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SUMMARY5

6

Seismic and magnetic observations have suggested the presence of a stably stratified layer atop7

Earth’s core. Such a layer could affect the morphology of the geomagnetic field and the evolu-8

tion of the core, but the precise impact of this layer depends largely on its internal dynamics.9

Among other physical phenomena, stratified layers host internal gravity waves, which can be10

excited by adjacent convective motions. Internal waves are known to play an important role11

on the large scale dynamics of the Earth’s climate and on the long-term evolution of stars.12

Yet, they have received relatively little attention in the Earth’s outer core so far and deserve13

detailed investigations in this context. Here, we make a first step in that direction by running14

numerical simulations of internal gravity waves in a non-rotating spherical shell in which a15

stratified layer lies on top of a convective region. We use a non-linear equation of state to16

produce self-consistently such a two-layer system. Both propagating waves and global modes17

coexist in the stratified layer. We characterise the spectral properties of these waves and find18

that energy is distributed across a wide range of frequencies and length scales, that depends19

on the Prandtl number. For the control parameters considered and in the absence of rotational20

and magnetic effects, the mean kinetic energy in the layer is about 0.1% that of the convec-21
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tive region. Gravity waves produce perturbations in the gravity field that may fall within the22

sensitivity limit of present-day instruments and could potentially be detected in available data.23

We finally provide a road map for future, more geophysically realistic, studies towards a more24

thorough understanding of the dynamics and impact of internal waves in a stratified layer atop25

Earth’s core.26

Key words: core dynamics– stratified layer – internal waves – numerical simulations.27

1 INTRODUCTION28

Numerous studies support the existence of a stably stratified layer atop Earth’s core. Observation-29

based evidence for a stratification comes mostly from anomalous travel times of SmKS body30

waves sampling the top of the core (Helffrich & Kaneshima, 2010; Kaneshima & Helffrich, 2013;31

Kaneshima & Matsuzawa, 2015; Tang et al., 2015; Kaneshima, 2018) and from interpretations of32

temporal fluctuations in the geomagnetic field (Buffett, 2014; Buffett et al., 2016). Several sce-33

narios have been proposed for the formation of this layer. The outermost core may be thermally34

stratified if the core mantle boundary (CMB) heat flow is subisentropic (Labrosse, 2015). Alterna-35

tively, barodiffusion (Gubbins & Davies, 2013), accumulation of light materials emitted by inner36

core crystallization (Moffatt & Loper, 1994; Bouffard et al., 2019), chemical interactions with the37

mantle (Buffett & Seagle, 2010) or immiscibility between liquid Fe-Si and Fe-Si-O in core con-38

ditions (Arveson et al., 2019) may form a stratified pool of light elements under the CMB over39

long time scales. On the other hand, geochemical models of core formation (Rubie et al., 2011;40

Jacobson et al., 2017), laboratory experiments of giant impacts (Landeau et al., 2016) and numer-41

ical simulations of convective erosion of a chemically stratified layer (Bouffard et al., 2020) all42

suggest that the layer may be an ancient chemical feature, formed at the same time as the core and43

preserved up to the present day. The properties of the layer (thickness and stratification) inferred44

from these various observations and models are sometimes contradictory and range from a thick45

(up to 450 km) and strongly-stratified layer to a rather thin (100 km or less) and weakly-stratified46

layer. A stratified layer atop Earth’s core may affect the evolution of the core (Labrosse, 2015) and47

the structure of the magnetic field generated by the geodynamo underneath (Christensen & Wicht,48
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2008; Nakagawa, 2011; Olson, Landeau & Reynolds, 2017; Gastine et al., 2020). However, the49

precise geophysical impacts of such a layer strongly depend on its exact structure, properties and50

internal dynamics, which remain largely unknown.51

Even though stratification inhibits radial motions, stratified layers can have rich and complex52

dynamics. Several instabilities can develop in stratified environments under certain conditions,53

such as double diffusive convection when buoyancy is controlled by two physical fields with dif-54

ferent molecular diffusivities (e.g. temperature and salt concentration, see for instance Schmitt,55

1994 and Monville et al., 2019). Stratified layers can also host internal gravity waves (GW), which56

are the focus of the present study. GW are a type of waves that develops in stratified environments57

and for which gravity acts as a restoring force. They can be excited by an adjacent convective58

region (Couston et al., 2018a) or by large-scale tidal flows (Ogilvie & Lin, 2004), and propagate59

in the stratified layer, transporting energy and momentum. In oceanic, atmospheric and astrophys-60

ical sciences, it is well known that GW can profoundly affect the large-scale dynamics in various61

ways. In the Earth’s tropical stratosphere, GW drive a mean eastward/westward flow that reverses62

approximately every 28 months. This phenomenon, called the “quasi-biennial oscillation” (QBO),63

affects the entire climate system by modulating atmospheric circulation, gas distributions and sea-64

sonal weather patterns up to the poles (Baldwin et al., 2001). Similar internal wave-driven mean65

flows may contribute to the long-term angular momentum evolution of stars (Rogers et al., 2013;66

Fuller et al., 2014). Angular momentum transport by GW also enhances mixing of chemicals,67

which is often thought to be responsible for anomalous abundances of lithium and other elements68

at the surface of stars (Charbonnel & Talon, 2005). GW are also used in asteroseismology to probe69

the otherwise inaccessible cores of stars (Aerts, Christensen-Dalsgaard & Kurtz, 2010).70

GW have received a marked attention in stars. Several authors performed numerical simula-71

tions of GW in the anelastic approximation or with fully compressible equations, either in a 2D72

equatorial plane (Rogers, Lin & Lau, 2012; Rogers et al., 2013; Horst et al., 2020) or in a full73

3D rotating sphere (Alvan, Brun & Mathis, 2014; Edelmann et al., 2019). In the Earth’s core, the74

properties of GW have been calculated theoretically for a fully stratified outer core (Crossley &75

Rochester, 1978; Dintrans et al., 1999; Olson, 1977; Friedlander, 1987). The same authors dis-76
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cussed the potential existence of GW signatures in the Earth’s gravity field records, but attempts77

to detect such signals have remained unsuccessful so far. This may be because the important role78

played by the Lorentz and Coriolis forces in the Earth’s core brings further complexity by mod-79

ulating GW and allowing for other types of waves to coexist (Braginsky, 1999). For instance,80

Buffett (2014), Buffett et al. (2016) and Jaupart & Buffett (2017) show that MAC waves—that81

arise from the interplay between Magnetic, Archimedean and Coriolis forces—could in theory ex-82

plain both a 60 year fluctuation in the geomagnetic dipole and a time-dependent zonal flow at the83

top of the core inferred from geomagnetic secular variation. Vidal & Schaeffer (2015) evaluated84

the geomagnetic signatures of a stratified layer by looking at its effect on quasi-geostrophic inertial85

modes in the core. However, these theoretical predictions for the properties and signatures of GW,86

MAC waves and inertial modes have not yet been confirmed by 3D numerical simulations. As for87

the dynamical effects of GW in the Earth’s core, several questions remain unexplored. Notably,88

whether large-scale mean flows analogous to the Earth’s QBO are taking place in the Earth’s core89

is unknown. The angular momentum transport by GW in stars (Rogers et al., 2013) also suggests90

that GW in the core could deposit angular momentum on the CMB, which would affect the length91

of day. Detecting unequivocal signatures of GW in the geomagnetic field, gravity data, length of92

day or other observables would strengthen confidence in the existence of a stratified layer below93

the CMB and offer another window on the dynamics of the Earth’s outer core by remotely probing94

the local, physical properties.95

Previous numerical simulations of GW excited in a self-consistent, two-layer system in non-96

rotating and non-magnetic Cartesian geometries by Couston et al. (2017, 2018a, 2019) showed97

that the waves dynamics are already very rich in simple geometries. There is thus a long way98

ahead from these Cartesian physical studies towards geophysical applications to planetary cores99

in which rotation and magnetic fields play a dominant role. This paper constitutes a first step in100

that direction by extending the Couston studies to a non-rotating, non-magnetic, spherical shell,101

the top half of which is stably stratified and lies on top of a turbulent convective region (figure 1).102

While a layer that occupies half of the shell is certainly much larger than expected for the core,103

a thick stratified layer is expected for Mercury (Christensen, 2006). In addition, a larger stratified104
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layer allows us to have well-developed GW in the layer for the control parameters accessible in105

the numerical simulations. We perform a first study of the non-rotating, non-magnetic case and106

provide tools and concepts for characterizing the properties of GW. These will be applicable to107

the rotating and magnetic cases in future studies. Therefore, this study should be considered as a108

proof of concept providing first interesting physical insights rather than a realistic study including109

all geophysically relevant ingredients. In this first step, neglecting rotation and magnetic effects110

allows us to reach turbulent regimes at a more moderate numerical expense and to conduct a111

systematic study by varying parameters. We also note that while rotational effects are dominant112

in most planetary cores, they may be of moderate or even negligible importance in some cases,113

including the Earth’s primitive magma ocean (Maas & Hansen, 2019) and the outer cores of Mer-114

cury and Venus (Evonuk & Samuel, 2012). In all these contexts, stratified layers may be present115

(Ohtani, 1985; Christensen et al., 2006; Jacobson et al., 2017; Laneuville et al., 2018) and would116

thus be in contact with a convective region only marginally influenced by rotation. The results for117

a non-rotating sphere derived in the present paper may apply to such cases.118

The paper is divided as follows. Section 2 presents the mathematical modeling and its numeri-119

cal implementation. Section 3 provides a qualitative description of the excitation and morphology120

of waves in the stratified layer. The spectral properties of the waves are then analysed more quan-121

titatively in section 4. In section 5, we quantify the energy transfer from the convective region to122

the waves, which allows us to evaluate potential geophysical signatures of the waves in section 6.123

The final section 7 summarizes our findings and provides a road map for future studies.124

2 MATHEMATICAL AND NUMERICAL MODELING125

2.1 Main equations126

We consider the dynamics of an incompressible fluid in a 3D spherical shell with inner and outer127

radii ri and ro. In addition to the equation for mass conservation,128

∇ · u = 0, (1)129



6 M. Bouffard, B. Favier, D. Lecoanet and M. Le Bars

we solve the Navier-Stokes equation for a Newtonian non-rotating fluid in the Boussinesq approx-130

imation,131

∂u

∂t
+ (u ·∇) u = − 1

ρ0
∇Π + ν∆u− g(r)

δρ

ρ0
er −

1

τ(r)
u, (2)132

where t, u and Π are the time, velocity and dynamic pressure, respectively, ρ0 a reference density133

and δρ the density perturbation which depends only on the temperature. ν is the constant kinematic134

viscosity, g the gravity is a linear function of the radius r,135

g(r) = go
r

ro
(3)136

and −u/τ(r) is a damping term significant only close to the top boundary, used to prevent waves137

reflections in one case, with τ a fixed characteristic time. The energy conservation equation is138

∂T

∂t
+ u ·∇T = κ∇2T, (4)139

where T denotes the temperature and κ the constant thermal diffusivity.140

To model a stratified layer at the top of the shell in contact with a convecting region under-141

neath, two strategies are possible. Most studies so far have imposed the stratified layer through142

a background temperature gradient that is positive (convectively unstable) in the bottom part and143

negative (stable to convection) in the top part (Christensen, 2006; Stanley and Mohammadi, 2008;144

Manglik, Wicht & Christensen, 2010; Nakagawa, 2015; Christensen, 2018; Olson, Landeau &145

Reynolds, 2018; Mound et al., 2019). Instead, we assume a non-linear equation of state for the146

density anomaly δρ,147

δρ/ρ0 = −α(T )(T − Tinv), (5)148

in which α, the thermal expansivity, is a piecewise function of temperature,149

α(T ) =

 −Sα0 if T ≥ Tinv

−Sα0 if T < Tinv,
(6)150

with α0 the reference thermal expansivity and S > 0 the stiffness. Tinv is an inversion temperature151

around which α changes sign. This formulation is inspired by the behavior of water around 4◦C152

(Townsend, 1964; Le Bars et al., 2015; Léard et al., 2020). Although such behaviour is unlikely153

in the Earth’s outer core, this formulation allows for the formation of a self-consistent two-layer154
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convective/stratified system. When a negative temperature gradient (∂T/∂r < 0) is imposed in the155

shell by prescribing T = Ti > Tinv at the inner boundary and T = To < Tinv at the outer boundary,156

the change of sign around Tinv in (6) divides the shell into two distinct regions (figure 1). For Ti ≥157

T ≥ Tinv, the negative temperature gradient is convectively unstable: the bottom part of the shell158

convects. For Tinv > T ≥ To, the temperature gradient becomes stable to convection: the top of the159

core is stably stratified. The interface region between the convective and stratified regions is located160

at the radius rint where T ≈ Tinv. The respective sizes of the convective and stratified regions161

adjust so that the system reaches thermal equilibrium: at the radial position corresponding to T =162

Tinv, the heat flux transported by convection matches the conductive heat flux in the stratified163

layer providing the heat flux transported by waves is negligible compared to this conductive flux164

(this is indeed always the case here). Another advantage of this formulation is that it is relatively165

straightforward to implement in pre-existing codes as only the buoyancy term is modified. We have166

checked that the discontinuity in α(T ) around T = 0 does not generate any spurious behavior in167

the simulation, and that the flow computed using a smooth alpha profile (using e.g. a tanh function)168

rapidly converges towards the flow computed using the discontinuous α(T ) profile (6), which is169

hence used here. For more details on this approach, see Couston et al. (2017) and Le Bars et al.170

(2020). Note that our model departs from the classical Boussinesq approximation since the thermal171

expansion coefficient varies with temperature.172

We scale distances and times using the shell thickness D = ro − ri and the thermal diffu-173

sion time D2/κ, respectively. The velocity is scaled by κ/D and the pressure by (ρ0κ
2/D2). The174

temperature scale is the temperature difference ∆T = Ti − Tinv between the bottom of the shell175

and the interface with the stratified region. Therefore, in non-dimensional units we set Ti = 1 and176

Tinv = 0. The dimensionless expression of equation (2) is177

∂u

∂t
+ (u ·∇) u = −∇Π + Pr∆u + PrRaT

r

ro
− 1

τ(r)
u, (7)178

where179

Pr =
ν

κ
(8)180
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Table 1. Parameters for the simulations. Nr is the number of radial grid points. `max is the maximum spher-

ical harmonic degree. The maximal azimuthal wavenumber is mmax = `max. Pr is the Prandtl number, Ra0

the Rayleigh number as defined in (10), S the stiffness and To the imposed top temperature. fN = N̄/2π

is the mean buoyancy frequency in the stratified layer and fc = Uconv/(2πH) the convective frequency.

Reconv = UconvH/ν is the Reynolds number in the convective region that has a height H ≈ D/2. Uconv is

the rms velocity in the convective region.

Simulation (Nr,`max) Pr Ra0 S To fN/fc damping Reconv

P03 (400,160) 0.3 4.7× 108 30 -6.7 20.1 no 2.518× 103

P1 (400,160) 1 6× 108 30 -6.7 99.67 no 2.218× 103

P1 S100 (400,160) 1 6× 108 100 -6.7 187.81 no 2.149× 103

P1d (400,160) 1 6× 108 30 -6.7 102.94 yes 2.147× 103

P3 (400,160) 3 1.2× 109 30 -6.7 457.19 no 2.055× 103

is the Prandtl number and181

Ra =

 −SRa0 if T ≥ 0

−SRa0 if T < 0
(9)182

is the Rayleigh number, with183

Ra0 =
α0g0∆TD

3

κν
. (10)184

Since the convective region extends only to a spherical shell of (dimensionless) thickness H , the185

effective Rayleigh number for the convective region is:186

Raeff = Ra0H
3. (11)187

Equation (4) becomes, in non-dimensional form,188

∂T

∂t
+ u ·∇T = ∇2T. (12)189

The stratification strength in the stable region is measured by the Brunt-Väisälä frequency,190

N(r) =

√
−g(r)

ρ

∂〈ρ̄〉
∂r

, (13)191

where 〈ρ̄〉 is the density averaged in time and azimuth. In non-dimensional form, N is192

N(r) =

√
−Ra0SPr

∂
〈
T̄
〉

∂r

r

ro
, (14)193
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where
〈
T̄
〉

is the time and horizontally averaged temperature and S is the stiffness parameter194

that appears in equation (6). S is therefore a measure of how “stiff” i.e. strongly stratified the195

stable layer is. Because both the temperature gradient and the gravity vary across the layer, N196

varies between the interface and the top of the layer. N is larger immediately above the interface197

and gradually decreases by about 20% towards the top of the layer. Note that this does not sig-198

nificantly affect the following results: for physical interpretation of the results, it is most of the199

time sufficient to assume the stratified layer to be linearly stratified in first approximation, with a200

constant Brunt-Väisälä frequency N̄ . In one simulation we introduced a damping term −u/τ to201

prevent wave reflection at the top boundary. Note that this is not geophysically relevant to cores202

where rigid boundaries promote wave reflection; but as will be seen below, this will help us dis-203

entagling contributions from propagating waves and standing modes. We pick a similar form as in204

Couston et al. (2018a),205

τ−1 = π
√
Ra0STo/0.5 [1 + 20 tanh(r − ro + 0.15)] , (15)206

where To/0.5 approximates the temperature gradient in the stratified layer of thickness H ≈ D/2.207

We impose no-slip (u = 0) and fixed temperature boundary conditions. The bottom boundary208

is set to T = Ti = 1 (in non-dimensional units) while at the top boundary T = To. We pick the209

value of To such that in statistically steady state, the convection zone has H ≈ D/2, as explained210

in subsection 2.2.211

2.2 Numerical method212

To solve equations (1), (7) and (12) with the non-linear equation of state (5) we use a modified ver-213

sion of the code PARODY (E. Dormy, J. Aubert; Dormy, 1997; Aubert et al., 2008). The equations214

are discretized on Nr points in the radial direction using a classical second-order finite difference215

scheme on a nonuniform grid. In the two-layer system studied here, both the boundary layers and216

the interface region require enhanced resolution. To achieve that, we distribute 400 points along217

the radius so that about 240 points span the convective region, 100 points cover the interface region218

(rint ± 0.05) and the ratio of the maximum to minimal radial spacing is 10.219
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At each radius, the physical quantities are decomposed into spherical harmonics up to degree220

`max and order mmax = `max. To prevent aliasing errors, the numbers of grid points in the latitu-221

dinal and longitudinal directions are respectively Nθ = 1.5`max and Nφ = 3`max. The non-linear222

terms (now including the buoyancy term) are computed in physical space on Gauss collocation223

points involving Nθ points in latitude and Nφ in longitude before being transformed back to spec-224

tral space. The time-integration is performed using a semi-implicit scheme, Crank-Nicolson, for225

diffusion and second-order Adams-Bashforth for the other terms. The waves dynamics imposes226

a supplementary criterion on the time step to ensure that all waves are properly resolved. As the227

frequency of GW is bounded by the Brunt-Väisälä frequency, we impose228

∆t = min(∆tconv, 0.1/N̄), (16)229

where ∆tconv is derived from the classic CFL criterion on the velocity. Adaptive time stepping230

is used to reach the statistically stationary state. Then, the time step is fixed to the minimal time231

step reached to avoid temporal interpolations during the computation of time spectra. Frequency232

spectra shown in the paper are calculated using a Hamming window method.233

The top temperature To for which the thickness of the convective region H equals our assigned234

valueH = D/2 in thermal equilibrium is not known a priori. To obtain a first guess for To, we run235

a purely convective simulation in a “half” spherical shell comprised between radii ri and ri + H236

with Raeff as the input Rayleigh number and we measure the heat flux237

Q0 = −dT

dr
(r = ri +H) (17)238

at the top of this convective region. Then, when the stratified layer is added, To must be such that239

the convective heat flux Q0 matches the diffusive heat flux in the stratified layer above, neglecting240

heat flux from GW. This condition is241

To =
(ri +H)(ri +H − ro)

ro
Q0. (18)242

Following Couston et al. (2018a), we then perform iterative adjustment of To to reach Heff ≈ H =243

D/2 at the equilibrated state. At each step of the iterative process, we run the simulation for a few244
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advection times. To is then adjusted such that:245

Qi

(
ri

ri +H

)2

= To
ro

(ri +H − ro)(ri +H)
, (19)246

where247

Qi = −∂T
∂r

(ri) (20)248

is the heat flux measured at the bottom of the convective region. The process repeats until To varies249

by less than 10% between two consecutive iterations. This procedure was applied to our reference250

simulation at Pr = 1. Then, when changing the Prandtl number, To was kept the same and only251

the Ra0 number was adjusted so that Heff ≈ H = D/2 at the equilibrated state.252

We explore the parameter space between Pr = 0.3 to Pr = 3. We consider large values253

of the stiffness (S = 30 and S = 100), which produces a strongly stratified layer and a sharp254

interface with the convective region (Couston et al., 2017). The Rayleigh numbers are chosen255

so that the convection is turbulent, characterized by Reynolds number Reconv = UconvH/ν ∼256

2 − 3 × 103, where Uconv and H ≈ D/2 are the rms velocity and the thickness of the convective257

region, respectively. Table 1 summarizes the parameters for all simulations. In this table we also258

define the buoyancy frequency fN = N̄/2π, where N̄ is the mean Brunt-Väisälä frequency in259

the layer, and the convective frequency fc = Uconv/(2πH), with Uconv the rms velocity in the260

convective region. Note that, for the Earth’s core with Ω = 7.292 × 10−5 s−1, N ∼ 0.7Ω − 25Ω261

(for this estimation of N , see references given in section 6), Uconv ≈ 5 × 10−4 m s−2 (Finlay &262

Amit, 2011), we have fN/fc ∼ 106 − 107 � 1, i.e. the frequency of GW is large compared to263

the convective frequency. This is also the case in our simulations, as we have large fN/fc ratios264

(fN/fc ∈ [20.1− 457.19]).265

3 EXCITATION OF WAVES266

3.1 Propagating waves267

At statistically steady state, the spherical shell is divided into a convective region in the bottom268

and a stably stratified layer above (figure 2a). These two layers occupy one half of the shell each269

and are separated by a sharp interface located at r ≈ 1 (see figure 1 for a schematic illustration270
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and figure 2b for a snapshot from simulation P1). Convection takes the form of a turbulent flow271

involving multiple length scales (figure 2b, inner half of the shell; see also movie attached). The272

turbulent motions that occur close to the stable layer deform slightly the interface or penetrate273

shortly into the layer. These interface processes couple the convective region with the stratified274

layer by generating internal gravity waves (GW) immediately above the interface, which then275

propagate in the entire stratified layer (figure 2b, outer half of the shell; see also movie attached).276

Convective plumes hit the interface and overshoot in the stratified layer (figure 3). Reynolds277

stresses near the conductive-convective interface transfer power from convective motions to linear278

waves (e.g. Lecoanet et al., 2015). GW satisfy the dispersion relation279

ω =
N̄k⊥√
k2r + k2⊥

, (21)280

where ω is the frequency of the wave, k = krer + k⊥ the wavevector decomposed in its radial and281

horizontal parts and N̄ is the averaged Brunt-Väisälaä frequency which we assume to be constant282

for simplicity. Convective plumes generate waves over a large range of possible frequencies, and283

especially with frequency similar to the inverse convective time scale, Urms/H , which propagate284

at a characteristic angle α,285

α = arccos
ω

N̄
. (22)286

Therefore, GW transport energy away along a cone originating from the impact point. The inter-287

section of this cone with a spherical surface (r = cst) is a circle. At a given radius in the stratified288

layer, several circular patterns can be seen in the velocity field, each one being the trace of the289

waves produced by a plume impact underneath (figure 4). In a plane perpendicular to the interface290

and containing the impact point, the waves form a characteristic shape sometimes referred to as a291

“half St Andrew’s cross” (figure 3 middle). The group velocity vg, at which the envelope of the292

waves and hence the energy are transported, is perpendicular to the phase velocity vp and inclined293

at the angle α from the local vertical (figure 3). Along their course, GW are attenuated owing294

to viscous and thermal dissipation, and due to a geometrical effect in a sphere, so that the inten-295

sity of propagative waves is maximal immediately above the impact point and decreases as the296
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waves spread out (figure 5). Attenuation is larger for high wavenumbers and/or lower frequencies297

(Lecoanet et al., 2015).298

In addition, there are also waves that are secularly generated by convective Reynolds stresses299

not associated with plumes. These predominantly excite lower frequency waves, and are harder to300

see by eye, as they are being continuously generated throughout the convection zone (Lecoanet et301

al., 2015).302

3.2 Standing modes303

GW produced at the interface by Reynolds stresses may travel across the entire stratified layer304

and reflect on the top boundary. The constructive interactions of propagating waves and their305

reflections excite and maintain standing modes (SM), which are global resonances of the cavity306

formed by the stratified layer. As will be shown in section 4, numerous SM are excited, each307

one corresponding to a given wavelength and frequency. We mostly find SM with relatively small308

wavenumbers and/or relatively large frequencies, because they saturate at higher amplitude (see309

section 4).310

As multiple SM coexist, it is difficult to isolate them visually. Sometimes, one mode dominates311

locally, appearing as a checkerboard-like pattern associated with well-defined wavelengths in the312

radial and horizontal directions, as visible on the bottom right part of figure 5. Yet, most of the313

background is usually a mix of propagating waves and various SM (for example, see the back-314

grounds of the stratified layers in figures 3 left and 5). To distinguish between all contributions315

and analyze the properties of each wave separately, a spectral analysis, both in space and time, is316

necessary. This is the purpose of the next section.317

4 SPECTRAL PROPERTIES OF INTERNAL GRAVITY WAVES318

4.1 (`, ω) spectra319

The properties of GW can be characterized by their kinetic energy spectrum in both space and time,320

which indicates how much energy is contained in each spherical harmonics degree ` and frequency321

ω. To obtain these spectra, we record the velocity components Vr(rj, `,m, t), Vθ(rj, `,m, t) and322
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Vφ(rj, `,m, t) at each time step and at 10 different radii rj (j = 1 to 10) across the shell. Then, at323

each radius rj , we compute the kinetic energy spectrum for each component,324

Er/θ/φ(rj, `, ω) =
∑
m

psd
[
Vr/θ/φ(rj, `,m, t)

]
, (23)325

where psd denotes the power spectrum density, calculated using the pwelch function of Matlab.326

The total kinetic energy spectrum is then327

E(rj, `, ω) = Er(rj, `, ω) + Eθ(rj, `, ω) + Eφ(rj, `, ω). (24)328

Kinetic energy spectra E(rj, `, ω) in (`, ω) space are plotted on figure 6 at four different radii, one329

in the convective region and the three others in the stratified layer, for simulation P1. Figure 6a330

shows that the convective flows that excite GW contain energy at a range of length scales and331

frequencies with, as expected for a turbulent flow in 3D, a decreasing amplitude when wavenumber332

and/or frequency increases. Yet, the spectral energy distribution in the stratified layer contains333

more complex structures, indicating that a large set of waves is excited (figure 6b, 6c and 6d). This334

shows that, even though the energy for the excitation of GW is injected by the convection, GW335

create their own dynamics inside the layer.336

Whether or not the signal displayed on figures 6b-d represents GW can be confirmed by taking337

advantage of the geometric properties of internal waves. Campagne et al. (2015) then Savaro et al.338

(2020) showed that, when the kinetic energy is dominated by linear GW, we have339

Er(`, ω)

E⊥(`, ω)
=

(ω∗)2

1− (ω∗)2
, (25)340

where the spectraEr(`, ω) andE⊥(`, ω) contain respectively the radial and horizontal components341

of the kinetic energy and ω∗ = ω/N is the frequency normalized by the Brunt-Väisälä frequency.342

Figure 7 shows the ratioEr(`, ω)/E⊥(`, ω) averaged between ` = 1 and ` = 140 at r = 1.318. The343

relation (25) is satisfied for frequencies between 0.4N and N , which indicates that this portion of344

the spectra contains GW only. On the contrary, at frequencies ω < 0.4N , there is a clear mismatch345

with relation (25) which indicates that the low-frequency part on figure 6 does not contain only346

linear GW and that most of its energy is non-linear GW patterns.347

At each radius displayed, the GW lobe is bounded by the Brunt-Väisälä frequency (indicated348
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by horizontal dashed lines in figures 6b-d), since higher frequencies waves are evanescent. This349

GW lobe is composed of a continuous background and a series of discrete ridges. Each of the350

discrete patches forming these ridges corresponds to a standing mode with specific ` and ω. The351

ridges formed by these patches are visible at all radii across the stratified layer and each ridge352

corresponds to a given radial wavelength. At a given radius, a vertical cut at fixed degree ` of the353

(`, ω) spectrum gives the frequency profiles shown on figure 8b. These profiles show an overall354

decrease of the kinetic energy with ω, superimposed by modes in the form of sharp peaks of kinetic355

energy, which are sometimes two orders of magnitude larger than the local background. Increasing356

the stiffness, i.e. the stratification strength, to S = 100 leads to more numerous modes, especially357

in the low-` high-ω part of the spectrum. In fact, increasing the stiffness creates a sharper, less358

deformable interface: the cavity formed by the stratified layer keeps a constant geometry over359

time, which facilitates resonances and modes formation. On the contrary, for lower values of the360

stiffness, the interface is more deformable. In that case, the cavity is less clearly defined which361

makes it harder for modes to form. However for the S = 100 case, we observe that modes and362

propagating waves saturate at a comparatively much lower amplitude (figure 9).363

These well-identifiable modes are present over a more diffuse background, which contains364

propagating waves. Figures 6b to 6d show that, as the radius increases, the area covered by this365

background shrinks, particularly in the low-ω, high-` part of the lobe, as a result of the gradual366

attenuation of propagating waves when they progress upwards. Linear wave damping causes the367

wave energy flux F to decrease exponentially with the distance to the interface (r = rint) as368

F (r) = F (rint)e
−2γ(r−rint), (26)369

where370

γ =
(1 + Pr)

2
k3⊥N

3/ω4 (27)371

is the waves decay rate with k⊥ the horizontal wavenumber. In that case, for fixedN , λ = (2γ)−1 is372

the typical attenuation length for propagating waves, that depends only on ω and k⊥. In spherical373

geometry, k⊥ = r−1[`(` + 1)]1/2, which has a dependence on the radius. In addition, N varies374

slightly with r in our model. Therefore, here γ is a function of ω, ` and r. A GW with degree ` and375
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frequency ω sees an effective decay rate376

γeff(`, ω) =
1

ro − rint

∫ ro

rint

γ(r)dr = [`(`+ 1)]3/2 ω−4φ, (28)377

where378

φ =
1

ro − rint

∫ ro

rint

r−3N3(r)dr. (29)379

Therefore, the effective attenuation length is380

λeff(`, ω) =
1

2γeff
=

1

2
φ−1[`(`+ 1)]−3/2ω4. (30)381

Hence, in the (`, ω) spectral space, iso-λeff lines are defined by382

ω = (2λeffφ)1/4[`(`+ 1)]3/8. (31)383

Three iso-λeff lines defined by equation (31) are represented in the (`, ω) spectra in figures 6b-d.384

Immediately above the interface (figure 6b), numerous propagating waves are present, with various385

length scales, frequencies and intensities, depending on how they were excited. When r increases,386

the waves associated to the smallest attenuation depth disappear, while the less attenuated waves387

remain. This is well visible on figures 6b-d in which the waves signal located below a line of388

constant λeff progressively disappear when r increases. When the attenuation length λeff reaches a389

critical value compared to the thickness of the layer, propagating waves above the iso-λeff line can390

reach the top of the layer, reflect on the outer boundary and eventually form modes by constructing391

interferences at selected resonance values in radial structure. In that case, the iso-λeff line (the392

dashed-dotted line on figures 6b-d) separates approximately propagating waves (below the line)393

from modes (above the line). Equation (27) indicates that high ω, low ` waves are comparatively394

less attenuated. This is the reason why modes are found in the top left part of the waves lobe in the395

(`, ω) spectra. The saturation amplitude of modes depends both on the attenuation of propagating396

waves and on their excitation by the convection. Propagating waves with a higher excitation energy397

and/or a smaller decay rate tend to form more energetic modes.398

To separate the contributions of propagating waves and standing modes in the spectra, we apply399

a damping term in the top part of the stratified layer as described in equation (2) (simulation P1d).400

This damping term replaces the top rigid boundary by a region across which waves rapidly vanish.401
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By preventing wave reflection off the top boundary this term eliminates most standing modes. The402

introduction of a damping term at the top of the stable layer is not motivated by physical arguments403

for application to cores bounded by a rigid mantle, it is simply a numerical trick that allows us to404

remove standing modes and isolate the contribution of propagating waves in the spectra. Figure 10405

shows (`, ω) spectra of the kinetic energy for simulations P1 (without damping, figure 10a) and406

P1d (with damping, figure 10b). The damped spectrum confirms that the diffuse background is407

produced by propagating waves and that the discrete ridges are the traces of standing modes.408

To compare the energy contained in standing modes versus propagating waves, we integrate409

the (`, ω) spectra with and without the damping term in the top part of the layer. The total energy410

of waves (propagating waves and standing modes) is411

Etot(rj) =
∑
`

∫
ω

E(rj, `, ω)dω. (32)412

The energy of propagating waves can be estimated by integrating the spectra obtained with the413

damping term at the top of the layer:414

EPW(rj) ≈
∑
`

∫
ω

Edamped(rj, `, ω)dω. (33)415

Note that this assumes that all modes have been effectively removed by the damping term, which416

in practice is difficult to fully ensure. The energy contained in standing modes is the total energy417

minus the energy of propagating waves:418

ESM(rj) = Etot(rj)− EPW(rj). (34)419

We then compute the ratio420

RSM(rj) = ESM(rj)/Etot(rj), (35)421

which estimates the fraction of the total energy contained in standing modes. Marginally above422

the interface, at r = 1.046, we find that RSM(rj) is close to 21%, which indicates that propagating423

waves account for most of the energy above the interface. Further up, at r = 1.136 and r = 1.227,424

the ratio rises to respectively RSM(rj) ≈ 59% and RSM(rj) ≈ 83%. This is because propagating425

waves are gradually attenuated whereas the magnitude of modes is mostly the same throughout426
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the layer. This shows that, while propagating waves dominate the signal immediately above the427

interface, modes account for most of the total waves energy higher in the stratified layer.428

The spectra from figure 6 can be confronted to the theoretical predictions of Lecoanet &429

Quataert (2013). That work used the same assumptions as Goldreich & Kumar (1990): i) waves430

are excited by Reynolds stresses associated with turbulent convective eddies; ii) the flow can be431

decomposed into eddies, the excitation can be calculated for each eddy individually and the to-432

tal wave generation is given by summing over all eddies; iii) the eddies of size h have velocities433

which scale like h1/3 and stay coherent for their turnover time. Put together, these predict the434

kinetic energy spectrum435

KE ∼ ρ0(ωcH)2
(
`
H

r

)5(
ω

ωc

)−17/2
. (36)436

This theory is only applicable for moderately low ` and high ω: at high ` and low ω, damping437

will dominate and cause the kinetic energy to drop rapidly. Figure 8a shows `-spectra for two438

different frequencies and at two different radii for simulation P1. We include a `5 power law as439

predicted by the theory for the energy increase at low values of ` which is in good agreement with440

the curves from the simulation. Similarly, figure 8b displays ω-spectra for ` = 2 and ` = 6 at two441

different radii for simulation P1, showing a very rapid drop in the kinetic energy when increasing442

the frequency up to ω ∼ 105. We include a ω−8.5 power law scaling as predicted by the theory.443

Here as well, the agreement with the theory is rather satisfactory. This suggests that the Reynolds444

stress mechanism is indeed at play in our simulations. Note that the peaks that superimpose to the445

average curves are caused by standing modes, which are not included in the theory. Furthermore,446

since this theory is based on (i) the assumption that Reynolds stresses are the main source of GW447

and (ii) a simple model of turbulence based on a Kolmogorov type turbulence, this agreement448

opens new perspectives for developing predictive tools of GW in more relevant (e.g. rotating)449

configurations.450

4.2 Effect of the Prandtl number451

Figure 11 shows (`, ω) spectra for simulations P03, P1 and P3, which have a comparable convec-452

tive forcing but differ by their Prandtl numbers (respectively Pr = 0.3, Pr = 1 and Pr = 3).453
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Although the variation in the Prandtl number is modest, we observe dramatic changes in the spec-454

tra. For simulation Pr = 0.3, all the energy is confined to ` . 70, while higher Prandtl number455

simulations have energy up to higher spherical harmonics degrees (up to ` ∼ 120 − 130 for456

Pr = 3). The Pr = 0.3 simulation also appears to have more energetic modes compared to457

the larger Prandtl number simulations and contains more energy in the low-ω, low-` part of the458

spectrum.459

Interpreting these observations is not straightforward since both the excitation and the attenu-460

ation of waves may vary when changing the Prandtl number. The attenuation of waves increases461

with the Prandlt number (see equation (27)) because the viscous damping is stronger. As a conse-462

quence of this stronger attenuation, modes saturate at a lower amplitude for higher Prandtl num-463

bers. This explains the lower amplitudes of modes in the Pr = 3 simulation compared to the464

Pr = 0.3 simulation. Note that the study of Couston et al. (2018b) showed that, in a Cartesian465

box, the QBO is obtained for low Prandtl numbers and strengthens when the Prandtl number de-466

creases.467

Such differences observed for relatively modest variations of the Prandtl number suggest that468

the wave dynamics of a thermally stratified layer (Pr ∼ 0.1) could be very different from that of469

a chemically stratified layer (Sc > 10, where Sc = ν/κξ is the Schmidt number, the equivalent470

of the Prandtl number for composition, with κξ the compositional molecular diffusivity). In a471

thermally stratified layer, we expect the energy to be concentrated in fewer but more energetic472

modes, whereas a chemically stratified layer could host more numerous but weaker modes up to473

high spherical harmonics degrees. We also expect a thermally stratified layer to be more prone to474

the development of a QBO-like mean flow than a chemically stratified layer. More generally, our475

results show that important aspects of the dynamics of the core may be missed when considering476

only the Pr = 1 simulation, as is classically done in numerical studies of the outer core. These477

conjectures need to be confirmed by running simulations including rotational and magnetic effects.478
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5 ENERGY TRANSFER479

How much energy is transfered from the convective region to GW in a stratified layer is an im-480

portant question for the evolution of the Earth’s core and to assess the effect of the layer on the481

gravity field. The global energy transfer can be measured by the ratio of the mean kinetic energy482

in the stratified and convective regions,483

R =
〈Estrat〉
〈Econv〉

=

1
Vsup

∫ ro
r=rint+δ

〈E(r)〉r2dr
1
Vinf

∫ rint−δ
r=ri

〈E(r)〉r2dr
, (37)484

where E(r) is the horizontally averaged kinetic energy at radius r and rint is the interface radius.485

Brackets 〈〉 denote time averages. The interface region has been excluded by setting δ = 0.025, so486

that the region of rapidly dropping kinetic energy between the convective and stratified regions is487

not considered. For simulation P1 (Pr = 1) we find R ∼ 1.6× 10−3, i.e. the rms velocity has de-488

creased by a factor∼ 25. We find a similar ratioR ∼ 1.2×10−3 for simulation P03 (Pr = 0.3), and489

R ∼ 1.4× 10−3 for simulation P3 (Pr = 3). Note that these ratios are obtained with the Rayleigh490

number and stiffness adopted in our simulations. They may change significantly when moving491

towards more realistic parameters (i.e. higher Rayleigh number with rotational effects). They may492

also depend on the choice of the parameter δ in equation (37), on the stratification strength and on493

whether the stratification is thermal (low Prandtl number) or chemical (high Schmidt number).494

These global ratios mask the fact that the kinetic energy in the stratified layer is a strong495

function of radius, wavelength and frequency. Figure 12a shows the time average radial profiles496

of the angle-integrated kinetic energy for simulation P1 (Pr = 1). In the convective region, the497

kinetic energy is fairly stable around 〈Econv〉 ∼ 2 − 3 × 106. Within the first 15% of the layer498

above the interface, the kinetic energy drops by almost 3 orders of magnitude, so that the rms499

velocity is about 30 times less than the rms velocity in the convective region. Then, the kinetic500

energy further drops by about 2 orders of magnitude when moving upwards in the stratified layer,501

until the rms velocity in the outermost portion of the layer has droped by a factor∼ 250 compared502

with the convective region. These factors are consistent with the rescaling factor of 43− 100 that503

we had to apply on velocities in the stratified layers on figures 3 to 5 to visualize velocities both504

in the convective region and in the stratified layer using the same colorbar. For a given horizontal505
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wavenumber k⊥, the theory of Lecoanet & Quataert (2013) finds that the kinetic energy decrease506

follows a power law,507

E(r, k⊥) ∼ [(1 + Pr)Nk3⊥(z − zint)]
−17/8, (38)508

where zint is the radius of the interface. In spherical geometry, k⊥ =
√
`(`+ 1)/r. Furthermore,509

in our case N depends slightly on the radius. Therefore we have510

〈E(r)〉 ∼
[
N(r)

r − rint

r3

]−17/8
. (39)511

This theoretical law is reported as a dashed line on figure 12a. We observe that the kinetic energy512

decays more slowly in our simulations compared to the theoretical prediction. We suggest that513

this lower decrease is due to the presence of numerous modes in our simulations, as these are514

attenuated less rapidly with the radius and are not considered in the theory of Lecoanet & Quataert515

(2013).516

As already shown on the spectra of figure 6, the energy distribution at each radius depends on517

the spherical harmonic degree ` and frequency ω. Figure 12b shows the time averaged `-spectra of518

the kinetic energy in each half space (excluding again the interface region rint ± δ). The spectrum519

in the stratified layer has been normalized by the ` = 1 value of the convective spectrum, to better520

visualize the relative drop as a function of `. Like in figure 6, the spectrum in the stratified layer521

shows that the low ` components have a higher kinetic energy, with a peak at ` = 2, and that these522

degrees are better transmitted from the convective region compared with higher `s.523

Figure 13 shows the kinetic energy ratio between the convective region and the stratified layer,524

at different radii. As was already visible on the spectra of figure 6, not all convective frequencies525

and wavelengths are transmitted to the stratified layer. Convection injects energy at all scales, but526

the energy distribution in the layer depends on the waves dynamics. We also note that the kinetic527

energy fraction of standing modes is nearly constant across all radii, which is expected since their528

amplitude is approximately constant throughout the stratified layer.529

In the next section, we use the results above on the energy distribution and typical velocities530

in the stratified layer to evaluate orders of magnitude for the waves-induced perturbations of the531

gravity field.532
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6 GEOPHYSICAL SIGNATURES IN THE GRAVITY FIELD533

GW produce small deviations from the mean density profile of the stratified layer, as well as pres-534

sure fluctuations at the CMB. These anomalies of density and pressure induce small perturbations535

in the gravity field of the Earth, which may be detected in gravity data. Previous attempts to detect536

the gravitational signatures of inertial waves – another type of waves that develop in the whole537

rotating outer core – remained unsuccessful (Melchior & Ducarme, 1988). This was due to the538

lower sensitivity of gravimeters at the time and to the fact that the main frequencies of inertial539

waves coincide with stronger signals from tides or other geophysical phenomena. By contrast, the540

spectra from figure 6 reveal that GW in a stratified layer atop Earth’s core may exist over a wide541

range of frequencies and wavelengths, some of which may be distinct from any other geophys-542

ical signal. In addition, modern superconducting gravimeters, which are sensitive to fluctuations543

of only a few nGal or less at the Earth’s surface (Rosat & Hinderer, 2018), now offer more hope544

for the detection of GW. In the following lines, we estimate an order of magnitude for the gravity545

perturbations induced by GW at the Earth’s surface, and compare it to the sensitivity of present-546

day gravimeters. Since we aim at obtaining orders of magnitude, we will focus on gravity changes547

induced by density perturbations and will neglect elastic deformations caused by pressure fluctu-548

ations at the CMB, as these are mostly corrections and are negligible for ` > 2 (Dumberry, 2010).549

Note that we write the calculations for the non-rotating and non-magnetic case here, but the same550

procedure can be followed for GW in a rotating core with a magnetic field.551

In geodesy, the variation of gravitational potential ∆V (r, θ, φ) at a radius r above the Earth’s552

surface is usually expanded on a spherical harmonics basis,553

∆V (r, θ, φ) =
GM

r

∞∑
`=2

∑̀
m=0

(re
r

)`
V`m, (40)554

where M is the mass of the Earth, re the Earth’s radius and555

V`m = (C`m cosmφ+ S`m sinmφ)R`mP`m(cos θ), (41)556

where P`m(cos θ) are the Legendre polynomials with the 4π normalization factor557

R`m =

√
(2− δm,0)(2`+ 1)

(`−m)!

(`+m)!
. (42)558
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Note that we do not consider degrees ` = 0 and ` = 1 in the above summation because we assume559

that mass is conserved and that core motions do not change the location of the centre of mass.560

In (41), C`m and S`m are referred to as the Stokes coefficients. Perturbations of the gravity field561

are usually measured in terms of changes in these coefficients. Typical changes ∆C in the Stokes562

coefficients caused by density perturbations δρ in the core can be estimated by (Dumberry, 2010)563

∆C ∼ 4π

(2`+ 1)3/2

(
ro
re

)`
r2ohδρ

M
, (43)564

where ro is the radius of the outer core and h the thickness of the region across which the density565

perturbations extend. Here, h is the thickness of the stratified layer at the top of the core. The566

typical density perturbation δρ induced by a GW of frequency ω and vertical velocity W can be567

estimated using the GW polarisation relation (Sutherland, 2010)568

i
ωgδρ

ρ0
+N2W = 0, (44)569

where g is the gravitational acceleration at the top of the core, which leads to570

δρ ∼ ρ0N
2W

ωg
. (45)571

Injecting (45) into (43) gives typical variations ∆C of the Stokes coefficient of order572

∆C ∼ 4π

(2`+ 1)3/2

(
ro
re

)`
r2ohρ0N

2W

Mωg
. (46)573

From equation (43), it is clear that changes in the Stokes coefficients decrease very rapidly with574

increasing `, by typically an order of magnitude for an increase of two in `. Therefore, only waves575

with sufficiently low ` have a chance to produce a detectable signature. Since propagating waves576

are essentially local processes and typically involve large `s and various frequencies, they will be577

hard to detect. On the contrary, low-` modes are better candidates, because they resonate glob-578

ally in the entire stratified layer with a well-defined frequency. Low-` modes also are the most579

energetic, particularly at low Prandtl number (figures 6, 11 and 12).580

The spectra in figure 6 show that low-`modes are found at frequencies significantly lower than581

N , typically ω ∼ 0.2N . In the literature, the value ofN is often expressed through its squared ratio582

(N/Ω)2 to the Earth’s rotation frequency Ω. A range of values has been proposed for this ratio in583

the literature. Geomagnetic observations require a ratio of order 1 (Buffett, 2014; Buffett et al.,584
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2016) while seismic observations favor larger values (Helffrich & Kaneshima, 2010), giving the585

range586 (
N

Ω

)2

∈ [0.5− 600]. (47)587

Assuming ω ∼ 0.2N and Ω = 7.292×10−5 s−1, we obtain typical GW periods comprised between588

5 h and 170 h.589

Eventually, the evaluation of ∆C requires a value for the typical radial velocity W of the590

waves. This can be evaluated from the kinetic energy ratios calculated in equation (37) and dis-591

cussed in section 5. These ratios give a mean drop of kinetic energy of∼ 10−3 between the convec-592

tive region and the waves, which leads to typical wave velocities that are about 30 times as small593

as the convective rms velocity. Alternatively, W can be roughly estimated for the low-` modes594

(which we focus on here) by looking at the bottom left corner of figure 13. This figure predicts595

kinetic energy ratios comprised between 10−2 and 10−1 for these modes, that is a velocity drop of596

only a factor 3-10. We therefore adopt a conservative factor 20 for the drop in kinetic energy for597

the low-` modes. We note that these ratios may not be representative of realistic conditions in the598

Earth’s core but here we aim at deriving a general estimation method. The calculations hereafter599

can be performed using kinetic energy ratios obtained with more realistic simulations including600

rotation and magnetic field. Taking 5× 10−4 m s−1 as the typical velocity in the convecting region601

(Christensen & Aubert, 2006; Finlay & Amit, 2011), we estimate W ∼ 2.5× 10−5 m s−1. For the602

other numerical values, we adopt g = 10 m s−2, M = 5.97× 1024 kg, ρ0 = 9.903× 103 kg m−3,603

Ω = 7.292× 10−5 s−1, ro = 2.891× 106 m, h = 100 km and re = 6.371× 106 m. Figure 14 dis-604

plays the estimates for the changes in the Stokes coefficients obtained from equation (46) with the605

numerical values given above, for ` = 2 to 10 and for the two end-member values of the (N/Ω)2606

ratio (0.5 and 600). These typical changes in the Stokes coefficients should be compared to the607

accuracy of superconducting gravimeters, which is around 1 nGal (Rosat & Hinderer, 2018). The608

gravity variation ∆g at the Earth’s surface is the radial derivative of ∆V at r = re, that is609

∆g =
GM

r2e

∞∑
`=2

`
∑̀
m=0

(∆C`m cosmφ+ ∆S`m sinmφ)R`mP`m(cos θ). (48)610

The above equation can then be used to estimate the detection limit on ∆C for ∆g ∼ 1 nGal. For611
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example, for ` = m = 2 and ∆g = 1 nGal, the minimal detectable change in the Stokes coefficient612

is ∆C22 = ∆gr2e/(GM`R22P22(cos θ)) ∼ 2.5 × 10−13 at the equator (θ = π/2). The minimal613

detectable perturbation of the Stokes coefficients at the equator, for ∆g = 1 nGal and m = ` is614

represented by a black dashed line on figure 14. This line shows that, for strong stratifications,615

several modes (possibly up to ` = 8) could potentially be observed. For weaker stratifications,616

only the ` = 2 mode would have a chance to be detected. Besides, GW modes in a stratified layer617

have typical frequencies comprised between ∼ 1 hour to a few hundreds of hours, depending on618

the stratification strength N . Such frequencies may be distinct from tides or other geophysical619

phenomena. However, note that the above orders of magnitude depend on the typical velocity620

of gravity waves, which we have estimated from our non-rotating, non-magnetic, simulations,621

with control parameters far from realistic values. The typical wave velocity and hence the typical622

density anomaly and induced gravity signal of GW may change significantly in core conditions,623

so that the perturbations in the Stokes coefficients derived in the previous calculations may vary624

significantly when more geophysical ingredients are included. To conclude more robustly on the625

detectability of GW in the gravity data, a (much more costly) systematic study would be necessary626

to obtain scaling laws.627

7 SUMMARY AND DISCUSSION628

In this study, we performed numerical simulations of a two-layer, non-rotating, non-magnetic,629

spherical shell, in which a stratified layer lies on top of a turbulent convective region. This config-630

uration leads to the development of internal gravity waves (GW) in the stratified layer, for which631

gravity is the restoring force. Reynolds stresses generate GW that transport energy away from632

the interface. While they progress upwards, propagating waves are linearly damped. Waves with633

smaller horizontal wavenumbers and/or relatively large frequencies are comparatively less atten-634

uated. These waves can make it to the top of the layer and reflect on the outer boundary. The635

constructive interactions of propagating waves and their reflections on the top boundary excite636

and maintain standing modes that resonate in the cavity formed by the stratified layer. Analysis637

of wavenumber-frequency spectra reveals that the wave energy is distributed among propagating638
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waves and standing modes across wavelengths and frequencies. While energy is injected in the639

stratified layer by convective motions, the energy distribution in the layer differs from that of the640

convective region and depends on the waves’ own dynamics. In the non-rotating and non-magnetic641

case, we observe significant differences in the spectral energy distribution of the waves when only642

modestly changing the Prandtl numbers, even if total wave energy does not change much. This643

result suggests that one may miss important aspects of the dynamics of the core when fixing644

Pr = 1, as is done in most studies for numerical convenience. It also suggests that thermally and645

compositionally stratified layers may host GW with very different energy distributions. Overall,646

for the control parameters considered in this study, we find that the average kinetic energy in the647

stratified layer is about 0.1% that of the convective region; that is, the typical waves velocity is648

about 30 times smaller than the rms convective velocity. Based on this typical wave velocity, we649

find that signatures of GW could potentially be detected in gravimetric data. However, the typical650

waves velocity, upon which these results are based, may change when moving towards more re-651

alistic control parameters and including rotational and magnetic effects. The wave dynamics may652

also depend on the thickness of the stratified layer, which is unrealistically large in our simulations.653

Therefore, the figures derived from the non-rotating simulations in this paper should be interpreted654

very cautiously, as they may not be relevant values for the core. To draw robust conclusions, it is655

necessary to perform a more systematic exploration of the parameter space including rotational656

and magnetic effects.657

Although this study neglects rotational and magnetic effects, it sets the conceptual bases and658

tools necessary to analyse the properties of internal waves in a stratified layer and the perturbations659

these waves might induce on the gravity field. Therefore, it is a first step towards more geophys-660

ically realistic simulations. It also confirms the relevance of modelling the stratified layer using a661

non-linear equation of state. Future works must include the effects of rotation and magnetic field662

as these are key ingredients of core dynamics. In order to excite waves with a rich convective663

spectrum, costly simulations at high Reynolds number and subsequently low Ekman number are664

necessary. Since both rotation and magnetic fields break the isotropy of the system, several dif-665

ferences may appear with respect to the non-rotating case. First, as rotationally-dominated flows666
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are strongly anisotropic, taking the form of columnar convection elongated along the rotation axis,667

internal waves may be excited to very different amplitudes as a function of colatitude. Hence, the668

total and latitudinal energy transfer from the convective region to the waves is likely to be affected.669

Second, while propagating waves and modes may still coexist in the layer, they are likely to be670

modulated by rotational effects and further damped by Ohmic dissipation. Furthermore, additional671

types of waves such as MAC waves, magnetic Rossby waves and Alfvén waves may be present in672

the layer (Braginsky, 1999). We anticipate that, to reach the Earth’s surface, magnetic waves will673

need to have sufficiently long periods in order to pass the skin effect exerted by the not perfectly674

insulating mantle. Eventually, symmetry breaking by rotation and magnetic field may lead to the675

formation of large-scale mean zonal flows in the stratified layer, with various dynamical impacts676

(Rogers et al., 2013). In all cases, the tools described in the present paper can also be used to study677

the dynamics of internal waves in the presence of rotation and magnetic field, and to relate it to678

observed geophysical quantities.679
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Figure 1. Schematic of the problem studied. A stratified layer occupies the top half of the outer core and

lies on top of a vigorously convective region. Reynolds stress in the convective zone excites waves that

propagate in the stratified layer. As these waves propagate upwards, they are gradually attenuated. The

constructive interactions of propagating waves and their reflections on the top boundary excite and maintain

standing modes of various length scales and frequencies, that resonate in the entire cavity defined by the

stratified layer. When the damping term in equation (2) is added, the reflection of propagating waves and

hence the formation of standing modes is prevented. N denotes the Brunt-Väisälä frequency, as defined in

equation (14). Temperatures and radii are indicated in non dimensional units. Although the cartoon is in 2D

and shows only a fraction of the sphere, our simulations run in a full 3D spherical shell.
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Figure 2. (a): Radial profile of the horizontally averaged temperature for simulation P1. In the well-mixed

convective region, at r . 1, the temperature is almost constant while a conductive temperature profile exists

in the stratified layer above. The horizontal dashed line corresponds to the radius where
〈
T̄
〉

= 0 and marks

the approximate position of the interface. (b): Snapshot showing the radial velocity field for simulation

P1. Velocities in the stratified region have been multiplied by a factor 43, so that they can be visualised

together with the velocities in the convective region using the same colorbar. The apparent discontinuity

is a result of this color scale adjustment but all numerical variables are continuous. The position of the

interface is defined as the radius where the time and angle-averaged temperature
〈
T̄
〉

equals the inversion

temperature, i.e.
〈
T̄
〉

= 0 in non-dimensional units. See also the corresponding movie attached or at https:

//youtu.be/qbPV8lI8nkw.

https://youtu.be/qbPV8lI8nkw
https://youtu.be/qbPV8lI8nkw
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Figure 3. Snapshots of the radial velocity field for simulation P1 at three consecutive times showing a plume

impact on the interface with the stratified layer. In a plane containing the impact point, the shape formed

by the waves is sometimes referred to as a “half St Andrew’s cross” (Mowbray & Rarity, 1967). vp and

vg denote the phase and group velocities, respectively. Their directions are indicated by arrows. The phase

velocity is perpendicular to the group velocity. The energy transport rate and direction is given by the group

velocity, at an angle α from the radial direction and oriented away from the convective region. Velocities

in the stratified region have been multiplied by a factor 100 for a clearer visualisation. The position of

the interface is defined as the radius where the angle-averaged temperature
〈
T̄
〉

(r) equals the inversion

temperature, i.e.
〈
T̄
〉

= 0 in non-dimensional units. In the convecting region, arrows show the direction and

magnitude of the velocity in the plane of the figure.

Figure 4. Snapshot of the radial velocity field in the stratified layer at r = 1.066 for simulation P1. Each

concentric structure is the trace of a plume impact that occurred earlier on the interface underneath at r ≈ 1.
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Figure 5. Snapshot of the radial velocity field for simulation P1. Velocities in the stratified region have been

multiplied by a factor 100 for a clearer visualisation. The red and blue colors indicate positive and negative

signs of the radial velocity, respectively. Propagating waves are excited at the interface with the convective

region by Reynolds stresses. These waves propagate in the shell and can reflect on the outer boundary. The

interaction of propagating waves with their reflections can lead to multiple standing modes that resonate

in the entire cavity formed by the stratified layer. Even though numerous modes are superimposed and can

hardly be distinguished individually, one specific mode sometimes dominates locally, revealing itself as a

checkerboard pattern like the one pointed by the arrow on the right.
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Figure 6. Kinetic energy spectra for simulation P1 in (`, ω) space as defined by equation (24), at different

radii, one in the convective region (panel a) and the three others in the stratified layer, with increasing

distance from the interface located at r ≈ 1 (panels b to d). The horizontal dashed lines denote the value

of the horizontal mean Brunt-Väisälä frequency at the corresponding radius. The plain lines correspond to

iso-values of the attenuation depth λeff (see equation (31)), λeff = 0.02 and λeff = 0.07. The dashed-dotted

line corresponds to the λeff = 0.2 line and approximately separates propagating waves (below the line)

and modes (above the line). The colorbars are in logarithmic scale and span several orders of magnitude.

The colorscale has been cut at a lower bound to focus on the most energetic signals. The three colorbars in

panels (b), (c) and (d) are identical while panel (a) focuses on much larger amplitudes, characteristic of the

convective region.
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Figure 7. Ratio of the frequency spectra Er/E⊥, at r = 1.318, averaged between ` = 1 and ` = 140.

ω∗ = ω/N is the frequency normalized by the Brunt-Väisälä frequency. The red curve shows the law (25)

(see main text), which is valid only in the GW region. The curve matches the spectrum in the waves region,

close to ω = N and below. The mismatch at lower frequencies indicates that the low-frequency part does

not contain only linear GW.
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Figure 8. (a): ` spectra at two radii and for two fixed frequencies. (b): ω spectra for two radii and two fixed

values of `. The vertical dashed line corresponds to ω = N̄ . Two of the spectra in (a) and three of the spectra

in (b) have been shifted upwards/downwards to better visualize the modes (the spikes that superimpose to

the global drop in kinetic energy) and to compare slopes of the different spectra. The black lines indicate

the slopes of the power laws predicted by the theory of Lecoanet & Quataert (2013).
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Figure 9. (`, ω) spectra at r = 1.136 for simulation P1 (S = 30, left panel) and simulation P1 S100

(S = 100, right panel). Note that the colorbars are the same for both subfigures and span several orders of

magnitude.

Figure 10. Kinetic energy spectra in (`, ω) space as defined by equation (24) at r = 1.136. a: simulation

P1 (without damping term). b: simulation P1d (with damping). Note that the colorbars span several orders

of magnitude and are in logarithmic scale.
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Figure 11. (`, ω) spectra at r = 1.318 for simulations P03 (Pr = 0.3), P1 (Pr = 1) and P3 (Pr = 3). The

horizontal dashed lines indicate the Brunt-Väisälä frequency at the radius considered.
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Figure 12. (a): radial profile of the kinetic energy. The dashed line shows the law in equation (39) with a

prefactor A = 8× 1010. The inserted subfigure shows the behavior with the distance to the interface radius

(rint = 0.97) in log-log scale.(b): `-spectra of the kinetic energy in the convective region (r ≤ rint − 0.025)

and in the stratified layer (r ≥ rint + 0.025), for simulation P1. To allow for a better comparison, the

spectrum in the stratified layer has been renormalized by a factor Econv(` = 1)/E(` = 1) = 89.3.
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Figure 13. Kinetic energy transmission factor between the convective region at r = 0.863 and the stratified

layer at different radii.
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Figure 14. Order of magnitude of the change in the Stokes coefficients for the first spherical harmonics

degrees and for two different values of N spanning the range proposed in the literature. The dashed line

indicates approximately the sensitivity limit of present-day gravimeters, about 1 nGal (Rosat & Hinderer,

2018).
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