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Nucleic Acid Immunity and DNA
Damage Response: New Friends
and Old Foes
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and Nadine Laguette1*

1 Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier,
France, 2 Azelead, Montpellier, France

The maintenance of genomic stability in multicellular organisms relies on the DNA damage
response (DDR). The DDR encompasses several interconnected pathways that
cooperate to ensure the repair of genomic lesions. Besides their repair functions,
several DDR proteins have emerged as involved in the onset of inflammatory
responses. In particular, several actors of the DDR have been reported to elicit innate
immune activation upon detection of cytosolic pathological nucleic acids. Conversely,
pattern recognition receptors (PRRs), initially described as dedicated to the detection of
cytosolic immune-stimulatory nucleic acids, have been found to regulate DDR. Thus,
although initially described as operating in specific subcellular localizations, actors of the
DDR and nucleic acid immune sensors may be involved in interconnected pathways, likely
influencing the efficiency of one another. Within this mini review, we discuss evidences for
the crosstalk between PRRs and actors of the DDR. For this purpose, we mainly focus on
cyclic GMP-AMP (cGAMP) synthetase (cGAS) and Interferon Gamma Inducible Protein 16
(IFI16), as major PRRs involved in the detection of aberrant nucleic acid species, and
components of the DNA-dependent protein kinase (DNA-PK) complex, involved in the
repair of double strand breaks that were recently described to qualify as potential PRRs.
Finally, we discuss how the crosstalk between DDR and nucleic acid-associated
Interferon responses cooperate for the fine-tuning of innate immune activation, and
therefore dictate pathological outcomes. Understanding the molecular determinants of
such cooperation will be paramount to the design of future therapeutic approaches.

Keywords: cytosolic nucleic acids, DNA damage responses, inflammation, cGAS-STING, IFI16, DNA-
PK, tumorigenesis
INTRODUCTION

Innate immunity, the first line of host defense, is classically triggered in response to pathogen
infection or local lesions to promote infection clearance or wound-healing processes. The activation
of innate immune responses vastly relies on pattern-recognition receptors (PRRs) that detect danger
associated molecular patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs). Upon
recognition of PAMPs or DAMPs, PRRs trigger signaling cascades leading to the production of
org April 2021 | Volume 12 | Article 6605601
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soluble mediators, such as type I Interferons, cytokines and
chemokines. Pathogen-derived nucleic acids constitute major
PAMPs that are detected by a vast array of PRRs that operate
in specific subcellular localizations. In recent years, self-nucleic
acids, originating from replication stress (1), DNA or
mitochondrial damage (2), and endogenous retroelement
activation (3), have been identified as substrates for cytosolic
PRRs, and are thus considered as DAMPs. Because nucleic acids
are abundant in cells, the activity of PRRs engaged in their
detection is regulated and compartmentalized (4). PRRs
dedicated to nucleic acid detection also present substrate
specificity, with subclasses dedicated to the detection of
particular moieties (5).

A plethora of cytosolic nucleic acid sensors have been
described to participate in triggering Interferon responses. Such
receptors notably include the ubiquitous DNA-dependent
activator of Interferon regulatory factors (DAI) (6), AIM2 (7,
8), Interferon gamma-inducible protein 16 (IFI16) (9), melanoma
differentiation factor 5 (MDA5) (10) and retinoic acid-inducible
gene (RIG-I) (10). An extensive description of the mechanism of
action of the above mentioned PRRs can be found in (11). Among
pathways involved in cytosolic nucleic acid detection, the
Stimulator of Interferon genes (STING) protein constitutes a
central signaling hub (12, 13). Initial reports indicated that
STING activation requires detection of cytosolic nucleic acid
species such as double strand (dsDNA), single strand (ssDNA),
or RNA : DNA species (14–16) by the cyclic GMP-AMP
(cGAMP) synthase (cGAS) PRR (14). The main signature of
activation of this signaling pathway is the production of type I
Interferons that in turn promote the production of interferon-
stimulated genes (ISGs). This signaling pathway has attracted
tremendous biomedical interest in recent years, notably with
observation that agonists of STING can boost antitumoral
immunity (17).

However, there is emerging evidence for an intricate signaling
network beyond the cGAS-STING cascade, which cannot be
overlooked in therapeutic strategies aiming to boost STING
activation. Of particular importance is the fact that cGAS and
STING have been both described as involved in genotoxic stress
response and to participate to the maintenance of genomic
integrity. Furthermore, the DNA-PK complex, which is best
known for its function in non-homologous end-joining (NHEJ)-
mediated repair of dsDNA breaks (DSB), has been shown to serve
as an alternative route to stimulate type I Interferon production
(18–21). In parallel, the Interferon Gamma Inducible Protein 16
(IFI16) was also reported to detect, in concert or not with cGAS,
DNA damage-derived nucleic acid species (9, 22, 23), and to
cooperate with DDR proteins to promote STING-dependent
immune responses following genotoxic stress (22). Furthermore,
cGAS and STING have been shown to control genomic stability
(24, 25). Thus, the current literature highlights tight connections
between DNA repair processes and nucleic acid-associated
inflammatory responses. Indeed, proteins involved in the
recognition of abnormal DNA, regardless of their origin, appear
to possess common roles in the initiation of inflammatory
responses and surveillance of genomic integrity.
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In this mini review, we discuss this interconnection between
DNA repair mechanisms and nucleic acid immunity, by focusing
on the cGAS and IFI16 receptors and the way in which they
control STING activation. While several DNA repair proteins
have been involved in the fine tuning of inflammatory responses
(22, 26), here we focus on the DNA-PK complex, responsible for
NHEJ, for which a role in controlling nucleic acid-dependent
inflammatory responses has been reported (26). We discuss how
dissecting these signaling networks will deepen our understanding
of Interferon responses, which is likely crucial to the design of
therapeutic responses to pathological inflammation.
CYTOSOLIC NUCLEIC ACID DETECTION:
STING AS A CENTRAL SIGNALING HUB

The cGAS-STING Pathway
The production of type I Interferons, in the presence of cytosolic
nucleic acid species, was initially described to rely mostly on
cGAS (14). Indeed, cGAS detects dsDNA, ssDNA, or RNA :
DNA species (14–16) in the cytosol and catalyzes the synthesis of
cGAMP (Figure 1A). Although the binding of cGAS to nucleic
acid species is sequence-independent, cGAS activation is
increased by longer dsDNA fragments (27, 28), suggesting that
portions of chromosomes, such as those arising in the
micronucleation process, would serve as potent substrates for
cGAS. cGAMP interacts with the endoplasmic reticulum (ER)-
resident STING adaptor protein (29, 30), promoting
conformational changes (29, 31), oligomerization (32) and
translocation to perinuclear compartments, including the Golgi
apparatus (12, 33). Subsequent recruitment of the TANK-
binding kinase 1 (TBK1) (34), together with transcription
factors, such as Nuclear Factor Kappa B (NF-kB) and
Interferon Response Factor 3 (IRF3), ultimately leads to the
transcription of a repertoire of inflammatory cytokines
characterized by a type I Interferon signature (12, 35)
(Figure 1A). NF-kB activation may also be promoted by IKKϵ,
in addition to TBK1, in macrophages (36). The cGAS-STING
cascade is triggered upon cytosolic exposure of foreign nucleic
acid species, following pathogen infection, but also by nucleus-
and mitochondria-derived self-nucleic acids that leak into the
cytosol following various types of stress (2, 37–40) and through
DNA recombination processes (41).

Yet, the cGAS-cGAMP-STING signaling axis has recently
emerged as far more complex than initially anticipated. First,
multiple post-translational modifications influence signaling
output (42–44). Second, STING can be directly activated by
bacterial cyclic di-nucleotides (45, 46), while its activation is
skewed by alternative di-nucleotides (16) or other metabolites
(47). Third, co-sensors, co-factors and alternative upstream
STING activators have been described, that can operate in cell
type-specific manners (23, 48–50). Finally, in addition to the cell-
autonomous capacity of cGAMP to activate STING-dependent
Interferon responses, cGAS-STING signaling may also be
amplified through transfer of cGAMP to neighboring cells
April 2021 | Volume 12 | Article 660560
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through gap junctions (51–53), direct secretion (54) or in
vesicles (55).

Below, we focus on IFI16 and DNA-PK as alternative sensors
involved in the regulationof STING-dependent Interferonresponses.

IFI16: An Alternative Nucleic Acid Sensor
IFI16 is a predominantly nuclear protein that has been described
as involved in the induction of innate immune responses upon
infection by viruses, including Herpes simplex virus (9), Epstein-
Barr virus (56), and Kaposi’s sarcoma-associated Herpes virus
(57). Indeed, in this context, IFI16 promotes IRF3- and NF-kB-
dependent Interferon production via STING (9) (Figure 1B).
Similar to cGAS, IFI16 is capable of detecting self and non-self
DNA, and displays a preference for long non-self dsDNA (58).
Unlike cGAS, IFI16 operates mostly in a cell-type-dependent
manner (23, 50). The interplay between cGAS and IFI16 has
been explored, revealing cooperation between IFI16 and cGAS
upon infection (Figure 1B, left). This cooperation relies on cell-
type specific molecular mechanisms. Indeed, in both
keratinocytes and macrophages, IFI16 cooperates with cGAS
for STING activation upon infection (23, 50). However, in
macrophages, IFI16 enhances cGAS-dependent cGAMP
production (50), while in keratinocytes, IFI16 does not
influence cGAMP production, but rather directly activates
STING (23). Additionally, IFI16 has been shown to promote
inflammasome activation in the nucleus, leading to production
of Interleukin-1b (IL-1b), IL-18, and IL-33 cytokines (56, 59).

In contrast, following genotoxic stress, IFI16 triggers cGAS-
independent STING activation (Figure 1B, right). Indeed, upon
etoposide-induced DNA lesions, IFI16, together with DDR
proteins, activates STING, promoting the assembly of a non-
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canonical STING signalosome (22). Within this complex IFI16
promotes TNF Receptor Associated Factor 6 (TRAF6)-
dependent STING ubiquitination and activation ultimately
leading to the predominant activation of the transcription
factor NFkB, rather than IRF3 (22). Therefore, this signaling
cascade results in the expression of a repertoire of cytokines that
differs from that triggered upon cGAS-mediated detection of
dsDNA, including a specific IL-6 and CCL20 signature (22). Yet,
most of the described mechanisms were inferred from the study
of keratinocytes or myeloid cell lines, leaving uncertainties
concerning the activation of IFI16 in cancer cells.

DNA-PK: Bridging DNA Repair and Nucleic
Acid Immunity
The DNA-PK complex has been reported to play a role in
controlling nucleic acid-dependent inflammation. The DNA-
PK complex is a key holoenzyme, composed of KU70XRCC6,
KU80XRCC5 and the DNA-dependent protein kinase catalytic
subunit DNA-PKcsPRKDC, central to the repair of DSBs by NHEJ.
NHEJ is involved in the repair of approximately 80% of DSBs
and can operate regardless of the cell cycle phase. It promotes
relegation of DNA ends without requirement for an intact
template (60). KU70/KU80 heterodimers interact directly with
damaged DNA ends and are responsible for the recruitment of
DNA-PKcs to these lesions. DNA-PKcs bears a kinase activity
and promotes both DNA-PKcs autophosphorylation and the
phosphorylating-activation of effector proteins required for the
NHEJ process. For a complete recent view of NHEJ refer to (61).

Besides its canonical role in NHEJ while it recognizes self
dsDNA, there are several reports for a central role of DNA-PK in
the detection of exogenous DNA species and interference with
AA BB CC

FIGURE 1 | Intertwined cytosolic nucleic acid pathways involved in Interferon and pro-inflammatory cytokine production in human cells. (A) The cGAS sensor
activates STING via the production of the cGAMP second messenger. (B) From left to right: the IFI16 sensor mediates inflammation through multiple routes: upon
viral infection it activates STING in a cell type-specific manner, either enhancing cGAS-dependent cGAMP production in macrophages or by directly activating STING
in keratinocytes; upon genotoxic stress it mediates cGAS-independent, but TRAF6-dependent STING activation. (C) the DNA-PK DNA repair complex was shown to
play a role in inducing type I Interferon production upon cytosolic dsDNA detection. However, multiple downstream mechanisms have been proposed, that require
STING activation or not, ultimately leading to the phosphorylation of transcription factors responsible for type I Interferon production. The catalytic subunit of the
DNA-PK complex (DNA-PKcs) can also suppress cGAS enzymatic activity, by promoting its phosphorylation. IFNs, Interferons.
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viral life cycles (62). Subunits of the complex have been
independently reported to trigger or skew inflammatory
responses toward either type I or type III Interferon
production in response to non-self dsDNA. Indeed, KU70
triggers DNA-dependent type III Interferon responses through
activation of Interferon Regulatory Factor 1 and 7 (IRF1 and
IRF7) (19, 63), independently of DNA-PKcs (19).

In contrast, recent reports indicate that the catalytic activity of
DNA-PKcs is also crucial for antiviral responses. Indeed, DNA-
PKcs promotes IRF3 phosphorylation following infection by
DNA and RNA viruses (18, 64) (Figure 1C). Interaction
between DNA-PKcs and the progenome of the Human
Immunodeficiency Virus (HIV) retrovirus has also been
shown, although the link to inflammation is unexplored (65).
Interestingly, some DNA viruses have evolved proteins that
counteract DNA-PKcs-dependent detection (20) while others
hijack NHEJ to the benefit of their replication (66), highlighting
the tight interplay between viral life cycles and DDR (67). Yet,
there is as of today, limited knowledge concerning the ways in
which DNA-PK-dependent inflammatory responses, IFI16- and
cGAS-dependent STING activation are orchestrated.

Indeed, whether DNA-PK requires STING for production of
Interferons remains debated (18, 20, 68) (Figure 1C). It was
reported that DNA-PKcs is recruited to dsDNA in the cytoplasm
of both human and murine cells through KU80, triggering IRF3-
dependent inflammatory responses (18). However, while some
reports indicate that the catalytic activity of DNA-PKcs is
responsible for direct activating phosphorylation of IRF3 (64),
others indicate that the measured Interferon production can
occur independently of the catalytic activity of DNA-PKcs (18).
In this latter scenario, questions remain open concerning what
would trigger IRF3 activation. It has also been proposed that
DNA-PKcs would act upstream of TBK1 and IRF3 (18) and that
KU70 can form a complex with STING prior to (18), or upon
(19) DNA transfection. This notion was comforted by Morchikh
et al., in 2017, showing that DNA-PK subunits (DNA-PKcs,
KU70 and KU80) are associated with a ribonuclear complex that
is remodeled by foreign DNA, leading to enhanced recruitment
of STING, activated DNA-PKcs, and IRF3 (68). However, a
recent study has shown that DNA-PKcs can also operate
independently of STING (20) and that DNA-PKcs can
phosphorylate cGAS and suppresses its enzymatic activity (21)
(Figure 1C). Considering the tight link between DNA-PK
activation and cell cycle progression (69), and in view of the
recent reports linking cGAS activation and cell cycle stage (70),
the crosstalk between DNA-PK and cGAS-STING activation
would certainly benefit from integrating the temporality of
events to the study. In agreement, it was previously reported
that inhibition of NHEJ components reduces Interferon
signaling, in a cell cycle progression-dependent manner (71).

Adding a layer of complexity, DNA-PKcs immune signaling
appears to be species-specific. Indeed DNA-PKcs can activate
innate immune responses independently of STING in human
cells, but not in murine cells (20). This is consistent with previous
reports that in mouse cell lines, where the immune response is
largely dependent on STING, DNA-PKcs would signal through
Frontiers in Immunology | www.frontiersin.org 4
STING (18). Furthermore, the current state-of-the-art does not
allow determining whether the role of DNA-PK in inducing
type I Interferon responses may be subjected to cell type-specific
regulatory mechanisms, as was reported for IFI16. In this
respect, how IFI16 activation is regulated in contexts where
DNA-PKcs activates inflammatory responses remains to
be elucidated.
REGULATION OF THE DNA DAMAGE
RESPONSE BY INNATE IMMUNE
SENSING PATHWAYS

cGAS Suppresses DNA Damage
Responses
The cGAS protein was initially identified as the main receptor for
cytosolic nucleic acid moieties that promote type I Interferon
responses (14). However, it was recently demonstrated that an
abundant pool of cGAS is tethered to the chromatin, in absence
of inflammatory stimulus (72–74). Active export of cGAS
through the Chromosomal Maintenance 1 (CRM1) exportin
was recently demonstrated, suggesting that shuttling of cGAS
to the cytosol may be a prerequisite for its activation (75).
However, the molecular mechanisms triggering cGAS nuclear
export and whether cGAS may also be activated in the nucleus,
remains to be clarified. There is evidence for a role of cGAS in the
inhibition of Homologous Recombination (HR)-mediated repair
of DSB. Contrary to NHEJ, that operates in a cell cycle stage-
independent manner, HR requires the presence of the sister
chromatid for accurate repair of DNA lesions (76) and therefore
operates mostly during the G2/M phase of the cell cycle. HR is a
complex, multistep process that can be completed through
several interconnected pathways, for which a complete
overview can be found in (77). Two mechanisms have been
proposed for cGAS-dependent HR inhibition (Figure 2, left). On
one hand, Liu et al. showed that DNA damage triggers cGAS
nuclear translocation and interaction with activated DNA
damage-dependent Poly [ADP-ribose] polymerase 1 (PARP1),
which is a first responder in DNA damage detection. Interaction
of cGAS with PARP1 prevents the recruitment of proteins
required to proceed through HR process and does not require
the cGAS DNA-binding domain (79). However, since the
majority of cellular cGAS is nuclear (72–74), one may question
why the cytosolic rather than the chromatinian pool of cGAS
would be mobilized. This may be linked to the high affinity of
cGAS for the acidic patch of histones that renders chromatinian
cGAS not easily displaceable (73). On the other hand, Jiang et al.
observed that the DNA-binding domain of chromatin-bound
cGAS is crucial for cGAS oligomerization on DNA, hindering the
formation of displacement loops, which are required for HR to
proceed (80). Consequently, upon irradiation, cells expressing
cGAS present increased accumulation of DSBs as compared to
cells that do not express cGAS. Intriguingly, this function is
reportedly independent of cGAS-mediated innate immune
sensing (80).
April 2021 | Volume 12 | Article 660560
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STING as a Promoter of DNA
Damage Responses
STING, the major downstream partner of cGAS, has been
proposed to promote DDR and to enable cell survival, in an
inflammation-independent manner (Figure 2, right). An
important part of the regulation of STING activation is linked
to its subcellular localization, with inactive STING resting in the
ER and activation promoting its relocalization to the Golgi
apparatus. Interestingly, in certain contexts, such as following
chemotherapy regimens, STING colocalizes with gH2AX-
positive DNA damage foci, at the inner nuclear membrane
(78). In addition, cells knocked-down for STING present
accumulation of DNA damage as compared to WT cells (78).
No clear molecular mechanism has been proposed yet, although
STING has been demonstrated to interact with NHEJ proteins,
including DNA-PKcs, KU70 and KU80 (18, 19, 68, 78),
suggesting that it may participate directly in the regulation of
NHEJ. Moreover, STING overexpression leads to increased
binding of DNA-PK to chromatin, suggesting that STING may
cooperate with DNA-PK to control NHEJ-mediated DNA repair
(78). However, the contribution of STING to NHEJ efficiency
was not addressed, calling for further investigation.

Altogether, the subcellular localization of PRRs is central to
the regulation of their activity, and determines whether they
mediate repair- or immune-related functions. This is similar to
what is witnessed for components of DNA-PK that are engaged
in DNA repair or innate immune activation, depending on their
Frontiers in Immunology | www.frontiersin.org 5
subcellular localization and interactors. How these pathways
cooperate or antagonize each other in given pathological
situations, and in particular in the case of genotoxic stress that
induces both repair and immune activation, remains to
be elucidated.
COOPERATION BETWEEN DDR AND
INNATE IMMUNITY IN TUMORIGENESIS

The interplay between innate immune activation and DNA
repair pathways is likely to be central to our understanding of
several human pathologies. For instance, several cancer
susceptibility syndromes, such as Fanconi Anemia, that present
with inheritable deficiencies in DNA repair pathways also display
hematological disorders, such as bone marrow failure or auto-
immunity, together with elevated type I Interferon levels.
Mutations in DNA repair proteins are also found in diseases
primarily defined as auto-inflammatory as described thoroughly
in Ragu et al. (26). Indeed, deficient DDR frequently leads to
pathologies, such as Ataxia-Telangiectasia, Werner Syndrome
and Bloom Syndrome, in which inflammation plays a great part
(81–83). Likewise, chronic inflammation plays an important role
in all stages of sporadic cancer, from the onset of neoplastic
lesions to metastatic dissemination (84).

Although STING targeting immunotherapies have seen a
huge biomedical interest in recent years, the study of the
FIGURE 2 | Pattern Recognition Receptors are involved in regulating DNA damage repair processes. Left, The cGAS sensor can inhibit DNA Damage Responses
(DDR) via two distinct mechanisms in human cells: 1) cGAS inhibits the Homologous Recombination (HR) pathway by preventing displacement loop (D-loop)
formation. 2) cGAS-PARP1 interaction impedes the formation of a PARP1-based complex required for HR-mediated DNA repair. Right, STING promotes DDR in
human cells through a yet to be elucidated molecular mechanism, but may rely on the control of components of the Non-Homologous End Joining DNA repair
pathway, such as the DNA-PK complex. Dashed arrow between STING and DNA-PK represents the reported interaction between the two proteins (19, 68, 78).
Whether this interaction is related to STING-associated DDR control is unknown.
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impact of STING activation on tumorigenesis has revealed an
extremely complex relationship with tumor fate. In many cases
STING activation has been shown to promote tumor clearance.
Nucleic acid substrates for cGAS in tumors can result from the
release of chromatin fragments in the cytosol of tumor cells (85),
leading to cGAS-STING activation and cell cycle arrest (85–87).
In addition, released self-DNA, from dying tumor cells in the
tumor microenvironment can be engulfed by intra-tumoral
antigen-presenting cells (APCs), such as dendritic cells and
macrophages and likely activates the cGAS-STING pathway
(88), through mechanisms that are still under debate (89). The
resulting cGAS-STING pathway activation promotes maturation
and cross-presentation (90), ultimately leading to the
recruitment and the infiltration of cytotoxic CD8(+) T cells at
the tumor site (91, 92). Moreover, tumor-derived cGAMP
promotes immune cells infiltration (52). Importantly, the
cGAS-STING pathway was shown to potentiate the response
to radiotherapy and chemotherapy (88, 93) and to synergize with
checkpoint inhibitors (94, 95). Thus, activating the cGAS-STING
axis in combination with chemotherapy and/or immunotherapy
appears as a valuable therapeutic strategy.

However, there is evidence that cGAS-STING-dependent
inflammation can fuel tumorigenesis (96), promote tolerogenic
responses, impair the establishment of long-term immunity (97)
and lead to chemoresistance (98, 99). Indeed, transfer of cGAMP
frommetastatic cells to astrocytes through gap junctions was also
shown to support metastatic dissemination and chemoresistance
(100). Finally, accumulation of micronuclei in the cytoplasm of
cancer cells following ionizing radiation promotes STING-
dependent inflammation (40, 71) and metastasis (101). It has
been proposed that tumor grade and origin may account for
these differential outcomes following cGAS-STING stimulation,
calling for stratification strategies to identify patients that would
benefit from cGAS-STING targeting immunotherapies.

Moreover, present therapeutic regimens include the use of
DDR inhibitors in combination or not with radiotherapy (94,
102–104). Indeed, this approach induces accumulation of
inflammatory cytosolic nucleic acids, leading to cGAS-STING
pathway activation (95, 105) and promoting T cell infiltration
and thus tumor regression (95, 102). Significant tumor
regression has also been observed using DNA-PKcs inhibitors
in combination with chemotherapy or radiotherapy (69),
however the role of inflammation in this process is at present
unexplored. Considering the emerging role of DDR proteins in
innate immune responses, it is tempting to speculate that upon
genotoxic stress, DDR proteins may directly fuel cancer-related
inflammatory responses. In addition, numerous tumors down
regulate the expression of cGAS and/or STING (106, 107). In
these contexts, it would be important to examine if DDR proteins
may take over the production of inflammatory cytokines.

Furthermore, STING activation has been shown to promote
two distinct transcriptional programs. On one hand, activation
of genes under the control IRF-3, leads mostly to the production
of type I Interferons that are generally accepted as acting
anti-cancer agents (108), while NF-kB activation promotes
the production of cytokines that are mostly considered
Frontiers in Immunology | www.frontiersin.org 6
pro-tumorigenic, such as IL-6 (109, 110). Indeed, increased
plasma levels of IL-6 generally negatively correlate with patient
survival in many cancers (110). It would be crucial to determine
whether the differential outcomes of STING activation observed
in studies describing STING activation as pro-tumorigenic
would result from IL-6 secretion. Ultimately, it would be
crucial to determine, in those contexts where alternative
receptors to cGAS would potentiate STING-dependent
signaling, whether they would lead to skewing of the response
toward IL-6 production and promote pathological outcomes.

Reciprocally, regulation of DDR by PRRs is likely to affect
tumorigenesis. HR inhibition by chromatin-bound cGAS
accelerates genome destabilization and micronuclei generation,
leading to cell death both in vitro and in vivo (80). Thus, cGAS
may thereby restrict the propagation of cancer cells. To the
contrary, alterations of cGAS shuttling toward the cytosol
correlate with poor patient prognosis (79). This suggests that
nuclear translocation of cGAS and subsequent HR inhibition
may promote tumorigenesis (79), although this may also be
linked to defective cGAS-dependent Interferon responses.
Furthermore, IFI16 has also been reported to present nuclear
functions (57, 111), including a role in regulation of cell cycle
arrest (111, 112). Supporting an association between IFI16 and
tumorigenesis, IFI16 levels are frequently decreased in breast
cancer cell lines (113). Yet, there is as of today no clear
implication of IFI16-dependent cytokine production in
tumorigenesis. This leaves open the possibility that IFI16 may
be mobil ized in tumors where cGAS expression is
downregulated. Thus, deciphering the molecular cues leading
to the mobilization of the different pools of cGAS, or alternative
receptors such as IFI16, to detect immune-stimulatory DNA -
and the impact of the different PRRs in DNA damage responses -
is likely primordial to the understanding of how nucleic acid
detection dictates tumor fate.
DISCUSSION

Accumulation of cytosolic nucleic acids, including ssDNA,
dsDNA and RNA : DNA hybrids, has been documented in
several etiologically distinct human pathologies that present
with pathological type I Interferon responses (114).
Importantly, the range of symptoms experienced by patients is
broad, and as of today not fully understood.

Much attention was brought to the cGAS-STING axis,
notably because it was shown that cGAS is non-dispensable for
STING activation in vivo. Indeed, in cells, including dendritic
cells, macrophages or fibroblasts, from cGAS-deficient mice,
nucleic acid-dependent STING activation was abolished (115).
Yet, recent research has underlined the existence of species-
specificities in innate immune detection of nucleic acids (116).
Thus, although the cGAS-STING cascade represents a crucial
cytosolic dsDNA detection route, a more complex picture is
currently emerging. In addition to the many direct regulators of
the cGAS-STING pathway, alternative receptors such as IFI16
and DNA-PK, may mediate stimulus-specific Interferon
April 2021 | Volume 12 | Article 660560
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responses. Therefore, previously overlooked nucleic acid sensors
should be re-examined (117). In particular, the recently
uncovered cooperation between DDR and nucleic acid
immunity can be expected to contribute to the health
alterations witnessed in patients presenting with chronic
inflammation while feeding cancer susceptibility directly.

Importantly, in inflammatory pathologies, it is generally
considered a risky approach to directly act on pathways
responsible for Interferon production (118). This is
intrinsically linked to the duality of the impacts of Interferons,
that can either be beneficial or promote cytopathic effects,
depending on multiple parameters that are as of today poorly
understood. Several chronic inflammatory pathologies,
presenting with type I Interferon overproduction, such as type
I Interferonopathies, or Aicardi-Goutières Syndromes are treated
with inhibitors of the Janus kinase 1, 2 and 3 (119). This
treatment, rather that halting Interferon production, prevents
the induction of ISGs following the interaction of Interferons
with its cognate receptor. However, such disruption of immune
pathways comes at the expense of increased risk of infection
(119). Identification of pathways responsible for activation of
pathological immune responses and the design of specific
targeting strategies may be valuable in these pathologies.
Addressing whether DDR proteins are involved in the
inflammatory signature present in these diseases is
thus important.

Altogether, the current state-of-the-art supports that STING
is an attractive target for the treatment of autoimmune,
inflammatory diseases and cancer (17, 120). However,
emerging regulators, cell type specific or stimulus specific
responses, together with alternative functions of STING and its
activators, indicate that our understanding of nucleic acid
immunity is still in its infancy. Our view of how immune-
stimulatory DNAs are detected is likely grow in complexity,
notably with the addition of DNA repair proteins to the list of
PRRs. Therefore, the regulatory mechanisms and crosstalk
Frontiers in Immunology | www.frontiersin.org 7
between engaged pathways will surely remain an area of
intense research in coming years.
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