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Hydrodynamic interpretation of generic squeezed coherent states: A
kinetic theory
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aUniv Lyon, Ens de Lyon, Univ Lyon1, CNRS, Centre de Recherche Astrophysique de Lyon, 46 allee
d’Italie, Lyon, 69007, , France

Abstract

The hydrodynamic interpretation of quantum mechanics treats a system of particles in an ef-
fective manner which allows one to study the system in a statistical fashion. In this work, we
investigate squeezed coherent states within the hydrodynamic interpretation. The Hamiltonian
operator in question is time dependent, n–dimensional and in quadratic order. We start by de-
riving a phase space Wigner probability distribution and an associated equilibrium entropy for
the squeezed coherent states. Then, we decompose the joint phase space distribution into two
portions: a marginal position distribution and a momentum distribution that is conditioned on
the post–selection of positions. Our conditionally averaged momenta are shown to be equal to
the Bohm’s momenta whose connection to the weak measurements is already known. We also
keep track of the corresponding classical system evolution by identifying shear, magnification
and rotation components of the symplectic phase space dynamics. This allows us to pinpoint
which portion of the underlying classical motion appears in which quantum statistical concept.
We show that our probability distributions satisfy the Fokker–Planck equations exactly and they
can be used to decompose the equilibrium entropy into the missing information in positions
and in momenta as in the Sackur–Tetrode entropy of the classical kinetic theory. Eventually,
we define a quantum pressure, a quantum temperature and a quantum internal energy which
are related to each other in the same fashion as in the classical kinetic theory. We show that
the quantum potential incorporates the kinetic part of the internal energy and the fluctuations
around it. This allows us to suggest a quantum conditional virial relation. In the end, we show
that the kinetic internal energy is linked to the fractional Fourier transformer part of the under-
lying classical dynamics similar to the case where the energy of a quantum oscillator is linked to
its Maslov index.

Keywords: squeezed coherent states, hydrodynamic interpretation, quantum statistical
mechanics, quantum phase space, Wigner function
PACS: 05.30.-d, 03.65.Sq

1. Introduction

The search for the underlying ties between classical and quantum theories has been a long
quest without a unique solution. Nevertheless, for a given quantum system, certain states can be
linked to its classical dynamics. For example, the wave function of a coherent state represents a
system with minimum uncertainty in which the expectation values of the position and momentum
operators follow classical trajectories. This is the closest one can get to a classical picture which
was the original motivation of Schrödinger when he first discovered those states [1]. The name
“coherent” was given by Glauber when he extended Schrödinger’s work for quantum optics in
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order to study the coherency properties of light within the realm of standard harmonic oscillators
[2, 3]. Since then, the definition of those states have been extended for more generic systems
[4, 5, 6]. They are specifically useful when studying the semiclassical limit of generic systems,
or the ones which can be modelled by quadratic Hamiltonians [5]. Applications of squeezed
coherent states are mostly known to the researchers within the quantum optics and quantum
information processing fields. Those states are known to reduce the quantum mechanical noise
and to increase the sensitivity in interferometric measurements [7, 8, 9, 10]. This makes them
perfect candidates for real life experiments that require highest level of precision. In addition, the
extensive application area of squeezed coherent states provides links to even wider perspectives
through their usage in gravitational wave detection [11, 12, 13], in bio–imaging [14, 15] and even
in the early universe cosmology [16, 17, 18].

Alternatively, there exists a formalism in non–relativistic quantum mechanics that relates the
wave function of a given system to the Hamilton–Jacobi equations of classical trajectories. This
is known as causal/pilot wave/deterministic/the de Broglie–Bohm theory. In the literature, it is
usually attributed to the work of Bohm [19, 20], due to his major contribution and him reviving
the pilot wave theory of de Broglie [21, 22] quite outspokenly. The early works of Madelung [23], in
addition to the contributions of Takabayasi [24] are usually overlooked. Even though Madelung’s,
de Broglie’s and Bohm’s approaches are mathematically equivalent, their ontologies seem to be
different. According to the de Broglie–Bohm interpretation, particles follow trajectories guided
by a pilot wave whose wave function has a physical connotation. This is true even for a single
particle. However, in the hydrodynamic interpretation of Madelung, the idea is to consider many
particles in which the corresponding wave function of the system reflects an effective dynamics.
Throughout this work, we are going to favour Madelung’s hydrodynamic interpretation as we
would like to study the statistical behaviour of a given system. We will, nevertheless, refer to the
underlying mathematical approach as de Broglie–Madelung–Bohm theory. Note that in both of
those interpretations, it is the so-called quantum potential that is responsible for the underlying
quantum phenomena which we will also study in detail.

Another course of action is the Wigner–Weyl–Moyal approach which allows one to define a
quasi–probability distribution on a phase space analogous to the one in classical mechanics. For
pure states, for example, Wigner function [25] is shown to be the Weyl symbol of the density
operator. This allows one to have a clear passage to classical physics as the Wigner function is
used to obtain the expectation values of operators on phase space. Mainly, when combined with
the Moyal product and the Moyal bracket [26], one recovers the von Neumann equation which
reduces to the Liouville equation in the classical limit [27]. This is at the core of the deformation
quantization which provides connections between classical and quantum physics.

On the other hand, finding the exact solutions for time dependent systems both in classical
and in quantum mechanics is not an easy task. As the invariants provide symmetries of a given
system, the Lewis–Riesenfeld invariant method [28, 29] has been used widely in the literature in
order to find the exact solutions of time dependent systems. The classical correspondent of this
quantum operator is known to be an invariant of the associated classical system. Unfortunately,
the Lewis–Riesenfeld invariant is usually considered as a mathematical tool. Its physical and/or
geometric interpretation are not studied in detail in the literature 1.

All of the approaches listed above provide means to relate classical and quantum mechan-
ics. Naturally, the links between some of those formalisms have been already established. For
example, one of the most concise investigations of the squeezed coherent states that makes use
of the Wigner–Weyl–Moyal approach was given by Littlejohn [5]. Moreover, the relationship be-

1See Appendix B for some exceptions.
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tween the Wigner–Weyl–Moyal approach and the de Broglie–Madelung–Bohm theory has been
investigated before [30, 31, 32, 33]. The Gaussian states of a harmonic oscillator [34, 35, 36] and
a particle in 1-dimensional Pöschl–Teller potential [35] have also been investigated within the
de Broglie–Madelung–Bohm theory. In addition, the Lewis–Riesenfeld invariant of the Gaussian
states was established in [37] for one dimensional systems. However, there exists no study that
unites all of the approaches mentioned above in order to present a full picture.

In this work, we investigate time dependent squeezed coherent states in n–dimensions within
a non–relativistic setting. It is known that a coherent state is an eigenstate of the annihilation
operator. Thus, in general, there is a common practice to study them by making use of the
ladder operators and the number states. We will not follow this route as our aim is to study a
system within the hydrodynamic interpretation. We would like to keep track of the classical and
the quantum phase space variables that are directly meaningful for measurements. For this, the
Wigner–Weyl–Moyal formalism and the de Broglie–Madelung–Bohm theory will be predominant
in our construction.

Ultimately, we want to show that once the statistical arguments are adopted properly within
a hydrodynamic interpretation, a kinetic theory and certain thermodynamic variables can be
defined exactly for a quadratic system in question. What is more profound is that it is the
underlying symplectic, classical dynamics that guides the quantum evolution of the squeezed
coherent states and the corresponding thermodynamic variables.

In order to achieve this, we start Section (2) by providing some preliminaries. We give a brief
summary of the de Broglie–Madelung–Bohm formalism. We then introduce a symplectic phase
space for convenience as it is the starting point for the investigation of generic squeezed coherent
states. Next, we briefly summarize Littlejohn’s construction [5] on the squeezed coherent states.
The preliminaries section ends with the introduction of the Wigner function and its associated
covariance matrix. Those will be important for identifying statistical and thermodynamical
concepts.

In Section (3), we provide the main body of our own contribution on hydrodynamic in-
terpretation of the generic squeezed coherent states. For this, in Section (3.1), we provide the
foundations of our construction. We start with the polar decomposition of the Gaussian squeezed
coherent state wave function that is exact. This allows us to decompose the Schrödinger equation
into pure real and imaginary parts which is the starting point of the de Broglie–Madelung–Bohm
approach. Then, we present the associated Wigner function and identify its covariance matrix in
Section (3.1.2). In the mean time, we keep track of the classical phase space shears, magnifica-
tions and rotations in order to identify which portion is responsible for which quantum statistical
phenomenon in phase space.

In Section (3.2), motivated by Moyal’s statistical approach [26], we identify three types of
probabilities: (i) a joint distribution, i.e., the Wigner function, which is defined on the entire
phase space; (ii) a marginal distribution on position space; (iii) a conditional momentum distri-
bution shaped by the post–selection of the positions. Note that all of the probability distributions
listed above take Gaussian forms as the wave function in question is also Gaussian. We then
make use of the Wigner distribution in order to define a phase space Shannon entropy. As the
coherent states are known to be minimum uncertainty states, our phase space entropy takes an
extremum value throughout the evolution of the system. This allows us to study equilibrium
thermodynamics in a dynamical sense within a hydrodynamic interpretation.

Before introducing the full thermodynamic analysis, we derive the Fokker–Planck equation
for the probability densities in Section (3.2.3). We show that it is not only the marginal position
distribution that satisfies a continuity equation but all probability distributions. We discuss the
probability flux related to the rotational degrees of freedom in addition to the one of the linear
flow. Note that those Fokker–Planck equations are applicable for a dynamical situation unlike
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the standard case which was originally derived for stationary scenarios.
We return back to the thermodynamic analysis in Section (3.3), in which we start by present-

ing the analogy between the quantum phase space entropy and the Sackur–Tetrode entropy that
was originally derived for the classical kinetic theory. Then, we follow Sonego’s definitions in [38]
in order to obtain a quantum pressure and a quantum temperature for the squeezed coherent
states. Next, we discuss the internal energy and its kinetic part that takes a similar form as in
the classical kinetic theory. We show its relation to the quantum potential that is the key ele-
ment of the de Broglie–Madelung–Bohm approach. Namely, we demonstrate that the quantum
potential represents the kinetic internal energy of the system and the fluctuations around it at
equilibrium. We also suggest a quantum virial relation which associates the conditional kinetic
energy to a quantum potential energy term sourced solely by the quantum potential. In the end,
we provide the link between the internal kinetic energy and the Maslov index defined for the
symplectic paths. Essentially, we show that the quantum kinetic internal energy of a system is
linked to the fractional Fourier transformations of the corresponding classical trajectories even
if the system in question does not have periodic orbits.

Finally, in Section (4), we provide a summary of our investigation, in addition to discussions
regarding the extension of the domain of applicability of the current results.

2. Preliminaries

2.1. The de Broglie–Madelung–Bohm approach
There exists a correspondence between the paths taken by quantum particles and the paths

taken by classical particles within the trajectory approach of the de Broglie–Madelung–Bohm
[21, 22, 23, 19, 20]. Depending on the interpretation, those trajectories either reflect a physical,
tractable trajectory of a particle or an effective, mean stream–line trajectory of an ensemble of
particles. The cost that has to be paid in return is the introduction of hidden variables to the
theory whose existence has been debated in the literature many times.

Let us now introduce the summary of the causal theory in its original version. For this, we
will assume that there exists a particle with mass m to which a complex wave function is assigned
in its polar form

ψ = R exp

(
iS

ℏ

)
, (1)

where ℏ = h/(2π) with h being the Planck’s constant, R = R (q, t) is a real amplitude and
S = S (q, t) is a real phase function. In the causal interpretation, the wave function satisfies
the Schrödinger equation in the following form

iℏ
∂ψ

∂t
=

(
− ℏ2

2m
∇2 + V (q, t)

)
ψ, (2)

where ∇ = ∂/∂q and V (q, t) is the classical potential. In general, V is a generic function of
positions and it has no momentum dependence. Substitution of the wave function in its polar
form, eq. (1), into the Schrödinger equation given in the form in eq. (2), results in a complex
equation. Its pure imaginary and pure real parts are written respectively as

∂R

∂t
= − 1

2m

[
R∇2S + 2∇R ·∇S

]
, (3)

∂S

∂t
= −

[
(∇S )

2

2m
+ V (q, t)− ℏ2

2m

∇2R

R

]
. (4)
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The equations above have been interpreted in a hyrodynamic realm due to two main reasons.
Firstly, one can define a flux–like term, j̃, that is associated with a wave function,

j̃ =
ℏ

2mi
(ψ∗∇ψ − ψ∇ψ∗) = R2∇S

m
, (5)

where a probability density is defined through ρ = [R (q, t)]
2 and a velocity term is given by

ṽ = ∇S /m. In that case j̃ = ρṽ holds. Then, the imaginary part of the Schrödinger equation,
eq. (3), can be viewed as a continuity equation,

∂ρ

∂t
+ ∇. (ρṽ) = 0. (6)

Secondly, when ℏ → 0, the real part of the Schrödinger equation, (4), gives the Hamilton–
Jacobi equation of the classical mechanics, i.e.,

−∂S

∂t
=

(∇S )
2

2m
+ V (q, t) = H, (7)

with S playing the role of the action functional.
In the quantum case, the term

Q (q, t) = − ℏ2

2m

∇2R

R
(8)

is non–zero and it appears in the quantum Hamilton–Jacobi equation in the same form as the
classical potential, V (q, t), does. That is why it is known as the quantum potential which is
responsible for the quantum behaviour of the given particles. The equation of motion now
follows as

dp̃

dt
= −∇ (V +Q) , (9)

where the momentum p̃ = mṽ has different conceptualizations depending on the chosen in-
terpretation. For instance, it might correspond to a single particle momentum within the de
Broglie–Bohm theory. Whereas, in Madelung’s hydrodynamic interpretation [23] it corresponds
to an effective momentum associated with an irrotational continuous “fluid” of particles.

Likewise, the quantum potential has different interpretations as well. According to Madelung,
for example, the quantum potential is attributed to some quantum internal forces of a fluid.
Alternatively, within a thermodynamic interpretation, the quantum potential can be related
to the averaged kinetic energy of the quantum particles, the temperature of the corresponding
system and the thermal vacuum energy [39]. Similarly, it can be interpreted as the internal
energy of a system [40]. In certain investigations, quantum potential acts as an agent that allows
the interchange of information between systems [41, 42]. In the quantum cosmological realm,
Bohmian interpretation and the quantum potential can even be related it to the dark energy
problem [43].

In summary, quantum potential allows one to identify the physical phenomena behind the
quantum behaviour of a system. In Section (3.3.3), we will derive it for squeezed coherent states
of time dependent systems in n–dimensions and we will interpret it thermodynamically similar
to the ones in [39, 40].

2.2. Symplectic phase space of classical orbits and the quadratic Hamiltonians
Let us now set up the phase space of a classical system by defining positions qa ∈ Rn and

momenta pa ∈ Rn with {a, b} = {1...n} as independent variables. We will consider only those
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Hamiltonians that are homogeneous quadratic functions of q’s and p’s which will be interpreted
as canonical phase space coordinates.

For a classical system, consider a 2n–dimensional phase space N(R2n, ω) that is endowed
with a symplectic form ω and Darboux coordinates zi = (qa, pb)

⊺. Here, {i, j} = {1...2n} and ⊺

refers to the transpose operator.
We write the Poisson bracket of two functions f and g as

{f, g} =
∂f

∂zi
ωij ∂g

∂zj
, (10)

where ω is called the fundamental symplectic matrix. It is defined through

{zi, zj} = ωij , ωij =

[
0n In
−In 0n

]
, (11)

where In and 0n are n–dimensional identity and zero matrices, respectively.
The matrix ω satisfies

ω⊺ = ω−1 = −ω, ω2 = −I2n, detω = 1.

(12)

Here, the inverse operator is denoted by −1 and for the determinant of a matrix, we use “det”.
Given this, the symplectic two form acting on two arbitrary phase space vectors z and z′ can be
written as

ω (z, z′) = z⊺ω−1z′ = p⊺ q′ − q⊺p′. (13)

We will now choose the Hamiltonian function, H, to be time dependent, i.e., H = H (z, t)
with t ∈ R and quadratic in z. Then, H is closed under the Poisson bracket (10) and thus form
a Lie algebra. Let us denote the Lie operator corresponding to H as L̂H [�] = −{H, �

}
,which has

a 2n× 2n Hamiltonian matrix representation that we will denote by

LH =

[
b⊺(t) c(t)
−a(t) −b(t)

]
, (14)

where a = a⊺, c = c⊺ and b are all n× n dimensional, time dependent, arbitrary matrices with
a, c > 0n and ac − b2 > 0n. We will denote the set of all 2n × 2n Hamiltonian matrices by
h := {LH ∈ R2n×2n| (ωLH)

⊺
= (ωLH)}.

Now we write the Hamiltonian function as

H (z, t) =
1

2
z⊺ω⊺LHz, (15)

such that the Hamiltonian equations take the form

L̂H

[
zi
]
= −{H, zi} = ωij ∂H

∂zj
, (16)

or they are simply written as,

dz

dt
= LHz. (17)

Given the initial conditions z0 and t0 = 0, the solution of eq. (17) is given by

z = S(t)z0, (18)
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where S is obtained by taking the exponential map of the Hamiltonian matrix LH. Therefore,
S is a 2n× 2n symplectic matrix satisfying

S⊺ ω S = ω, detS = 1. (19)

Note that due to eqs. (17) and (18), S also follows the Hamiltonian flow, such that,

dS

dt
= LHS, (20)

holds for the initial conditions S0 = I2n. Let us write this matrix in the block form

S(t) =

[
A(t) B(t)
C(t) D(t)

]
, (21)

where A, B, C and D are all n× n matrices satisfying

A⊺C, B⊺D, AB⊺, CD⊺ ⇒ symmetric, (22)
A⊺D−C⊺B = In, and AD⊺ −BC⊺ = In, (23)

due to the symplecticity conditions (19). Those matrices form the symplectic group Sp (2n,R)
which has crucial importance for classical quadratic systems and their quantization. We will
denote the set of all real 2n× 2n symplectic matrices as s := {S ∈ R2n×2n|S⊺ ω S = ω}.

In order to understand and identify the effect of a linear symplectic transformation on the
evolution of phase space variables, one can use certain techniques to decompose symplectic
matrices into its submatrices. However, not all of those decompositions are unique. On the other
hand, Iwasawa showed that any symplectic matrix belonging to Sp(2,R) can be decomposed
uniquely into its nilpotent subgroup, an abelian subgroup and a maximally compact subgroup
[44]. Those subgroups correspond to shearing, magnification and rotation effects on the phase
space coordinates respectively. In the optics community, for example, those matrices represent
lenses, magnifiers and fractional Fourier transformers.

Later, the Iwasawa decomposition was generalized to higher order symplectic matrices in
which case the matrices responsible for the magnification effect do not form a group. Therefore,
one refers to it as a factorization of the symplectic matrix or a modified–Iwasawa decomposition.
It is given as [45, 46]

S =

[
A B
C D

]
=

[
I2 02

−g I2

] [
s 02

02 s−1

] [
Reu Imu
−Imu Reu

]
= l(g) m(s) f(u) (24)

where l(g) represents the shearing or lensing in phase space, m(s) represents magnifications and
f(u), being a fractional Fourier transformer, represents rotation–like effects. Here, the n × n
matrices that appear in (24) are given in terms of the sub–blocks of the symplectic matrix, S, as

g = − (CA⊺ +DB⊺) (AA⊺ +BB⊺)
−1

= g⊺,

s = (AA⊺ +BB⊺)
1/2

= s⊺,

u = (AA⊺ +BB⊺)
−1/2

(A+ iB) ∈ U(n). (25)

In the following sections we will see that the modified Iwasawa factorization is useful in identifying
how the different factors of the classical phase space evolution find their correspondences in the
quantum mechanical evolution.
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In the next section, we re–present the squeezed coherent state wave function which is based
on Littlejohn’s construction [5] and that is the central object of the current work.

2.3. Generic squeezed coherent states
Let us consider the quantum counterparts of the classical positions and momenta, represented

in the position space as, q̂ = (q̂1, q̂2, ..., q̂n)
⊺ and p̂ = (p̂1, p̂2, ..., p̂n)

⊺, respectively.
They operate on a function f as

q̂ [f ] = f · q, and p̂ [f ] = −iℏ∂ f
∂q

, (26)

where the “ · ” denotes the standard multiplication. They satisfy the Heisenberg commutation
rule [p̂k, q̂j ] = −iℏδkj , where δkj is the Kronecker delta. Likewise, the quantum Hamiltonian
operator which is the counterpart of the quadratic classical Hamiltonian given in eq. (15) is
written as

Ĥ(t) =
1

2
ẑ†ω⊺LH(t)ẑ with ẑ =

[
q̂
p̂

]
, (27)

where “†” denotes the conjugate transpose and ẑ is the quantum counterpart of the phase space
vector z. For the quadratic system given in eq. (27), the expectation value of ẑ follows the
underlying classical trajectory due to the Ehrenfest Theorem. This means ⟨ẑ⟩ = ⟨Ψ| ẑ |Ψ⟩ = z,
where |Ψ⟩ is the state which has a wave function Ψ.

In order to define and study the phase space evolution of the wave functions of the squeezed
coherent states, one considers two sets of operations [5]: (i) translations given by the Weyl–
Heisenberg operators, T̂ , and (ii) the squeezings generated by the metaplectic operators, M̂(S).
The latter are associated with the symplectic matrices S that guide the underlying classical
evolution.

It is known that there exists a unitary operator Û (t, z0), which incorporates both the action
of translations and the squeezings in the phase space. This propagator satisfies the Schrödinger
equation just like the wave function itself,

iℏ
dÛ

dt
= ĤÛ with Û (0, z0) = Identity. (28)

In order to find out how this propagator acts on an initial wave function which is centered at
z0, one can indeed make use of the ground state, |0⟩, that is centered at 0.

At this point, we refer to Appendix A, in which we give a brief summary of the derivation
of the squeezed coherent state wave function. Note that this derivation is mostly based on
Littlejohn’s construction 2 [5]. For example, substituting eq. (A.15) into eq. (A.16) with |ψ0⟩ =
T̂ (z0) |0⟩ gives

|ψ⟩ = Û (t, z0) |ψ0⟩ = exp

(
iγ(t)

ℏ

)
T̂ (z(t)) M̂ (S(t)) |0⟩ , (29)

where the phase function γ(t) is given by eq. (A.17). This means that regardless of what the
initial state is, one can make use of a fiducial, ground state in order to obtain the final state.
This might seem counter intuitive at a first glance. However, note that the information about

2Appendix A involves only those points that are immediately relevant for us which does not give the full
credit to the original paper.
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the initial phase space vector is already included in the symplectic matrix S and its quantum
counterpart M̂(S).

Finally, since the ground state wave function is represented in position space by

ψ|0⟩ =
1

(πℏ)n/4
exp

(
−q⊺q

2ℏ

)
, (30)

one can obtain the matrix representation of the squeezed coherent state wave function defined
at time t and centered at the phase space point ⟨ẑ⟩ = (⟨q̂⟩, ⟨p̂⟩)⊺ in its exact form as [5]

ψ =
1

(πℏ)n/4
exp

(
iγ(t)

ℏ

)
T̂ (z(t))

1√
det (A+ iB)

exp

[
i

2ℏ
(q⊺Γq)

]
=

1

(πℏ)n/4
1√

det (A+ iB)
exp

[
i

ℏ

(
γ(t) + ⟨p̂⟩⊺q− ⟨p̂⟩⊺⟨q̂⟩

2
+

1

2
(q− ⟨q̂⟩)⊺ Γ (q− ⟨q̂⟩)

)]
,

(31)

where Γ = (C+ iD) (A+ iB)
−1.

Our aim in the current work is to find the hydrodynamic interpretation of a system represented
by the wave function ψ given in eq. (31). We will essentially study this system within the realm
of statistical mechanics. Therefore, quantum mechanical distribution functions are essential for
our investigation. Thus, we will now introduce certain concepts that were previously introduced
into the literature and which will be useful in our statistical construction.

2.4. Wigner function, Wigner ellipsoid and the covariance matrix
For a given state |ψ⟩, one can associate a function, known as the Wigner function W =

W (q,p), which is the Weyl symbol of the projection operator |ψ⟩ ⟨ψ|. In the context of quantum
mechanics, it was introduced into the literature by Wigner [25] as a quasi–probability distribu-
tion. Wigner function has similar properties to the phase space distribution function of classical
mechanics which is preserved via the Liouville equation. For a state, |ψ⟩, in q–representation it
is given by [25]

W =
1

(2πℏ)n
∫
ψ
(
q+

x

2

)
ψ∗

(
q− x

2

)
exp

(
− i

ℏ
px

)
dx. (32)

Wigner function has very nice transformation properties. Let us consider the Weyl–Heisenberg
operator, T̂ (z′), and the metaplectic operator, M̂ (S), introduced in the previous section. It is
known that if W (z) is the Wigner function of a state |ψ⟩, then, W (z − z′) is the one of the
translated state T̂ (z′) |ψ⟩ [5]. In addition, the transformation of the Wigner function under a
symplectic transformation gives W (S−1z). Namely, if W (z) is the Wigner function of a state
|ψ⟩, then, W (S−1z) is the Wigner function of the state M̂ (S) |ψ⟩. This results in

W (z, t) =W (S−1z, 0), (33)

such that the Wigner function is invariant throughout the evolution of the system.
The expectation values of quantum operators can be obtained via the Wigner function with

an integral transform similar to the classical phase space averaging. For an operator, F̂ , for
example, its expectation value is obtained through

⟨ψ| F̂ |ψ⟩ =
∫
dzW (z)f(z), (34)
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where the phase space function f(z) is the Weyl symbol corresponding to the operator F̂ . Also
note that the distribution W (z) is normalized, i.e.,∫

dzW (z) = 1. (35)

For a Wigner function, which is centered at ⟨ẑ⟩, the first order moments can be calculated
via

⟨ẑ⟩ =
∫
dzW (z)z. (36)

Moreover, a covariance matrix, Σ, can be calculated in a similar manner via the second moments
of the Wigner function via

Σαβ =

∫
dzW (z)zαzβ . (37)

Note that the matrix Σ is symmetric and non-negative. By using eq. (37), one can show for
Gaussian states that Wigner function in eq. (32) also takes a Gaussian form [47, 5, 37]

W =W (z, t) =
1

(πℏ)n
exp

{
−1

ℏ
(z− ⟨ẑ⟩)⊺ W (z− ⟨ẑ⟩)

}
, where W =

ℏ
2
Σ−1. (38)

We know that for the squeezed coherent states, the first moments follow classical trajectories,
i.e., ⟨ẑ⟩(t) = S ⟨ẑ⟩(0). Also the Wigner function being preserved in the phase space gives

W(t) = S−⊺W(0)S−1, with detW = 1. (39)

Therefore, for the squeezed coherent states, W is symplectic, symmetric and positive definite
[47]. One can then choose, for example, [37]

(z− ⟨ẑ⟩)⊺ .W. (z− ⟨ẑ⟩) = 1, (40)

which defines the surface of an ellipsoid centered at ⟨ẑ⟩. This means that both the surface and the
center of the Wigner ellipsoid transforms rigidly throughout the evolution of the system [5, 37].

Moreover, as the invariants of a system are associated with its symmetries, one might wonder
which quantum invariants are preserved under the symplectic symmetries of the classical system.
Therefore, we include a discussion in Appendix B, for a curious reader, that summarizes the
relationship of the Wigner ellipsoid with some classical and quantum mechanical invariants of
linear systems.

In this section, we presented the preliminaries which are essential for our investigation. Those
seemingly unrelated ingredients come together in the main body of our work in Section (3) in
the following manner. We consider a quadratic system with a classical symplectic phase space
dynamics as in Section (2.2). A quantum correspondence of this system is considered via Little-
john’s squeezed coherent state wave function that was shortly presented in Section (2.3). Note
that we would like to interpret this system as in the de Broglie–Madelung–Bohm approach which
was summarized in Section (2.1). For our investigation, this is a hydrodynamic interpretation
intertwined with certain statistical and thermodynamic concepts. Therefore, we will also make
use of the definition of the Wigner function and the Wigner–Weyl–Moyal correspondence as
summarized in Section (2.4).
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3. A hydrodynamic interpretation for generic squeezed coherent states

Previously, in Section (2.1), we summarized the causal approach of the de Broglie–Madelung–
Bohm theory. Let us recall that the entire formalism depends on a wave function being written
on its polar form, i.e., ψ = R exp

(
iS
ℏ
)

where R and S are real functions. Therefore, in order to
start our investigation, we need to transform the wave equation of the squeezed coherent state
given in eq. (31) into its polar form first. This is what we present in the next section.

3.1. Foundations of the construction
3.1.1. Polar decomposition

The Hamiltonians we consider here are in quadratic order, thus any choice of operator ordering
will result in the same outcome. Let us choose the symmetric ordering and consider the following
Hamiltonian operator

Ĥ =
1

2
q̂†aq̂+

1

2

(
q̂†bp̂+ p̂†b⊺q̂

)
+

1

2
p̂†cp̂.

(41)

Now we write the Schrödinger equation by using the generic Hamiltonian operator in eq. (41),
so that,

iℏ
∂ψ

∂t
=

(
1

2
q⊺aq− iℏ

2
[Tr(b) + 2q⊺b∇q]−

ℏ2

2
∇q

⊺ c∇q

)
ψ, (42)

where

∇q =
∂

∂q
=

[
∂

∂q1

∂

∂q2
...

∂

∂qn

]⊺
. (43)

Then, for a wave function which is written in its polar form (1), we obtain the pure imaginary
and the pure real parts of the Schrödinger eq. (42) respectively as

∂R

∂t
= −1

2
[R∇q

⊺c∇qS + (∇qS )
⊺
c∇qR+ (∇qR)

⊺
c∇qS + 2q⊺b∇qR+Tr(b)R] ,

(44)

and,

∂S

∂t
= −

[
1

2
(∇qS )

⊺
c∇qS +

1

2
q⊺aq− ℏ2

2

1

R
∇q

⊺c∇qR+ q⊺b∇qS

]
. (45)

When we compare the real part of the Schrödinger equation in the generic case, i.e., eq. (45),
with the one of the original definition in eq. (4), we realise that the general quantum potential
for an n–dimensional system is

Q = −ℏ2

2

1

R
∇q

⊺c∇qR. (46)

This is the analogous expression for eq. (8).
In order to obtain the explicit form of the equation set (44)-(45) for generic squeezed coherent

states, we need to write the wave function given in eq. (31), i.e.,
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ψ =
1

(πℏ)n/4
1√

det (A+ iB)
exp

[
i

ℏ

(
γ(t) + ⟨p̂⟩⊺q− ⟨p̂⟩⊺⟨q̂⟩

2
+

1

2
(q− ⟨q̂⟩)⊺ Γ (q− ⟨q̂⟩)

)]
(47)

in its polar form. Note that it is not immediately obvious whether this is possible for a
generic case due to the Γ = (C+ iD) (A+ iB)

−1 term that appears in the exponent and the√
det (A+ iB) term that appears in the denominator. However, we will see that the modified

Iwasawa factorization, eq. (24) of Section (2.2), will help us in identifying the pure real and the
pure imaginary parts of the wave function of the squeezed coherent states.

Let us recall that the classical evolution of the system is governed by a symplectic matrix
S as in eq. (21), whose action on the phase space can be factored into three effects: shearing,
magnification and rotation. The latter, the fractional Fourier transformer part of the Iwasawa
factorization, is represented by a matrix f(u) given by

f(u) =

[
Reu Imu
−Imu Reu,

]
, (48)

as we have already re–presented in Section (2.2). Here, u is a unitary matrix given by

u = (AA⊺ +BB⊺)
−1/2

(A+ iB) . (49)

Since unitary matrices can uniquely be written in the form u = ūũ where ū ∈ SU(N) and
ũ = exp (iα/n)In, we have detu = exp (iα), and√

det (A+ iB) = exp (iα/2)
√
det s. (50)

Note that s = (AA⊺ +BB⊺)
1/2

= s⊺ is the matrix that is responsible for pure magnifications in
phase space as denoted in eq. (25). In that case, we have3

Γ = (C+ iD) (A+ iB)
−1

= (C+ iD) (A− iB)
⊺
[(A+ iB) (A− iB)

⊺
]
−1

= (CA⊺ +DB⊺ + iIn) s
−2

= −g + is−2, (51)

where the third line in eq. (51) follows from the symplecticity conditions AB⊺ = BA⊺ and AD⊺−
BC⊺ = In of S given in eqs. (22) and (23). Note that g = − (CA⊺ +DB⊺) (AA⊺ +BB⊺)

−1
=

g⊺ appears in the Iwasawa factorization (24) as part of the symplectic evolution that is responsible
for the shearing effect in p–space. In optics, for example, its associated symplectic matrix l(g)
corresponds to the propagation through a thin lens.

Then, once we substitute the expressions (50) and (51) into eq. (47), we obtain the polar
decomposition of the wave function of the squeezed coherent state. We find the real amplitude
and the real phase function respectively as

R =
1

(πℏ)n/4
1√
dets

exp

[
− 1

2ℏ
(q− ⟨q̂⟩)⊺ s−2 (q− ⟨q̂⟩)

]
, (52)

3A similar result can be found in [48].
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and,

S = γ(t)− ℏα
2

+ ⟨p̂⟩⊺q− ⟨p̂⟩⊺⟨q̂⟩
2

− 1

2
(q− ⟨q̂⟩)⊺ g (q− ⟨q̂⟩) . (53)

It can clearly be seen that the real amplitude of the wave function is governed solely by
the matrix s that appears in the symplectic magnification matrix m(s). On the other hand,
the phase function is governed by the matrix g responsible for the shearing/lensing effect, l(g),
adopted from the underlying classical phase space evolution.

In the next section, we will make use of the definitions reintroduced in Section (2.4) in order
to find a phase space distribution function and a covariance matrix associated with the squeezed
coherent state wave function.

3.1.2. Wigner function and the covariance matrix
It is known that there exists no unique definition of a probability distribution in quantum

mechanics. The Wigner function, being the Weyl symbol of the density operator, is one of the
candidates to be chosen as the quasi–probability distribution of a phase space. The alternatives
to the Wigner distribution are (i) the Husimi distribution [49] which is sometimes referred to
as the “regularization” of the Wigner distribution [50]; (ii) the Glauber–Sudarshan distribution
[51, 52] which was original derived for the coherent states.

Note that the Wigner function might take negative values within certain scenarios, whereas
the Husimi distribution does not have this property. On the other hand, it is argued that [33], the
Husimi distribution does not provide the correct charge and current densities for certain cases
4. As the Wigner function is also non–negative for the Gaussian states, we choose the Wigner
function to be used as a proper phase space distribution function in our current investigation.

In order to obtain the explicit form of the Wigner function as presented in Section (2.4), we
follow [47] and [5] by considering eq. (51). Then, for a Gaussian Wigner function,

W =
1

(πℏ)n
exp

[
−1

ℏ
(z− ⟨ẑ⟩)⊺ W (z− ⟨ẑ⟩)

]
,

(54)

the Wigner matrix, W, is a 2n× 2n symplectic matrix that takes the form

W =

[ (
s−2 + gs2g

)
gs2)

s2g s2

]
, (55)

in our case.
As mentioned before, a covariance matrix can be obtained via the Wigner distribution by

making use of the eq. (37) such that Σ = ℏ
2W

−1. Then, we find the covariance matrix associated

4One can refer to [53] for the comparison of different quasi–probability distributions in the literature. Also see
[54] for the generic invertible maps of density operators onto probability distributions for a broader review.
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with the squeezed coherent state as

Σ =

[
σqq σqp

σpq σpp

]
=

 〈
q̂2

〉
− ⟨q̂⟩2

〈
q̂p̂+p̂q̂

2

〉
− ⟨q̂⟩ ⟨p̂⟩〈

p̂q̂+q̂p̂
2

〉
− ⟨p̂⟩ ⟨q̂⟩

〈
p̂2

〉
− ⟨p̂⟩2


=

ℏ
2

[
s2 −s2g

−gs2
(
s−2 + gs2g

) ]
.

(56)

Moreover, the invariance of the Wigner ellipsoid dictates that

Σ(t) = S(t)Σ(0)S⊺(t). (57)

Then, we get

dΣ

dt
= LHΣ+ΣL⊺

H, with LH =

[
b⊺(t) c(t)
−a(t) −b(t)

]
, (58)

due to eq. (20).
In order to find out how the sub–matrices evolve, we substitute the explicit form of Σ in

eq. (56), into its time evolution above. Then we obtain,

ds−2(t)

dt
= −s−2b⊺ − bs−2 + s−2cg + gcs−2,

(59)
dg(t)

dt
= a− bg − gb⊺ − s−2cs−2 + gcg.

(60)

We will make use of the equations (59) and (60) while studying the time evolution of hydrody-
namic and thermodynamic variables in the following sections.

Before moving on to a hydrodynamic interpretation, we will now have a consistency check.
Those results will be very useful in analysing the energy definitions presented in our work.

3.1.3. Consistency check: a pathway to thermodynamics
In [5], Littlejohn argues that even though Gaussian states have Gaussian Wigner functions,

the converse is not necessarily true. This means that the equality of two Wigner functions does
not immediately imply the equality of the corresponding wave functions. In order for a Gaussian
wave function that is obtained from a Wigner distribution to match the wave function obtained
via the metaplectic operators acting on a ground state wave function, one needs to introduce
a phase factor. Note that this phase factor is −α/2 which follows from the eigenvalues of the
underlying fractional Fourier transformer of the classical phase space evolution that we presented
in eq. (50).

We will now have a consistency check which might seem redundant at a first glance. However,
during this process, we will obtain the value of α in terms of the elements of the Hamiltonian
matrix, LH, and the covariance matrix, Σ. This result will be crucially important when we
introduce the hydrodynamic interpretation and the associated thermodynamic variables in the
following sections.

It is known that in order to obtain the wave function of the squeezed coherent states, one can
follow an alternative route to the one of Littlejohn. For example, one method is to start with an
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ansatz, such that the wave function is in the following form

Φ (q, t) = A (t) exp

(
i

2ℏ
q⊺Γq

)
, (61)

during any point of the evolution. Here, Γ belongs to the Siegel space of complex symmetric
matrices which is given as before, i.e., Γ = (C+ iD) (A+ iB)

−1. Then, it is shown that in
order for Φ to be a solution of the Schrödinger equation, one needs to satisfy the following two
conditions [50]

dΓ

dt
= −a− Γb⊺ − bΓ− ΓcΓ, (62)

dA

dt
= −1

2
Tr (b+ cΓ)A , (63)

where A is given as A = (πℏ)(−n/4)
(det [A+ iB])

−1/2. Here, “Tr” represents the trace operator.
Then, the condition (62) of [50] corresponds to our eqs. (59) and (60) due to Γ being decom-
posed into its pure real and pure imaginary components in eq. (51). Likewise, as we obtained√
det (A+ iB) = exp (iα/2)

√
det s previously in eq. (50), the condition (63) implies

dα(t)

dt
= Tr

(
cs−2

)
. (64)

We will elaborate on the importance of this result in Section (3.3.4).

3.2. Probability distributions
3.2.1. Phase space distribution and the entropy

Whether it is within the classical or within the quantum theory, there is no unique way of
approaching the concept of probability distributions and the entropy in general. For instance, as
it is stressed many times in the literature, coherent states are the minimum uncertainty states.
Thus, they contain maximum information and minimum entropy. This statement is usually
vaguely stated in the literature without specifying in which manner the concept of information
and entropy are defined. Here, we suggest certain definitions by considering the phase space as
our main object.

From now on, we will adopt the nomenclature and the notation of statistical mechanics. For
example, for a Gaussian probability distribution,

ρ =
1

(2π)
d/2

1√
detM

exp

[
−1

2
(x− µ)

⊺
M−1 (x− µ)

]
, (65)

we will write

ρ := N (x|µ,M) , (66)

where x is a d–dimensional variable vector and µ is its mean with respect to the Gaussian
distribution, (65). The d × d matrix M is a positive semi–definite covariance matrix of the
distribution. We will refer to our Gaussian Wigner function as a joint probability distribution.
This is due to it including the information about both q and p subspaces. We will denote this
joint distribution associated with the squeezed coherent states, i.e., eq. (54), in the short form

ρ(q,p) :=W (z) = N (z|⟨ẑ⟩,Σ) , (67)

where 2n dimensional ⟨ẑ⟩ are the standard expectation values obtained by the averaging through
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the entire phase space, i.e., eq. (36). The covariance matrix Σ is given in its explicit form in
eq. (56) for a squeezed coherent state. Note that the phase space probability distribution, ρ(q,p),
is normalized.

We will now define a macroscopic joint entropy, S(q,p), of the system which we write as

S(q,p) = −kB
∫
ρ(q,p) ln ρ(q,p)dqdp, (68)

by considering ρ(q,p) as in eq. (67). Computation of the integral in eq. (68) now gives

S(q,p) =
kB
2

ln

(
det

[
2πe

ℏ
2
W−1

])
= kBn (1 + ln[πℏ ]) +

kB
2

ln
(
det

[
W−1

])︸ ︷︷ ︸
=0

, (69)

which corresponds to an equilibrium entropy as we have dS(q,p)/dt = 0. The second term on
the right hand side of eq. (69) vanishes due to the Wigner matrix being a symplectic matrix
(and so is its inverse). Note that S(q,p) is indeed the Shannon entropy of the Wigner function
(multiplied by kB)5 which is sometimes referred to as the Wigner entropy [55, 56, 57, 58]. It
matches the Rényi−2 entropy up to a constant for Gaussian states [59]. It also corresponds to
the lower bound of the missing position and momentum information for a stationary system as
presented in [60] and whose relation to the Heisenberg uncertainty principle has been discussed
in [61].

Indeed, the fact that S(q,p) corresponds to a minimum entropy state can be argued within the
Schrödinger–Robinson uncertainty principle [62, 63]. Namely, the determinant of the covariance
matrix, i.e.,

detΣ = det (σqq) det
(
σpp − σpqσqq

−1σqp

)
=

(
ℏ
2

)2n

(70)

corresponds to the minimum of the Schrödinger–Robinson uncertainty

σqqσpp ≥ σpqσqp +
ℏ2

4
, (71)

which was originally defined for a 1–dimensional configuration space. Thus, phase space entropy
taking its minimum value is consistent with the minimum uncertainty and maximum information
accommodated by the squeezed coherent states. Note that for those states, if there exists no
classical phase space shearing/lensing, i.e., g = 0 in eq. (56), one has σpq = σqp

⊺ = 0 and the
minimum of the standard Heisenberg uncertainty is reached 6.

Moreover, S(q,p) being a minimum seems to be consistent with certain topological arguments.
Previously, it was recognized by de Gosson [65, 66, 67, 68] that symplectic non-squeezing theorem
of Gromov [69] can be realized to define some minimum uncertainty units on phase space. Those
are known as the quantum blobs. Namely, on the plane of conjugate canonical pairs, there exist
a minimum area of size πℏ. Due to the underlying symplectic capacity, the canonical pairs that
compose the projected area can not take lower values. Here, we suggest that S(q,p) reflects the
missing information contained in the quantum blobs of de Gosson.

5Information entropy matches the thermodynamic entropy up to the factor kB for systems in equilibrium as
in our case.

6Also see the discussions on correlated states and generalized uncertainty relations in [64] in relation to this
specific case.
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3.2.2. Marginal and conditional distributions
Even though phase space methods work surprisingly well, at least for the Gaussian states, it

is the position space that we have immediate experimental access to. Naturally, the de Broglie–
Madelung–Bohm theory was originally presented in the q–representation. This requires the
introduction of marginal and conditional objects for the statistical considerations of quantum
mechanics. For instance, in [26], Moyal introduced space–conditional averages for the observables.
Accordingly, Takabayashi argued that the quantum potential can be considered as an apparent
agent emerging from the configuration space projections of the phase space distributions [24].

Consequently, we introduce our marginal and conditional probability distributions now. Let
us write the marginal distribution as

ρ(q) =

∫
ρ(q,p)dp, (72)

where ρ(q) is the q–space probability distribution whose value is equal to [R (q, t)]
2. The average

of a function f = f(q,p) over the marginal distribution is obtained by

⟨f⟩(q) =
∫
fρ(q)dq. (73)

However, ρ(q) includes only the information that is needed to describe the position coordi-
nates. Once the positions are known, the remaining, additional information needed in order to
specify p is obtained by a conditional distribution which is sometimes referred to as a posterior
distribution. We write the conditional probability distribution as

ρ(p|q) = ρ(q,p)/ρ(q). (74)

The average of a function f = f(q,p) over the conditional distribution can now be obtained by

⟨f⟩(p|q) =
∫
fρ(p|q)dp. (75)

Once we compute the values of the marginal and the conditional distributions for the squeezed
coherent states, we get

ρ(q) = N

(
q|⟨q̂⟩(q),

ℏ
2
s2
)
, and ρ(p|q) = N

(
p|⟨p̂⟩(p|q),

ℏ
2
s−2

)
. (76)

Here,

⟨q̂⟩(q) = ⟨q̂⟩, and ⟨p̂⟩(p|q) = ⟨p̂⟩ − g (q− ⟨q̂⟩) (77)

are the mean values taken with respect to the marginal and the conditional distributions re-
spectively. As we argued in Section (3.2.1) Schrödinger–Robinson uncertainty principle is more
viable for generic squeezed coherent states as for a generic case the minimum of the Heisenberg
uncertainty is not satisfied. At a first glance, this seems to be contradicting with the idea of a
minimum entropy state. However, Littlejohn attributes the minimum Heisenberg uncertainty not
being reached by the squeezed coherent states to a geometric explanation [5]. Specifically, it is
due to the choice of a wrong symplectic frame. He argues that it is only when the principal axes of
the Wigner ellipsoid coincide with the axes of positions and momenta, the minimum Heisenberg
uncertainty is achieved. If they are not aligned, the angles of projections of the Wigner ellipsoid
on the phase space planes cause the system to appear as if it is not at a minimum uncertainty
state.
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Note that the original covariance matrix, Σ = ℏ
2W

−1, takes a block diagonal form

Σ =
ℏ
2

[
s2 0
0 s−2

]
, (78)

when the lensing/shearing matrix satisfies g = 0. This is when ⟨p̂⟩ = ⟨p̂⟩(p|q). Thus, our
conditional distribution ρ(p|q), which has a variance matrix ℏ

2 s
−2 for all cases, keeps track of the

minimum Heisenberg uncertainty with respect to conditional momenta.
Before going further into the thermodynamic interpretation, we will now investigate more on

the probability distributions and their time evolutions.

3.2.3. The Fokker–Planck equation, probability fluxes and the continuity equation
In statistical mechanics, the Fokker–Planck equation is considered as a stochastic differential

equation that gives the time evolution of a probability distribution, ρ (x, t), and which follows as

∂ρ

∂t
= −∇xi

(βiρ) +∇xi
∇xj

(Dijρ) , (79)

where β (x, t) is the drift vector and D (x, t) is the diffusion matrix. It is known that Gaussian
distributions are exact solutions of the Fokker–Planck equations. For a generic multi–dimensional
Gaussian distribution, ρ = N (x|µ,M) with M = M(t) as in eq. (66), the corresponding drift
vector and the diffusion matrix are

β(t) =
dµ

dt
, D(t) =

1

2

dM

dt
. (80)

such that the Fokker–Planck equation can be written as

∂ρ

∂t
=

[
1

2
(x− µ)

⊺
M−⊺ dM

dt
M−1 (x− µ) +

dµ

dt

⊺

M−1 (x− µ)− 1

2
Tr

(
dM

dt
M−1

)]
ρ. (81)

Equation (81) holds for our joint distribution, ρ(q,p) = N (z|⟨ẑ⟩,Σ), our marginal distribution

ρ(q) = N
(
q|⟨q̂⟩(q),

ℏ
2 s

2
)
, and our conditional distribution, ρ(p|q) = N

(
p|⟨p̂⟩(p|q),

ℏ
2 s

−2
)

once
we replace the variable vector, the mean vector and the covariance matrix in eq. (81) with the
desired ones.

Let us now recall from the brief summary of the de Broglie–Madelung–Bohm approach given
in Section (2.1) that the pure imaginary part of the Schrödinger equation can be interpreted as
a continuity equation, (6), given that the squared amplitude of the wave function, [R (q, t)]

2,
is interpreted as the density of a fluid. Within the statistical interpretation, it gives the the
probability amplitude of a given outcome. Thus, it is no surprise that the Fokker–Planck equa-
tion, (81), of our marginal distribution, ρ(q), is in the same footing as the imaginary part of the
Schrödinger equation given in eq. (3), multiplied by R (q, t).

On the other hand, every probability distribution that satisfies a Fokker–Planck equation has
an associated probability flux that satisfies a continuity equation. What we want to investigate
here is to see whether the Fokker–Planck induced flux term is the same as the flux term that
appears in the hydrodynamic interpretation of the Schrödinger equation.

Namely, for a generic Gaussian ρ = N (x|µ,M) which satisfies the Fokker–Planck equation,
(81), one can define a probability flux

j = βρ−D∇xρ, (82)

with the drift vector and the diffusion matrix given in eq. (80) such that an associated continuity
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equation

∂ρ

∂t
+∇x

⊺j = 0 (83)

is satisfied.
For our marginal distribution, for example, the continuity equation

∂ρ(q)

∂t
+∇⊺

qj(q) = 0 (84)

is a Fokker–Planck equation with an associated flux

j(q) =
d⟨q̂⟩
dt

ρ(q) −
ℏ
4

d
(
s2
)

dt
∇qρ(q) =

[
b⟨q̂⟩+ c⟨p̂⟩+ 1

2

d
(
s2
)

dt
s−2 (q− ⟨q̂⟩)

]
ρ(q). (85)

This result follows from (i) the phase space expectation values following classical trajectories,
i.e., d⟨ẑ⟩/dt = LH⟨ẑ⟩, (ii) ∇qρ(q) = −2ℏ−1s−2 (q− ⟨q̂⟩) ρ(q) being satisfied with ρ(q) given in
eq (76), and (ii)

d
(
s2
)

dt
s−2 =

(
b⊺s2 + s2b− cgs2 − s2gc

)
s−2, (86)

via the evolution of the phase space covariance matrix, eq. (58), as indicated before.
Let us now compare the flux, j(q), in eq. (85) with the one of the de Broglie–Madelung–Bohm

theory, j̃, introduced in Section (2.1). Note that the latter is defined explicitly for a specific
Hamiltonian operator as in the Schrödinger equation (2). Moreover, as discussed in [70], its
definition given by eq. (5) is non–unique. Also as discussed in [71] there exists an arbitrariness
on the definition of a probability current in general. In order to make a connection with the
generic Hamiltonian here, we will take 1/m → c where m refers to the mass of the particle
in the standard approach, as the matrix c is responsible for the coupling of the momentum
operator in our Hamiltonian in eq. (41). Also, as [R (q, t)]

2
= ρ(q) we have j̃ = ρ(q)ṽ = ρ(q)cp̃

where ṽ is considered as the linear velocity. The term p̃ = ∇qS are sometimes referred to
as the Bohm momenta and they are expected to satisfy the equation of motion (9). However,
we emphasise that the original de Broglie–Madelung–Bohm theory was constructed with such a
choice of Hamiltonian operator that the resultant Schrödinger equation is interpreted within a
hydrodynamic interpretation of an irrotational fluid flow. That is why the momenta p̃ can be
written as a divergence of a potential/phase. We will discuss the actual meaning of p̃ in a short
while. We should first emphasize that our generic Hamiltonian operator, (41), includes some
position–momentum coupling terms which are associated with the rotational degrees of freedom
in general. Therefore, the probability flux for the marginal distribution, j(q), includes the fluxes
associated with the rotations in addition to those associated with the linear motion.

In order to show this explicitly, let us assume in eq. (86), the symmetry of the products b⊺s2

and cgs2 for our symmetric matrices s, c and g. Then, the flux associated with the marginal
distribution can be written as

j(q) = jirrot.(q) + jrot.(q) , (87)

with

jirrot.(q) = ρ(q)c⟨p̂⟩(p|q), and jrot.(q) = ρ(q) [b⟨q̂⟩+ b⊺ (q− ⟨q̂⟩)] . (88)

Recall that the position–momentum coupling is represented by the matrix b in the generic
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Hamiltonian. Therefore, jrot.(q) is the portion of the marginal probability flux that includes only
those coupling terms. In the case that b is symmetric, a velocity term can be associated with
rotational degrees of freedom, vrot. = jrot.(q) /ρ(q) = bq which takes a local form. This is similar to
a tangential velocity field for a rotational flow. Obviously, when b = 0, it is only the irrotational
velocity virrot. = jirrot.(q) /ρ(q) = c⟨p̂⟩(p|q) that governs the dynamics of the ensemble. Here,
⟨p̂⟩(p|q) = ⟨p̂⟩−g (q− ⟨q̂⟩) are the conditionally averaged momenta given by eq. (77) previously.
It can easily be checked that ⟨p̂⟩(p|q) = ∇qS holds by making use of the phase function, S ,
eq. (53), of the squeezed coherent state wave function. This means that the conditionally averaged
momenta are equal to the Bohm’s momenta, p̃, and jirrot.(q) are equivalent to j̃ as expected.

It is known that within a weak measurement of Aharonov et al. [72], the post–selection of
positions does not completely destroy the momentum information and a mean, weak value of mo-
mentum can be obtained for a system of particles. A weak value is in general a complex number
and its real part is obtained by averaging the desired observable conditioned on a second mea-
surement [73, 74, 75]. In this work, we consider momentum conditionally averaged on positions
following Moyal’s [26] and Sonego’s [38] arguments. Also, it was previously realized by many
researchers that p̃ are the real, measurable part of the weak value of the momenta [32, 76, 77].
Therefore, the conditionally averaged momenta act as an effective momenta of a system. It is
known that one can imagine a flow of an ensemble of particles such that ⟨p̂⟩(p|q) = p̃ represent
a stream–line momenta rather than the momenta of the individual particles [38]. Our last re-
mark is that it is the matrix g, that is responsible for the classical shearing/lensing effect, which
differentiates the results of strong and weak measurements of momenta for squeezed coherent
states.

Let us now compare our set up with some investigations in the literature that discuss stochas-
tic quantum mechanics in relation to Einstein’s work on Brownian motion [78, 79, 80]. The
important point we would like to start highlighting here is that Einstein used some simplifying
assumptions while building up his theory. For simplicity, he assumed the suspension of a particle
within a homogeneous and stationary liquid. Moreover, the time scale, over which the dynamics
takes place is assumed to be smaller than the observation time. In addition, random displace-
ments of the particle is assumed to be small in order to give a time independent probability
distribution for the displacements. Only then, his Fokker–Planck equation, which is also known
as the diffusion equation, takes its simple form,

∂f

∂t
= D∇2f. (89)

Here, the distribution function f = f(q, t) reflects the number of particles per unit volume in
1-dimension, ∇ is taken with respect to the position, and D is a constant diffusion coefficient,
contrary to our time dependent diffusion matrices presented before. Then, the solution of eq. (89)
for the distribution function is given by

f(q, t) =
1√
4πDt

exp

(
− q2

4Dt

)
, (90)

with ⟨q2⟩ = 2Dt being the second moment of the displacements. Next, a drift effect can be added
by hand if there exists a constant external force acting on the particle in order to balance the
diffusion effect. This balance can be written as

j = jdrift + jdiffusion = 0 → βf = D∇f (91)
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such that

∂f

∂t
+∇j → ∂f

∂t
= 0. (92)

In their formulation of quantum stochastic theory, Bohm and Hiley define a generic theory
which, in its equilibrium, corresponds to standard quantum mechanics [81, 42]. This is achieved
by adding a stochastic contribution by hand to the standard probability flux j̃ of the de Broglie–
Madelung–Bohm theory. In order to form an analogous theory to Brownian motion, they refer
to its version in Einstein’s work in which a particle is suspended in liquid under the gravitational
force [82]. The osmotic/drift velocity and the diffusion flux they introduce are in the same
form as they appear in Einstein’s original formulation. However, recall that Einstein’s work was
constructed on a system restricted by some assumptions 7. Though, in Bohm and Hiley’s work,
the system does not necessarily have to fall under such category.

Now, let us consider our marginal probability flux, j(q), given in eq. (85) which satisfies a
more generic Fokker–Plack equation than the one of Einstein. An analogous balance equation
as in eq. (91) is satisfied without introducing an extra flux term when

c (⟨p̂⟩ − g (q− ⟨q̂⟩)) = c⟨p̂⟩(p|q) = c∇qS = 0, (93)

if b = 0 and cgs2 is symmetric. This refers to a stationary state in which the system of particles
has zero average velocity. Thermodynamically speaking, this should be reached at some absolute
zero temperature. Note that such a result is consistent with the quantum equilibrium condition
defined in [81, 42] and it is obtained without using the simplifying assumptions of Einstein. Thus,
it is a curious subject whether a more generic stochastic theory can be developed by considering
relatively more generic Fokker–Planck equations as presented here.

The last point we would like to emphasise is that even though the Fokker–Planck equation
is usually associated with stochastic processes, it would be misleading to interpret the evolution
of the probability distributions of the generalized squeezed coherent states investigated here in
a stochastic manner. Note that the drift vectors of the Gaussian distributions here are obtained
through the time evolution of the averages of the corresponding phase space vectors. Those
expectation values follow the same path as the classical trajectories in phase space. Moreover,
the associated diffusion matrices of our distributions are obtained via the time evolution of the
corresponding covariance matrices whose relation to the classical phase space magnifications and
the classical shears has been established in the previous sections. As the diffusion matrices of
neither the joint, the marginal, nor the conditional distributions of ours can be considered as
random matrices, the evolution of the corresponding probability distributions can not simply be
interpreted as a stochastic process.

3.3. Thermodynamic variables
3.3.1. Back to entropy: Sackur & Tetrode

Previously, in Section (3.2.1), we defined a joint phase space distribution, ρ(q,p), and an
equilibrium entropy, S(q,p). Later, in Section (3.2.2) we defined a marginal distribution, ρ(q),
for positions and a conditional distribution, ρ(p|q), for momenta. Now we will define their
associated entropies regarding an analogy between the classical Sackur–Tetrode entropy [84, 85]
of the kinetic theory, SST, and S(q,p).

7In fact, those assumptions result in certain mathematical inconsistencies, including the breakdown of Galilean
invariance as discussed in [83].
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For a system of particles, which is represented by the Boltzmann statistics, one can identify
the contributions to SST regarding the missing information of the particles’ continuous positions
and momenta as 8

SST
(positions) = kBN lnV =

kBn

2
lnL2, and SST

(momenta) =
kBn

2
ln (2πemT ). (94)

Here n = 3N for a number of N particles in 3−dimensions. The cubical box that encloses the
particles has a volume V = L3. The mass of each particle is given by m and T is the temperature
as it appears in the Boltzmann distribution.

One then includes certain corrections to the classical SST. For example, by (i) considering
a finite, discretized space obtained via dividing the continuous space into (πℏ) sized boxes and
neglecting the contribution, SST

(quantum) = kBn ln (πℏ), coming from the quantum mechanical un-
certainty within each quantum sized box, and (ii) subtracting the extra information in SST

(positions)

due to assuming that the particles are distinguishable. Note that our phase space entropy, S(q,p),
is equal to SST

(quantum) up to a constant addition term. Now we would like to decompose S(q,p) in
a fashion similar to the decomposition of the classical part of the SST , i.e.,

SST
cl. = SST

(positions) + SST
(momenta) ⇐⇒ S(q,p) = S(q) + S(p|q). (95)

For this, we define certain quantum entropies such that the entropy defined through the marginal
distribution, ρ(q) = N

(
q|⟨q̂⟩(q),

ℏ
2 s

2
)
, corresponds to the missing information due to positions.

We write it as

S(q) = −kB
∫
ρ(q) ln ρ(q)dq. (96)

The entropy defined through our conditional distribution, ρ(p|q) = N
(
p|⟨p̂⟩(p|q),

ℏ
2 s

−2
)

corre-
sponds to the missing information due to the post–selected momenta and we write it as

S(p|q) = −kB
∫
ρ(q,p) ln ρ(p|q)dqdp. (97)

Then, we have

S(q) =
kB
2

ln

(
det

[
2πe

ℏ
2
s2
])

, and S(p|q) =
kB
2

ln

(
det

[
2πe

ℏ
2
s−2

])
, (98)

hence

S(q,p) = S(q) + S(p|q) = kBn (1 + ln[πℏ ]) .
(99)

Comparison of eqs. (94) and eqs. (96)-(97) shows that our marginal and conditional entropies are
the analogues of SST

(positions) and SST
(momenta) within the quantum realm. The only difference is that

we treat positions and momenta on an equal footing. For instance, the definition of SST
(momenta)

acknowledges the fact that there exists a variance in momenta due to the difference in the bulk
motion of a system and the classical peculiar velocities of the particles. This is represented by the
temperature term that appears in SST

(momenta). This is no different for our S(p|q) which represents

8See, for example, the detailed discussions given in Section 4.3, Section 5.4 and Appendix L of [86].
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the missing information due to the variance, ℏ
2 s

−2, of the conditional momenta. On the other
hand, for the first case, since the system is composed of classical particles there is no spreading
information within SST

(positions). Whereas, S(q) is defined via the quantum mechanical position
variance ℏ

2 s
2 as in the entropy for momenta.

The last point we would like to emphasise is that whether it is a classical or a quantum defi-
nition, thermodynamic entropy is a macroscopic object defined through the entire phase space.
If we want to talk about a thermodynamic equilibrium, it is the joint phase space entropy that
defines an equilibrium state with dS(q,p)/dt = 0. However, one can expect entropy production
associated with the marginal and the conditional entropies. In fact, we have

dS(q)
dt

= kBTr (b− gc) = −
dS(p|q)
dt

, (100)

due to eq. (59). This means that the information gain/loss in positions and in momenta are equal
in magnitude and opposite in sign. They cancel each other in order for the system to satisfy a
dynamic thermodynamic equilibrium at all times.

3.3.2. Quantum pressure and quantum temperature
Now the question is whether or not the entropies we defined in the previous sections really

fit into a thermodynamic picture within some analogue quantum kinetic theory. In order to
investigate this, we refer to Sonego’s work [38], in which he presents a detailed investigation of
the hydrodynamic interpretation of quantum mechanics for generic states.

Sonego considers the standard Hamiltonian as in the original de Broglie–Madelung–Bohm
method. He starts his investigation by defining a pressure tensor that is written as

P = −ℏ2

4
ρ(q)c∇q∇⊺

qρ(q) (101)

in our notation. By adopting some techniques from the kinetic theory and by making use of
the Wigner function of the phase space, he shows that the definition of the pressure tensor in
eq. (101), indeed follows from a term

T (q, t) =
1

kB
c

∫ (
p− ⟨p̂⟩(p|q)

)2

ρ(p|q)dp. (102)

In that case, an equation of state P = TrP = ρ(q)kBT is satisfied with the temperature term
T = TrT . The integral in eq. (102) essentially gives the variance of momenta via which a
temperature term is defined. This is similar to the case of the classical kinetic theory. What is
important here is that it is the variance of the conditionally averaged momentum that defines a
macroscopic phenomenon like temperature here. This means weak measurements are again at
the center of the definitions of measurable thermodynamic variables 9.

For the squeezed coherent states we have here, the conditional distribution is ρ(p|q) =

N
(
p|⟨p̂⟩(p|q),

ℏ
2 s

−2
)
. Then, the variance of conditional momenta is ℏ

2 s
−2 and

kBT =
ℏ
2
Tr

(
cs−2

)
. (103)

Thus, we can write the conditional distribution in a Maxwellian manner as in the realm of the

9Also see the discussion of [76] on the variance of the conditional momentum and its relation to weak mea-
surements in the context of Sonego’s work.
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Maxwell–Boltzmann statistics, i.e.,

ρ(p|q) =
1

(2πkB)
n/2

1√
det (c−1T )

exp

[
− 1

2kB

(
p− ⟨p̂⟩(p|q)

)⊺ (
T −1c

) (
p− ⟨p̂⟩(p|q)

)]
.(104)

3.3.3. Internal energy, quantum potential and a conditional virial relation
Until now, we emphasized the importance of the measurements that are done with respect to

the post–selection of positions. Let us now define an energy that is obtained by coarse–graining
the Hamiltonian operator of the system over the momentum variables. For this, we will make
use of the conditional averages introduced in Section (3.2.2). We write the result as a functional
of the classical Hamiltonian, H (q,p, t), i.e.,

U(p|q) (q, t) := ⟨Ĥ⟩(p|q) = H
(
q, ⟨p̂⟩(p|q), t

)
+

1

2
kBT︸ ︷︷ ︸
Ukin.

. (105)

Then, the conditional internal energy, U(p|q), is composed of (i) a portion including the classical
Hamiltonian functional that inputs the effective streamline momenta of the flow of the system
as its momenta variable, (ii) a pure quantum contribution with an energy term, Ukin. = kBT/2
analogous to the internal energy in classical kinetic theory for a single degree of freedom. In
Sonego’s work [38] the term that corresponds to our U(p|q) is referred to as a “local energy” due
to its dependence on the local position coordinates. Though, we should keep in mind that U(p|q)
involves averages over the momentum variables which are already post–selected over positions.

Let us recall that in the de Broglie–Madelung–Bohm approach, it is the quantum potential
that is responsible for the observed quantum behaviour of a system. In eq. (46) of Section (3.1.1),
we derived it as Q =

(
−ℏ2∇q

⊺c∇qR
)
/2R for the higher dimensional case. In order to find its

value for a generic squeezed coherent state, we substitute the real amplitude, R(q, t), given in
eq. (52) into its definition. The result follows as

Q =
ℏ
2
Tr

(
c s−2

)
− 1

2
(q− ⟨q̂⟩)⊺ s−2c s−2 (q− ⟨q̂⟩) . (106)

There is a common perception in the literature that Q → 0 should hold as ℏ → 0. This
impression follows from the fact that quantum potential is the only term that distinguishes the
classical Hamilton–Jacobi equation from its quantum version. This is anticipated to be true
both for the original derivation, eq. (4), and for our derivation for a generic quadratic system in
eq. (45). Therefore, ℏ → 0 is expected to give the classical limit. However, such an expectation
does not hold for a standard coherent state of a simple harmonic oscillator problem even in one
dimensional, stationary case [34]. This discussion is usually overlooked in the literature except
in a few studies. For example, in [87], this confusion is argued in detail. It is shown that there
exist different criteria to define a classical limit, though they often seem to contradict with each
other. It is then resulted that certain states do not have classical limits as ℏ → 0 and the authors
suggest a method to properly define a classical limit [87]. We propose a different explanation
here.

It is known that there are many interpretations of the quantum potential for different scenarios
in the literature. Ours will be mostly aligned with the ones in [39] and in [40] with important
differences. For example, the methodology and the set up of [39] is very different than ours.
However, the provided link between the quantum potential and the kinetic internal energy of the
system is quite similar. Let us now discuss [40], in which the authors interpret Q as the internal
energy of a system for stationary states. For example, for a 3–dimensional simple harmonic
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oscillator, with frequency ω being the same for each degree of freedom, they obtain

Qω =
3ℏω
2

− 1

2
mω2|r|2, (107)

where r is the position vector and m is the mass. Their interpretation is that the internal energy
is given by the ground state energy, 3ℏω/2 minus the potential energy. However, the problem of
ℏ not appearing in the so–called potential energy term brings us to the discussion of the previous
paragraph. Can the two terms that appear on the right hand side of eq. (107) be treated equally?
Besides, the internal energy is known to be a coarse–grained object in thermodynamics. Thus,
the value of Q itself can not be expected to give the internal energy. According to us, it is rather
the expectation value of Q that should be interpreted as the internal energy.

As the quantum potential depends on the positions and on time only, ⟨Q⟩(p|q) = Q and

⟨Q⟩ = ⟨Q⟩(q) =
ℏ
4
Tr

(
c s−2

)
. (108)

Thus, following the value of temperature given in eq. (103), we obtain

⟨Q⟩ = kBT
2

= Ukin.. (109)

This gives exactly the quantum mechanical internal energy in the form that it appears in the
kinetic theory. Moreover, physically meaningful, measurable quantities are given by the average
values of the operators. Thus one should expect ⟨Q⟩ → 0 as ℏ → 0, which is the case here.

We also observe that the maximum value of the quantum potential is obtained at q = ⟨q̂⟩.
This is where the Gaussian position distribution ρ(q) also peaks. Moreover, Qmax. = 2⟨Q⟩. This
was found “interesting” without further explanation in [88] in which the quantum potential and
its mean are obtained for the Gaussian states. In fact, Q in eq. (106) signals an object which is
expanded around its maximum value. In classical thermodynamics, such extensions are usually
introduced to study fluctuations of thermodynamic variables at equilibrium [89].

Let us now calculate the variance of the quantum potential,
〈
(∆Q)

2
〉
=

〈
(Q− ⟨Q⟩)2

〉
around

its maximum value, i.e.,〈
(∆Q)

2
〉

=

〈(
dQ

dq

∣∣∣
q=⟨q̂⟩

(q− ⟨q̂⟩) + d2Q

dq2

∣∣∣
q=⟨q̂⟩

(q− ⟨q̂⟩)2
)2

〉
=

(
s−2cs−2

)
ij

(
s−2cs−2

)
kn

〈
(q− ⟨q̂⟩)i (q− ⟨q̂⟩)j (q− ⟨q̂⟩)k (q− ⟨q̂⟩)n

〉
=

ℏ2

4

(
s−2cs−2

)
ij

(
s−2cs−2

)
kn

(
s2ijs

2
kn + s2iks

2
jn + s2ins

2
jk

)
= k2B

(
[TrT ]

2
+ 2TrT 2

)
= 3k2BT2 − 4k2B

∑
i<j

λiλj . (110)

Here, the second line follows from the fact that the first order fluctuation term vanishes at
q = ⟨q̂⟩. The third line follows from the fact that the higher order moments of a Gaussian
distribution can be written as a function of the variance due to the Isserlis Theorem [90]. Here,
the variance in question is σqq = ℏ

2 s
2. The last line follows from the temperature matrix

given in eq. (102) with λi being its eigenvalues. The variance of quantum potential is thus
proportional to the square of the temperature similar to the mean–square fluctuation of the
energy in classical thermodynamics. Thus, we suggest that Q involves both the kinetic internal
energy at equilibrium and the fluctuations around it.
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On the other hand, it is also known that for a system in thermodynamic equilibrium, a virial
relation is satisfied if the system concurrently satisfies a hydrodynamic equilibrium. We based
our thermodynamic equilibrium on the invariance of our phase space entropy. In addition, our
system satisfies a hydrodynamic equilibrium due to the probability distributions satisfying the
Fokker–Plank equations as given in Section (3.2.3). Note that the standard virial relation in
quantum mechanics has two typical derivations: (i) the commutator proof which makes use of
the invariance of the infinitesimal generator i (q̂p̂+ p̂q̂) /2 and is found in many textbooks (cf.
[91]) that goes back to Finkelstein [92]; (ii) the proof which makes use of the group of dilatations
that was first given by Fock [93]. In the literature, the problems regarding both of these methods
have been investigated in many studies and alternative derivations have been proposed [94, 95,
96, 97, 98]. Our aim here, on the other hand, is to suggest a coarse–grained version of the virial
relation applicable for the statistical hydrodynamic interpretation we presented here.

Consider the quadratic system we have that is in thermodynamic equilibrium with its sur-
roundings. Accordingly, we define a quantum virial relation as

2Ukin. = −Upot. := −⟨(q− ⟨q̂⟩)⊺ F ⟩ , (111)

where F = ∇qQ is the quantum force. Equation (111) is different from its standard analogue in
the sense that it represents an effective system. For example, the temperature and thus the Ukin.

term exist solely due to the conditional variance of the momenta. We must also add that the
virial relation above incorporates solely the quantum effects by considering a potential energy
term derived from the quantum potential only. One could in principle consider a more generic
form of this virial relation which incorporates a classical kinetic energy and a classical potential
in addition to their pure quantum analogues. We believe that for such an investigation one
should consider a mixed quantum–classical phase space formalism, for example, as in [99].

While closing this section we should emphasise that up until now we investigated the energy
coarse–grained over momenta. In order to obtain the internal energy coarse–grained over the
entire phase space, one needs to consider the expectation value of the Hamiltonian operator
obtained through the joint phase space distribution. Then, we obtain a phase space internal
energy as

U(q,p) := ⟨Ĥ⟩ = H (⟨q̂⟩, ⟨p̂⟩, t) + Ukin. +
ℏ
4
Tr

(
as2

)
− ℏ

4
Tr

(
2bgs2 − cgs2g

)
. (112)

Here, again, the first term on the r.h.s is the classical contribution to the energy regarding the
Hamiltonian functional that inputs the phase space average of the positions and momenta. The
second term is the quantum kinetic internal energy on account of the variance of the conditional
momenta. Recall that if the shearing/lensing matrix, g, is zero, then ⟨p̂⟩(p|q) = ⟨p̂⟩. In that
case, the only term that differentiates the global energy, U(q,p), from a conditionally averaged
local one, U(p|q), is the third term, ℏTr

(
as2

)
/4, that is the energy contribution coming from the

variance of positions. This term has no analogue in classical theory as one assumes no variance
in classical positions in general, at least theoretically.

3.3.4. Relationship between the kinetic internal energy and the Maslov index
A more profound observation is the relationship of the conditional kinetic internal energy,

Ukin., to the Maslov index. The latter, denoted by µ, is an (half)–integer valued map that is
usually associated with the closed loops of the Lagrangian subspaces of a symplectic vector space
[100]. It is also interpreted as a topological invariant which gives the winding number for periodic
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systems [101]. For example, for a harmonic oscillator in 1-dimension,∮
pdq = EnT = 2πℏ

(
n+

µ

4

)
, (113)

where En is the energy of the nth energy level and T is the period of the oscillations, µ takes
the value of 2.

Here, we will refer to an extended definition of the Maslov’s formula for generic symplectic
paths defined by linear symplectomorphisms [102, 103, 104]. In that case the symplectic phase
space transformation matrix of the system is also periodic. Suppose that there exists a 2n× 2n
matrix f(u) which is both orthogonal and symplectic. Then f(u) has an n–dimensional unitary
representation, u = x+ iy, with real x and y, i.e., u(n) ∼ Sp(2n) ∩ O(2n). One then defines a
Lagrangian subspace, Λ ∈ L (n), via

Λ = Im

(
x
y

)
. (114)

Now consider a loop Λ(t) = Λ(t + T ) ∈ L (n), where T = 1 is the normalized period of the
system. Then a Maslov index can be defined for this loop as [104]

µ = α(1)− α(0), (115)

where

eiπα(t) = detC [u(t)] , u(t) = (x(t) + iy(t)) , Λ(t) = Im

(
x(t)
y(t)

)
, ∀ t ∈ R. (116)

Thus, for a periodic linear system whose phase space transformations are governed by an or-
thogonal symplectic matrix, f(u), it is the change in the argument of the determinant of the
corresponding unitary matrix, u, that defines the Maslov index.

In this paper, we consider systems that are not necessarily periodic in general. Therefore,
the evolution of the expectation values of the position and momentum operators are governed
by those symplectic matrices which are not necessarily orthogonal and periodic. In general, the
energy is not a constant of time that can directly be related to the Maslov index. However, recall
that in Section (2.2), we applied an Iwasawa factorization, eq. (24), to the governing symplectic
matrix, S. Its fractional Fourier transformer component is an orthogonal symplectic matrix
and denoted by f(u). This matrix is the portion responsible for the generic rotations in phase
space which are not necessarily around closed loops. Note that the matrix f(u) has a unitary
representation, u. Then, α(t) = arg (detu) manifested itself in the phase function, S , in eq.(53),
when we derived the generic squeezed coherent state wave function in its polar form. Later on,
in Section (3.1.3), we provided a consistency check which seemed redundant earlier on. Namely,
we showed that in order for the squeezed coherent state wave function obtained from a Wigner
distribution to uniquely match a wave function which is obtained through the action of the
metaplectic operators on a ground state (and which preserves its form as in eq. (61) throughout
the evolution), the condition dα(t)/dt = Tr

(
cs−2

)
has to be satisfied. Subsequently, the rate

of change of the argument of the unitary matrix u is Tr
(
cs−2

)
which is defined in a similar

fashion as the original Maslov index given in eq. (115). Then, even though the system is not
necessarily periodic, the change in α is a measure of the kinetic internal energy of the system,
Ukin. = ℏTr

(
cs−2

)
/4. This means that the generic phase space rotations, i.e., fractional Fourier

transformations, are directly related to the quantum energy content of the semiclassical systems
in any case.
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4. Summary and conclusion

Squeezed coherent states are mostly relevant for semi–classical physics or for systems whose
Hamiltonian is in quadratic order with respect to the phase space coordinates. In our investi-
gation, we studied squeezed coherent states in n–dimensions which are more generic than the
standard ones. Those states can be exactly defined for systems with time dependent Hamiltoni-
ans. Moreover, the minimum uncertainty principle still holds at all times, without the uncertainty
in positions and in momenta being necessarily equal.

Within different interpretations of quantum mechanics, we chose to analyze the squeezed
coherent states within a hydrodynamic interpretation which allowed us to investigate the system
thermodynamically. While doing that we placed the Wigner–Moyal–Weyl correspondence at the
core of our construction as in [5] where Littlejohn investigates the squeezed coherent states in
detail. Eventually, we outlined a wide perspective by providing various links between the classical
and the quantum mechanical paths in addition to highlighting certain statistical concepts that
are mostly relevant for our hydrodynamic and thermodynamic analysis. We summarize those
conceptual links schematically in FIG (1).

It is known that dynamics of a linear classical system is represented by linear symplectic
transformations in a classical phase space. Such a system is driven by a quadratic Hamiltonian
whose quantum analogue is also a quadratic function of position and momentum operators. In
[5], Littlejohn derives the exact Gaussian form of the wave function of the squeezed coherent
states by making use of: (i) the Weyl–Heisenberg operators which translate a state in the phase
space (ii) the correspondance between the symplectic group and the metaplectic operators, the
latter of which provide the spreading of the wave function.

In order to investigate the squeezed coherent states within the hydrodynamic interpretation,
we started by decomposing the corresponding wave function into its polar form as in the de
Broglie–Madelung–Bohm approach. In the mean time, a phase space probability distribution
was obtained via the Wigner function as in [5]. Note that as our wave function in question is
Gaussian, the associated Wigner function is non–negative and also Gaussian. This allows it to
be a proper candidate for a phase space distribution function.

Next, we started the thermodynamic analysis by defining a Shannon entropy via the Wigner
function. For the case of the squeezed coherent states, this phase space Wigner entropy is a
constant of time. Indeed, it taking a minimum value is consistent with the minimum of the
Schrödinger–Robinson uncertainty being satisfied by the squeezed coherent states. This is why
we claimed that the system in question is in a dynamic thermodynamic equilibrium.

Further thermodynamic analysis was slightly more involved as it requires one to incorporate
the statistical concepts with the quantum mechanical measurement process. For example, the hy-
drodynamic interpretation we followed was derived within the position representation. Momenta
of the particles, on the other hand, are identified once the positions are selected. Therefore, if
we would like to decompose a phase space distribution function into its portions involving the
information about the positions and the momenta, we need to acknowledge the fact that the mo-
menta are post–selected. Indeed, this fact was realized even in the early times of the statistical
interpretation of quantum mechanics by Moyal [26] and by Takabayasi [24].

Therefore, we treated the phase space distribution function associated with the squeezed
coherent states as a joint distribution and decomposed it into two portions: (i) a marginal dis-
tribution for positions which is equal to the squared real amplitude of the wave function; (ii) a
conditional distribution for momenta which are conditioned on positions. Note that our distri-
bution functions are in Gaussian form and they all satisfy the Fokker–Planck equation exactly
which we also discussed in detail. Moreover, we showed that the conditionally averaged mo-
mentum is equal to the so–called Bohm’s momentum whose physical interpretation is still under
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Figure 1: The conceptual relations relevant for the hydrodynamic interpretation of the generic squeezed coherent
states outlined in this work.
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debate. According to the hydrodynamic interpretation, Bohm’s momentum reflects the stream-
line momentum of the particles that constitute the system. It being equal to the conditionally
averaged momentum also shows that it is an effective object. This was also realized in certain
other studies [38] and its relation to the weak measurements of Aharonov et al. [72] has been
established before [32, 76, 77].

Next, we returned back to the thermodynamic analysis via decomposing the phase space en-
tropy into two portions by making use of: (i) the missing information contained in the positions
which is obtained through the Shannon entropy of the marginal distribution; (ii) the missing
information contained in the post–selected momenta which is obtained through the Shannon
entropy of the conditional distribution of momenta. This is indeed analogous to the decomposi-
tion of the classical part of the Sackur–Tetrode entropy of the kinetic theory as discussed in the
relevant section.

After defining the probability distributions and their associated entropies, we followed Sonego’s
work [38] in order to define a quantum pressure and a quantum temperature for the squeezed
coherent states. Those satisfy an equation of state as in the classical kinetic theory. In the
classical case, temperature is defined via the variance of the momentum which is sourced by the
peculiar velocities of the particles with respect to the ensemble. Here, we explicitly showed that
the quantum temperature is defined via the variance of the conditional momentum distribution
in a similar fashion. This allowed us to rewrite our conditional distribution in a Maxwellian
manner as in the Maxwell–Boltzmann distribution of the classical kinetic theory.

We further associated a conditional internal energy to our system in equilibrium. This con-
ditional energy includes a contribution coming from the classical Hamiltonian which is modified
by the conditionally averaged momenta and a portion that includes the quantum temperature
term as in the form of the internal energy of the classical kinetic theory. Later on, we demon-
strated the relationship of this kinetic internal energy term with the quantum potential of the de
Broglie–Madelung–Bohm theory. According to us, the quantum potential includes the internal
kinetic energy and its fluctuations around it at equilibrium. Accordingly, it is the expectation
value of the quantum potential that gives the internal kinetic energy of the system. Eventually,
we suggested a conditional virial relation that associates the kinetic internal energy of the system
with a potential energy term sourced solely by the quantum potential.

In brief, our outcome is a quantum kinetic theory associated with n–dimensional squeezed
coherent states in which the underlying thermodynamics is time dependent. This is unlike other
works in the literature where the main idea behind the construction of quantum thermodynamics
is usually adopted from the standard classical thermodynamics. Namely, the system is assumed
to relax to an equilibrium in time and the energy of the system is kept constant throughout the
evolution. Seemingly, the lack of time dependent quantum thermodynamic investigations follows
from the lack of a time dependent equilibrium classical thermodynamics formalism constructed
on a symplectic phase space.

Certain delicate issues also caught our attention throughout our investigation. The first one
follows from the Iwasawa factorization of the symplectic transformation matrix of the underlying
classical system. This factorization essentially allows one to identify the lensing/shearing, pure
magnification and the rotation–like portions of the phase space transformations. For the squeezed
coherent states, those sub–transformations play essential roles in the quantum picture. For
example, the square of the magnifications in classical positions manifests itself as a quantum
variance of the position uncertainty. Likewise, the square of the demagnification in classical
momenta manifests itself as the quantum variance of the conditional momentum uncertainty.
The matrix that is responsible for a shearing effect in the classical phase space also appears in
the phase space covariance matrix. In addition, it is this shearing term that differentiates the
conditionally averaged momenta from the phase space averaged ones. Recall that the former are
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equal to the real part of the weak measurements of momenta. To be more specific, when the
underlying classical trajectory has zero shearing effect, the conditionally averaged momenta, or
Bohm’s momenta, are equal to the phase space expectation values of the momentum operator.
Then, the covariance matrix takes a block diagonal form and one satisfies an exact Heisenberg
uncertainty.

On the other hand, unlike the shears and the magnifications, it is the classical rotation–like
transformation that manifests itself in the quantum kinetic internal energy of the system. To be
more specific, there exists a unitary matrix representation of the fractional Fourier transformer
part of the symplectic matrix that guides the classical evolution. It is the time rate of change of
the argument of the determinant of this unitary matrix which tell us about the quantum kinetic
energy content of a system. This is similar to the definition of the Maslov index characterized
for the symplectic paths, which also contributes to the energy content of a system with periodic
orbits.

As we indicated before, we considered only the squeezed coherent states of a linear system
here. If we were to include the thermal states to our investigation, then we could still define a
Gaussian Wigner function and a phase space probability distribution. However, in that case, the
Wigner matrix in question would not be a symplectic matrix and its evolution in phase space
would not be so trivial (cf. [37]). This would result in a Shannon entropy of the phase space
distribution which is not a constant of time, meaning the system would not be at its equilibrium.
We believe this is a good point to start investigating the non–equilibrium thermodynamics of
linear systems. In that case, the definition of the Wigner ellipsoid, the corresponding information
entropy and the Mahalanobis distance of statistics [105] seem to be interconnected. We leave
these issues for our future project.

Finally, in this work, we stayed within the linear regime only. Even though this can be
seen somewhat restrictive, it is still relevant for certain application areas within the fields of
quantum thermodynamics and quantum engines. Note that our results are directly relevant for
experimental testing thanks to the developments in symplectic and optical tomography. The main
idea behind tomographic methods is to reconstruct the classical and/or quantum phase space
probability distributions via direct measurements. Even though those methods were initially
formulated for somewhat restricted cases [106, 107, 108, 109], recent studies seem to be promising
in terms of providing wider application areas [110, 111, 112, 54]. We suggest that tomography
techniques, combined with the construction presented here, can in principle be used to analyse
systems within a time dependent thermodynamic setting. Specifically, our results might find
some area of use within the quantum optomechanical problems as in [113, 114, 115, 116, 117, 118]
where stability and efficiency issues are open problems for time dependent systems.
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Appendix A. Littlejohn’s derivation of squeezed coherent states

In [5], Littlejohn defines a translation operator, T̂ , that is given within the Weyl–Heisenberg
algebra. This operator is responsible for translating a given object. For instance, translation of
ẑ by an amount z′ is given by

T̂ † (z′ ) ẑ T̂ (z′) = ẑ+ z′, (A.1)

such that

⟨Ψ| T̂ † (z′) ẑ T̂ (z′) |Ψ⟩ = z+ z′. (A.2)

Formally, they are defined as

T̂ (z′) = exp

(
i

ℏ
ω̂ [ẑ, z′]

)
= exp

(
− i

ℏ
(p′ · q̂− q′ · p̂)

)
, (A.3)

where the operator ω̂ [ẑ, z′] acts as a quantum counterpart of the symplectic two–form ω (z, z′)
given in eq. (13). The operator T̂ is unitary and it satisfies

T̂−1 (z′) = T̂ (−z′) = T̂ † (z′) . (A.4)

However, its product rule follows as

T̂ (z) T̂ (z′) = exp

(
i

2ℏ
ω (z, z′)

)
T̂ (z+ z′) ,

(A.5)

and thus those operators do not form a group due to the phase factor. Nevertheless, they can
be used to generate a propagator that evolves the quantum expectation values on the classical
trajectory.

Imagine segmenting the classical trajectory into N straight pieces with a corresponding trans-
lation operator for each segment. By (i) making use of their products, i.e.,

T̂ (zN − zN−1) ... T̂ (z2 − z1) T̂ (z1 − z0) ,

(A.6)

(ii) using the product rule in eq. (A.5), and (iii) considering the antisymmetry of the symplectic
two–form, one can obtain a propagator corresponding to T̂ as [5],

ÛT̂ (t) = exp

(
− i

2ℏ

∫ t

0

ω (z, ż) dt

)
T̂ (z(t)) T̂ † (z0) ,

(A.7)

in the limit N → ∞ and zN = z(t). Here, the overdot denotes the standard total derivative with
respect to time parameter. Note that the propagator ÛT̂ (t) takes a Gaussian coherent state to
another Gaussian coherent state with a different expectation value. It does not take care of the
spreading of the wave function which is accommodated by the squeezing of the wave packet. For
this, one introduces the metaplectic operators.

Within the set of all unitary automorphisms of L2 (Rn), the metaplectic group Mp (2n,R) is
the subgroup generated by the quadratic Fourier transforms. One can show that there exists a
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continuous group epimorphism, a projection map, π : Mp → Sp that is the two–fold covering
of the symplectic group [103, 65]. This means that for every symplectomorphism, i.e., a linear
canonical transformation here, there exist two associated metaplectic unitary operators that
differ by a sign. Then, only after specifying a symplectic matrix, S, and a choice of a sign,
σ = ±1, one can associate a metaplectic operator, M̂(S, σ), that forms a group. In general, a
metaplectic operator satisfies

M̂(S1)M̂(S2) = ±M̂(S1S2), (A.8)
M̂−1(S) = M̂†(S) = ±M̂(S−1). (A.9)

For our quadratic system, they propagate ẑ as the classical phase space vectors propagate, i.e.,

M̂†(S)ẑM̂(S) = Sẑ. (A.10)

Given a metaplectic operator associated with the symplectic matrix S, there exists a correspond-
ing unitary operator ÛM̂ . In fact, this operator has been rediscovered by researchers in different
fields many times and can be represented in the position space as

ÛM̂ (q, q̃) = ⟨q̂(q)| M̂ |q̂(q̃)⟩

=
σ

(2iπℏ)n/2
√
|detB|

exp

[
i

2ℏ
(
q⊺DB−1q− 2q̃⊺B−1q+ q̃⊺B−1Aq̃

)]
, (A.11)

so that this unitary operator acts as a propagator for the wave function in position represen-
tation, i.e.,

ψ (q) =

∫
dq̃ ÛM̂ (q, q̃)ψ′ (q̃) , (A.12)

where the integral is taken from −∞ to +∞ as in other integrals that appear without indicated
limits in this work. In order to understand the effect of metaplectic operators acting on translated
states one uses the property

M̂†(S)T̂ (z′) M̂(S) = T̂
(
S−1z′

)
, (A.13)

which is paramount for the investigation of the squeezed coherent states.
From now on, let |0⟩ represent the ground state of a coherent state with ⟨0 |ẑ|0⟩ = 0. Also

consider a coherent state |z⟩ with expectation value ⟨ẑ⟩ by keeping in mind that |z⟩ = T̂ (z) |0⟩.
Then, the combined effect of the metaplectic and the Weyl–Heisenberg operators on a coherent
ground state is given by

M̂ (S) T̂ (z) |0⟩ = T̂ (Sz) M̂(S) |0⟩
= M̂(S) |z⟩ . (A.14)

Next, it can be shown that there exists a well defined unitary operator in L2 (Rn) that propagates
an initial state |z0⟩ by

Û (t, z0) = exp

(
iγ(t)

ℏ

)
T̂ (z(t)) M̂ (S(t)) T̂ † (z0) .

(A.15)

The propagator Û (t, z0) accommodates the action of both the metaplectic and the translation

33



operators such that

|ψ⟩ = Û (t, z0) |ψ0⟩ , (A.16)

for an arbitrary initial state |ψ0⟩. Here,

γ (t) =
1

2

∫ t

0

dt [pq̇− qṗ− 2H (z, t)] (A.17)

is a phase factor that does not necessarily appear in all of the coherent state propagators in the
literature. As we follow Littlejohn’s argument in [5] we choose to include this phase factor so
that the definition of translation operators can be extended to have a group property.

It is now easy to show that the unitary operator, A.15, satisfies the Schrödinger equation 28.
It can be used to derive the squeezed coherent state wave function, eq. (31), from the ground
state wave function, eq. (30), as explained in Section (2.3).

Appendix B. Classical and quantum invariants in relation to the Wigner function

Consider a Hamiltonian operator for a harmonic oscillator with a unit mass and time depen-
dent frequency, Ω(t), in 1–dimension as

Ĥ (q̂, p̂; t) =
1

2
p̂2 + [Ω(t)]2q̂2. (B.1)

Lewis [28] and Lewis&Riesenfeld [29] define a dynamic invariant operator, Î = Î(t), such that

˙̂
I =

dÎ

dt
=
∂Î

∂t
+

1

iℏ
[Î , Ĥ]. (B.2)

This invariant operator is given by [28, 29]

Î =
1

2

(
λ
q̂2

ζ2
+
[
ζp̂− ζ̇ q̂

]2)
(B.3)

provided that the complex variable ζ = ζ(t) satisfies the Ermakov equation

ζ̈ + [Ω(t)]2ζ =
λ

ζ3
, (B.4)

where λ is a constant.
In [37], Yeh shows that a generalized Lewis–Riesenfeld invariant operator can be defined

for a time dependent quadratic Hamiltonian following the Weyl correspondence of the Wigner
ellipsoid. Let us consider a system associated with Gaussian states. Then, there exists a classical
invariant

I =
1

2
(z− ⟨ẑ⟩)⊺ .W. (z− ⟨ẑ⟩) , (B.5)

associated with the system that has a corresponding quantum invariant operator

Î =
1

2
(ẑ− ⟨ẑ⟩)⊺ .W. (ẑ− ⟨ẑ⟩) , (B.6)

which satisfies dÎ/dt = 0 as in eq. (B.2). This follows from the fact that not only the classical
phase space coordinates and momenta but also their quantum correspondences evolve via linear
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symplectomorphisms for quadratic Hamiltonians. Then, the time evolution of ẑ(t) = Sẑ(0) and
⟨ẑ⟩ (t) = S ⟨ẑ⟩ (0) cancels the time evolution of the Wigner matrix, W(t) = S−⊺W(0)S−1, in
the operator Î above. Indeed, one can conclude that for the squeezed coherent states of the
quadratic Hamiltonians, invariance of the generalized Lewis–Riesenfeld operator follows from
the correspondance between the invariant Wigner ellipsoid and the density operator [37].

Note that there exist certain other generalizations of the Lewis–Riesenfeld invariant method.
For example, in [119, 120, 121, 122], the authors make use of the Green function method in order
to identify invariant integrals of motion. Those are sometimes referred to as the Malkin–Man’ko
invariants in the literature. In others, connections to Feynmann propagators [123] and classical
and quantum equations of motions have been found [124]. We believe, those generalizations can
help one to identify the invariants of more generic quantum systems in the future in relation to
phase space techniques [125] and symplectic transformations.

References

[1] E. Schrödinger, Der stetige Ubergang von der Mikro-zur Makromechanik, Naturwiss. 14
(1926) 664–666.

[2] R. J. Glauber, Coherent and incoherent states of the radiation field, Phys. Rev. 131 (1963)
2766–2788.

[3] R. J. Glauber, The Quantum theory of optical coherence, Phys. Rev. 130 (1963) 2529–2539.

[4] A. M. Perelomov, A. M. Perelomov, Generalized Coherent States and Their Applications,
Springer-Verlag, Berlin Heidelberg, 1986.

[5] R. G. Littlejohn, The Semiclassical Evolution of Wave Packets, Phys. Rept. 138 (1986)
193.

[6] G. Folland, Harmonic Analysis in Phase Space, Princeton University Press, New Jersey,
1989.

[7] C. M. Caves, Quantum-mechanical noise in an interferometer, Phys. Rev. D 23 (1981)
1693–1708.

[8] D. F. Walls, Squeezed states of light, Nature 306 (5939) (1983) 141–146.

[9] L.-A. Wu, M. Xiao, H. J. Kimble, Squeezed states of light from an optical parametric
oscillator, J. Opt. Soc. Am. B 4 (10) (1987) 1465–1475.

[10] H.-H. Ritze, A. Bandilla, Squeezing and first-order coherence, J. Opt. Soc. Am. B 4 (10)
(1987) 1641–1644.

[11] M. Tse et al., Ligo-Collaboration, Quantum-enhanced advanced ligo detectors in the era
of gravitational-wave astronomy, Phys. Rev. Lett. 123 (2019) 231107.

[12] F. Acernese et al., Virgo-Collaboration, Increasing the astrophysical reach of the advanced
virgo detector via the application of squeezed vacuum states of light, Phys. Rev. Lett. 123
(2019) 231108.

[13] J. Lough et al., GEO600-Collaboration, First demonstration of 6 db quantum noise re-
duction in a kilometer scale gravitational wave observatory, Phys. Rev. Lett. 126 (2021)
041102.

35



[14] T. Li, F. Li, C. Altuzarra, A. Classen, G. S. Agarwal, Squeezed light induced two-photon
absorption fluorescence of fluorescein biomarkers, Appl. Phys. Lett. 116 (25) (2020) 254001.

[15] B. Lawrie, R. Pooser, P. Maksymovych, Squeezing noise in microscopy with quantum light,
Trends Chem. 2 (8) (2020) 683–686.

[16] L. P. Grishchuk, Y. V. Sidorov, Squeezed quantum states of relic gravitons and primordial
density fluctuations, Phys. Rev. D 42 (1990) 3413–3421.

[17] A. Albrecht, P. Ferreira, M. Joyce, T. Prokopec, Inflation and squeezed quantum states,
Phys. Rev. D 50 (1994) 4807–4820.

[18] J. Martin, V. Vennin, P. Peter, Cosmological Inflation and the Quantum Measurement
Problem, Phys. Rev. D 86 (2012) 103524.

[19] D. Bohm, A suggested interpretation of the quantum theory in terms of “hidden" variables.
i, Phys. Rev. 85 (1952) 166–179.

[20] D. Bohm, A suggested interpretation of the quantum theory in terms of “hidden" variables.
ii, Phys. Rev. 85 (1952) 180–193.

[21] L. de Broglie, Recherches sur la théorie des quanta, Ann. Phys. 10 (3) (1925) 22–128.

[22] L. de Broglie, La mécanique ondulatoire et la structure atomique de la matière et du
rayonnement, J. Phys. Rad. 8 (5) (1927) 225–241.

[23] E. Madelung, Quantentheorie in hydrodynamischer Form, Z. Phys. 40 (3–4) (1927) 322–
326.

[24] T. Takabayasi, The Formulation of Quantum Mechanics in terms of Ensemble in Phase
Space, Prog. Theor. Phys. 11 (4-5) (1954) 341–373.

[25] E. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40
(1932) 749–759.

[26] J. E. Moyal, Quantum mechanics as a statistical theory, Math. Proc. Cambridge Phil. Soc.
45 (1) (1949) 99–124.

[27] B. J. Hiley, On the relationship between the Wigner–Moyal approach and the quantum
operator algebra of Von Neumann, J. Comput. Electron. 14 (4) (2015) 869–878.

[28] H. R. Lewis, Classical and quantum systems with time-dependent harmonic-oscillator-type
hamiltonians, Phys. Rev. Lett. 18 (1967) 510–512.

[29] J. Lewis, H. R., W. B. Riesenfeld, An Exact Quantum Theory of the Time-Dependent
Harmonic Oscillator and of a Charged Particle in a Time-Dependent Electromagnetic Field,
J. Math. Phys. 10 (8) (1969) 1458–1473.

[30] B. J. Hiley, Beyond the Quantum, World Scientific Publishing, Singapore, 2006, Ch.
Phase Space Description of Quantum Mechanics and Non–Commutative Geometry:
Wigner–Moyal and Bohm in a Wider Context, pp. 203–211.

[31] B. J. Hiley, On the Relationship Between the Wigner–Moyal and Bohm Approaches to
Quantum Mechanics: A Step to a More General Theory?, Found. Phys. 40 (2010) 356–
367.

36



[32] B. J. Hiley, Weak values: Approach through the clifford and moyal algebras, J. Phys.:
Conf. Ser. 361 (2012) 012014.

[33] E. Colomés, Z. Zhan, X. Oriols, Comparing wigner, husimi and bohmian distributions:
which one is a true probability distribution in phase space?, J. Comput. Electron. 14 (4)
(2015) 894–906.

[34] A. Barut, M. Bozic, The quantum potential and causal trajectories for stationary states
and for coherent states, Ann. Fond. Louis de Broglie 15 (1) (1990) 67–90.

[35] S. Dey, A. Fring, Bohmian quantum trajectories from coherent states, Phys. Rev. A 88
(2013) 022116.

[36] D. Dürr, S. Römer, On the classical limit of bohmian mechanics for hagedorn wave packets,
J. Funct. Anal. 259 (9) (2010) 2404 – 2423.

[37] L. Yeh, Ermakov–lewis invariant from the wigner function of a squeezed coherent state,
Phys. Rev. A 47 (1993) 3587–3592.

[38] S. Sonego, Interpretation of the hydrodynamical formalism of quantum mechanics,
Found. Phys. 21 (10) (1991) 1135–1181.

[39] G. Grössing, On the thermodynamic origin of the quantum potential, Phys. A:
Stat. Mech. Appl. 388 (6) (2009) 811 – 823.

[40] G. Dennis, M. A. de Gosson, B. J. Hiley, Bohm’s quantum potential as an internal energy,
Phys. Lett. A 379 (18) (2015) 1224–1227.

[41] D. Bohm, B. J. Hiley, Measurement understood through the quantum potential approach,
Found. Phys. 14 (3) (1984) 255–274.

[42] D. Bohm, B. Hiley, The undivided universe: an ontological interpretation of quantum
theory, Routledge, London, 1995.

[43] P. González-Díaz, A. Rozas-Fernández, Applied Bohmian Mechanics, CRC Press, Boca
Raton, 2012, Ch. Subquantum Accelerating Universe, pp. 507–560.

[44] K. Iwasawa, On Some Types of Topological Groups, Ann. Math. 50 (3) (1949) 507.

[45] Arvind, B. Dutta, N. Mukunda, R. Simon, The real symplectic groups in quantum me-
chanics and optics, Pramana 45 (6) (1995) 471–497.

[46] K. B. Wolf, Geometric Optics on Phase Space, Springer, Berlin Heidelberg, 2004.

[47] M. J. Bastiaans, Wigner distribution function and its application to first-order optics, J.
Opt. Soc. Am. 69 (12) (1979) 1710–1716.

[48] M. D. Gosson, Symplectic coarse-grained dynamics: Chalkboard motion in classical and
quantum mechanics, arXiv: 1901.06554 (2019).

[49] K. Husimi, Some formal properties of the density matrix, Proc. Phys. Math. Soc. Jpn.
22 (4) (1940) 264–314.

[50] M. Combescure, D. Robert, Coherent States and Applications in Mathematical Physics,
Springer, Dordrecht, 2012.

37



[51] R. J. Glauber, Coherent and incoherent states of the radiation field, Phys. Rev. 131 (1963)
2766–2788.

[52] E. C. G. Sudarshan, Equivalence of semiclassical and quantum mechanical descriptions of
statistical light beams, Phys. Rev. Lett. 10 (1963) 277–279.

[53] T. Kiesel, Classical and quantum-mechanical phase-space distributions, Phys. Rev. A 87
(2013) 062114.

[54] O. V. Man’ko, V. I. Man’ko, Probability representation of quantum states, Entropy 23 (5)
(2021).

[55] J. P. Santos, G. T. Landi, M. Paternostro, Wigner entropy production rate, Phys. Rev.
Lett. 118 (2017) 220601.

[56] M. Brunelli, L. Fusco, R. Landig, W. Wieczorek, J. Hoelscher-Obermaier, G. Landi, F. L.
Semião, A. Ferraro, N. Kiesel, T. Donner, Experimental determination of irreversible en-
tropy production in out-of-equilibrium mesoscopic quantum systems, Phys. Rev. Lett. 121
(2018) 160604.

[57] W. T. B. Malouf, J. P. Santos, L. A. Correa, M. Paternostro, G. T. Landi, Wigner entropy
production and heat transport in linear quantum lattices, Phys. Rev. A 99 (2019) 052104.

[58] A. Belenchia, L. Mancino, G. T. Landi, M. Paternostro, Entropy production in continuously
measured Gaussian quantum systems, Npj Quantum Inf. 6 (2020) 97.

[59] G. Adesso, D. Girolami, A. Serafini, Measuring gaussian quantum information and corre-
lations using the rényi entropy of order 2, Phys. Rev. Lett. 109 (2012) 190502.

[60] I. Białynicki-Birula, J. Mycielski, Uncertainty relations for information entropy in wave
mechanics, Commun. Math. Phys. 44 (2) (1975) 129–132.

[61] I. Bialynicki-Birula, Ł. Rudnicki, Entropic Uncertainty Relations in Quantum Physics,
Springer, Dordrecht, 2011, Ch. 1, pp. 1–34.

[62] M. A. de Gosson, The Symplectic Camel and the Uncertainty Principle: The Tip of an
Iceberg?, Found. Phys. 39 (2) (2009) 194–214.

[63] N. C. Dias, M. A. de Gosson, J. N. Prata, A refinement of the robertson-schrödinger
uncertainty principle and a hirschman-shannon inequality for wigner distributions,
J. Fourier Anal. Appl. 25 (1) (2019) 210—241.

[64] V. V. Dodonov, E. V. Kurmyshev, V. I. Manko, Generalized uncertainty relation and
correlated coherent states, Phys. Lett. A 79 (1980) 150–152.

[65] M. A. de Gosson, Symplectic Geometry and Quantum Mechanics, Birkhäuser, Basel, 2006.

[66] M. A. de Gosson, F. Luef, Symplectic capacities and the geometry of uncertainty: The
irruption of symplectic topology in classical and quantum mechanics, Phys. Rep. 484 (5)
(2009) 131–179.

[67] M. A. de Gosson, Quantum Blobs, Found. Phys. 43 (4) (2013) 440–457.

[68] M. A. de Gosson, The symplectic egg in classical and quantum mechanics, Am. J. Phys.
81 (5) (2013) 328–337.

38



[69] M. Gromov, Pseudo holomorphic curves in symplectic manifolds., Invent. Math. 82 (1985)
307–348.

[70] E. Deotto, G. C. Ghirardi, Bohmian mechanics revisited, Found. Phys. 28 (1998) 1–30.

[71] H. M. Wiseman, Grounding Bohmian mechanics in weak values and bayesianism, New
J. Phys. 9 (6) (2007) 165.

[72] Y. Aharonov, D. Z. Albert, L. Vaidman, How the result of a measurement of a component
of the spin of a spin-1/2 particle can turn out to be 100, Phys. Rev. Lett. 60 (1988)
1351–1354.

[73] J. Dressel, S. Agarwal, A. N. Jordan, Contextual values of observables in quantum mea-
surements, Phys. Rev. Lett. 104 (2010) 240401.

[74] J. Dressel, A. N. Jordan, Contextual-value approach to the generalized measurement of
observables, Phys. Rev. A 85 (2012) 022123.

[75] J. Dressel, A. N. Jordan, Significance of the imaginary part of the weak value, Phys. Rev.
A 85 (2012) 012107.

[76] M. R. Feyereisen, How the Weak Variance of Momentum Can Turn Out to be Negative,
Found. Phys. 45 (5) (2015) 535–556.

[77] R. Flack, B. J. Hiley, Feynman paths and weak values, Entropy 20 (5) (2018).

[78] A. Einstein, Über die von der molekularkinetischen theorie der wärme geforderte bewegung
von in ruhenden flüssigkeiten suspendierten teilchen, Ann. Phys. 322 (8) (1905) 549–560.

[79] A. Einstein, Investigations on the Theory of the Brownian Movement, Dover Publications,
New York, 1956.

[80] D. Cahan, The collected papers of albert einstein. vol. 2, the swiss years: Writings, 1900–
1909. john stachel, editor. david c. cassidy, jürgen renn, and robert schulmann, associate
editors. princeton university press, princeton, nj, 1989., Science 248 (4957) (1990) 878–879.

[81] D. Bohm, B. J. Hiley, Non-locality and locality in the stochastic interpretation of quantum
mechanics, Phys. Rep. 172 (3) (1989) 93–122.

[82] T. Damour, O. Darrigol, V. Rivasseau, Einstein, 1905-2005: Poincaré Seminar 2005,
Birkhäuser, Basel, 2006.

[83] G. Ryskin, Simple procedure for correcting equations of evolution: Application to markov
processes, Phys. Rev. E 56 (1997) 5123–5127.

[84] O. Sackur, Die anwendung der kinetischen theorie der gase auf chemische probleme,
Ann. Phys. 341 (15) (1911) 958–980.

[85] H. Tetrode, Berichtigung zu meiner Arbeit: Die chemische Konstante der Gase und das
elementare Wirkungsquantum, Ann. Phys. 344 (11) (1912) 255–256.

[86] A. Ben-Naim, A Farewell to Entropy: Statistical Thermodynamics Based on Information,
World Scientific Publishing Company, Singapore, 2008.

[87] P. Holland, The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal
Interpretation of Quantum Mechanics, Cambridge University Press, Cambridge, 1995.

39



[88] F. Nicacio, F. T. Falciano, Mean Value of the Quantum Potential and Uncertainty Rela-
tions, Phys. Rev. A 101 (5) (2020) 052105.

[89] L. Landau, E. Lifshitz, Statistical Physics, Vol. 5, Pergamon Press, Oxford, 1980.

[90] L. Isserlis, On a formula for the product-moment coefficient of any order of a normal
frequency distribution in any number of variables, Biometrika 12 (1/2) (1918) 134–139.

[91] L. I. Schiff, Quantum Mechanics, McGraw Hill, New York, 1968.

[92] B. N. Finkelstein, Über virialsatz in der wellenmechanik, Z. Phys. 50 (3) (1928) 293–294.

[93] V. Fock, Bemerkung zum virialsatz, Z. Phys. 63 (11) (1930) 855–858.

[94] S. Albeverio, On bound states in the continuum of n-body systems and the virial theorem,
Ann. Phys. 71 (1) (1972) 167–276.

[95] E. Weislinger, G. Olivier, The classical and quantum mechanical virial theorem,
Int. J. Quantum Chem. 8 (S8) (1974) 389–401.

[96] H. Kalf, The virial theorem in relativistic quantum mechanics, J. Funct. Anal. 21 (4) (1976)
389–396.

[97] H. A. Gersch, Another derivation of the quantum virial theorem, Am. J. Phys. 47 (6)
(1979) 555–555.

[98] H. Leinfelder, On the virial theorem in quantum mechanics, Integr. Equ. Oper. Theory
4 (2) (1981) 226–244.

[99] I. Burghardt, Dynamics of coupled bohmian and phase-space variables: A moment ap-
proach to mixed quantum-classical dynamics, J. Chem. Phys. 122 (9) (2005) 094103.

[100] V. Maslov, V. Arnol’d, V. Buslaev, Théorie des perturbations et méthodes asymptotiques,
Dunod Gauthier–Villars, Paris, 1972.

[101] V. I. Arnold, Characteristic class entering in quantization conditions, Funct. Anal. Its Appl.
1 (1) (1967) 1–13.

[102] S. E. Cappell, R. Lee, E. Y. Miller, On the maslov index, Commun. Pure Appl. Math.
47 (2) (1994) 121–186.

[103] M. A. de Gosson, Maslov Classes, Metaplectic Representation and Lagrangian Quantiza-
tion, Wiley, Berlin, 1997.

[104] D. McDuff, D. Salamon, Introduction to Symplectic Topology, Oxford University Press,
Oxford, 1998.

[105] P. C. Mahalanobis, On the generalised distance in statistics, in: Proceedings of the National
Institute of Science of India, Vol. 12, 1936, pp. 49–55.

[106] J. Bertrand, P. Bertrand, A tomographic approach to wigner’s function, Found. Phys.
17 (4) (1987) 397–405.

[107] D. T. Smithey, M. Beck, M. G. Raymer, A. Faridani, Measurement of the wigner dis-
tribution and the density matrix of a light mode using optical homodyne tomography:
Application to squeezed states and the vacuum, Phys. Rev. Lett. 70 (1993) 1244–1247.

40



[108] G. M. D’Ariano, U. Leonhardt, H. Paul, Homodyne detection of the density matrix of the
radiation field, Phys. Rev. A 52 (1995) R1801–R1804.

[109] S. Mancini, V. I. Man’ko, P. Tombest, Classical-like description of quantum dynamics by
means of symplectic tomography, Found. Phys. 27 (6) (1997) 801–824.

[110] M. A. Man’ko, Quasidistributions, tomography, and fractional fourier transform in signal
analysis, J. Russ. Laser Res. 21 (5) (2000) 411–437.

[111] J. Healy, M. Kutay, H. Ozaktas, J. Sheridan, Linear Canonical Transforms: Theory and
Applications, Springer Series in Optical Sciences, Springer, New York, 2015.

[112] V. Man’ko, L. Markovich, Quantum tomography of time-dependent nonlinear hamiltonian
systems, Rep. Math. Phys. 83 (1) (2019) 87–106.

[113] K. Zhang, F. Bariani, P. Meystre, Theory of an optomechanical quantum heat engine,
Phys. Rev. A 90 (2014) 023819.

[114] J. Qian, A. A. Clerk, K. Hammerer, F. Marquardt, Quantum signatures of the optome-
chanical instability, Phys. Rev. Lett. 109 (2012) 253601.

[115] N. Lörch, J. Qian, A. Clerk, F. Marquardt, K. Hammerer, Laser theory for optomechanics:
Limit cycles in the quantum regime, Phys. Rev. X 4 (2014) 011015.

[116] C. Elouard, M. Richard, A. Auffèves, Reversible work extraction in a hybrid opto-
mechanical system, New J. Phys. 17 (5) (2015) 055018.

[117] N. E. Abari, G. V. D. Angelis, S. Zippilli, D. Vitali, An optomechanical heat engine with
feedback-controlled in-loop light, New J. Phys. 21 (9) (2019) 093051.

[118] J. S. Bennett, L. S. Madsen, H. Rubinsztein-Dunlop, W. P. Bowen, A quantum heat
machine from fast optomechanics, New J. Phys. 22 (10) (2020) 103028.

[119] I. Malkin, V. Man’ko, D. Trifonov, Invariants and the evolution of coherent states for a
charged particle in a time-dependent magnetic field, Phys. Lett. A 30 (7) (1969) 414.

[120] I. A. Malkin, V. I. Man’ko, D. A. Trifonov, Linear adiabatic invariants and coherent states,
J. Math. Phys. 14 (5) (1973) 576–582.

[121] V. V. Dodonov, I. A. Malkin, V. I. Man’ko, Integrals of the motion, green functions, and
coherent states of dynamical systems, Int. J. Theor. Phys. 14 (1) (1975) 37–54.

[122] V. Dodonov, V. Man’ko, Theory of Nonclassical States of Light, Taylor & Francis, London,
2003.

[123] A. K. Dhara, S. V. Lawande, Time-dependent invariants and the feynman propagator,
Phys. Rev. A 30 (1984) 560–567.

[124] M. C. Bertin, B. M. Pimentel, J. A. Ramirez, Construction of time-dependent dynamical
invariants: A new approach, J. Math. Phys. 53 (4) (2012) 042104.

[125] M. S. Abdalla, P. G. L. Leach, Wigner functions for time-dependent coupled linear oscil-
lators via linear and quadratic invariant processes, J. Phys. A 38 (4) (2005) 881–893.

41




