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Abstract: This paper addresses an attitude tracking control design applied to multirotor unmanned
aerial vehicles (UAVs) based on an ADRC approach. The proposed technique groups the endogenous
and exogenous disturbances into a total disturbance, and then this is estimated online via an extended
state observer (ESO). Further, a quaternion-based feedback is developed, which is assisted by
a feedforward term obtained via the ESO to relieve the total disturbance actively. The control
law is bounded; consequently, it takes into account the maximum capabilities of the actuators
to reject the disturbances. The stability is analyzed in the ISS framework, guaranteeing that the
closed loop (controller-ESO-UAV) is robustly stable. The simulation results allow validation of the
theoretical features.

Keywords: multirotor UAV; quaternion feedback; extended state observer; ADRC; bounded input

1. Introduction
1.1. Motivations and Background

Research and development on unmanned aerial vehicles (UAVs) have shown enhance-
ments in both the design and control of smaller and more economical aerial robots, which
can be used in large-scale applications. Vertical take-off and landing (VTOL) multirotor
vehicles have taken and consolidated their dominance in the market of small aircraft, also
becoming a standard platform for aerial robotics research [1–3]. The abilities to evade obsta-
cles, maneuver in confined spaces, hover in flight, collect data, and interact with different
robots, make multirotors and mainly quadrotors able to solve endless problems, such as
in search and rescue operations, temporary communication networks, aerial mapping,
natural disaster monitoring, and kit delivery, to name a few [4].

Nowadays, the quadrotor’s mathematical model is well known, and many control
approaches have been proposed using different attitude representations, e.g., Euler an-
gles, rotation matrices, or quaternions. An excellent overview of these approaches is
shown in [5,6] and references therein. However, most of the proposed control techniques
are developed assuming slight attitude variations, knowledge of model parameters (to
feedforward the nonlinearities), no bounds in the control signal, and the nonexistence of
disturbances. In particular, PD, PID, and LQR controllers result in engaging solutions due
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to their simplicity to real-time implementation [7], and have been applied to the attitude
and position control of multirotor UAVs, for instance in [8–11]. However, it is well known
that proportional control cannot eliminate the impacts produced by disturbances (even
constant ones), and a higher proportional control gain has to be designed to diminish the
disturbance effects. In addition, when PID is used, the integral term could effectively reject
the constant disturbance but achieves poor performance in the presence of time-varying
disturbances. PID is also often implemented without the D part because of the noise sensi-
tivity [12]. In recent years, the advances in sensing and onboard computing have driven
the advancement of exceptionally small, innovative, and capable quadrotors, and so the va-
riety of tasks and applications entrusted to these aircraft has increased. As a consequence,
the before-mentioned assumptions are no longer valid. For instance, the disturbances in
flight formation applications when quadrotors fly close to each other must be taken into
account [13–15]. Other examples are the external forces and torques that a quadrotor might
encounter within inspection applications, aerial manipulation, and load transportation,
where the aircraft interacts physically with and flies near walls, surfaces, and objects in
the environment [16–19]. Furthermore, in many applications like agriculture and utility
line inspection, the vehicles are subject to operating in a windy and complex environment,
where aggressive attitude maneuvers are required to cope with external disturbances that
affect their dynamic behavior [20,21].

Two subsystems can be considered when dealing with mathematical models of under-
actuated multirotors: rotational and translation dynamics [6]. These subsystems provide a
cascade structure where translational motion is based on rotational dynamics [22]. There-
fore, attitude control is the main part to fulfill trajectory-tracking in the space. This is not
a simple task when considering both structural (parametric) and external disturbances.
For these reasons, it is necessary to come back to the low-level control problem, i.e., the
attitude control problem, and therefore to take into account explicitly in the control design
model uncertainties, external disturbances, and signal control constraints.

The disturbances-observed-based-control (DOBC) framework results are attractive
in compensating for external disturbances and model uncertainties [23]. An advantage
of DOBC techniques against robust control is determining exogenous torques and forces
from the system and canceling them via feedforward actions [24]. Moreover, the estimated
information can be used for motion control or environment interaction when there are
no available sensors [25]. DOBC and Kalman-filter-based approaches have been used
and applied in the last years for successful attitude control of spacecraft and quadrotors,
e.g., [26–33].

A particular case of DOBC is the active disturbance rejection control (ADRC), which
is based on the extended state observer (ESO) [12]. ESO is a fundamental part of the ADRC
because it is charged to estimate the lumped disturbances of both unknown uncertainties
and external disturbances [34,35]. Nowadays, ADRC has been applied in almost every
domain of automatic control. Therefore, it has gained popularity in fields as diverse as the
motion control of humanoid robots [36], an induction motor without a speed sensor [37],
electric traction [38], power electronics [39], and many more. ADRC simplifies the plant de-
scription; this approach groups all disturbances, endogenous and exogenous, into a single
term. Total disturbance can have many characteristics, including unknown, time-varying,
and unstructured. The main virtue is to make the disturbances indistinguishable from each
other and of the same nature. Using a suitable additional dimension, that disturbance term,
which is treated as a fictitious state, is estimated with an ESO. ADRC reduces a complex
process to a possibly linear disturbed plant, harassed by a total disturbance term, which
becomes easy to regulate using an output feedback control law that can be both linear and
non-linear [40].

For UAV control, ADRC algorithms have become a popular choice. Some researchers
have proposed inspiring ADRC-based approaches to regulate the attitude in multirotors,
e.g., [41–48]. Besides, the method can be extended to the automatic landing or trajectory
tracking; for example, in [49,50], where the safe landing of a UAV under wind effects con-
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ditions is proposed. The work in [45] presents how an ADRC is employed for stabilization
and obstacle avoidance of a quadrotor unsettled by external disturbances. The trajectory
tracking problem of a quadrotor with disturbances is presented in [51].

Although the ADRC-based attitude controllers mentioned before have shown excellent
results, the analysis of stability with the system in a closed-loop (control-observer-plant)
is not always established; only a few works have taken this issue into account. The main
reason comes from the nonlinearity of the system in a closed loop. Furthermore, none
of the reported ADRC approaches considered the physical limits of actuators, which is a
crucial topic for real applications.

1.2. Contributions

The development of an ADRC for attitude tracking of quadrotor aerial vehicles with
bounded inputs is the central proposal. It is assumed that the aerial robot is subject to
unknown external perturbations. Then an ESO, designed to estimate the disturbances,
is employed. Further, a control law is designed for attitude tracking, which takes these
estimated disturbances into account. The proposed controller uses quaternions to parame-
terize the attitude, thus avoiding singularities and being computationally efficient. Besides,
the control strategy uses nested saturation functions, considering the constraints/capacity
of the actuators to reject the disturbances. The stability analysis is studied for the non-
linear closed-loop system in the input-to-state stability (ISS) sense, concluding a robust
stability [52]. The proposed strategy is validated through simulation results using the
model of a small quadrotor. The proposed strategy is validated through simulation results
using a small quadrotor model and physical parameters, namely, the Crazyflie 2.0 [53]. Al-
though this quadrotor is considered in this work, the approach can be applied to spacecraft
and aerial robots with VTOL capacities, e.g., ducted-fan tail-sitters and helicopters.

The rest of the paper is structured as follows. The mathematical background is
introduced in Section 2. The multirotor and disturbance models are presented in Section 3.
Section 4 details the design of the extended state observer (ESO) and the attitude control
law. Section 5 describes the simulations carried out, as well as their results, where the
effectiveness of the proposed algorithm is highlighted. In Section 6, some conclusions
are shown and some future work is mentioned. An appendix with the stability proofs
is attached.

2. Preliminaries

In the following, ‖·‖ denotes the Euclidean norm for vectors and the induced 2-norm
for matrices. A scalar continuous function γ(r) defined for r ∈ [0, a[ is said to belong to class
K if it is strictly increasing and γ(0) = 0, and it is said to belong to class K∞ if it is defined
for all r ≥ 0 and γ(r) −→ ∞ as r −→ ∞. A scalar continuous function β(r, s) defined for
r ∈ [0, a[, s ∈ [0, ∞[ is said to belong to class KL if for each fixed s it belongs to class K and
for each fixed r it is decreasing in s and β(r, s) −→ 0 as s −→ ∞. A dynamical system with
state x and input w is called input-to-state stable (ISS) if there exist a class KL function β

and a class K function γ such that ‖x(t)‖ ≤ β(‖x(0)‖, t) + γ(
∥∥∥w|0.t|

∥∥∥
∞
) for all t ≥ 0, where

‖·‖∞ denotes the L∞-norm: for a signal w,
∥∥∥w|0.s|

∥∥∥
∞
=sup 0≤t≤s‖w(t)‖. For linear systems,

ISS is equivalent to global asymptotic stability of the unforced system [54].

Definition 1 ([54]). A smooth function V : Rn −→ R≥0 is called an ISS-Lyapunov function for
system ẋ = f (x, u) if there exist K∞-functions (α1, α2), and K-functions α3 and χ, such that

α1(‖x(t)‖) ≤ V(x) ≤ α2(‖x(t)‖) (1)

for all x ∈ Rn and

‖x(t)‖ ≥ χ(‖u(t)‖)⇒ ∇V(x) · f (x, u) ≤ −α3(‖x(t)‖) (2)
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for all x ∈ Rn.

Theorem 1 ([54]). The following properties are equivalent for any system:

1. It is ISS.
2. It admits an ISS-Lyapunov function.
3. It is robustly stable.

3. System Modeling and Problem Statement
3.1. Attitude Representation

Firstly, assume that a multirotor UAV can be modeled as a rigid body. Then, con-
sider two orthogonal right-handed coordinate frames: the body coordinate frame, Eb ={
~e b

1 ,~e b
2 ,~e b

3

}
, located at the center of mass of the rigid body and the inertial coordinate

frame, E f =
{
~e f

1 ,~e f
2 ,~e f

3

}
, located at some point on the Earth’s surface, which for the sake of

simplicity is assumed to be flat. This frame is typically chosen as the north-east-down (NED)
frame with~e f

1 pointing to the north,~e f
2 pointing to the east and~e f

3 pointing to the center of
the Earth. The rotation of the coordinates of a point from frame Eb with respect to frame
E f is represented by the attitude matrix R ∈ SO(3) = {R ∈ R3×3 : RTR = I3, det(R) = 1},
where I3 is the 3× 3 identity matrix.

Remark 1. In this paper, R = R f
b is the matrix that rotates the coordinates of a point from frame

Eb to frame E f .

The motion of the body-fixed reference frame Eb relative to E f can be defined in terms
of unit quaternion q ∈ S3, which is defined as:

q :=

(
cos β

2
e sin β

2

)
:=
(

q0
qv

)
∈ S3 (3)

where qv =
(
q1 q2 q3

)T ∈ R3 and q0 ∈ R are defined as the vector part and scalar part
of the quaternion, respectively. Furthermore, q represents an element of SO(3) through the
map R f

b : S3 → SO(3) defined as:

R(q) := I3 + 2q0[q×v ] + 2[q×v ]
2 (4)

[r×] is the well known skew-symmetric matrix associated to vector r.
Let ω =

(
ω1 ω2 ω3

)T ∈ R3 be the angular velocity vector of the body coordinate
frame Eb relative to the inertial coordinate frame E f expressed in Eb. Then, the kinematics
equation is given by:

q̇ =
1
2

(
−qT

v
I3q0 + [q×v ]

)
ω :=

1
2

Ξ(q)ω (5)

The attitude error is used to quantify the mismatch between two attitudes. If q defines
the current attitude quaternion and qd the desired quaternion, i.e., the desired orientation,
then the quaternion that represents the attitude error between the current orientation and
the desired one is given by:

q̃ = (qd)
−1 � q =

(
q̃0 q̃T

v
)T (6)

where q−1 is the complementary rotation of the quaternion q, which is given by q−1 =(
q0 −qT

v
)T and � denotes the quaternion multiplication [55]. When the current quater-

nion q reaches the desired one qd, the quaternion error becomes q̃ =
(
±1 0T)T , i.e., there

exist two equilibria which have to be considered in the stability analysis [56].
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3.2. Motion Equations of the Multirotor UAVs

The study of UAV motion has two main concepts: rotational and translational motions.
According to the aforementioned references and to [3], the six degrees of freedom model
of the system (position and attitude) can be separated into translational and rotational
motions, represented, respectively, by ΣT and ΣR in Equations (7) and (8):

ΣT :

{
ṗ = v

v̇ = ge f
3 −

1
m R f

b eb
3T + Fd

(7)

ΣR :

{
q̇ = 1

2 Ξ(q)ωi

Jω̇ = −[ω×]Jω + Γ + Γd
(8)

where m is the mass of the VTOL-UAV and J is the inertial matrix expressed in Eb. The grav-
ity acceleration is g and e f

3 = eb
3 = (0 0 1)T . p ∈ R3 is the position of the center of gravity

of the aircraft, which point coincides with the origin of frame Eb with respect to frame
E f , v ∈ R3 is its linear velocity in E f , and ω ∈ R3 denotes the angular velocity vector of
the body coordinate frame Eb relative to the inertial coordinate frame E f , expressed in Eb.
eb

3T is the total thrust, expressed in Eb. Γ ∈ R3 depends on the couples generated by the
actuators and as a consequence, it represents the control signal. Furthermore, several dis-
turbance forces and torques acting on the aircraft are being considered, which are grouped
together in vectors Fd and Γd, respectively. Note that the models (7) and (8) give rise to
two cascaded subsystems: rotational and translational ones. The longitudinal and lateral
movements cannot be performed without a coupling to the rotational degrees of freedom.
Therefore, efficient attitude control is crucial to maintaining the desired attitude in order to
reach a desired position despite external disturbances.

3.3. Problem Statement

The main purpose of the present paper is to design a robust control for attitude tracking
that would be able to ensure the position control of a multirotor UAV, and specifically of a
very small quadrotor helicopter. Then, one has the following objectives to accomplish:

q(t)→ qd(t) ∈ S3, ω→ ωd(t) ∈ R3 (9)

Let us consider the error variables q̃ = (qd)
−1 � q, ωe = ω−ωr with ωr = RT(q̃)ωd.

As a result, the dynamics and kinematics errors are calculated using:

ΣRe :


˙̃q =

1
2

(
−q̃T

v

I3q̃0 + [q̃×v ]

)
ωe

Jω̇e = −[(ωe + ωr)
×]J(ωe + ωr) + [ω×e ]ωr −RT(q̃)ω̇d + Γ + Γd

(10)

In this work, an active disturbance rejection control (ADRC) to track a desired attitude
despite external disturbances will be designed. For that, an extended state observer (ESO)
is applied to estimate online the unknown disturbances and cancel them by injecting the
output of the ESO into the feedback loop. Furthermore, the proposed feedback controls
have to take into account the physical constraints and limitations of the body’s structure and
actuation. This is ensured by a saturation of the control torque to avoid unwanted damage
and maximize the effectiveness of the system’s actuators. This can be formulated as:

Γj ∈ [−Γ̄j, Γ̄j], j ∈ {1, 2, 3}

where Γ̄j represents the bounds of the jth control torque component.
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4. ADRC Design for Attitude Tracking

An attitude trajectory tracking for a UAV-VTOL is discussed in this section. To address
this problem, let us consider first the attitude dynamics error equation

ω̇e = J−1[Γ + ξ] (11)

where
ξ = −[(ωe + ωr)

×]J(ωe + ωr) + [ω×e ]ωr −RT(q̃)ω̇d + Γd (12)

i.e., ξ(·) is constituted by the sum of the endogenous perturbation and the exogenous one.
Then, a control strategy based on the active disturbance rejection control (ADRC) technique
is proposed. The function, ξ, will be estimated through the extended state observer (ESO),
which is based on the system’s dynamics (11). For this purpose, one makes the following
assumptions:

• ω and q are measured, such that ωe is always available;
• The inertia matrix is diagonal, i.e., J = diag(J1, J2, J3) with J1 = J2 < J3, and its

nominal value is known;
• The perturbation function ξ(·) is a uniformly absolutely bounded disturbance, i.e.,

supt ‖ξ(·)‖ = ‖ξ(·)‖∞ ≤ K0.

4.1. ESO Design for the Attitude Dynamics

Let ē = ωe − ω̂e be the estimation error, through (11), and we propose the following
extended state observer:

ΣESO :=


˙̂ωe = J−1Γ + η1 + L2 ē

η̇1 = η2 + L1 ē
η̇2 = L0 ē

(13)

where ω̂e, η1 = J−1ξ̂ and η2 are the angular velocity error estimation, the disturbance
estimation, and its time derivative, respectively, and Γ is the control input. The set of
matrices L2 = diag(l2, l2, l2), L1 = diag(l1, l1, l1), L0 = diag(l0, l0, l0) is selected with
the assistance of a desired closed-loop Hurwitz polynomial of the third order. Then,
the following result is obtained.

Proposition 1. Consider the ESO (13) and the angular dynamics error (11). Then, the estimation
error behavior satisfies the ISO property (input-to-output stability) [54], i.e., the solutions for
the error dynamics converge to a sphere centered at the origin of the estimation error phase space
with radius

ρ =
K0

J1λM
(14)

where λM depends on the selection of the set of coefficients of the matrices {L2, L1, L0}. Furthermore,
the error dynamics exhibit asymptotic stability to ē = 0 for ξ = 0.

The proof is given in Appendix A.

4.2. Active Disturbance Rejection Bounded Attitude Control

In this subsection a control law is proposed that stabilizes the system; this law is
described by (8). The objective is to design a control torque that is restricted.

Definition 2. Given a positive constant M, a continuous, non-decreasing function σM : R→ R
is defined by

σM = s if |s| < M;
σM = sign(s)M elsewhere;

(15)
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Let us remember that the disturbance vector ξ is assumed to be bounded, i.e., supt |ξi(·)| ≤
K0i . Furthermore, let K0i denote the bound for the disturbance function about the ith axis.
Assuming that after a sufficiently long time ξ is estimated via the observer (13), that is,
ξ̂ = Jη1, then one has the following result.

Proposition 2. Consider the attitude dynamics error described by (11) with the following bounded
control inputs Γ = (Γ1 Γ2 Γ3)

T such that

Γi = −σMi2

(
ξ̂i + σMi1(λ̄i[ωei + ρi q̃i])

)
(16)

with i ∈ {1, 2, 3} and where σMi1 and σMi2 are saturation functions such that K0i < Mi2 −Mi1
and M1i ≥ 3λ̄iρi. λ̄i and ρi are positive parameters. ξ̂ = Jη1 with η1 the estimation of the
unknown disturbance J−1ξ. Then the inputs (16) stabilize robustly (11) to the origin of the error
space (1 0T 0T)T (i.e., q̃0 = 1, q̃v = 0 and ωe = 0) with a domain of attraction equal to
S3 ×R3 \ (−1 0T 0T)T .

The proof is given in Appendix B. However, we would like to present the idea behind
the construction of feedback (16). The proposed control law is composed of a feedforward
term represented by ξ̂i and the feedback term σMi1(·). Furthermore, both terms represent
the argument for the function σMi2 , which at the same time represents the bound of the
control torque Γi. The objective is to design a control law that assures that physically,
the system has the capability to track a desired attitude while it rejects the total disturbance
ξ. Since disturbance ξi about the ith axis is assumed uniformly bounded by K0i , the closed-
loop stability will be guaranteed if the following constraint is satisfied K0i + Mi1 < Mi2,
i.e., Γi must be authoritative enough to reject the disturbance. Actually, Mi2 plays the role
of an explicit reference governor [57], which ensures constraint satisfaction by suitably
manipulating the feedforward and the feedback terms.

Consider the active disturbance rejection controller (ADRC) composed of the extended
state observer (ESO) (13) and the trajectory-tracking bounded control (16) working together
to drive the attitude dynamics (10) in order to follow a desired angular trajectory (see
Figure 1). In view of the Propositions 1 and 2, the observer dynamics error and the
tracking dynamics error can be viewed as two ISS systems in cascade (see Figure 2). Then,
the following and main result for the ADRC-based attitude tracking stands.

ω

Figure 1. ADRC: ESO and bounded attitude traking control.
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Proposition 3. The active disturbance rejection controller (ADRC) composed of the extended state
observer (ESO) (13) and the trajectory tracking controller (16) is ISS when the unknown total
disturbance ξ ∈ R3 is viewed as the input and the tracking error z = (ωT

e q̃T
v )

T as the output.

Proof. The claim follows from the properties for the interconnection of nonlinear systems
that are input-to-state stable (ISS) [52,54]. Consider the estimation error dynamics (A2)
and the tracking error dynamics (10). These systems can be viewed as a cascade system as
shown in Figure 2. Since each system is ISS as was proven in Propositions 1 and 2, then the
overall system is ISS. That is, the ADRC is ISS when the unknown total disturbance ξ is the
input and the tracking error z = (ωT

e q̃T
v )

T the output.

⌃EO ⌃EC
� z

Proposition 1 Proposition 2

⇠

Figure 2. ISS interpretation for the ADRC.

5. Simulation Results

This section is devoted to evaluating the effectiveness of the proposed control schema
where a nonlinear tracking controller is used for comparison purposes. The simulation
conditions are set up, where the disturbance function and the desired attitude are defined.
Furthermore, the vehicle’s parameters are specified; namely, maximum allowed control
torque and inertia matrix. For simulation purposes, the inertia matrix considered is the
one for the Crazyflie 2.0 [53], which is a tiny quadrotor. Due to the small size and low
weight, this vehicle is very susceptible to external disturbances, allowing assessment of
the approach. Particular interest is put in the evolution of the desired and current angular
velocity and quaternion. The error evolution is analyzed in terms of ISE index.

5.1. Scenario Description

To point out the benefits of an ADR-based attitude tracking controller, a comparison
with respect to a quaternion tracking controller described in (17) is carried out:

Γc = [(ωe + ωr)
×]J(ωe + ωr) + [ω×e ]ωr + RT(q̃)ω̇d − λ̄(ωe + ρq̃v) (17)

with λ̄ = diag(λ̄1, λ̄2, λ̄3) and ρ = diag(ρ1, ρ2, ρ3) with λi, ρi ∈ R+. Note that (17) is
composed of a feedforward compensation and a proportional and derivative feedback.
The inertia matrix has been taken as J = diag(1.09, 1.10, 2.11) × 10−5 kg m2, which is
representative of the very small VTOL-UAV Crazyflie 2.0 [53]. According to physical
parameters, the maximum torque that can be generated by the propulsion system is
Γ̄ = (9.6 9.6 4.9)T × 10−3 Nm. Then, the saturation functions for the proposed control are
chosen as M12 = M22 = 9.6× 10−3 and M32 = 4.9× 10−3.

The external disturbance torque is assumed to be a time-variant signal and a pulse
signal actuating around the three principal axes; that is, Γd = Γslow

d + Γ
pulse
d , with

Γslow
d =

 (1 + exp(− sin(0.5t) sin(0.3t))) cos(0.1t)
−(1 + exp(− sin(0.5t) sin(0.3t))) cos(0.2t)

cos(0.3t)

× 10−3Nm

and
Γ

pulse
d = 7(Ῡ(t− τ1) − Ῡ(t− τ2) Ῡ(t− τ3))

T × 10−3Nm

where Ῡ(t) is a smooth, differentiable pulse function with unit amplitude and pulse
width PW = 0.25 s. τ1 = 2.5 s, τ2 = 5 s, τ3 = 7.5 s designate the instants when the
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pulse function takes place. The desired attitude is obtained by integrating the following
kinematic equation

q̇d =
1
2

(
−qdT

v
I3qd

0 + [qd×
v ]

)
ωd (18)

with initial condition qd(t = 0) = (1 0 0 0)T . Moreover, the desired angular velocity ωd is
established as

ωd = (sin(2t) sin(0.5t) − sin(0.2t))T × 10−1 rad/s

The initial angular velocity and quaternion for the simulated quadrotor are ω(t =
0) = (0 0 0)T and q(t = 0) = (−0.36 0.56 − 0.39 − 0.62)T , respectively.

5.2. Quaternion and Angular Velocity Evolution

In this subsection, a comparison between the proposed control law (16) and control
law (17) is highlighted. It is worth mentioning that the error quaternion is computed using
(6), which is depicted here for clarity; that is,

q̃ = (qd)
−1 � q =

(
q̃0 q̃T

v
)T

Figure 3 depicts the evolution of the quadrotor attitude when the two control laws are
applied. In the left column, the results for the proposed control law are shown, whereas the
right column portrays the results using (17). In both cases, the first subplot of each column
shows the time evolution for the scalar component of the desired and current quaternion.
Moreover, the vector component of the quaternion error corresponding to each control law
is shown in the second subplot of each column. Note that when the current quaternion q
reaches the desired one qd, the vector components of q̃ have to become q̃v = (0 0 0)T due
to the norm constraint of the unit quaternions. In contrast with the compared control law,
with the proposed control, the vector component of the quaternion error converges to zero
and its magnitude at 0.5 s is approximately 4.1× 10−3, which is a desirable response time
behavior for this kind of quadrotor.

Figure 4 illustrates the first component of the angular velocity and the angular velocity
tracking error vector of the proposed (left column) and the compared control (right column).
Note that with the proposed control law, the angular velocity of the micro UAV achieves
the desired value in approximately 0.5 s and the angular velocity error remains in the zero
neighborhood despite the external disturbances (except at t = 7.5 s, when enough control
conditions are violated).
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(b) Quaternion tracking controller (17) for comparison.

Figure 3. Quaternion and quaternion error.
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0 2 4 6 8 10
-30

-20

-10

0

10

20

30

40

50

60

, 
d
 (

ra
d

/s
)

 Vs 
d

3

d
3

0 2 4 6 8 10

Time(s)

-30

-20

-10

0

10

20

30

40

50

60

e
 (

ra
d

/s
)

e
1

e
2

e
3

(b) Quaternion tracking controller (17) for comparison.

Figure 4. Angular velocity and angular velocity error.

5.3. Disturbance Estimation and Rejection

Figure 5 depicts the torque disturbances applied to the micro UAV in addition to
the estimation of these disturbances obtained through the ESO (13). If a sufficient control
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condition is accomplished, the proposed control law rejects these disturbances via the
feedforward term ξ̂. This condition is accomplished for all time except at t = 7.5 s when
the magnitude of the external disturbance exceeds the capabilities of the control to reject it.
At this moment, the control loop is open, and as a consequence, the attitude and angular
velocity error become large. Once the disturbance vanishes, the control loop is closed,
and the aircraft performs as desired. Finally, the control (torque) signal is shown in Figure 6
for both approaches (16) and (17). Note that the constraints on the control magnitude
are respected.
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Figure 5. Real vs. estimated disturbance obtained through the ESO (13) used in the ADR-based
attitude tracking controller (16).
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5.4. Performance Analysis

To analyze the performance of the ADR-based attitude tracking Controller and the
quaternion tracking controller, the ISE index defined in (19) was used [58]:

ISE =
∫ T

0
x̃2(t)dt (19)

where x̃(t) represents a signal error and T the time horizon.
One uses the axis-angle representation to analyze the attitude error, representing a

rotation of angle β̃ about a unit axis ẽ of the body-fixed reference frame Eb relative to
the desired reference frame Ed. Note that the integration of (18) drives Ed. Then, given
a quaternion error, q̃, one can obtain the angle-axis representation corresponding to q̃,
as follows (see Equation (3)):

β̃ = 2 arccos(q̃0)

ẽ =

{ 1
sin( β̃

2 )
q̃v if β̃ 6= 0

0 otherwise,

Therefore, the ISE criterion was applied to the rotation angle β̃ and components of the
angular velocity error vector obtained employing both controllers. That is,

ISEβ̃ =
∫ T

0
β̃2(t)dt (20)

and

ISEωe1
=
∫ T

0
ωe1

2(t)dt, ISEωe2
=
∫ T

0
ωe2

2(t)dt, ISEωe3
=
∫ T

0
ωe3

2(t)dt (21)

The results are depicted and compared graphically in Figures 7 and 8. They clearly
show a better performance achievement with the proposal controller and enhance the
interest in estimating and rejecting the disturbances actively.
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Figure 7. ISE index of the quaternion error.
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(a) ADR-based attitude tracking controller (16).
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(b) Quaternion tracking controller (17) for comparison.

Figure 8. ISE index of the angular velocity error.

6. Conclusions

In this work, an attitude tracking robust control for VTOL-UAVs was presented.
The control approach shows robustness to endogenous and exogenous disturbances, in ad-
dition to displaying a response free of oscillations, which makes it attractive for solving
the problem of attitude tracking and stabilization even with mechanisms for aerial ma-
nipulation such as grippers. The observer tuning is vital to estimating the disturbances.
The performance was compared in simulation with an existing quaternion tracking con-
troller.

Due to its simplicity, the proposed control schema can be implemented into an embed-
ded system with limited computational resources. Then, as future work, the ADRC will
be implemented in real-time together with a position control loop. The implementation
will be carried out on the Crazyflie to ease the performance and the robustness towards
external disturbances. Furthermore, the tests will consider the kinds of mechanisms for
aerial manipulation, such as grippers, cables, and a load delivery and retrieving application.
An event-based extension, in the spirit of [59,60], will also be considered with the aim of
reducing the computing and communication costs.

We are going to implement the ADRC in real-time together with a position control
loop. The implementation will be carried out on the Crazyflie to ease the performance and
the robustness towards external disturbances.
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Appendix A. Proof of Proposition 1

Proof. Consider the estimation error ē = ωe − ω̂e and its successive derivatives together
with the observer dynamics (13) and the dynamics (11). Then, estimation error e satisfies
the following linear differential equation:

ē(3) + L2 ¨̄e + L1 ˙̄e + L0 ē = J−1ξ̈ (A1)

The space state realization of (A1) is the following:

ΣEO :=

{
ẋ = Ax + Bξ

ē = Cx
(A2)

where x1 = ē, x2 = ˙̄e, x3 = ¨̄e, and x = (x1 x2 x3)
T

A =

 03 I3 03
03 03 I3
−L0 −L1 −L2

 B =

 03
03

J−1

 C =

03
03
I3

T

(A3)

The variation of parameters formula gives the following solution:

x(t) = exp(At)x(0) +
∫ t

0
exp(A(t− τ))Bξdτ

ē(t) = C exp(At)x(0) + C
∫ t

0
exp(A(t− τ))Bξdτ

(A4)

If the set of coefficients {l2, l1, l0} is selected such that the matrix A is Hurwitz,
the following inequality is obtained:

‖ē(t)‖ ≤ ‖ exp(At)ē(0)‖+
∫ t

0
‖ exp(A(t− τ))Bξdτ‖

≤ ‖ exp(At)‖‖ē(0)‖︸ ︷︷ ︸
β(‖x(0)‖,t)∈KL

+ ‖ξ‖‖B‖
∫ t

0
‖ exp(A(t− τ))‖dτ︸ ︷︷ ︸

γ(‖ξ‖∞)∈K∞

(A5)

Since there exist β ∈ KL and γ ∈ K∞ the error dynamics is ISO [54], i.e., the solutions
for the error dynamics are ultimately bounded by γ(‖ξ‖∞) and the system exhibits asymp-
totic stability to ē(t) = 0 for ξ = 0. Furthermore, if the set of coefficients of the matrix
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{L2, L1, L0} are selected such that the matrix A is Hurwitz, then one has the following
bound [61] ∥∥∥eAt

∥∥∥ ≤ e−λMt, ∀t ∈ R≥0

where λM = λmax(Sym(A)) is the maximum eigenvalue of Sym(A) with Sym(A) =
(1/2)(A + AT). Using this fact in (A5), one obtains:

‖ē(t)‖ ≤ exp(−λMt)‖ē(0)‖+ K0

J1

∫ t

0
exp(−λM(t− τ))dτ

≤ exp(−λMt)‖ē(0)‖+ K0

J1λM
(1− exp(−λMt))

(A6)

Consequently ‖ē(t)‖ converges exponentially to a sphere with radius ρ = K0
J1λM

when
t→ ∞.

Appendix B. Proof of Proposition 2

Proof. Consider the candidate Lyapunov function V : S3 × R3 → R, which is positive
definite for S3 ×R3 \ (1 0T 0T)T

V =
1
2

ωT
e Jωe + κ((1− q̃0)

2 + q̃T
v q̃v)

=
1
2

ωT
e Jωe + 2κ(1− q̃0)

(A7)

where J is defined as before, and κ > 0 must be determined. The derivative of (A7) after
using (10) is given by

V̇ = ωT
e Jω̇e − 2κ ˙̃q0

= ωT
e (Γ + ξ) + κq̃T

v ωe

= ωe1(Γ1 + ξ1) + κq̃1ωe1︸ ︷︷ ︸
V̇1

+ωe2(Γ2 + ξ2) + κq̃2ωe2︸ ︷︷ ︸
V̇2

+ωe3(Γ3 + ξd3) + κq̃3ωe3︸ ︷︷ ︸
V̇3

(A8)

V̇ is the sum of the three terms (V̇1, V̇2, V̇3).
First V̇1 is analyzed. From Γ1 in (16) and Equation (A8), the following is obtained:

V̇1 = ωe1

(
−σMi2

(
ξ̂1 + σMi1(λ̄1[ωe1 + ρ1q̃1])

)
+ ξ1

)
+ q̃1ωe1 (A9)

If we choose K0 < M12 −M11, σM12 is always operating in its linear region so V̇1 becomes

V̇1 = −ωe1 σMi1(λ̄1[ωe1 + ρ1q̃1]) + κq̃1ωe1 + ωe1(ξ1 − ξ̂1︸ ︷︷ ︸
∆1

) (A10)

Assuming that |ωe1 | > 2ρ1, that is, ωe1 ∈]2ρ1,+∞[. Since |q̃1| ≤ 1, it follows that
|ωe1 + ρ1q̃1| ≥ ρ1 + ε for any ε > 0 that is sufficiently small. Therefore, ωe1 + ρ1q̃1 has the
same sign as ωe1 . From Proposition 1, the error ∆1 is bounded, and this bound will be
denoted by r̄. From Equation (A10) and the norm condition on the quaternion, V̇1 takes the
following form:

V̇1 = −ωe1 σMi1(λ̄1[ωe1 + ρ1q̃1]) + κq̃1ωe1 + ωe1 ∆1

≤ −|ωe1 |σM11(λ̄1(ρ1 + ε)) + κ|ωe1 |+ r̄|ωe1 |
(A11)

Taking
κ + r̄ < min(M11, λ̄1ρ1 + ε) (A12)
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one can assure the decrease of V1, i.e., V̇1 < 0. Consequently, ωe1 enters Φ1 = {ωe1 : |ωe1 | ≤
2ρ1} in finite time t1 and remains in it thereafter. In this case, (ωe1 + ρ1q̃1) ∈ [−3ρ1, 3ρ1].
Let M11 verify the next inequality M11 ≥ 3λ̄1ρ1. Equation (A12) then becomes:

κ + r̄ < λ̄1ρ1 + ε (A13)

For t2 > t1, the argument of σM11 will be bounded as follows

|λ̄1(ωe1 + ρ1q̃1)| ≤ 3λ̄1ρ1 ≤ M11 (A14)

Consequently, σM1 operates in a linear region

Γ1 = −λ̄1[ωe1 + ρ1q̃1] (A15)

As a result, (A11) becomes

V̇1 = −λ̄1ω2
e1
− λ̄1ρ1ωe1 q̃1 + κωe1 q̃1 + ∆1ωe1

= −λ̄1ω2
e1
− (λ̄1ρ1 − κ︸ ︷︷ ︸

k1

)ωe1 q̃1 + ∆1ωe1
(A16)

Choosing κ such that k1 > 0, which satisfies inequality (A13), and using the following
Young’s Inequalities with n1, m1 > 0

ωe1 q̃1 ≤ n1ω2
e1
+

q̃2
1

4n1

ωe1 ∆1 ≤ m1ω2
e1
+

∆2
1

4m1

(A17)

one obtains

V̇1 ≤ −λ̄1ω2
e1
− k1

(
n1ω2

e1
+

q̃2
1

4n1

)
+ m1ω2

e1
+

∆2
1

4m1

= −(λ̄1 + k1n1 −m1︸ ︷︷ ︸
K1

)ω2
e1
− k1q̃2

1 +
∆2

1
4m1

(A18)

The parameters λ1, m1, n1 can be chosen such that K1 > 0.
The same arguments are applied to V̇2 and V̇3, and (A8) becomes

V̇ = V̇1 + V̇2 + V̇3

≤ −ωT
e Kωωe − q̃T

v Kqq̃v +
1
4

∆T M∆
(A19)

with Kω = diag(K1, K2, K3), Kq = diag(k1, k2, k3), M = diag( 1
m1

, 1
m2

, 1
m3

) and ∆ = ξ− ξ̂ =

(∆1 ∆2 ∆3)
T . Defining the error state as z = (ωT

e q̃T
v )

T and KT = diag(Kω, Kq) , (A19) can
be written as

V̇ ≤ − zTKTz︸ ︷︷ ︸
W(z)

+
1
4

∆T M∆ (A20)

Since W is proper and positive definite, there exists a class K∞ function γ̄ such that
W(z, t) ≥ γ̄(‖z‖) and therefore

V̇ ≤ −γ̄(‖z‖) + 1
4

∆T M∆ (A21)
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Then, if ‖z‖ ≥ γ̄−1
(

1
2 ∆T M∆

)
, it follows that

V̇ ≤ −1
2

γ̄(‖z‖) (A22)

Consequently, by Definition 1 and Theorem 1, the system (10) with control law (16) is
ISS with respect to ∆, i.e., it is robustly stable due to the ability of the system to maintain its
behavior despite the external disturbances.
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