set Ay = 0 = 7, in what we may call the unitary gauge. In this gauge, the equations
of motion for the 2-forms derived from eq. (A.23) take the form:

m?H® /=5 BNO = 30, (K y/=g5 oM BNOY) | (A.28)
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and the equations of motion for the 1-forms, derived from eq. (A.27), take the form:
m2GW /—gs AN = 20, (HUMF% a[MANl) : (A.29)

We introduce now the 2-forms By/n and B,y associated with Sgprn and S7arw,
respectively, and the 1-form Aj; associated with Sg7ps. By direct comparison between
the two sets of equations of motion, we find that we can cast the action of the massive
2-forms and 1-forms originating in seven dimensions as in eqs. (A.23) and (A.27), with the
identification with five 2-forms and five 1-forms written as matrices in SO(5) space:

BuNa = {SGMNB,SﬁMN5} , (A.30)
HO — ding (e—x+2w+ig¢,e—x+2w—fg¢) , (A.31)
K® = diag (eXHw\}g(ﬁ,eXij%(b) ) (A.32)

Blyna = {S7MNBaS7MN5} ) (A.33)
H®' = diag (e‘x‘2w+¢15¢,e‘x‘2“‘ 55¢> = (K(2)>_1 : (A.34)
K@ — diag (ex-2w-&g¢,ex-2w+&%¢ = (#®)", (A.35)
ApMa = {SG7MBaSG7M5} , (A.36)
G = diag (6_6X+\}5¢,6_6X_;3¢) , (A.37)
HO = diag (e_4x_ ¢ ,e‘4x+¢45"’) . (A.38)

These identifications have been used to arrive to the relevant entries of the matrices in
egs. (3.10), (3.12), (3.16), and (3.17).

B Formalism in five dimensions

We write here some general intermediate results, of a technical nature, that we use in the
body of the paper for the definition of the background equations and the study of the
spectrum of fluctuations, starting from the action written in the form of eq. (3.6). We
follow closely the notation adopted in ref. [164], and indeed some parts of this appendix
are repetitious in this respect. Nevertheless, we find it useful to add this appendix in order
for the paper to be self-contained, and also to clarify possible ambiguities in the notation.

We start by repeating eq. (3.6), and then devote the two subsequent subsections to the
analysis of the system of active scalars coupled to gravity, and of the p-forms, respectively.
We include an extensive discussion of the boundary conditions for the 2-forms, as the self-
duality condition affects them in a way that was not considered in ref. [164]. This section
is concluded by displaying the asymptotic expansions for the fluctuations, which are used
to impose the boundary conditions.
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The action in eq. (3.6) is the following;:

S5 = /d5:): e {f - %gMNGabanﬂﬁNcI)b — V()4 (B.1)
_%gMNGg%)aM(I)(O)aaN(I)(O)b _ %mt(l[l)))Q(I)(O)aq)(O)b_’_
_%QMNGSJ)BH(UAM/H(I)BN B igMOgNPHI(LllgFAMNFBOP+
B i MO NP H&) H(z)rMNH@)AOP _ T129MP gNQgOR K&) 7"(3)FMN0H(3)APQR} .

The first line of the action depends on fields that may have non-trivial profiles in the
vacuum, and their fluctuations are treated with the gauge-invariant sigma-model formalism.
The subsequent three lines in the action contain the kinetic and mass terms for p-forms
(with p = 0,1,2), all of which have vanishing background profile.

B.1 Scalars coupled to gravity

It is convenient to make use of the gauge-invariant formalism developed in refs. [158-162]
(and [153, 164]). Borrowing from refs. [159, 162], consider n real scalars ®%, with a =
1,-+-, n (n =3 in this paper). The action Sp of the sigma-model coupled to gravity in
D dimensions is written as follows:

1
Sp = / AP/ =g B — §GabgMN8M<I>“8N<I>b — V(@Y . (B.2)

The backgrounds of interest are identified by first introducing the following ansatz for the
metric and scalars

ds?, = dr? + 240" N datda”, (B.3)
O = Yr), (B.4)
which assumes that all the background functions depend only on the radial direction r in

the geometry. Greek indexes p, v extend over D — 1 dimensions. The metric has signature
mostly +. The connection symbols, with our conventions, are

Iy = %QPQ (OmgnG + ONgom — OQgmN) (B.5)
while the Riemann tensor is
RMNPQ = 8NFQMP - aMFQNP + FSMPFQSN - PSNPFQSM J (B.6)
the Ricci tensor is
Run = Rypy” (B.7)
and finally the Ricci scalar is
R = RyngMV. (B.8)
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The (gravity) covariant derivative for a (1,1)-tensor takes the form
VT y = ouT y + 00T — T Ty . (B.9)

and generalises to any (m,n)-tensors.
The radial direction is bounded, with r; < r < re, hence we also add boundary-
localised terms to the action, which take the form

S = — / AP /=56(r — 1) BKJr)\(l)((I)“)} , (B.10)

82 = [ aPay=go(r —r) BK+ A(g)(@a)} , (B.11)

where K = g™V Ky is the extrinsic curvature and A(;) are boundary-localised potentials.
The signs of the two boundary-localised contributions to the action reflect the orientation
of the ortho-normalised vector N™ | which is parallel to the radial direction r, and satisfies

9"V NyNy =1, (B.12)

gunNY =0, (B.13)

where gyyn = gun — Ny Ny is the induced metric. The second fundamental form is
defined in terms of the covariant derivative Vs, as Kyynv = VN

The sigma-model connection is defined in a similar fashion to gravity. It descends from

the sigma-model metric G4, and the sigma-model derivative d, = %, to read

1
Gl = §Gdc (8aGep + Geg — 0Gap) - (B.14)
The sigma-model Riemann tensor is the following
Rea = 0cG%hq — 049 e + G 409" ce = G 59" de - (B.15)

(The indexes in the conventions for the two Riemann tensors follow a reverse ordering.)
Finally, the sigma-model covariant derivative is

DyX4¢, = g,x%, +G?,X¢, — G, X4, (B.16)
The equations of motion satisfied by the background scalars are the following:
D20 + (D —1)0,A40,9* + G%,0,9°9,8¢ — V* =0, (B.17)

where the sigma-model derivatives are given by V* = G%9,V, and 6,V = %. The Einstein

equations reduce to

4
D -2
(D —1)(D — 2)(8,A4)% — 2G,0,8%9,®" + 4V = 0. (B.19)

(D —1)(9,A)* + 0?A + V=0, (B.18)
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If the potential V can be written in terms of a superpotential W satisfying the following
relation:
1 D-1_,
_ =z - B.2
vV 2G O IWOLW D—QW ) (B.20)
then any solution of the first order system defined by

2
A = —==W, (B.21)

9,0 = GPoW (B.22)
is also a solution of the equations of motion.

B.1.1 Fluctuations: tensors and active scalars

The fluctuations around the classical background of the active scalars and gravity are
treated with the gauge-invariant formalism in refs. [158-162]. The scalar fields can be
written as

4 (xt 1) = DU (r) + *(zH,r), (B.23)

where ¢%(z#,r) are small fluctuations around the background solutions ®(r). By decom-
posing the metric according to the ADM formalism, one writes

ds?, = ((1 +v)? + ygy"> dr? + 2u,dztdr + A (v + hyy) daztda”,  (B.24)

and

', = e, +igte, +ig e’ + QZ?H + ﬁéﬂyh, (B.25)
where ¢#, is transverse and traceless, e is transverse, and the Greek indices u, v are
raised and lowered by the boundary metric n,,. v(z#,r), vF(zt,r), e, (x#, 1), e'(zH, 1),
H(z#,r), and h(x*,r) are small fluctuations around the background metric with the warp
factor A(r).

After forming the following gauge-invariant (under diffeomorphisms) combinations:

a a 8T‘(I)a
h
—2A .2
R P h 1
¢c=e o D= 20,4 Q&«H, (B.28)
W = e AP LY — Dt (B.29)

the linearized equations of motion decouple — thanks to the algebraic equations for b and c.
The tensorial fluctuations e, are gauge-invariant, and obey the equation of motion

(02 4+ (D = 1)0,40, — e 240g?| e, = 0, (B.30)
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where M? = —¢? is the mass squared of the states. They obey the boundary conditions

0, =0. (B.31)

eulf‘r:ri
Egs. (B.30)—(B.31) allow to compute the spectrum of spin-2 states. The equation of motion
for o# is algebraic; it does not lead to a spectrum of composite states. The equations of
motion for b and ¢ are also algebraic, and solved in terms of a®, which obey the following
equations of motion:

0= [D}+ (D~ 1)9,AD, — e *¢*[a" + (B.32)
40,9V + V9,8 Gy.  16V0,0%0,8°G,,
_ a _ pa rq)b rq)d (s T C s T c| ¢
[V o = Rocalr ©°0, 27 + (D 20,4 T D —220,42 Y
while the boundary conditions are given by
2240, ¢ b 40, ®° b
99D, - ———— — —a*l =0. B.
(D — 2)¢%9, A [a D-254 ~ |, =0 (B-33)
Here, V%), = % + §G4%. V¢, and the background covariant derivative is defined as D,a% =
ora® + G4 0, ®bac.

B.2 p-forms and other scalars

The fluctuations of scalars that do not have a vacuum expectation value, for which
<8T<I>(0)“) = 0, decouple from gravity. They obey linearised equations that can be de-
rived with the same formalism as for the active scalars, but the ultimate result is the much
simpler expression:

8TG£O) 30)2
o (48TA i G<°>> o (TZ«» +’e )| 2O gr) =0.  (B.34)

The boundary conditions simplify to read

(g, 7)

=0. (B.35)
7
For the 1-forms and 2-forms, we adopt the convenient choice of the R, gauge, appro-
priately generalised to the relevant cases. The advantage of doing so is that by removing
from the classical Lagrangian mixing between fields of different spin, it becomes possible
to build manifestly gauge-invariant combinations, that can be studied without ambigui-
ties. The Reader can find details about the treatment of these fields in five dimensions in
ref. [164], and we borrow from there the main equations used in studying the spectrum.
The action of the generic massive 1-form Vﬁ/l is given by the third line of eq. (3.6),
and the spectrum of physical states can be obtained by looking at the equations of motion
and boundary conditions for the transverse part of the four-vector Vﬁ, as well as the gauge
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invariant scalar X4 defined in eqs. (B.38) and (B.39) of ref. [164]:
0= |¢?HY -0, (¢ Hy o,) + e m?Gy) | PrvE(g,r), (B.36)
0= _H](Bl)eQA&n +¢*D; + mQCieM] P“”Vﬁ(q, T)

, (B.37)

T=r;

r (1) (1)
0= |02+ (—28,,A — 37”GB> or + <—62Aq2 - mQGBﬂ XB(q,r), (B.38)

) By

0= [Cior+ G| XB(q,r)‘T . (B.39)

=r;

The last two of these equations are only applicable in the case when pseudo-scalars are
present and mix with the corresponding axial-vectors. In ref. [164] all the boundary-
localised terms are set to C; = 0 = D;, which reduces the boundary conditions for the
vectors to Neumann, and for the scalars to Dirichlet. A more orthodox choice might
be to set C1 = 0 = Dj in the IR, but Co = +00 = Dy in the UV, hence flipping the
Dirichlet and Neumann boundary conditions — the position of the poles of the relevant
correlation functions is unaffected, but this flipped choice improves convergence with the
UV regulator rs.

The dynamics of the generic 2-form BY}, is governed by the fourth line of the action
of eq. (3.6). Adapting from ref. [164], we find for the transverse polarisations of the 2-form
the equations of motion and boundary conditions take the following form:

0 = [KPq*e 4 — 0, (K{70,) + m*H? | P*PY BT, (g,7), (B.40)
0 = [K{? Big?e A + K0, + D;HP m?| PP P BY,, (q,1)

, (B4l

r=r;
where I is, in the context of this paper, a multi-index that spans the ten different 2-forms
obtained from Sgno o and S7nyoo- The other three degrees of freedom propagated by each
massive 2-form yield an independent tower of massive vectors. The physical (transverse)
massive vectors XFM defined in egs. (B.59) and (B.60) of ref. [164] obey the following
equations and boundary conditions:

0,0 ) 7@
0= la&- H(QF) o+ | —e 2Aq2—m2ﬁ X" (q.r), (B.42)
T I

0= [a, + 1] X' (q,7) (B.43)

D;

r=r;

As discussed in ref. [164], the other components of the 2-form fields do not yield additional
physical states, and depend on the { parameters of the R¢-gauge formulation of the theory.

In ref. [164] the choice was made of setting D; = 0 = Ej, in which case we recover
Neumann boundary conditions for the BFW fields and Dirichet boundary conditions for the
vectors X Fﬂ. But doing so in the context of this paper would not take into consideration
the implication of the self-duality conditions, and hence we pause here to analyse in more
detail this choice of boundary conditions.

The maximal supergravity theory contains a set of 3-forms that obey a self-duality
condition, which is necessary for consistency. After introducing appropriate gauge-invariant
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fields Bnoo and By, (associated with Sgno and S7yo, respectively), and the vectors
Xy and X, the number of degrees of freedom is superficially doubled. In the original
seven-dimensional language, the Sgno and S7yo fields are related, as for example evident
in egs. (A.5), (A.6), (A.9) and (A.10). By looking closer to the equations and boundary
conditions for these fields, the functions appearing in all the equations of motion obey the

following non-trivial relations:

K@ = (H®)1, K® = (H®NH=, (B.44)

both of which are consequences of the aforementioned self-duality conditions.
By replacing K and K?’  the equations and boundary conditions can then be
written as follows:

0= [qze2a - 'a, <H%2),8T> + m2H§>H§>'1 PP BA (q,r),  (B.45)
0= iE,-q2e2A + 0, + Di;(f)Hf)/mﬂ PR PB4 (g,7) o (B.46)
0= _qu—“ — Yo, (HI(,Z)&> + mQHﬁf)HfV] PHPYBA (q,r),  (BAT)
0= {qu%“ + 0, + Dgéf)ﬂf)’mﬂ PRPB (g, (B.48)
0 |a2- a;{(g)ar + (—e g2 - m2Hg2>H§f>')] X4 (1), (B.49)
L A
0= [ar + ;] Xian| (B.50)
2 8TH,(42)/ —2A 2 2 77(2) 7 (2) 1A
0= laT —W&+ (—e4q? —m*H 1 )] X'4q,r), (B.51)
0= |0+ ;; X'ﬁ(q,r) o (B.52)

with A =1,--- 5 the SO(5) index replacing the generic I".

One key observation is that the equations satisfied by the transverse parts of B, and
By, are the same as those obeyed by Xj, and X, (notice the inverted order). This is a
direct consequence of self duality, and it is most welcome, as there is no a priori reason
to favour the formulation of the problem in terms of either B, or B,,. Thanks to this
observation, we can either chose to study only the pair B;?l, and X l‘f (as we do in the body

of the paper), or only the pair Bl’ﬁ

and X LA, with no loss of generality.

For the self-duality to be manifest and exact in the spectrum, the same interchangeable
roles we see in the equations of motion must appear in the boundary conditions as well.
In the first instance, this requirement forces us to impose that E; = 0 = E/, as there
is no equivalent term admissible in the boundary conditions for X /’L and X,. We must

furthermore require also that

1

H® g2),2 . _ 5.5 _

(B.53)
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Because we want the expressions to be completely symmetrical under the exchange
Seno < S7no, we can further impose the condition D; = D}, which equivalently requires
to impose

== (B.54)

results in the final form of the equations reported in the body of the paper as
eqs. (4.1)—(4.4), and ultimately leads to the results on display in figure 6.

B.3 Asymptotic expansions for the fluctuations

We report here the asymptotic expansions of the gauge invariant combinations of the
fluctuations of the fields around the confining backgrounds, both in the UV (large p) and
in the IR (p — p,), which we obtain by assuming that the background functions are written
as the power expansions in egs. (3.18)—(3.21) and egs. (3.22)—(3.24), respectively. These
expansions have been used in order to implement (and improve the convergence of) the
numerical calculations of the mass spectra, when taking the limits p; — p, and ps — +00,
S0 as to recover physical results free of spurious cutoff dependences.

For presentation purposes, in this appendix we simplify the expressions by setting
xu = Ay = wy = 0 = xg when we write the UV expansions of the fluctuations, hence
retaining only the dependence on ¢o, ¢4, and wg. Conversely, when presenting the IR
expansions we set p, = 0 = x;7 = wy, and the expansions depend only on ¢;. We note that
these two sets of choices cannot be imposed simultaneously on a given background. Finally,
anticipating that we will use the expansions in order to set up the boundary conditions
for the fluctuations in the computation of spectra, we substitute the dependence on ¢ in

favour of M? = —¢>.

B.3.1 UV expansions

In the case of the UV expansions, having set yy = Ay = wy = 0 = xg, we use the
convenient coordinate z = ¢~ 3 , and write the expansions in powers of the small coordinate
z, truncated at finite order. The confining solutions are characterised by the parameters ¢s,
¢4, and wg. But these parameters are not independent, as they are all functions of the IR
parameters that determine the background solution. In addition, although the equations
for the fluctuations are of second order, yet the equations are linear, and hence depend on
an arbitrary overall normalisation. But we retain both free coefficients in the solutions as
free parameters, for simplicity.

The asymptotic behaviour of the background solutions is such as to yield an AdS7
geometry, the dual field theory being governed by a strongly-coupled fixed point in a six-
dimensional theory. For scalar fields, this observation implies that we expect the two free
parameters first appear in front of the terms O(z21) and O(z%2), in the power expansion
of the solutions, with the constraint A; + As = 6. But this is not the general behaviour
of all the fluctuations, as we shall see momentarily: some of the fields originate from the
compactification on the torus, so that their asymptotic behaviour is determined by the
lower-dimensional geometry.

43 —



We start from the tensors, the e/, transverse and traceless fluctuations of the metric.
We find the following expansion:

() = (o)t + 20 e+ e, Y S+ (Bss)
2
+20log(2)(e0)t, T (503 — (2 + O

where (eg)*, and (eg)", are the leading and subleading free parameters, respectively.
The expansion for the active scalars is given by the following expressions:

2
al(z) = 2%aly + 2%al, — 21 1og(2)d', s (5M2 + 18\/5¢2> + (B.56)
6
+;—0 [aly (~15(01%)% — 108V/5M26, — 127863 — 36v/5¢4 ) +
—2dl, (5M2 1 18\/5@)] T
6

+;;0 log(2)a'y [20(M2)? + 144v/5M ¢, + 194463] + O(="),
2 M2 4 2 <M2)2

a(z) = %) + 2%a 0y HEeT (B.57)
M2
+20a% + 2° 10%(2)5‘20% (4¢% - 5(M2)2) +0(2%),
M2 M2 2
Cls(Z) = 030 + ZQGSOT + z4a30(4) + (B58)

M2
+28a35 4 25 log(z)azj’oﬁ (4¢§ = 5(M2)2) +0(2%).

The free parameters are a'y, aly, azo, a26, a30, and a36. The three solutions are decoupled
from one another, at this order. Furthermore, the expansion of the fluctuations associated
with xy and w are identical. Both these observations hold only approximately: terms
appearing at higher-orders in the expansion in small z introduce mixing. For example,
terms dependent on the combination wgpa(2a%, — 3a3;) appear in the expansion of al
at O(28).

For the three towers of pseudoscalar fields, which are the fluctuations of the orthogonal
combinations X2 to the would-be Goldstone bosons higgsed into the massive vectors —
defined by the non-vanishing entries in eq. (3.11) — we find the following expansions:

pi(2) = plo +log(2)p!; + (B.59)
too [0 (50262 + 9v/563 + 504 ) — p'o (50202)] +
G L (—5M2¢s — 18V543
+55, 1oa() [Pl (=502 — 18V5e3) | +
4
5077 [P0 (300M2)268 — 36V/50403 — 5AVEM 04 + 200 gay +
2

~105763 + 2003 ) + 200apy (M2)262 — 2M 24 + 563 ) | +

— 44 —



4
+$¢% log(z) [pll <2¢§ (10(M2)2 - 72\/5(;54) — 72V5M2¢3 +

—40M? oy + T4863) + po (144VEM203)] +
4

z 2 1 2,3 4
+a0z 108 (o' (14450203 + 129603 | +

z
1080043 ("1 (1063 (55(M2)° — 1278v/5(M?)¢4 — 1205 ) +

+1043 (99\/5(M2)2 - 10678¢4) — 120026 (20(M2)2 + 63\/5(]54) +
—66585(M?) 3 — 900(M?) g2 + 21066\/5¢3) -

+p" (606 (—5(M?)% gy + 30(M?)2 g4 + 3(M?) (55763 + 60v/5a04) +
+60 (2v/564 + 56364) ) )| +

56

90065
+5¢o (288\/5M2¢4 - 5(M2)3) + 27525 M 23 + 32634\/5¢3) +

+p'y (—54003 (VB(M?)? + 30M2ps + 107563 ) )| +

_l’_

log(2) [p"; (6063 (12v/5(M?)? + 40364 ) + 150(M?)?u-+

+20108%(2) o' (=500 (5VBOM)? + 195020, + 428V543) ) | + O

p2(2) = 451? [b2_5 (450 +902% (502 — V/5so) + (B.60)
—902"log(2) (5(M?)? — 3v5M?¢5 — 963) +
+2° (50(M2)° (310g(2) — 2) + 15v/5(M2)265(7 — 1210g(2))+
+30M7 (9¢3(3 — 41og(2)) +2V564) — 900w+
+6v/5¢3(143 — 171 log(2)) + 330664 ) +
+302"p2,, (15 + 22 (3v/5¢s — 5M?) ) | + O(5),

p3(z) = 45(1)22 [0 (450 + 9022 (50 + 4v/5¢s ) + (B.61)
~90z"log(2) (5(M?)? + 12V5M?, + 3643 ) +
+2° (50(M2)3(310g(z) —2) + 60V5(M?)2 o (1210g(z) — 7)+
+45M2p3(2161og(z) — 107) — 240v/5M > ¢4 — 900w+
+84/5¢3(361og(z) — 23) — 120¢2¢4)) +
=302"p%,, (—15+ 22 (5M2 +12V52) )| + O(="),

where the free parameters are given by the coefficients p*, pll, p2+2, p2 o, p3+2, and p?_,.

In the cases of p2(z) and p3(2), the independent parameters appear in the terms of O(z72)
and O(z?), and we truncate the series expansion at a comparatively lower order.
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The fluctuations of the six types of scalars with trivial background values obey the
following UV expansions:

al(z) = alyz? + 21 {a44 + log(z)a, (1\2/(? - 2M2)] + (B.62)
+§3 [ay (5(M2)?(410g(2) — 3) + 12v/5 M6 (3 — 41og(2))+

+603(7 — 12l0g(2)) + 12v/5¢4 ) +
+2a'y (6v50; — 5M2)| + O(=*),

24

4

2
z
a®(z) = a’y + 5a50M2 + a5y (M?)? + (B.63)

2

M
5 8
00730 +O(Z )7

+25 |a% + log(2) (4¢§ - 5(M2)2)

a®(z) = éaﬁo <5 +522M? 4 2*log(2) (—5(]\42)2 — 3V5EM? ¢ + 25q§%)) +

+2%a5, + 0(29), (B.64)
1

a’(z) = ga70 (5 + 522 M? 4 21 1og(2) (—5(M2)2 — 3VBM? ¢y + 25(/53)) +
+2%7, + 0(29), (B.65)

M?

ad(z) = a5, (1 + 22M? 4 2 log(z)? (2\/5@ - 5M2)> + a8, + O0(2%), (B.66)
M?

a’(z) = % (1 + 22M? 4 A log(z)? (2\/5@ - 5M2)> + %%, + 025, (B.67)

where we denoted with {a*, --- , a®} the fluctuations associated with the fields ®@¢ in

4, and a*,, a%; and a’,

the same basis as in egs. (3.8) and (3.9). The free parameters are a
and the four pairs a’, and a’,, with i =6, --- , 9.

For the linearised fluctuations of the 1-forms VAM, we consider only the transverse
polarisations, and denote them as v#, with A =1, --- , 6, ordered in the same basis as in

eq. (3.10). We find the following UV expansions.

1
0'(2) = 0% (60 +1522M2 (2+ 22M?) + (B.68)
+22810g(2)M? (463 — 5(M?)?)] + %0's + O(=%),
1
0(2) = 0% (60 + 1522 M2 (24 22M?) + (B.69)

1225 log(z) M? (4(;5% — 5(M2)2)} + 2%0% + O(2%),

2
03(2) = v, <1 + 22M? 4 2 log(z)M? (2\/5@ - 5M2)> +

+2%3, + 0(29), (B.70)
1

ol(z) = 5040 (5 + 522M? + 2t log(2) (—’L’)(MQ)2 — 3V5M?¢y + 25¢%)) +
+21, + 0(27), (B.71)
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0(2) = 0%y (55 = T2 Mt 527 hog() (~5(MP + 3vEM0n + 963) ) +

NG 5
+2%0% + O(2%), (B.72)
6 6 L 42 2 1 2\2 2 2
0°(2) = 0°_, <22 + 7 + M* — 57 log(z) (5(M )2+ 12V5M? g + 36(;52)) +
+2%0% + O(2%). (B.73)

In these expressions, the free parameters are the pairs vy and vl4, v%), v, v3, and v3,,
vy and v?,, v°_, and v%,, as well as v6_, and v5,.

Finally, we list also the UV expansion of the four independent components of the 2-
forms, that are proportional ¢/, with i = 1, --- , 4, and for which we choose the same basis
adopted in egs. (3.16) and (3.17). We find the following results:

f(z) = {125 [450 + 9022 (507 — V/Bso ) + (B.74)
45022
—902"log(2) (5(M?)? — 3v5M3¢s — 963) +

+2° (50(M2)°(310g(2) — 2) + 15v/5(M2)26a(7 — 1210g(2))+
+30M2 (963(3 — 41og(2)) + 2V/564 ) + 900wg+
+6v/503(143 — 171 log(2)) + 3300264 ) | +

+302"¢!y [15 + 2 (3v/50s — 5M2) |} + O(="),

2() = @ [, [450 + 9022 (512 — V36) + (B.75)
—902"log(2) (5(M2)? — 3vV5M?¢5 — 963) +
+29 (50(M?)3(3log(2) — 2) + 15v/5(M?)26o(7 — 1210g(2))+
+30M2 (963(3 — 410g(2)) + 2v/5¢4 ) — 900w+
+6v/50¢3(143 — 171 log(2)) + 330664 ) | +
+30212%, [15 + 22 (3v/5es — 5M?) | } + O(9),

B(z) = 45(1)22 {85 [450 + 9027 (502 + 4v/5¢ ) + (B.76)
~90z" log(2) (5(M?)? + 12V5 M2, + 3643 ) +
+2° (50(M2)? (310g(2) — 2) + 60v/5(M2)2 ¢ (1210g(2) — T)+
+45M23(2161og(z) — 107) — 240V/5M> ¢4+
+900wg + 84v/563 (36 log(2) — 23) — 1206964 )| +

3026 [~15+ 22 (502 + 12v56n ) |} + O(=9),

1
0:) = 5o {5 [450 + 9022 (512 + 4v/5¢s ) + (B.77)
—~902*log(2) (5(M?)? + 12v5M?¢; + 3663) +

+2° (50(M2)° (310g(2) — 2) + 60v/5(M2)?¢a(1210g(2) — T)+
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+45M23(2161og(z) — 107) — 240vV/5M > ¢4+
—~900ws + 84v/563(36 10g(2) — 23) — 120664 ) | +

302"t [~15 + 2% (5M% + 12V562 ) |} + O(=0).

where we denote by t', the eight free parameters, with i = 1, ---, 4. Notice that the
difference in the sign of the terms depending on wg appears only in high-order terms.

B.3.2 IR expansions

We now consider the background solutions as defined by the small-p expansions displayed
in section 3.1. For convenience, in this subsection we set p, = 0, wy = 0, and x; = 0, so
that the 1-parameter family of solutions is labelled unambiguously by the choice of ¢;, the
only remaining integration constant.

We start from the fluctuations of the metric, the traceless and transverse component
of which is given by

1

(e (p) = 55 [(era), (~51os(o) (—4+ 5" M) + (B.78)

P <5M2 + e_% (1 — geV5or (e\/g‘z” + 1)))) +
—5(er0)", (—4 + P2M2)} +0(p"),

where the free parameters are (e7;)", and (er)",. Here and in the following, we add the
subscript ; to avoid potential ambiguities with the coefficients of the UV expansions.

For the three active scalars, the expansion of the relevant gauge-invariant fluctuations
is complicated by the mixing terms, and reads as follows:

1 _3%1 8¢5
a'f(p) = gg¢ [alu (—5e v (log(p) (=4 + p*M?) — p*M?) + (B.79)
—8p2e2V01 log(p) — 2p%e \f¢’(910g( ) —5) + p*(16log(p) — 15)) +

am( 18p2eV591 _ 822591 | 16,2 —5e71( 4+p2M2))+
+2v/5p? (—36\/5(]51 +2e2V50r 4 1) ( (log(p) — 1)a*; ;+
-3 ((10g(P) —1)a’; + 031,0) + 2021,0)} O(p"),
(o) = gge 7 [-2067F (a2, (log(p) (— 4+ PM2) - 02) 4 (B.50)
+alrg (—4+ P M?)) +
8p%eV™1 (3v/5(log(p) — 1)a'y, + 2(5log(p) — 3)a’+
—~15(log(p) — 1)a’;; + 3v5a' g + 10a%, — 150° ) +
+8p%e2V5r (2/5(log(p) — 1)a'p + (6 — 10log(p))a; -+
+15 ((log(p) — 1), + az) + 2v/5a' g — 10a%;) +
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+p* (8V5(log(p) — 1)a' 1, + 2(5 log(p) — 3)a%;, — 15(log(p) — 1)’y -+
+8v/5al 1y + 1007, — 157, )| + O(p*),

a®,(p) = %Oe_% [—506&55[ (agu (log(p) (—4 + p2M2) — pQMQ) - (B.81)
(V) 4
—8v/5p? (=3¢ V591 42251 1 1) ((log(p) — 1)y +a'rg) +
+40p? <€\/5¢, + e2V3er _ é) X
x (2010g(p) = D)oy + (1= Blog(p))a’r, + 2014 — 3a®1o )| + O(pY),

where the free parameters are alLO and alu, a2170 and aQU, and finally a3110 and a3”.
For the three pseudoscalars, the orthogonal combinations to the would-be Goldstone
bosons higgsed in the axial-vector fields, we find the following IR expansions:

1 80
pli(p) = 5p'ro [2 — p*M?log(p) + 2p%¢” V5 log(p) (cosh (V5o ) — 1)} + (B.82)
+102l311,2 +0(p"),
2 1 2 2 2L 2
p1(p) = YLRL 10log(p) (p” (Vs — M*) +4 )+ (B.83)
+p* <1OM2 LA (146\/5¢1 — 6e2V5%r 3))} +
1o o [ 21 2 4
T3P0 (P (6\/5 -M ) +4> +0(p"),
1 s 8o
#(e) = g {8 |10108(0) (% (1= 2200%) 4 7 ) + (B.84)
3¢
+p? (26“5@ (5M26¢5I +12eV5%r 8) - 3)] +

86y
+10 p°; <6 v (4= p?M?) + p2) } +0(p"),

where the free parameters are F‘l],o and plm, szO and pQU, and finally p3170 and p3”.
For the additional scalars, which vanish on the background, the fluctuations obey the
following IR expansions:

1 _31 8¢1
ati(p) = 20¢ 7 |:—5€ v a4110 (pQM2 - 4) + (B.85)

5e VA (a'7s (10g(p) (o202 —4) = p*M?) ) +

+pPaty; — 8pPe?VP0rat | — 2p%e Vo ((510g(P) —Da'y, + 50‘41,0)] +0(p"),

1

a®1(p) = a’p (1 - 5Pt M? log(p)> + %% 5+ O(p"), (B.86)
1 _89r 86y

a®,(p) = §a61’0 (er v log(p) (_MQe Vi eVB01 4 2VE0r | 1) -+ 2) + (B.87)

p2a6172 + O(p4) )
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1 _8 81
a"1(p) = g€ v {—me 7 (o7 (M2 - 4) + (B.88)

+a7py (log(p) (P M2 —4) — p*M?)) + 20%>/5%1 ((5log(p) — 3)a" 1, +5a" 1) +
2p26‘/5¢1 ((1010g(p) + 3)a717l + 10a7170) +

+p? ((1010g(P) —3)a’;; + 105‘71,0)} +0(ph),

1
a®1(p) = a8170 (1 - 592M2 10g(p)> +p%a% 5+ O(p?), (B.89)
2772
p°M 1
0%, (p) = +a”; (1 -5 ) 0° %11 [~1010g(p) (P M? — 4) + (B.90)

8¢
P (10M2 e vE (4eV50r — 162501 — 3))} +0(p"),

where the free parameters are a*

4 5 5 6 6 7 7
1,0 and «a I a 1,0 and a 1,20 a 1,0 and a 1,20 a 1,0 and a I
a®; o and a®; 5, and finally a®; j and a”; .

For the fluctuations of the 1-form fields, we find the following IR expansions.

1
v'(p) = —gl’lfo ( *M? — 8) + (B.91)

ol [8000
8000

2 2\2 9 391 9 301 9 201
p <—375(M) —50M<e V5 +400M<e V5 +400M<eVvs +

log(p) (p2M2 — 8) +

_ 1691 _ler _Sor _eL 16r 4
—84e V5 4384e V5 —672e V5 4 2688e V5 —|—384e\/5)] +O(pY),

% (p) = 210 =507 (P M? — 4) + 0% (=5log(p) (1M —4) + (B.92)
P2 <5M2+ef1 (1 - 8eYBor (e¥5or +1))>>} +O(pY),
v?7(p) = 0’10 ( 2M2> U Il —101og(p) (PZMQ - 4) + (B.93)

+p° <10M2 b (46\”’1 — 16e2V51 3)>> +0(p"),

vl (p) = %e { TI ( (log ( M2 — 4) - p2M2) + (B.94)
+o4; ( M — )) pPeVoor ((5 log(p) — 3)v*;, + 5041,0) +
pPe¥™1 ((101og(p) + 3o’y + 1007 ) +
o

((1010g( ) —3)0; + 100 10)) +0(p"),

1

0(0) = 0% (#Plos(p) (€ = 212) +2) 4 oy, + O, (B.95)
1 _8¢1

v’ (p) = 5061,0 (02 log(p) (6 V5 — M2> + 2) +p%0% 5+ 0(p"), (B.96)
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where the free parameters are Ul[,o and b1[7_2, 02]70 and 02”, 03170 and 03”, 94170 and
04”, 05170 and U51,27 and finally 06[70 and U6I72.
The physical fluctuations of the 2-forms are the following:

1 20
t(p) = 5t (p2 log(p) (e - M 2) + 2> + Pt 5+ O(p"), (B.97)
2 1 2 2 291 2

1 sy

ot {pQ (10M2 +e v (14eV50r — 62501 — 3)) -

+10log(p) <p2 (62% - M2> + 4)} +0(p"),

1 _s9p

O1() = 500 (#Ploslo) (¢ < 21) 4 2) 420, + OGY, (B9
1 _sor 861

t,(p) = 10° Ve [10’(4[70 <p2 tevs (4—p2M2)) + (B.100)

4 2 8oL 27 12
+t, <1010g(,0) (p +evs (4—p M )) +
3¢
+p? <2€\/5¢I (5M26\/5I +12eV5%1 8) - 3))} +0(p"),
with free parameters tlf,o and tlm, t21,0 and tQI’l, t3170 and t31’2, and finally t4170 and t4”.

C Lift to ten and eleven dimensions

In this appendix, we report some information about the lift of the background metric and
fields to type-IIA supergravity in ten dimensions, and to maximal gauged supergravity in
eleven dimensions. We also report the result of the holographic calculation of the string
tension. All the material is adapted from the literature, and is of marginal relevance to
the main body of the paper, yet we find it useful to reproduce it here, not just in order
for the paper to be self contained, but most importantly to clarify a couple of potential
sources of ambiguities in the notation. While we mostly follow the conventions in ref. [152],
there are exceptions, for example in the way the constants g and m appear, which we make
transparent in the following.
The metric on the four-dimensional compact internal manifold is the following:

~ 1
d02 = X3de? + ZX_lA_1 cos? & |dA? + sin? 0 dp? 4 (dtp + cos Odgo)ﬂ , (C.1)
where the four angles take values in the intervals

0<8<m, 0<p<2r, 0<¢<dn, <€<3, (C.2)

T

2
and where the non-trivial functions X = X (p,£) and A = A(p, &) are given in terms of the
background values of the sigma-model scalar field ¢ = ¢(p), via the following expressions:

X = e?/V5, (C.3)
A = X*sin? € + X cos? €. (C4)
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The expression for dflﬁ reduces to the metric on the four-sphere S* for g =0 and X =1 =
A, otherwise the manifold has the reduced SO(4) symmetry of S3.

The lift of the metric to eleven dimensions is written as’

1 -
ds?, = A3 (ds$ + deQi) , (C.5)

where the constant in front of the metric on S* is the same mass parameter m = 1 that
appears in the action of the gauged supergravity in seven dimensions.

The alternative, but equivalent, lift to ten dimensions (in type-IIA supergravity) can
be derived from the one in eleven dimensions by singling out the circle parametrised by
the coordinate (, according to the following definition:

ds?, = e*%(bds%[,’s + e%q’d(Z, (C.6)

where ds%% is the metric in string frame, while ® is the dilaton of the ten dimensional
theory. By comparing these two ways of writing the metric in eleven dimensions, we see
that the dilaton ® can be identified in the following equality:

e%@ _ A1/3€3x+2w7 (C7)

where x = x(p) and w = w(p) are the background values of the two active scalar fields that
we introduced when dimensionally reducing the theory from seven to five dimensions. The
dilaton ® hence depends on both £ and p.

For completeness, we remind the Reader of some general conventions [115], starting
from the fact that the metric in string frame is

e
dS%O’s — 7d8%0 . (CS)
with gs = e®> the string tension. The (Einstein frame) action of type-IIA supergravity is

10

2]€2/d x\/*gloRloJr (Cg)

where the identities 2k? = 2k3¢2 = (27)7a’4g? = (27r)7L = 167G relate the couplings
k and kg to the string coupling g, the Strlng tensmn o' = L2, the Planck length Lp and
the Newton constant G19. The string-frame action is closely related:

1 _
S10,s = 27;2/(11090\/?10,56 22 (Rios+---) - (C.10)
0

The action and metric in string frame are used in the calculation of the rectangular
Wilson loops, from which one extracts the linear quark-antiquark static potential. We
hence write explicitly the relevant parts of the metric:

1/2
ds?y, = <e4¢/‘/5 sin® € + e?/V5 cos? f) / e Xt {€3X+2wdl‘%3 +dp® + - } . (C.11)

,S

"The radius of S* is denoted as g, rather than m, in refs. [139-141], which is not to be confused with
g = 2m. In this paper we adopt the conventions of the earlier publication by Pernici et al. [137].
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We omit the rest of the background fields, expressions for which can be found in the
literature. Starting from the Nambu-Goto action

1
_ _ M N
Sneg = ool /ddd’l‘\/ det(gsMNaaX 85X ), (C.12)

the string tension for the confining dual theories can be computed it terms of the gsyn
components of the string-frame metric in eq. (C.11), to find (see ref. [124] and references
therein, for example):

-  livn BA (A0/VE 2 b5 2 A\ M2
o X plg%o 9z pll)r%o e (e sin“é +e cos f) (C.13)
— eaxiH3wr (€4¢1/\/§ sin? € + e?1/V5 cog? §) 2 (C.14)

where we used the relation A = %X + w. This expression agrees with section 4.4.1 of
ref. [152], and explicitly displays the dependence on the angle ¢ of solutions with non-
vanishing ¢.

While a general configuration of the string may have a non-trivial profile in £, and
is determined by solving a non-trivial coupled system, we restrict our attention to the
two cases with fixed { = 0, §. The two terms inside the bracket in eq. (C.14) are both
positive definite, but there is one important difference between the cases ¢; < 0 and
¢1 > 0. For positive values of ¢; > 0, o is minimised (and so is the energy of the string
for asymptotically large spatial separation) for £ = 0, which is the equator of the 4-sphere.
Conversely, for ¢; < 0 the energy of a configuration with large spatial configuration and
string tension are both minimised for { = 47, the poles of the 4-sphere. This substantial,
important difference suggests the existence of a phase transition in the system of probe
strings, for which the equilibrium configuration as a function of ¢; changes abruptly at
¢r = 0. We leave to future investigations the study of the possible implications of such
behaviour.

D Comparison with the literature

This appendix is devoted to comparing our results for the limiting case ¢; = 0 = ¢, which
represents the SO(5)-invariant theory, to the results reported in ref. [163]. In this case, the
background solution is known analytically (A = g X +w):

w= —% log (tanh (?)) , X = % [log (sinh (3p)) + 2log (tanh (3;))] , (D.1)

In order to compute the spectrum, we notice that we must use a different parametrisation
of the 14 of SO(5) than that of the scalar manifold described in section 2.1. We start by
reproducing in table 2 the numerical results in table 2 of ref. [163], while we report our
own results in table 3. For the three lightest towers of singlet states, we find agreement
within 1%, which is a reasonable estimate of the numerical uncertainty of our own analysis.
The calculation in ref. [163] considers three additional towers, that do not appear in our
analysis as they are heavier. For the SO(5)-invariant background, the main contribution
from this study is the spectrum on SO(5) non-singlets, the lightest states of which have
masses lower than some of the singlets.

— 53 —



T4 ‘/21 S4 N4 M4 L4
(2/1/0) | (1/0) | (0) | (1/0) | (1/1) | (0)
1.00 0.58 1.55 1.94 2.28
1.59 1.46 2.23 2.55 2.93
2.15 2.07 2.83 3.14 3.54
2.71 2.65 3.42 3.71 4.14
3.27 3.22 3.99 4.28 4.72
3.83 3.78 4.56 4.84 5.30
4.38 4.34 5.12 5.41 5.87
4.94 4.90 5.68 5.97 6.43
5.49 5.46 6.24 6.52 7.00
6.05 6.02 6.8 7.08 7.56

Table 2. Numerical results for the spectrum of masses M,, of fluctuations computed in ref. [163]
(corresponding to ¢y = 0). In respect to the original source, besides showing the mass, rather than
the mass square, we normalise the spectrum to the lightest spin-2 particle — labelled Ty. The labels
of the states are explained in ref. [163], and we put in bracket the spin of the states, highlighting
the degeneracies. All states are SO(5) singlets. We highlight in red, green and blue, respectively,
the SO(5) singlet states that appear also in our own results (see table 3 for comparison). The three
heavier towers are not part of the spectrum we compute.

Juv | Xu wy | w,x | we ¢, A, 54 Ag“,Ag1 A?,A;4 Pa Aﬁ‘,A;‘ S67pa | Buva | Xpa

@ oOlo|lo|lo]| ©o 0 o ol o | o oo

~1 ~1 ~1 ~1 ~1 ~ 14 ~ 10 ~ 10 ~5 ~ 10 ~5 ~ 5 ~5
0.58 0.57 0.77 0.64 0.77 0.64

1.00 1.00 | 1.00 1.11 1.00 1.35 1.30 1.35 1.03 1.03 1.30
1.46

1.59 1.59 | 1.59 1.66 1.59 1.90 1.87 1.90 1.60 1.60 1.87
2.07

2.15 2.15 | 2.15 2.21 2.15 2.46 2.44 2.46 2.17 217 2.44
2.65

2.71 2.71 | 2.71 2.75 2.71 3.01 2.99 3.01 2.72 2.72 2.99
3.22

3.27 3.27 | 3.27 3.30 3.27 3.57 3.55 3.57 3.28 3.28 3.55
3.78

3.83 3.83 | 3.83 3.85 3.83 4.12 4.10 4.12 3.83 3.83 4.10
4.34

4.38 4.38 | 4.38 4.40 4.38 4.67 4.66 4.67 4.39 4.39 4.66
4.90

4.93 4.93 | 4.93 4.95 4.93 5.22 5.21 5.22 4.94 4.94 5.21
5.45

5.48 5.48 | 5.48 5.50 5.49 5.77 5.76 5.77 5.49 5.49 5.76
6.01

6.03 6.03 | 6.03 6.05 6.04 6.32 6.31 6.32 6.04 6.04 6.31

Table 3. Numerical results for the spectrum of masses M,,, normalised to the lightest tensor,
of fluctuations computed in this paper, in the case of SO(5) symmetry, which is recovered when
¢r = 0. We put in bracket the spin (J = 0,1,2) of the states and we explicitly indicate the SO(5)
multiplets ~ 1,5,10, 14. We highlight in red, green and blue, respectively, the SO(5) singlet states
that appear also in our own results (see table 2 for comparison). Our original contribution is in the
non-singlet states.
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