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Abstract. This note was written in 2016. Rejected from PKC 2017,
some of the ideas herein later developed into the Eurocrypt 2019 article
Efficient verifiable delay functions. Other ideas, such as the construction
of fading signatures, and a discussion on their (in)feasibility, never ap-
peared in public work. In light of the recent development of time-sensitive
cryptography, some of this content may have become of interest. The
reader may notice that the notion of proof of time or knowledge essen-
tially coincides with what is now known as a (trapdoor) verifiable delay
function.

This paper introduces proofs of time or knowledge, a new primitive in
the field of time-sensitive cryptography pioneered by Rivest, Shamir and
Wagner in 1996. A party, Alice, has a pair of secret and public keys. Given
a piece of data m, a proof of time or knowledge allows to generate a proof
p such that anyone can easily verify that either p has been generated by
Alice (i.e., she used her secret key), or the party who computed p spent
a prescribed amount ∆ of wall-clock time to compute p from m. Suppose
that a party, Bob, knows that the message m was not known by Alice
before a point in time t0. Then, Bob can infer that Alice computed the
proof p if, and only if, the point in time t0 +∆ has not been reached yet
(in this case, (m, p) has the same value as a signature of Alice on m).
After point in time t0 +∆ (or if no bound t0 is known), the pair (m, p)
is an indistinguishable proof of time or knowledge, since anyone could
have produced it.

1 Introduction

In 1996, Rivest, Shamir and Wagner [12] introduced the use of time-locks
for encrypting data that can be decrypted only in a predetermined time
in the future. This was the first time-sensitive cryptographic primitive
taking into account the parallel power of possible attackers. Other timed
primitives appeared in different contexts: Bellare and Goldwasser [2, 3]
suggested time capsules for key escrowing in order to counter the prob-
lem of early recovery. Boneh and Naor [4] introduced timed commitments:
a hiding and binding commitment scheme, which can be forced open by
a procedure of determined running time. Applications of timed commit-
ments include time capsule signatures: a signature that becomes valid only



a predetermined time after being released, or when the signer provides a
trapdoor. Time capsule signatures were later reintroduced by Dodis and
Yum [6] and subsequently enjoyed further attention [13, 8, 10]. The notion
of slow-timed hash (or sloth, a hash function which is slow to compute
but whose result is easy to verify) was introduced in [9] and was used to
provide trust to the generation of public random numbers. Among other
applications, it allows the construction of a secure and verifiable ran-
dom beacon: an online service that makes available fresh, unpredictable,
random numbers at regular intervals, even if the service provider is not
considered a trusted party.

This paper introduces proofs of time or knowledge. A party, Alice, has
a secret key sk. Given a piece of data m that was generated at time t0,
a proof of time or knowledge allows to generate a message p such that
anyone can easily verify that either p has been generated by Alice (using
sk), or the party who computed p spent wall-clock time at least ∆ to
compute p from m. In essence, the security requirements of these proofs
encode the following properties:

1. If a lower bound on t0 is publicly known (for instance, if m contains
the value of a secure random beacon at time t0), and if p is divulged
before point in time t0 +∆, then p acts as a signature of Alice on m:
no one else would have been able to compute p at that point in time.

2. However, if p is divulged after point in time t0 + ∆ (or if t0 is not
publicly known), then the pair (m, p) constitutes an indistinguishable
proof of the knowledge of sk or of wall-clock time ∆ worth of compu-
tation.

When someone computed p without knowledge of sk, it also implies that
the computing party knew the input data m at point in time t1 − ∆,
where t1 is the time when p is revealed: the scheme can therefore also
be seen as a proof that the party computing p either knows sk or knew
the input m in advance. The construction we propose achieves perfect
indistinguishability in the property 2 above: the proof computed by Alice
is the same as the proof anyone can forge in time ∆.

These properties allow for very simple and interesting protocols. Alice
can prove her identity to Bob in one round, and in a perfectly zero-
knowledge way as follows: Bob chooses a random challenge c, and Alice
responds with a proof of time or knowledge on input c, with ∆ set to 10
minutes. Since Alice can respond immediately thanks to her secret, Bob
is convinced of her identity. Anyone else can compute the response to
the challenge in constant time ∆, so it is perfectly zero-knowledge with
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respect to Alice’s secret. This approach to proving someones identity is
very different from the standard approaches. Choosing ∆ to be a hundred
years, a proof on any piece of data m has, in the real world, the same
value as a signature of Alice on m; but this “signature” is simulatable in
constant time with respect to the security parameters, whereas signatures
in the classical model are inherently non-simulatable.

This notion is very close to the idea of fading signatures, a term orig-
inally coined in the opening statement of [7]. A fading signature remains
valid only for a limited time: a party verifying the signature after that
time limit cannot convince himself of the validity of the signature. Data
signed with a fading signature can initially be trusted, but comes with
no long-term proof of its authenticity. The construction of a fading signa-
ture in [7] did not allow efficient verification: verifying the validity of the
signature took essentially as much time as the validity period. The con-
struction of proofs of time or knowledge we introduce in the present paper
provides an efficiently verifiable fading signature scheme. Note however
that the fading properties of fading signatures are to be considered with
caution, as discussed in Section 5.

Proofs of time or knowledge are also reminiscent of indistinguishable
proofs of work or knowledge [1], with the difference that wall-clock tim-
ing is a much more delicate measurement than total workload. Note that
measuring the workload rather that the time does not permit to infer any-
thing about the identity of the party performing the computation: it does
not give rise to a construction similar to that of fading signatures, which
can prove the identity of the signing party under appropriate conditions.

Notation. The integer k denotes a security level (typically, k ∈ {128, 192, 256}).
With k clear from the context, the cryptographic hash function H :
{0, 1}∗ → {0, 1}2k denotes a 2k-bit version of a secure hash algorithm.
The function int : {0, 1}∗ → Z≥0 maps x ∈ {0, 1}∗ in the canonical man-
ner to the non-negative integer with binary representation x. Given any
integer N , and any element x ∈ Z/NZ, let x̂ be the unique integer in
[0, N) congruent to x modulo N . Given two strings s1, s2 ∈ A∗, denote
by s1||s2 their concatenation, and by s1|||s2 their concatenation separated
by a special separating character in A \H.

2 Proofs of time or knowledge

Let ∆ be a time duration. A party, Alice, has a public key pk and a secret
key sk. Let m be a piece of data generated at time t0. Alice, thanks to
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her secret key sk, is able to quickly evaluate a function shortcutsk on m.
On the other hand, other parties knowing only pk can produce a piece of
data forgepk(m) at time t0 + ∆, but not before (and important parallel
computing power does not give a substantial advantage in going faster),
such that the value forgepk(m) is indistinguishable from shortcutsk(m).

More formally, a proof of time or knowledge consists of the following
components:

keygen→ (pk, sk) is a key generation procedure, which outputs a signer’s
public key pk and secret key sk. As usual, the public key should be
publicly available, and the secret key is meant to be kept secret.

shortcutsk(m,∆)→ pro takes as input the data m ∈ M (for some input
space M), and uses the secret key sk to produce a proof pro on m.
The parameter ∆ is the time it should take to forge the same proof
without knowledge of the secret key.

forgepk(m,∆)→ pro is a procedure to forge a valid proof on m using only
the public key pk, for a targeted computation time ∆. This procedure
is meant to be infeasible in time less than ∆.

verifypk(m, pro, ∆)→ true or false is a procedure to check if pro is a valid
proof on m, associated to the public key pk and the forging time ∆.

Given any key pair (pk, sk) generated by the keygen procedure, the
functionality of the scheme is the following. Given any data m and time
parameter ∆, if pro is either a rapid proof shortcutsk(m,∆) or a forged
proof forgepk(m,∆), then verifypk(m, pro, ∆) outputs true.

The security relies on two aspects: on one hand, a valid proof cannot
be produced in time less than ∆ without knowledge of the secret key sk;
on the other hand, given X the output of shortcutsk(m,∆) and Y the
output of forgepk(x,∆), distinguishing X from Y is infeasible. If the pro-
cedures shortcut and forge are deterministic, this second property simply
translates into the fact that they have the same output. If they are not,
it can be formalized by a distinguishing game, but we will restrict here
to the deterministic case. The first property can be formalized via the
∆-forgery race game.

Definition 1 (∆-forgery race game). Let A be a party playing the
game. It goes as follows: at the start of the game, keygen is run and the
public key pk is given to A; it is the beginning of the precomputation phase.
Whenever A outputs “ready”, a message m ∈M is generated uniformly
at random and given to A. Party A wins the ∆-forgery race game if it
produces in time less than ∆ a value pro such that verifypk(m, pro, ∆)
returns true.
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Data: a secret key sk = (N,φ(N)), some data m ∈ A∗, for a targeted forgery
time exponential in `.

Result: the proof pro.
h← HN (m) ∈ Z/NZ;
for i = 1, ..., ` do

yi ← 22i−2 mod φ(N);
hi ← hyi ;

end
for i = 1, ..., `− 1 do

B ← Hprime(hex(i)|||hex(hi)|||hex(i+ 1));
x← 2yi;

r ← least residue of 22i−2 modulo B;
β ← (x− r)B−1 mod φ(N);

Pi ← (hβ , hxβ);

end
return pro = (h1, h2, ..., h`, P1, ..., P`−1);

Algorithm 1: shortcutsk(m, `)→ pro

A proof of time or knowledge is ∆-secure if any player whose precom-
putation phase is polynomially bounded (with respect to the implicit
security parameter) wins the ∆-forgery race game with negligible proba-
bility. Observe that it is useless to allow A to adaptively ask for legitimate
proofs during the precomputation phase: for any data m′, the procedure
forgepk(m

′, ∆) produces the same output as shortcutsk(m
′, ∆), so any proof

the adversary would like to request during the precomputation phase can
be replaced by a forgery doable in time O(∆).

3 A proof of time or knowledge

Let m ∈ A∗ be the input of the proof. Alice’s secret key sk is a pair of dis-
tinct prime numbers p and q, and her public key pk is the RSA modulus
N = pq. Define HN : A∗ → Z/NZ by HN (m) = int(H(“residue”||m))
mod N . Also, given any string s, we denote by Hprime(s) the first prime
number in the sequence H(“prime”||hex(j)|||s), for j ∈ Z≥0. The proce-
dures to sign, verify and forge are fully described in Algorithms 1, 2 and
3 respectively, and explained in detail below.

To built the proof on m, first let h = HN (m). The basic idea is
that for any t ∈ Z>0, Alice can efficiently compute h2

t
with 2 modular

exponentiations, by first computing x = 2t mod φ(N) where φ(N) =
(p − 1)(q − 1) is the order of the group (Z/NZ)×, followed by h2

t
= hx

mod N . The running time is logarithmic in t. Any other party who does
not know φ(N) can also compute it by performing t sequential squarings,
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Data: a public key pk = N , some data m ∈ A∗ for a targeted forgery time
exponential in `, and a proof pro.

Result: true if the proof pro on m is valid, false otherwise.
(h1, h2, ..., h`, P1, ..., P`−1)← pro;
h← HN (m) ∈ Z/NZ;
if h1 6= h then

return false;
end
for i = 1, ..., `− 1 do

B ← Hprime(hex(i)|||hex(hi)|||hex(i+ 1));

r ← least residue of 22i−2 modulo B;
(c1, c2)← Pi;

if h2
i 6= cB1 h

r or hi+1 6= ±cB2 hi2r then
return false;

end

end
return true;

Algorithm 2: verifypk(m, pro, `)→ true or false

with a running time linear in t. Therefore anyone can compute h2
t

but
only Alice can do it fast, and any other party has to spend a time linear
in t. However, verifying that the published value is indeed h2

t
takes as

long as the forgery: there is no shortcut to the obvious strategy consisting
in recomputing h2

t
and checking if it matches.

A first solution to this issue is discussed in [4]. Let t = 2`, and rather

than just publishing h2
2`

, publish the sequence of ` elements

(b1, b2, b3, ..., b`) =

(
h2, h4, h16, ..., h2

2`
)
,

and prove via a zero knowledge protocol that each triple (h, bi, bi+1) is
of the form (h, hx, hx

2
) for some integer x. The protocol the authors de-

scribe is inspired from the classic zero-knowledge proof that (g,A,B,C)
is a Diffie-Hellman tuple [5]. It should be stressed that this protocol was
designed to be zero-knowledge with respect to the exponents and not with
respect to the group order (the exponents are secret in the Diffie-Hellman
setting, and the group order is not; in the present setting, the opposite is
true). The modified version in [4], contrary to what is claimed, is not per-
fectly zero-knowledge with respect to Alice’s secret φ(N) . Furthermore,
the construction of the proof should be non-interactive; unfortunately
there is no obvious way to make the suggested protocol non-interactive
while still allowing timed forgeries. Therefore the following introduces a
new approach, which not only is perfectly zero-knowledge with respect
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Data: a public key pk = N , some data m ∈ A∗, for a targeted forgery time
exponential in `.

Result: the (forged) proof pro.
h← HN (m) ∈ Z/NZ;
h1 ← h;
for i = 1, ..., `− 1 do

B ← Hprime(hex(i)|||hex(hi)|||hex(i+ 1));
c1 ← forge rec(h,B, i) ; // this function is described in Algorithm 4

c2 ← c2
2i−1

1 ;
Pi ← (c1, c2);

hi+1 ← h22
i+1−2

∈ Z/NZ;

end
return pro = (h1, h2, ..., h`, P1, ..., P`−1);

Algorithm 3: forgepk(m, `)→ pro

Data: an element h in a group G (with identity 1G), a prime number B and a
positive integer i.

Result: hβ , where β is the quotient of the euclidean division of 22i−2 by B.

if 22i−2 < B then
return 1G;

else
x← forge rec(h,B, i− 1);
y ← forge rec(x,B, i− 1);

α← 2i−1 − 2 mod B − 1;
r ← least residue of 2α modulo B;
q ← quotient of the euclidean division of 4r2 by B;

return y4Bx8rhq;

end

Algorithm 4: forge rec(h,B, i)→ hβ

to φ(N), but can also be made non-interactive while remaining perfectly
zero-knowledge and forgeable.

3.1 The basic construction.

The proof on input m is the tuple

(h1, h2, ..., h`, P1, ..., P`−1),

where hi = h2
2i−2 ∈ Z/NZ for i = 1, ..., `, and Pi is a (non-interactive)

proof that (h, h2i , hi+1) is a triple of the form (h, hx,±hx2). The algorithm
is synthesised in Algorithm 1. The construction of the proofs Pi will be
discussed in the following paragraph.
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The verifier can check that h` = ±h22
`−2

as follows: first check that
h1 = h = HN (m); then for each i = 1, ..., `−1, check the proof Pi. If hi =

±h22
i−2

and Pi is correct, then (h, h2i , hi+1) is of the form (h, hx,±hx2),
and

hi+1 = ±h
(
2·22i−2

)2

= ±h22
i+1−2

.

Therefore, by induction, if all the proofs are correct, then h` = ±h22
`−2

.
The verification procedure is synthesised in Algorithm 2.

3.2 The proofs Pi.

The following focuses on the problem of proving efficiently that (h, b1, b2)
is of the form (h, hx,±hx2), without revealing any information about
φ(N). The exponent x is not meant to be secret, everybody knows it
is congruent to some 22

i−1 (yet any other representation of that integer
modulo φ(N) should not be leaked: that would allow to compute a multi-
ple of φ(N), and to factor N). But checking the form of (h, b1, b2) simply
by exponentiating by x and x2 is inefficient. What will actually be pro-
duced is a tuple P which asserts that either P was produced by Alice,
or (h, b1, b2) is of the form (h, hx,±hx2). First, consider an interactive
protocol. The verifier first receives h, b1 and b2, and then sends a (large)
random prime number B to the prover. The prover then computes the
least residue r of x modulo B. The prover then computes c1 = hβ and
c2 = hxβ such that β ≡ (x− r)B−1 mod φ(N), and the proof sent to the
verifier is the pair P = (c1, c2). Such a proof can be forged by a party who
does not know Alice’s secret; this fact might be surprising at first given
that such a party cannot compute B−1 mod φ(N). The procedure will be
described later (in Subsection 3.3), but assuming that fact, the protocol
is perfectly zero-knowledge since the secret is not necessary to produce
the proof. The verifier simply computes r and checks that b1 = cB1 h

r and
b2 = ±cB2 br1. It is straightforward to check that this holds if the prover is
honest.

Now, what can a dishonest prover do? In fact, given x such that
b1 = hx, only Alice can produce misleading proofs. Indeed, suppose that
the proof passes the verification, i.e., b1 = cB1 h

r and b2 = ±cB2 br1, where
r is the least residue r of x modulo B. Exponentiating the first equality
by x yields bx1 = cxB1 hxr, and the second can be written as b2 = ±cB2 hxr.
Therefore bx1/b2 = (cx1/c2)

B. When publishing b1 and b2, α = bx1/b2 is
determined but the prover does not know already about B. Once B is
revealed, the prover must be able to produce values c1 and c2 that will
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pass the tests with a good probability, which implies that cx1/c2 is a B-th
root of α. For a prover to cheat and succeed with good probability, it is
necessary that B-th roots of α to be easily extracted for arbitrary B. This
is easy if α = ±1, i.e. b2 = ±bx1 = ±hx2 . It is however a difficult problem,
given an RSA modulus N , to find an element α mod N other than ±1
from which B-th roots can be extracted for any B.

This can be made non-interactive by letting B be, for instance, the
first prime in the sequence of integers represented by

H(“prime”||hex(j)|||hex(i)|||hex(b1)|||hex(b2)),

for j ∈ Z>0, where i is the index of Pi. It is still forgeable, so still zero-
knowledge. This simulates a choice of B uniform among the primes in
[0, 22k). Recall that given a string s, Hprime(s) denotes the first prime
number in the sequence H(“prime”||hex(j)|||s). If H is considered to be
a random function with uniform distribution, let µ denote the probability
distribution of the output of Hprime(s).

Definition 2 ((∆, `)-exponentiation race game). Let A be a party
playing the game. The (∆, `)-exponentiation race game goes as follows:
first, the keygen procedure is run and the public key pk = N is given
to A; it is the beginning of the precomputation phase. Whenever A out-
puts “ready”, an element x ∈ Z/NZ is generated uniformly at random
and given to A. Party A wins the (∆, `)-exponentiation race game if it

produces in time less than ∆ a value y = x2
2`−2.

The (∆, `)-exponentiation race game is assumed to be difficult for
` = O(log∆). I.e., the simple strategy consisting of sequential squarings
is optimal (up to some optimisations by a constant factor).

3.3 Forging the proofs in time O(∆).

As B−1 mod φ(N) cannot be computed without knowledge of the pri-
vate key, an alternative strategy is needed for the forgery. Assuming the
correctness of the function forge rec(h,B, i), which computes hβ where β
is the quotient of the euclidean division of 22

i−2 by B, it is easy to check
that the function forgepk(m, `) described in Algorithm 3 is correct. The
function forge rec(h,B, i), described in Algorithm 4 deserves more expla-
nations. It operates by recursion on i. The base case is easy: if 22

i−2 is
smaller than B, then β is zero, so hβ is the identity element of the group.
In particular, if i = 1, then 22

i−2 = 1 < B.
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For the general step of the recursion, let β′ be the quotient of the
euclidean division of 22

i−1−2 by B, and r the remainder. Observe that

22
i−2 = 4

(
22
i−1−2

)2
= 4(β′B + r)2 = (4β′

2
B + 8β′r)B + 4r2.

Therefore, if q is the quotient of the euclidean division of 4r2 by B, then
β = 4β′2B+8β′r+q. We can recursively compute hβ

′
= forge rec(h,B, i−

1) and hβ
′2

= forge rec(hβ
′
, B, i− 1). Then hβ can be computed as

hβ =
(
hβ
′2
)4B (

hβ
′
)8r

hq.

Besides the recursive calls, the most expensive step is the computation
of the remainder of the euclidean division of 22

i−1−2 by B. But all these
remainders of 22

j−2, j < i, that will be used in the recursion, can be
computed at once at the beginning for a total time in O(i): simply com-
pute all the values 22

j
mod B, for j < i by successive squarings, multiply

all of them by 2−2 mod B (recall that B is a prime number), and store
the results for later use. Therefore leaving this operation aside, as a pre-
processing step, the processing time of the recursion is bounded above
by a constant c (it actually depends on the bit-length of B, (almost)
bounded by the bit-length of the output of the hash function H; it does
not depend on the time parameter ∆). If T (i) denotes the running time
of forge rec(h,B, i), then

T (i) ≤ 2T (i− 1) + c ≤ 2i−1T (1) + (2i−1 − 1)c ≤ 2ic.

This function is called in the forgery algorithm for any i < ` (with different
values of B). The total time of these calls is therefore in O(2`) = O(∆).
It is then easy to see that the total time of the forgery is also in O(∆).

4 Security analysis

The following game formalises the problem of finding an integer u 6= 0,±1
for which B-th roots modulo an RSA modulus N can be extracted for
arbitrary B’s following a distribution µ, when the factorization of N is
unknown. This problem is supposedly difficult when N is large enough,
and µ is the uniform distribution over the primes in (0, 22k). Recall that
k is the security parameter, which is implicitly passed as a parameter to
keygen.
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Definition 3 (The root finding game Groot). Let A be a party playing
the game. The root finding game Groot(A) goes as follows: first, the keygen
procedure is run and the public key pk = N is given to A (N is an RSA
modulus). The player A then outputs an integer u modulo N . An integer
B is generated according to the distribution µ and given to A. The player
A outputs an integer v and wins the game if u 6≡ 0,±1 mod N and
vB ≡ u mod N .

Definition 4 (The oracle root finding game Groot
X ). Let A be a party

playing the game, let X : A∗ → Z/NZ be a map, and O : A∗ → Z>0 a
random oracle with distribution µ. The player has access to the random
oracle O. The oracle root finding game Groot

X (A,O) goes as follows: first,
the keygen procedure is run and the public key pk = N is given to A. The
player A then outputs a string s ∈ A∗, and an integer v modulo N . The
game is won if X(s) 6≡ 0,±1 and vO(s) = X(s).

Lemma 1. If an algorithm A limited to q queries to the oracle O wins the
game Groot

X (A,O) with probability pwin, there is an algorithm B winning
the game Groot(B) with probability at least pwin/(q+1), and same running
time, up to a small constant factor.

Proof. Let A be an algorithm limited to q oracle queries, and winning
the game with probability pwin. Build an algorithm A′ which does exactly
the same thing as A, but with possibly additional oracle queries at the
end to make sure the output string s′ is always queried to the oracle, and
the algorithm always does exactly q + 1 (distinct) oracle queries.

Build an algorithm B playing the gameGroot, usingA′ as follows. Upon
receiving pk, B starts running A′ on input pk. The oracle O is simulated
as follows. First, an integer i ∈ {1, 2, ..., q + 1} is chosen uniformly at
random. For the first i − 1 (distinct) queries from A′ to O, the oracle
value is chosen at random according to distribution µ. When the ith
string s ∈ A∗ is queried to the oracle, the algorithm B outputs u = X(s),
concluding the first round of the game Groot. The game continues as the
integer B is received, following the distribution µ. This B is then used
as the value for the ith oracle query O(s), and the algorithm A′ can
continue running. The subsequent oracle queries are handled like the first
i− 1 queries, by picking random integers with distribution µ. Finally, A′
outputs a string s′ ∈ A∗ and an integer v modulo N . To conclude the
game Groot(B), B returns v.

Since O simulates a random oracle with distribution µ, A′ outputs
with probability pwin a pair (s′, v) such that X(s′) 6≡ 0,±1 and vO(s

′) =
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X(s′); denote this event winA′ . If s = s′, these conditions are exactly
u 6≡ 0,±1 and vB = u, where u = X(s) is the output for the first round of
Groot, and O(s) = B is the input for the second round. If these conditions
are met, the game Groot(B) is won. Therefore

Pr[B wins Groot] ≥ pwin · Pr
[
s = s′|winA′

]
.

Let Q = {s1, s2, ..., sq+1} be the q + 1 (distinct) strings queried to O by
A′, indexed in chronological order. By construction, we have s = si. Let
j be such that s′ = sj (recall that A′ makes sure that s′ ∈ Q). Then,

Pr
[
s = s′|winA′

]
= Pr [i = j|winA′ ]

The integer i is chosen uniformly at random in {1, 2, ..., q + 1}, and the
values given to A′ are independent from i (the oracle values are all in-
dependent random variables with distribution µ). So Pr [i = j|winA′ ] =
1/(q+ 1). Therefore Pr[B wins Groot] ≥ pwin/(q+ 1). Since B mostly con-
sists in running A and simulating the random oracle, it is clear than both
have the same running time, up to a small constant factor. ut

Proposition 1 (Security of the proof of time or knowledge in the
random oracle model). Let A be a player winning with probability pwin
the ∆-forgery race game associated to the proposed scheme, assuming HN

and Hprime are random oracles and A is limited to q oracle queries. Then,
there is a player B1 for the (∆, `)-exponentiation race game, and B2 for
the root finding game Groot, with respective winning probabilities p1 and
p2 with p1 + (q + 1)p2 ≥ pwin, and with same running time as A (up to a
constant factor).

Proof. Let A be a player winning with probability pwin the ∆-forgery
race game. Let p′win be the probability that A wins with an output

pro = (h1, ..., h`, P1, ..., P`−1) where h` = ±h22
`−2

1 .

Constructing B1. Build B1 as follows. Upon receiving pk, B1 starts run-
ning A on input pk. The random oracles HN and Hprime are simulated in
a straightforward manner, maintaining a table of values, and generating
a random outcome for any new request (with distribution uniform and µ
respectively). When A outputs “ready”, B1 looks for a string m that has
not been queried to the oracle yet, and outputs “ready”. When receiving
the challenge h, B1 adds x to the table of oracle HN , for the input m
(i.e., HN (m) = x). Then B1 sends m to A and continues to run it while
simulating the oracle. Whenever A outputs pro = (h1, ..., h`, P1, ..., P`−1),
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B2 outputs h`. The game is won with probability p1 ≥ p′win.

Constructing B′
2. Instead of directly building B2, we build an algorithm

B′2 playing the game Groot
X (A,O), and apply Lemma 1. Define X : A∗ →

Z/NZ as follows: for any integers i, b1, b2 ∈ Z>0, let

X(hex(i)|||hex(b1)|||hex(b2)) = b2
2i−1

1 /b2 mod N,

and let X(s) = 0 for any other string s. When receiving pk, B′2 starts
running A with input pk. The oracle HN is simulated by generating ran-
dom values in the straightforward way, and Hprime is set to be exactly
the oracle O. When A outputs “ready”, B′2 generates a random message
m and continues running A. Then, A outputs (h1, ..., h`, P1, ..., P`−1). Let

i > 1 be the smallest index such that hi 6= ±h2
2i−2

1 . If there is no such
index, abort. Otherwise, output s = hex(i − 1)|||hex(hi−1)|||hex(hi) and

v = c2
2i−1

1 /c2, where (c1, c2) = Pi−1. If such an index was found, and A
won the simulated forgery game, then X(s) 6≡ 0,±1, and vO(s) = X(s),
so B′2 wins the game. This happens with probability

p′2 ≥ Pr

[
A wins and h` 6= ±h2

2`−2

1

]
= pwin − Pr

[
A wins and h` = ±h22

`−2

1

]
= pwin − p′win.

Since A was limited to q oracle queries, B′2 also does not do more than q
queries. Applying Lemma 1, there is an algorithm B2 winning the game
Groot(B) with probability p2 ≥ p′2/(q+1). To conclude the proof, we have
pwin ≤ p1 + p′2 ≤ p1 + (q + 1)p2. ut

5 Fading signatures and their (in)feasibility

The idea of fading signatures relies on a fairly simple idea: a signature
is trustworthy only as long as a forgery is believed to be infeasible. Just
like in a conventional signature scheme, the signing party, Alice, has a
public key pk and a secret key sk. Her secret key allows Alice to efficiently
produce signatures, while the public key allows anyone to efficiently check
their validity. In the conventional setting, forging valid signatures without
knowledge of sk is meant to be infeasible. Fading signatures however can
be forged by anyone. The only distinction between legitimate and forged

13



signatures comes from time constraints. Given a fading-time length ∆, a
fading signature scheme provides the following guarantee: given a message
m generated at point in time t0, Alice, thanks to sk, can quickly produce
a signature shortcutsk(m) on m at time t0 + ε (for a very short ε), whereas
other parties, knowing only pk, can produce a valid signature on m at
time t0 + ∆, but not before (and important parallel computing power
does not give a substantial advantage in going faster). If Bob wants to
check the authenticity of a valid signature shortcutsk(m), he should be
somehow aware of the time t0 when m was generated. Guarantees on
t0 can be provided in different ways in different contexts, the simplest
of which would be to rely on a secure random beacon. At this point is
should be clear that this notion of fading signature is simply another way
of thinking about the previously introduces proofs of time or knowledge.

However, the intuitive idea of fading signatures which seems to have
motivated the construction of [7] is more powerful: it should be a signature
scheme S that would allow Alice to produce a signature σ on a message
m at time t0, such that anyone seeing σ before time t0 +∆ could be sure
Alice signed it, but after this delay, nobody else could be sure Alice signed
it. This is not something that proofs of time or knowledge allow, and we
show that it is essentially impossible to achieve.

The following approach, combining a proof of time or knowledge with
a secure random beacon, would be tempting. Let r = beacon(t0) be the
value generated by the beacon at time t0. Then, Alice signs shortcutsk(r||m),
and anyone can check the validity of the signature, with the guarantee
that r was not known by any party before time t0 (even by the beacon
itself, if it is based on a secure and verifiable protocol as described in [9];
the beacon therefore needs not be considered a trusted third party). Then
indeed, after time t0+∆, Bob could not check by himself that Alice indeed
produced that signature.

But — and this applies to any scheme S — if a third party, Charlie,
checked that signature σ on time, and if Bob trusts Charlie, the latter
can certify to Bob that Alice produced the signature. Even though Bob
did not check the signature on time, he can still be convinced that Alice
signed it, because he trusts Charlie. This means that assuming Charlie
cannot lie, the signature cannot fade away because at any point in the
future Charlie can testify.

Of course, Charlie could be a liar, and this scheme might be secure
in a world where nobody can be trusted. Ironically, the existence of trust
between different parties implies the impossibility of signature schemes
with such properties. In the real world, Charlie could be a trusted time-
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stamping service. More slyly, Charlie could publish Alice’s signature on
a distributed public ledger, à la Bitcoin [11], providing a convincing ar-
gument to anyone checking the ledger that the signature was indeed pro-
duced within some tight time interval.
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