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Abstract. A two-equation model to self-consistently determine cross-field fluxes

in the edge and scrape-off layer region of diverted plasma is used to complete 2D

mean-field edge transport description of plasma wall interaction. Inspired by the

Reynolds Average Navier-Stokes simulations for neutral fluids, this model is based

on the local evolution of the turbulent kinetic energy κ and its dissipation rate ε.

These two equations are algebraically derived for RANS modeling and are very slightly

modified and adapted to describe self-consistent plasma turbulent transport. The

general features of the model are discussed and bridged to the well-known predator-

prey and quasilinear models commonly used to investigate plasma transport. Specific

closures are proposed based on the interchange turbulence. Results of the 1D model

are confronted to experimental evidence by analyzing the computed SOL width and

comparing the results to the existing scaling law for L-mode plasmas. Introducing a

dependence on the shear of large scale flows, typically the zonal flows, 1D simulations

can exhibit an H-mode like transition when increasing the input power, generating

an increased stored energy thanks to an interface barrier located at the separatrix.

Further 2D plasma-wall interaction simulations for WEST are analyzed that show a

good match with the experimental profiles, as well as a ballooned transport driving

turbulent transport in the divertor SOL and nearly no transport in the private flux

region. The SOL width of WEST is also recovered. These results show the remarkable

capability of the κ-ε model to capture key aspects of the physics of turbulent transport

throughout the plasma knowing that a unique scalar free parameter is available to tune

cross field transport in the whole 2D cross section of the plasma.

Introduction

The control of plasma-wall interaction in next step devices aiming at burning plasma

operation is presently understood to be a key research topic bridging the physics

of advanced divertor scenarios and technological constraints governing the heat flux

exhaust capability of the wall components [1, 2]. The ITER divertor design is based

on a long standing effort of transport simulations of the edge plasma in axisymmetric
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geometry [3, 4]. This simulation effort has played a key role in defining guidelines

for the divertor design. Recent effort has been made towards design optimization [5]

and determination of reliable transport coefficients [6]. However, stepping towards high

performance experiments near the operational limits, taking into account the aging

of the components and experimental feedback, will require improved reliability of the

numerical tools.

A suite of models is being developed, ranging from simplified models for

optimization and uncertainty propagation to state-of-the-art first principle models of

plasma turbulence transport in relevant plasma conditions. In that respect, full-

f gyrokinetic simulations of the core and edge plasma are being used in the fusion

community, but remain extremely costly from the computational point of view. In

particular, the near-wall region requires addressing particle transport, hence electron and

ion dynamics on the same footing, taking into account ionization particle sources and

given magnetic as well as boundary condition geometries that are much more complex

than those considered in the core [7, 8, 9]. Performing such simulations with 3D fluid

codes that handle self-consistently all scales of the flow, from the grid spacing to device

size, are generally still restricted to rather simplified geometries and only take into

account a fraction of the atomic physics at play in plasma wall interaction, see [10, 11]

and references therein.

Thus, in view of ITER operation or reactor design, the reduced models implemented

in the transport codes are well adapted to provide relevant information on appropriate

return times, similarly to the Reynolds Averaged Navier-Stokes (RANS) codes

commonly used for engineering applications in the neutral fluid community [12]. These

transport codes are based on reduced fluid models, generally assuming axisymmetry of

the plasma and accordingly using axisymmetric averaged equations. The reduction of

the number of degrees of freedom allows one to take into account additional equations

describing surface physics processes and atomic physics in realistic tokamak geometries.

There exists in the fusion community a certain number of such 2D state-of-the-art

transport codes. The reference effort started with B2 [13], then leading to SOLPS [14, 15]

and lately to SOLPS-ITER [16]. These three plasma transport modules are coupled to

the kinetic code Eirene [17] for the neutral particle transport. The other major codes

are UEDGE [18] (coupled to the DEGAS code [19] for neutral particles), SONIC [20],

EDGE2D [21] (first coupled to the NIMBUS [22] for neutral particles and later to

Eirene), and SolEdge2D-Eirene [11, 17, 23]. The latter, operated with configurations of

most existing tokamaks in Europe and used in the present work, simulates the plasma

edge and scrape-off layer (SOL) in a toroidally axisymmetric spatial domain including

realistic wall geometry and detailed plasma-wall interaction. It is coupled to the Monte

Carlo code Eirene [17], which generates the particle source from the various neutral

ionization processes, for both atoms and molecules.

A major mathematical change in the structure of the transport equations is the step

from microscopic convective turbulent transport to a larger scale diffusive transport.

Models that are presently used for plasma-wall interaction assume that the transverse
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fluxes are driven by local gradients, and consequently defined by diffusion or conductivity

coefficients (equivalent to the turbulent eddy viscosity introduced in neutral fluids). The

apparent universality of diffusive transport models is connected to the fact that it is in

practice the simplest local transport model that can be implemented in equations. The

effective particle diffusion Dn stemming from this process, and similarly the effective

viscosity νn for the parallel momentum and effective heat conductivity χe and χi,

respectively for the electrons and the ions, must be determined at each point of the

mesh. As an example the perpendicular turbulent flux of particles ñṽ⊥, namely the

convective transport of the density fluctuations ñ by the cross-field drifts ṽ⊥ is closed

as:

〈ñṽ⊥〉cg ∼ −Dn∇⊥〈n〉cg (1)

where 〈 〉cg stands for the coarse graining procedure. This step is most important since

it determines in fact a projection operator and consequently the physics that one retains

and that which is orthogonal [24, 25]. Ensemble averaging is often presented as the back-

bone for coarse graining. However, this elegant argument is not practical and not really

informative regarding the rules that govern the coarse graining process. In practice an

averaging operator over the high-frequencies is used; Dn is then an effective diffusion

coefficient and ∇⊥〈n〉cg the local transverse gradient of the coarse grained density field.

For ITER, the global behavior of the plasma must be analyzed with time scales of a

fraction of the energy confinement time in the core and a fraction of the thermal time

scale of the plasma facing components, both in the range of seconds. The chosen coarse

graining time scale τcg is therefore in the range of a second while the turbulence time

scales τturb are usually assumed to range between microseconds and milliseconds. It is

to be noted however that in flux driven turbulence simulations, no spectral gap is ob-

served between this turbulence time range and the macroscopic time τcg [26]. This can

be an issue in the coarse graining procedure [26]. Regarding space, two length scales are

observed, the system size and the turbulence scale ṽ⊥τturb. For magnetic fusion plasmas,

the length ṽ⊥τcg exceeds the system size. In the plasma core, with system size given by

the minor radius a, the regime ṽ⊥τturb � a can be assumed to hold. For plasma-wall

interaction, characterized by the SOL width λn, the regime ṽ⊥τturb ≈ λ is more likely.

Defining and implementing a coarse graining procedure is then less straightforward [26].

In present transport simulations, the particle, momentum and heat diffusion

coefficients are not determined self-consistently but are tuned to match experimental

radial profiles usually known at a single poloidal location, typically in the midplane. This

is done either by providing transport coefficients as input to the code, having checked a

good match between the empirical profiles and the reconstructed ones, either in a more

sophisticated manner by adjusting automatically these values according to the midplane

profiles as part of the initial step of the run. In SolEdge2D-Eirene, the automatic

fitting procedure based on a proportional-Integral feedback loop is implemented [27].

In both cases, radial profiles of the effective transport coefficients are determined and
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it is assumed that these do not exhibit any other dependence that strongly limits the

predictive capability of such codes. We remind that accurate values of the transport

coefficients are required to determine the SOL width, which is the crucial parameter

that governs plasma-wall interaction. Indeed, the competition between the SOL parallel

conductive/convective transport and cross field transport combining large scale drifts,

and turbulent and collisional transport [28] determines the width of the heat and particle

channels impinging onto the target plates, and consequently the operation constraints

governed by the exhaust limitations. It is also important to underline that in most

transport codes used to investigate plasma-wall interaction, the local gradients, for

example the gradient of the thermal energy ∇T are estimated in eV/m, irrespective of

the magnetic geometry, while the transport coefficients are assumed to be constant on

a given magnetic surface. Since the minimum distance between flux surfaces is found

in the midplane on the low-field side, where the transport coefficients are determined,

away from this location, the gradients then appear to be smaller due the magnetic

field flux expansion. Consequently they yield a reduced flux. A ballooned transport is

thus induced but not as a consequence of the known properties of micro-turbulence but

because the diffusion and conductivity coefficients are assumed to be homogeneous on

each flux surface. In such a framework, the induced ballooning is not governed by the

physics of turbulent transport as reported in all tokamak configurations [29, 30, 31], but

stems directly from the geometry of the magnetic surfaces.

Thus, these codes require stepping towards predictive transport modeling, freezing

on a physics basis all the free parameters that account for cross-field plasma transport

induced by the drifts [6]. Following our recent work in Ref. [32], we propose in this paper

a model for the self-consistent estimation of cross-field fluxes in the edge and scrape-off

layer regions of diverted plasma that has been implemented in SolEdge2D-Eirene. The

present effort is inspired by the work done from the 70’s in hydrodynamics [33], neutral

fluid turbulence in contrast to plasma turbulence in the fluid framework, and adapted

here to magnetically confined plasmas for fusion applications. In neutral fluids, the

Boussinesq assumption that the turbulent stresses and the deformation speeds of the

mean flow are proportional, defines the eddy viscosity νt. This key quantity defining

the transport properties of these fluids is then related to the turbulence kinetic energy

κ ≡ 1
2
〈ṽ2〉 and turbulence dissipation rate ε. We proposes here to follow a similar

procedure, thus introducing evolution equations for κ and ε and from these deriving the

dependence on space and time of the plasma transport. We will model this transport by

a diffusive process, as done for neutral fluids: convective transport will also be discussed

since since turbulent transport in the edge appears to be governed by bursts of ballistic

events [34, 35, 36]. An approach similar to that addressed here was recently proposed by

[37, 38], but in a simpler configuration for isothermal plasma and 2D closed field lines

domain. In this latter work, the perpendicular transport coefficients are determined from

the turbulent kinetic energy κ and the enstrophy which is an invariant in 2D turbulence

in neutral incompressible fluids. Their equations are analytically derived from the

interchange turbulence model implemented in the TOKAM2D code [34, 39]. This work
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suggests that the connection between the κ-ε model and fundamental properties of

turbulence, such as the energy circulation between fluctuations and mean field [40],

could be investigated based on these results from plasma physics. It is not the scope of

this paper to step in that direction, but rather to present the capability of such a model

to describe the edge and SOL transport with self-organization of turbulent transport.

The κ-ε model can be seen as an intermediate model reduction between that inspired by

the quasilinear results [41, 42] and direct coupling of turbulence to mean-field transport

[43, 44].

The paper is organized as follows. We first discuss the general features of the κ-ε

framework and bridge this approach to predator-prey and quasilinear models that are

used to investigate plasma transport. We then introduce the SolEdge2D-Eirene suite

of codes in Section 2. The general advection diffusion transport equation for κ and ε,

implemented in SolEdge2D-Eirene, are detailed and the rules used to close the system

are presented. In the fourth section, a one-dimensional reduction is proposed to carry

out fast scans of plasma parameters and determine the main trends of the solutions. In

the fifth section, the numerical results are confronted to experimental data in two L-

mode plasma discharges of the WEST tokamak [45]. Finally, a discussion and conclusion

Section closes the paper.

1. Local κ-ε evolution, comparison to existing turbulent transport models

1.1. The κ-ε transport model

It this work, we consider the standard κ-ε model used in neutral fluids [33] where κ is

the kinetic energy per unit mass of the fluctuating transverse velocity, typically ≈ 〈ṽ2
E〉

and ε is a damping process acting on κ. One thus retains the same evolution equations.

∂tκ+ ∇·K = Sκ − ε (2a)

∂tε+ ∇·E = Sε (2b)

Here ∇ ·K is the divergence of the flux of κ and Sκ − ε is the local evolution term

of κ. The evolution equation for ε (2b) is built to be similar to that of κ. The term

∇·E accounts for the divergence of the flux of ε and Sε is the local evolution term of

ε. The coupling between these equations that is made explicit by the term −ε on the

right hand side of (2a) identifies the field ε as a rate of turbulent energy dissipation and

determines the relative normalization of ε with respect to κ.

The source terms Sκ and Sε are expanded up to order 2: Sκ = γκκ−βκκ2, Sε = γεε−βεε2.

The linear part depends on the growth rates γκ and γε. The non-linear parts are chosen

to be restoring terms with βκ and βε positive. The evolution equations (3) for two fields

κ and ε in R+ exhibit therefore a generic local form. Assuming diffusive transport in

the transverse direction and the expansion of Sκ, Sε described above, the system (2)
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takes the following form:

∂tκ−∇⊥ ·
(
Dκ∇⊥κ

)
+ ∇‖ ·K‖ = γκκ− βκκ2 − ε (3a)

∂tε−∇⊥ ·
(
Dε∇⊥ε

)
+ ∇‖ ·E‖ = γεε− βεε2 (3b)

It can also be shown that equation (3b) can be rewritten as a Ginzburg-Landau

amplitude equation [46, 47] for the amplitude A such that ε = |A|2. This further

underlines the generic structure of the κ-ε system (3). In the two following Sections,

we discuss the connection of the κ-ε approach to models presently used to investigate

plasma turbulence: the predator-prey and quasilinear transport models.

1.2. Local κ-ε dynamics and comparison to predator-prey models

Let us consider here the local evolution equations for the fields κ and ε, hence system

(3) without cross-field and parallel transport.

∂tκ = γκκ− βκκ2 − ε (4a)

∂tε = γεε− βεε2 (4b)

One can consider the system (4) as a predator-prey system and more generally any

kind of reservoir system with internal dynamics and coupling [48, 49]. The predator-

prey dynamics [50] have been introduced in plasma-physics to investigate bifurcation-

like phenomena of transport properties [51, 52]. However, rather than adjusting the

predator-prey model to match a particular behavior, we only consider in this paper the

local evolution terms defined by the κ-ε model (3) as chosen for neutral fluids [33]. The

field ε is an effective predator of the prey κ. Indeed the two species exhibit growth rates

that are similar and do not depend on either species κ or ε. The effective predator ε

does not feed directly on κ. Rather the existence of ε inhibits the prey development as if

modifying the ecosystem in an unfavorable way for κ. The fixed points of the predator

equation are ε = 0 and ε = γε/βε. For βε > 0, one thus finds a phase transition behavior

such that for γε < 0, ε = 0 is the only possible fixed point while for γε > 0 two fixed

point exist. One obtains similarly that for γκ < 0 the only fixed point is κ = 0. This

transition for the coupled equations is reminiscent of the bifurcation in the Ginzburg-

Landau amplitude equation such that for negative growth rate the stable fixed point is

zero that becomes unstable when the growth rate is positive.

The comparison to the predator-prey models provides a first understanding of the field

ε as the predator of the turbulent energy. One can also remark that ε is akin to the

time derivative of κ. The set of equations can then be understood as the first two

of a hierarchy of equations coupling increasing order time derivatives. The closure at

ε is performed at the same order as the Newtonian closure in mechanics. The fact

that κ ε belong to such a hierarchy of time derivatives justifies the choice to retain

similar equations for both κ and ε. One can conjecture that this structure is the key

point that drives the efficiency of the κ-ε model. Let us now address the properties



Self-consistent cross-field transport model for core and edge plasma transport 7

of the non-linear saturation terms. In neutral fluids [33] the definitions of βκ and βε
are guided by dimensionality arguments. Hence βκ = 1/Dω where Dω is a diffusion

coefficient. Regarding βε we note that ε is dimensionaly equivalent to the rate of energy

transfer between scales that governs the cascade paradigm of steady-state turbulent

spectra. Compared to the choice made for neutral fluids, we then make one step

towards interpreting the κ-ε model. The field κ stands for the turbulent energy of

the modes that govern turbulent transport. In the framework of turbulent cascades,

ε is a dissipation mechanism that can be understood as the rate of energy transfer by

direct and inverse energy cascade [12] to regions of the spectrum that weakly contribute

to transport. In the generic case of a direct cascade ε couples this energy to the

Kolmogorov region of the spectrum where energy is dissipated. This interpretation

in terms of a direct energy cascade is not mandatory for the present work, we believe

that it provides an understanding of the physics taken into account by ε. It is to be

noted that it is often argued that 2D turbulence leads to an inverse energy cascades.

This argument is too loose and does not hold when considering turbulent transport,

namely turbulent convective transport of density, pressure, etc. coupling the turbulent

velocity to fluctuations of the transported field at all scales. In this case the existence of

a second quadratic invariant akin to the enstrophy is possible [53] but not guaranteed.

Lastly, the parallel transport in the third dimension cannot be ignored, especially the

parallel losses that characterize the SOL physics, and can break the symmetry conditions

required in neutral fluid 2D turbulence for a second quadratic invariant to exist. For

steady state conditions at a given scale `, a dimensional analysis readily yields the

relationship between the rate of turbulent energy transfer ε and the turbulent energy κ.

κ ∝ `2/3ε2/3 (5)

This universal feature drives both direct and inverse energy cascades. Stepping to

determining the power law dependence in the region of the spectrum governed by the

energy cascade (direct as well as inverse), one recovers the well known power law `5/3ε−1/4

of the Kolmogorov theory [54].

To enforce the steady-state relation of turbulent spectra (5) in the κ-ε model, we set

βε ∝ κ−3/2. This is a slight change with respect to the standard neutral fluid κ-ε

model where βε ∝ κ−1 [33]. For the sake of generality, we shall also consider βε ∝ κ−η,

which depending on η encompasses the choice made for neutral fluids η = 1 and that

made in (5), η = 3/2. It will be shown that all values of η ≥ 1 exhibit comparable

properties, the choice of η ≥ 1 does not introduce critical changes to the model. The

fixed points of the local evolution for ε is then zero and ε = γε/βε = γκ∗(κ/κ∗)
3/2,

γ > 0 is a proportionality factor, dimensionaly the inverse of a time, and κ∗ ∈ R+ is a

convenient normalization of κ to be chosen hereafter. The control parameter γ governs

the amplitude of the dissipation via the energy cascade for a given turbulent energy.

The effect of varying this control parameter is addressed in the following. The steady

state non-trivial fixed point thus leads to κ ∝ ε2/3 as in (5). Given ε = γκ∗(κ/κ∗)
3/2,
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the fixed point for κ is then determined by the equation:

γκκ−
1

Dω

κ2 − γ

κ
1/2
∗
κ3/2 = 0 (6a)

Solutions other than κ = 0 are thus determined by:

κ

κ∗
+
[( κ
κ∗

)1/2

− γκ
γ

]γDω

κ∗
= 0 (6b)

More generally, we set ε = γκ∗(κ/κ∗)
η, with η = 1 for standard neutral fluids, and

η = 3/2 for (5). We define κ∗ = |γκ|Dω > 0 so that the fixed point is either κ/κ∗ = 0 or

the positive root of:

κ

|κ∗|
+

γ

|γκ|

( κ
κ∗

)(η−1)

− γκ
|γκ|

= 0 (6c)

For the two reference values of η, η = 1 and η = 3/2, analytical solutions other than

κ = 0 are obtained:

η =1 ; κ = γκDω (7a)

η =3
2

; κ1/2 =
(
− γ

2|γκ|
+
[( γ

2|γκ|

)2

+
γκ
|γκ|

]1/2 )(
|γκ|Dω

)1/2
(7b)

For fixed γ > 0, and varying the control parameter γκ, one finds, as with the standard

Ginzburg-Landau wave amplitude equation, that for γκ < 0 the only positive fixed point

is κ = 0. Conversely, for γκ ≥ 0 the stable fixed point is either κ = 0 or the solution given

by (6c). Let us now assume that γκ > 0 is fixed and vary γ that governs the coupling

between the two fields κ and ε via the damping process at play in the spectrum, Figure

1. For γ = 0, ε = 0 and the two fields are decoupled, κ/κ∗ = 1. For the relevant values

η ≥ 1, as γ is increased, κ decreases monotonically from its maximum value κ∗ towards

zero, Figure 1 left hand side, while ε first increases with γ before decaying towards zero

when γ → +∞, the maximum being achieved for γ/γκ = 0.52−η and ε/ε∗ = 0.25 with

ε∗ = γκκ∗, Figure 1 right hand side.

Compared to the case without coupling, readily obtained by setting γ = 0 so that ε = 0,

adding the damping by ε in the equation for the turbulent energy, introduces a regulation

with a possible time delay because this damping is governed by an independent equation

with different time scales. However, the latter effect will not occur if the time scales

that govern the evolution of ε are small, hence γ → +∞ so that ε exhibits an adiabatic

response. Regarding the dependence on η, there is a change in behavior between η < 1

open circles, and η ≥ 1 closed symbols, as shown on Figure 1. In particular κ → 0

when γ → 0 for η < 1, while κ/κ∗ → 1 for η ≥ 1. Furthermore, instead of obtaining

an asymptotic convergence towards zero when the control parameter γ is increased as

with η > 1, for η = 1 both κ and ε switch to zero above the critical value γ = γκ with

a discontinuity of their derivative. The value η = 1 used in the standard κ-ε model

is a marginal value with respect to the behavior for η > 1. It also appears that the
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Figure 1. Variation of κ (left hand side) and ε ( right hand side) with the control

parameter γ, for different values of the exponent η: η = 1 black line head down closed

black triangles, η = 3/2 black line closed black circles, η = 1.25 blue line closed head up

blue triangles, η = 2 blue line closed blue triangles and η = 0.5 dashed blue line open

blue circles. Reference values η = 1, RANS κ− ε model [12] and η = 3/2 Kolmogorov

theory [54].

cases η ≥ 1 are qualitatively comparable so that the particular choice of η > 1 does not

determine specific properties of the fixed points of the local dynamics.

It is to be underlined that the present version of the predator-prey model implemented

in this κ-ε model is not chosen to exhibit particular physics in terms of bifurcations,

limit cycles etc. Although it is convenient to see in the loss term ε that governed by the

losses at the Kolmogorov dissipation scale via the energy cascade this is not the unique

loss channel. Indeed, in the fusion plasma literature, an important loss path controlling

turbulent transport is governed by a coupling to large scale flows [55, 56, 57]. This result

fits with the picture of an inverse energy cascade although disparate wave coupling is

often considered to be in fact the main drive. The latter can be understood as an

alternative loss channel described by ε. In the following such a feature is taken into

account by a modification of the ε local evolution. Indeed, it is understood that either

the nonlinear coupling of the source term to the free energy, hence the dependence of γκ
and γε on the various gradients [34], or the shearing effect via the self generated zonal

flow [55, 56, 57] are the main players in the turbulence energy evolution, something of the

form of ε but governed by different dynamics [52]. In this context, it is also important

to mention the approaches based on prey-predator models [58] and used to investigate

the H-mode transport barrier, its onset as well as its dynamics in the vicinity of the

threshold. The aspect that is considered there, as well as in [52], is that the control

mechanism of the kinetic energy κ of the quasi-2D plasma turbulence is governed by

large scale and meso-scale processes such as the E ×B shearing of turbulence driven

by zonal flows and mean flows [55, 56, 57]. In this framework, ε, the predator for
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turbulence [58], stands for the stabilizing shearing effect of these large scale flows. The

more complex local dynamics for κ-ε govern the features that are reminiscent of the L-H

transition, as reported in [58, 59]. The comparison of the κ-ε model to the predator-

prey models used to describe plasma self-organization opens the way to further adapt

the standard κ-ε model by modifying the local evolution. We leave this investigation

to future work. However, we show in this paper that including a shearing effect in the

standard framework, without complex and highly nonlinear dynamics, already provides

a scheme to self-consistently generate an interface barrier, Section 3.4.

1.3. κ-ε transport model and quasilinear framework

In the framework of reduced models, in particular for real time control, a renewed

interest has been given to the quasilinear theory [60, 61, 62] by using a large data base of

first principle simulations and experiments to constrain the quasilinear model [63, 42, 64].

We show here that the κ - ε model can be seen as an extension of the quasilinear theory,

determining consistently, at each position and each time, the turbulent kinetic energy,

typically κ, and the characteristic time governing the width of the resonance. Let us now

consider a simplified quasilinear model for plasma transport governed by the following

generic equation:

∂tf + Lf = S (8)

We assume that one can define an averaging procedure such that f0 is the projection

of f with this averaging procedure, and such that the projection of f1 = f − f0 is zero,

hence < f >= f0 and < f1 >= 0. The averaging projection can also be applied on the

evolution operator L = L0 + L1 with < L >= L0 and < L1 >= 0. For simplicity we

assume < S >= S. Equation (8) can then be split into a set of two equations, for the

mean and the fluctuations:

∂tf0 + L0f0 + 〈L1f1〉 = S (9a)

∂tf1 + L0f1 + L1f0 + L1f1 − 〈L1f1〉 = 0 (9b)

The quasilinear theory simplifies (9) by dropping the non-linear fluctuation terms in

(9b) hence removing L1f1−〈L1f1〉 while retaining 〈L1f1〉 in (9a). One could justify this

step by considering some ordering such that the mean is of order 0 while fluctuations

are of order 1, however, this does not imply that L1 applied to f1 is of order 2. This

is clear with the example L1 = v1∇⊥, v1 and f1 being of order 1, but one cannot state

that ∇⊥f1 is of order 1 and not order 0. Furthermore, should L1f1 be of order 2, it

can be questionable to neglect terms of order 2 in an equation where the other terms

are of order 1 as in (9b) while retaining an order 2 term in (9a) where the other terms

are of order 0. It is more interesting here to consider symmetries. Indeed the term

L1f1 − 〈L1f1〉 can be seen as a correction to L0f1, and considering that f1 does not

belong to the kernel of L0, this correction does not change the structure of (9b). The
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latter can then be rewritten as:

∂tf1 + L∗0f1 + L1f0 = 0 (10a)

L∗0f1 = L0f1 + L1f1 − 〈L1f1〉 (10b)

f1 = − 1

∂t + L∗0
L1f0 (10c)

The formal solution (10c) is obtained by assuming that the operator ∂t + L∗0 can be

inverted implying in particular that f1 does not belong to the kernel of ∂t + L∗0. One

can then consider the transport equation for the mean f0:

∂tf0 + L0f0 −
〈
L1

1

∂t + L∗0
L1

〉
f0 = S (11)

Let us now discuss this result in the framework of transport in a magnetized plasma,

typically setting L0 = v‖∇‖ and L1 = v1∇⊥ where the subscript ‖ and ⊥ refer to

the direction of the magnetic field. We thus focus in this discussion on the position

dependence of f0 with respect to the magnetic surfaces; ∇‖ depending on the variation

within a magnetic surface, and, ∇⊥ depending on the variation between magnetic

surfaces, hence ∇⊥ ≈ ∇ψ∂ψ where ψ is a magnetic surface label. Setting L1 = 0

and S = 0 in (11), and given the symmetry ∇‖ψ = 0, f0 is a steady state solution

when f0 belongs to the kernel of L0, hence f0 only depends on ψ. In this case perfect

confinement is obtained, the source term S is not needed. Breaking the symmetry with

fluctuations, L1 6= 0 then governs the need for a source term to achieve a steady state.

With the proposed operators, we have implicitly assumed the simplification ∇⊥v1 = 0,

furthermore, approximating L∗0 by L0 as done in the quasilinear framework, one obtains:

∂tf0 + L0f0 −∇⊥
〈 v2

1

∂t + v‖∇‖

〉
∇⊥f0 = S (12a)

Dql =
〈

1
2
v2

1τql

〉
=
〈
κ τql

〉
(12b)

τql =
2

∂t + v‖∇‖
(12c)

The quasilinear analysis thus yields three important features, (i) one obtains a diffusive

like transport in the cross-field direction, (ii) the diffusion coefficient is proportional

to κ, and (iii) a characteristic time is required to completely determine the diffusion

coefficient DQL (12b). It is interesting to note that the result can be extended to the

general case hence without approximating L∗0 by L0. This can modify some aspects of

the commutation between v1 and the operator τql but does not change the main features

of the result, in particular the diffusive structure. Two key assumptions constrain the

validity of this result, first the possibility of defining the averaging procedure in line with

the symmetries that govern the operator L and second that the inversion of either ∂t+L0

or ∂t + L∗0 is possible, and, when possible, does not govern a change in the structure
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of the final result such as the explicit dependence on ∇⊥f0. Closing the quasilinear

approach then requires to determine both the proper κ and τql. In the most recent

effort, this is achieved using a large data base of local gyrokinetic simulations completed

by setting a proportionality factor using experimental evidence [42, 64].

The dimensional argument used for the κ-ε model can be considered to determine the

time τql since the ratio κ/ε has the dimension of a time, one can then set τql ∝ κ/ε and

one obtains therefore:

Dql = Cql
κ2

ε
(13)

where Cql is a proportionality factor. It is also interesting to note that the time κ/ε also

appears in the evolution of κ (3a).

1

κ
∂tκ−

1

κ
∇⊥ ·

(
Dκ∇⊥κ

)
+

1

κ
∇‖ ·K‖ = γκ − βκκ−

ε

κ
(14)

Indeed, the local evolution, right hand side of (14) depends on three characteristic time

scales, the linear drive 1/γκ, the non-linear restoring time Dω/κ and κ/ε. The relations

we have obtained at that stage appear to be comparatively complicated because we

have chosen the proportionality factor γ as free parameter. When considering as free

parameter the characteristic time τql = κ/ε, one obtains:

γκτql = γκ
κ

ε
=
γκ
γ

( κ
κ∗

)−(η−1)

(15)

Most of the complexity of this system is thus governed by the relationship between the

time τql and κ. Conversely, the steady state solutions exhibit simple dependencies in

terms of γκτql, Figure 2:

κ

κ∗
= 1− 1

γκτql
(16a)

ε

ε∗
=

1

γκτql

(
1− 1

γκτql

)
(16b)

One finds here that 1/(γκτql) ≤ 1, hence τql ≥ 1/γκ so that τql is the longest time scale

in the system. In this framework, setting D = κ2/ε, one finds a very simple expression

for the diffusion coefficient:

D

D∗
=
κ2ε∗
εκ2
∗

= γκτql − 1 (16c)

The form (13) is the reference one for the diffusion transport coefficients in the κ-

ε framework. Therefore, one can consider that the κ-ε model is an extension of the

quasilinear framework such that the fields κ and ε are determined within the local

transport model, and evolved self-consistently rather that being imported using other

tools, either fitting of experimental evidence or determined using a data base of local

gyrokinetic simulations. Regarding plasma-wall interaction, which exhibits at least
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Figure 2. Variation of κ blue line closed circles left hand side axis, and ε black line

open circles, right hand side axis, with the control parameter γκτql.

a 2D dependence in space, 2D measurements of the gradients are out of reach, the

κ-ε approach then appears as an extension of the quasilinear theory that is better

suited to address the complexity and variability in geometry and parameter space of

the problem. Furthermore, rather that fitting the characteristic time, the κ-ε model

allows one determining self-consistently this time and in particular the dynamics with

the possible occurrence of time delays in the response of ε.

2. Closure of the κ-ε model for plasma transport

2.1. The κ-ε model with diffusive cross-field transport

In Section 1.2 we have discussed the form taken by the non-linear restoring terms of the

local evolution. For convenience we now write the restoring term as βε = V/κ3/2 where

V is free parameter, dimensionaly equivalent to a velocity. Furthermore, as in (3) we

neglect the large scale flows that arise from the non-homogeneity of the magnetic field as

well as from large scale electric fields. This is in line with standard modeling of plasma-

wall interaction but will fall short whenever a finer description of cross-field transport

is required. In particular when contemplating the κ-ε model as a tool to investigate

the properties of turbulent transport described by first principle fluid or gyrokinetic

simulations. To reduce the number of free parameters, we impose in the present work

Dκ = Dε = D where D = κ2/ε. Further work and comparison to transport data

bases could lead to introduce further control parameters to ensure a better match with

experimental and simulation evidence. Taking into account these different changes, one

then obtains:

∂tκ−∇⊥ ·
(
D∇⊥κ

)
+ ∇‖ ·K‖ = γκκ−

κ2

Dω

− ε (17a)

∂tε−∇⊥ ·
(
D∇⊥ε

)
+ ∇‖ ·E‖ = γεε− V

ε2

κ3/2
(17b)
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The transverse transport that governs the plasma fields is also assumed to be diffusive,

and the coefficients proportional to D = κ2/ε. Various boundary conditions have been

implemented for κ and ε. For the simulations presented in this paper the radial boundary

conditions are set by vanishing second derivatives. A similar boundary condition has

been used in the parallel direction for the 2D SolEdge simulations. This choice does

not constrain the outflux and boundary value. Several 1D simulations have been run

with vanishing boundary values for both κ and ε. The change only modifies a thin layer

in the outer SOL, in agreement with the importance of the local dynamics for κ and ε

compared to transport.

A first closure issue consists in determining these various diffusion coefficients. we first

assume that the turbulent (subscript t) fluid viscosity νt is proportional to D with

proportionality factor Cν . The relevant turbulent particle diffusion Dn is then defined

by the turbulent Schmidt number Sct = νt/Dn, while the electron and ion turbulent

heat diffusivity are determined by a single turbulent Prandtl number Prt, hence:

νt = Cν
κ2

ε
; Dn =

νt
Sct
≈ νt ; χe = χi =

νt
Prt
≈ 2νt (18)

The constant parameter Cν is to be determined with an appropriate constraint, typically

a fitting procedure of either empirical or simulation data. In the present work, we

further assume, as rather standard in neutral fluids Ref.[65] and references therein, that

the turbulent Schmidt number Sct = νt/Dn is of order unity. We shall also consider an

empirical observation from midplane profiles which have been matched by steady state

transport simulations with the constraint χe,i = 2 ×Dn [66]. Accordingly, we shall set

the turbulent Prandtl number Prt = νt/χ to be equal to 1/2. Again future work with

fitting procedures using empirical or simulation data should be used to provide a firm

basis to set these closure parameters, possibly different from those chosen in this paper.

2.2. Growth rates closure for the plasma κ-ε model

Since κ and ε are determined locally in space and at each time step by the model (3),

the diffusion coefficient D determined from κ and ε is also defined locally and exhibits

an evolution in time. Consistently, we consider therefore that the growth rates in (3)

or (17) are local and time dependent. This is a major particularity of the κ-ε model in

neutral fluids that we transpose to plasmas. Plasma turbulence in magnetically confined

plasmas mostly arises from instabilities usually identified according to their linear

drive. For electrostatic turbulence two main classes can be identified: (i) interchange-

like instabilities governed by the magnetic field inhomogeneity that drives a current

across the magnetic surfaces, (ii) the drift wave instability mostly driven by parallel

currents. The interchange-like mechanism drives Ion Temperature Gradients [67] and

SOL-interchange [68]. It is characterized by a poloidal asymmetry of the drive, leading

to turbulence ballooning on the low field side of the torus. Conversely the drift wave

instability [69, 70], including the sheath negative resistivity mechanism [71], does not

exhibit a poloidal asymmetry in the drive. However, in the non-linear stage working
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back to a particular mechanism is questionable [70]. Furthermore, it has been found that

linearly unstable mechanisms can ”cooperate” [72], or compete, one instability inhibiting

the other [73]. Such predator-prey behavior could be transposed to κ-ε models. This

is left for future work. For the present purpose of using the κ-ε model to investigate

plasma-wall interaction, we have decided to single out the interchange-like instability

driven by the plasma pressure gradient. As discussed, such a mechanism is understood

to drive the poloidal asymmetry observed in the turbulent transport between the low

field side and the high field side, the so-called ballooning of the turbulence, which

is not consistently taken into account in 2D transport codes addressing plasma-wall

interaction. The motivation is to recover this imbalance and does not mean that we

regard the specific interchange instability as the only player. As in the standard κ-ε

model, we shall furthermore consider the simplification γκ = γε, so that γκ = γε = γI
where γI is the linear interchange instability growth rate [68, 34, 39]. The case with

γκ 6= γε is also of interest and addressed elsewhere [74].

γI =
cs
R

√
R2

∇p·∇BT

pBT

(19)

The variation in space of the axisymmetric toroidal magnetic field BT is governed by

the tokamak major radius R. The time scale R/cs, where cs is the sound velocity, is

chosen consistently with a drive depending on the pressure gradient ∇p. The pressure

p and its gradient play a key role since they vary in space and time while RBT is

constant when assuming axisymmetry. More complete models can be addressed, either

by assuming competing growth rate of the different instabilities that add up to drive the

same turbulent energy κ, or competing κ-ε systems, one for each instability, such that

one would then add the various diffusion coefficients. However, the implicit rule in (19),

namely that γI = 0 when (∇p/p) · (∇BT/BT ) ≤ 0 governs a ballooning of this local

drive. It is then possible that a class of instabilities characterized by such a ballooning

feature can be addressed with this particular growth rate. As will be shown in Section

2.6, a vanishing drive combined to the other transport properties will govern an effective

damping of the turbulent energy. The overall effect is then reminiscent of the growth

rates derived in Refs.[34, 39, 68] that take into account the transport features.

2.3. Ballooned transport in the poloidal plane

In order to check that the growth rate (19) allows one to recover the salient features of the

ballooned transport patterns in the poloidal plane, we analyze various simulations of a

particular TCV experiments [75, 76] performed with the 3D turbulence code TOKAM3X

[10] and SolEdge2D-EIRENE. Depending on the simulations, ballooning effects are

either included self-consistently, as with TOKAM3X and SolEdge2D with the κ-only

transport model, or enforced in the transport model of SolEdge2D, or ignored as with

standard SolEdge2D transport model. Let us first analyze the SolEdge2D-EIRENE

simulations without self-consistent turbulent transport from Ref.[75], Figure 3. On panel

(a), we have reproduced the particle flux as obtained with the procedure of midplane
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Figure 3. Sketch of the 2D transport pattern in TCV in the large X-point height

configuration. Pattern of the particle flux in the poloidal plane, simulations with

SolEdge2D-EIRENE but without self-consistent turbulent transport, sketch from

Ref.[75]. Panel a: standard transport modeling in 2D plasma-wall interaction. Panel b:

modified choice of transport modeling enforcing ballooned transport. Strong outward

particle flux is labeled ”High > 0”, moderate outward particle flux is ”Medium > 0”,

and moderate reversed particle flux is ”Medium < 0”.

profile tuning of the transport coefficients [27], and assuming that these coefficients

can be extrapolated to the whole poloidal plane only taking into account the radial

dependence. This is the standard procedure used in 2D transport modeling of plasma

wall interaction. The patterns of strong outward particle flux are located on the one

hand at the core to SOL interface, in both the high and low field regions, and on the

other hand in the SOL region of the divertor for both the high and low field side legs.

Finally, the region with moderate particle outflux exhibits poloidal symmetry around the

core plasma and along the divertor legs. This very homogeneous transport pattern did

not provide agreement with the experimentally estimated transport properties based

on the measurement of the SOL widths. Furthermore, such symmetric transport

pattern is known to disagree with experimental evidence that suggests ballooned

transport [29, 30, 31]. Another simulation was performed with a different choice of

transport coefficients, tuning the radial profile to fit the midplane profiles [27] and then

extrapolating these to the poloidal plane by enforcing strongly ballooned transport,

Figure 3, panel (b). A modest improvement when comparing to the TCV data is

reported [75].

Let us now analyze TOKAM3X and SolEdge2D-EIRENE with the κ-only turbulent

transport model simulations, Figure 4. The first observation that can be made is the

clear imbalance between the high field side region with no significant turbulent transport

and the low field side region where cross-field transport is localized. The transport
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Figure 4. Sketch of the 2D transport pattern in TCV in the large X-point height

configuration. Panel a: effective particle diffusivity given by TOKAM3X, sketch of the

results published in Ref.[75]. Panel b: Particle turbulent diffusion coefficient Dn self-

consistently determined in SolEdge2D-EIRENE simulation using the κ-only model,

sketch of the results published in Ref.[76]. Regions with largest particle diffusion

coefficient are labeled ”high”, those with still significant particle diffusion are labeled

with ”medium”.

coefficient is observed to increase from the inner core boundary towards the separatrix,

following a universal trend of the fluctuation profile measurements [77, 78, 79], recovered

in some gyro-kinetic simulations [80]. Regarding the ballooning aspect, one finds that

the poloidal extent is typically ±80◦, therefore broader than the ±45◦ reported for the

Tore Supra limiter experiment [30, 31, 81]. One can notice also that the ballooned

aspect is superimposed to a near constant Dn pattern extending poloidally in the low

field side SOL and following approximately the separatrix. Comparing panels (a) and

(b) indicates that qualitative agreement is achieved. The ballooned feature agrees with

experimental observations Refs.[29, 30] and the localization along the low field side

divertor leg as reported with visible imaging of turbulent filaments as in the MAST

tokamak [82].

The particular choice made for the growth rate (19) therefore generates a ballooned

structure of turbulent transport that exhibits key similarities with micro-turbulence

simulations [83, 80, 75]. It clearly indicates that using such a growth rate of the form

(19) is quite effective in providing a means to capture self-consistently a major property

of turbulent transport throughout the plasma volume [29, 30, 81].



Self-consistent cross-field transport model for core and edge plasma transport 18

2.4. Diffusive transport driven by the local dynamics: closure constraint for Dω

To address the closure of the κ-ε model with respect to Dω and V , we consider the local

evolution equation for κ and ε (17):

∂tκ = γκκ−
1

Dω

κ2 − ε (20a)

∂tε = γεε−
V

κ3/2
ε2 (20b)

The control parameter of the quadratic term of the equation for κ, Dω in (20a), ensures

that κ has no fixed point at infinity and remains therefore bounded. Such a property

is most important in predator-preys models when all fixed points are lost so that the

system must then enter a limit cycle. The parameter Dω is a free parameter, with

dimension m2s−1 akin to a diffusion coefficient. It can also be written as Dω = κω/∆ω.

The coefficient Dω is split into the frequency width ∆ω of the turbulent energy spectrum

and a characteristic value of the latter κω, providing a connection to published predator

prey models [58]. As shown in Section 1, the steady state solution is obtained as the

solution of a second order equation. It can be recast into an equation for the diffusion

coefficient D = κ2/ε:

D2 +DDω −DVDω = 0 (21a)

DV =
γκV

2

γ2
ε

(21b)

Note that for DV to be positive one assumes here that γκ > 0. this is the condition to

have solutions different from D = 0, therefore one positive solution determined by:

D = −1
2
Dω + 1

2

√
D2
ω + 4DVDω (21c)

Depending on V , one finds therefore two regimes, the weak turbulence regime for

DV � Dω, such that the expansion of the solution for D in (21c) yields D ≈ DV ,

which scales like V 2, and a Bohm strong turbulence regime such that D ≈
√
DVDω and

is therefore linear in V [84]. The ratio DV /Dω, which can be interpreted as a Kubo

number [85, 86], governs this transition. As a possible closure of the system, we enforce

the diffusion coefficient D to be in the weak turbulence regime. In such a framework,

we therefore consider that the transition to the Bohm regime for D will occur for much

larger values of D than required to match the experiments. Consequently, we choose

the parameter Dω such that Dω � Dn, where Dn is the typical diffusion coefficient

consistent with the SOL width. The parameter Dω then only plays a role during tran-

sients with large κ amplitude. In the simulations Dω is defined in terms of κmax = 1010,

Dω = κmax/γκ, where γκ is a characteristic value of the growth rate. For the sake of

simplicity, Dω is also assumed to be constant in the whole simulation volume. In this

work we have therefore set the value of the parameter Dω so that is has a minor role on

the steady-state behavior of the κ-ε system.
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2.5. SOL width driven by the local dynamics: closure constraint for V

Given the choice made for the growth rate γκ = γε = γI (19), the local fixed point

yields κ = V 2 and consequently D ≈ DV ≈ V 2/γI . The choice for the closure of the

control parameter V is a key element of the model since it characterizes the magnitude

of the turbulence energy and consequently that of turbulent transport. We have chosen

here to define V with the aim of improving the predictive capability of simulations

of plasma-wall interaction, in particular divertor operation. The control parameter V

is then chosen such that the local evolution properties allow one to recover the SOL

width λSOL as determined by the L-mode empirical scaling [87]. Since the scaling law

is consistent with data from several devices, the choice of V should be appropriate to

describe this class of devices with no further free parameter tuned to ensure the match.

For the simulations, we have therefore enforced the relationship:

Dn = CνD ≈
λ2
SOL

τ‖
(22a)

where τ‖ = L‖/cs is the parallel connection characteristic time, cs the sound velocity

and L‖ = qR the connection length. The recent scaling laws for the SOL width are

based on a proportionality to the so-called poloidal Larmor radius qρ0 [87, 88, 89]. This

scaling property is readily recovered with simple arguments. First the SOL width is a

length and consequently must scale as a length. Second, it is understood that micro-

turbulence determines the SOL width so that the characteristic length associated to

micro-turbulence, the Larmor radius ρ0, is the reference length of interest, consequently

λSOL/a ∝ ρ∗ where ρ∗ = ρ0/a. However, dimensionless parameters can still play a role.

Using the long standing empirical dependence on the plasma current [90], hence on the

poloidal magnetic field rather than the toroidal magnetic field, one can then readily

conjecture:

λSOL
a

= αsqρ∗ (22b)

where αs is a matching scalar parameter. Alternatively, as shown in Ref.[59] and

sketched here, one can consider the quasi-linear framework for electrostatic turbulence -

although questionable given the large amplitude fluctuations in the SOL- with λSOL/a =

(Dqlτ‖/a
2)1/2. Then for Dql ∝ (ρ∗v0)2τ‖, one obtains λSOL/a ∝ qρ∗A, where A = R/a

is the aspect ratio. Such a result holds provided one assumes that the characteristic

time τql (12c) is identified to be proportional to τ‖. The question of the SOL width

scaling has been a long standing issue and the matter of considerable work as for

the ITER design [91]. Only recently [88] has a particular empirical scaling law been

considered to be generic. However, one could argue that the scaling law is assumed and

that the significant error bars on the exponents [87] accommodate for the experimental

dispersion. Note that data base used for the empirical analysis [87] does not account

for aspect ratio A variation. The dependence on such a parameter would be useful

to discriminate various models. The results discussed here are also tightly related to



Self-consistent cross-field transport model for core and edge plasma transport 20

choosing τ‖ as characteristic time. Given the closure (18) yielding Dn = CνD and that

introduced here (22a), we then obtain D ≈ DV :

D =
λ2
SOL

τ 2
‖

τ‖
Cν

=
λ2
SOL/a

2

τ 2
‖ /a

2

τ‖
Cν

= ρ2
∗c

2
sτ‖

α2
s/A

2

Cν
(22c)

One can then determine the control parameter V where the combination of

proportionality factors defines the factor V0 = αs/
√
Cν .

V = csρ∗
V0

A

√
τ‖γ2

ε

γκ
(22d)

The typical value we thus obtain for the parameter V is therefore ρ∗cs, the order of

magnitude of the drift velocities. For high-confinement and low-gas-puff plasma regime,

the H-mode scaling law leads to λSOL/a ∼ 2qρ∗ [88], hence αs ∼ 2. In L-mode, the SOL

width is typically 2− 3 times larger with the same scaling [87], αs ≈ 4− 6.

Since the growth rates γκ and γε are defined as local parameters, one readily finds that

V (22d) is also a local parameter. The latter appears as the local effective velocity of

micro-turbulent transport. For magnetized plasmas, the magnitude of these velocity

fluctuations is typically csρ∗, which is the characteristic amplitude of the E×B electric

drift velocity. The transport cross-field velocity will depend on this drift velocity as well

as some form of repetition rate of the transport events. Indeed the latter can occur in

bursts followed by short quiescent phases [92]. The effective velocity V must account for

this behavior, typically multiplying the drift velocity by the ratio of the burst duration

divided by the time delay between two bursts of turbulence. We therefore use global

features such as the interchange growth rate and the empirical scaling of the SOL width

to constrain the local free parameters of the κ-ε model. The latter introduces new

possibilities for transport self-organization, but these do not enforce that the global

properties of the simulations will exhibit the empirical SOL width scaling. To obtain

the expression of V , we have used the characteristic time scale τ‖ = qAa/cs. In fact two

time scales appear in the model, τ‖ and the linear time scale associated to the growth

rate of the interchange instability, namely 1/γI (19).

γIτ‖ = q

√
R2

∇p·∇BT

pBT

∝ qA1/2 (23a)

We assume here that ∇B ≈ B/R while that ∇p ≈ p/a, this scaling property is

commonly considered in linear approximations. To take this scaling into account while

retaining the dependence on the departure from equilibrium Θ we then define:

γIτ‖ = qA1/2G(Θ) ; Θ =
a∇p

p
·R∇BT

BT

(23b)

The function G(Θ) is null for Θ < 0 and otherwise equal to
√

Θ. One then obtains for

Vτ the value of V for τ/τ‖ = 1:

Vτ = csρ∗V0
q1/2

A3/4

√
G(Θ) (24a)



Self-consistent cross-field transport model for core and edge plasma transport 21

Given a characteristic time τ and the velocity amplitude V one can define the length

scales λb = V τ for ballistic transport and λd =
√
Dτ for diffusion. In the first part

of this Section, the time scale τ is chosen to be τ‖, leading to different ballistic and

diffusive expressions of the SOL width, when setting setting γκ = γε = γI one obtains

λb/λd ≈ (τγI). However, when retaining τ = 1/γI the ballistic and diffusive length

scales defined above are identical. With the latter assumption, one obtains Vγ:

Vγ = csρ∗V0
q

A1/2
G(Θ) (24b)

For both cases, one has κ = γ2
κV

2/γ2
ε , ε = γκκ and D = γκV

2/γ2
ε , so that one has:

Dτ = acsV
2

0 q ρ2
∗ A

−1 ; τ/τ‖ = 1 (25a)

Dγ = acsV
2

0 q
2 ρ2
∗ A

−1/2 G(Θ) ; τγI = 1 (25b)

The choice of the characteristic time scale has an impact of the final result. To account

for this fact, we introduce three undetermined exponents ερ, εq and εA in the definition

of D.

D ∝ acs
(
ρ2
∗
)ερ
qεqAεA (26)

For τγI = 1, εq = 2, εA = −0.5 while for τ = τ‖ εq = 1, εA = −1. The exponent of

ρ2
∗ allows one taking into account a possible ρ∗ dependence of the characteristic time

scale. A gyroBohm scaling, such that τ does not depend on ρ∗, is recovered with ερ = 1,

and a Bohm scaling with τ depending on ρ∗ is obtained with ερ = 1/2. Expression (26)

provides a more general framework than has been used in the simulation work presented

in this paper. It will be used when comparing empirical scaling laws and that derived

from the κ-ε model for the energy confinement time and SOL width. Regarding the sim-

ulations, with both the 1D model and SolEdge2D, we have used the closure Vτ , slightly

modified. Indeed, when G(Θ)→ 0, for instance on the high field side, both fixed points

values of κ and ε tend to zero. This occurrence is difficult to handle numerically and

the expression for the diffusion coefficient is modified to be robust against numerical

overflow with D = κ2/(ε + εf ). The parameter εf is small and is introduced to avoid

any spurious divergence when ε → 0. As a consequence, at the limit G(Θ) → 0, one

obtains that D → 0 rather than the limit given by (25a). Recovering the latter would

be numerically demanding as well as being nonphysical. Further investigation of this

point has been achieved and is to be published [74].

2.6. Linear analysis of the κ-ε model

When investigating dispersion equations for plasma instabilities one obtains most often

a growth rate that exhibits a threshold. This is a key property of self-organization that

is not taken into account by the chosen form of the growth rate (19) for the present κ-ε

model. By analyzing the linearized fluctuation equations we show that the transport
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terms of the evolution equations (3b) generate a threshold for the effective growth rate.

Let us consider the linearized κ-ε model in Fourier space:

∂tκ̂+ ik‖ u‖ κ̂+ k2
⊥Dκ∗κ̂ = γκκ̂−

2

Dω

κ∗ κ̂− ε̂ (27a)

∂tε̂+ ik‖ u‖ ε̂+ k2
⊥Dε∗ ε̂ = γεε̂−

2V

κ
3/2
∗
ε∗ ε̂+

3V

κ
5/2
∗
ε2
∗κ̂ (27b)

where κ∗, ε∗ are the steady state solution homogeneous in space, hence solutions of the

local system (20) and where κ̂ and ε̂ are the Fourier modes with wave vectors k‖ and

k⊥. The parallel velocities are chosen to be constants and the diffusion coefficients Dκ∗

and Dε∗ are computed with the steady state solution κ∗, ε∗. The system (27) describes

the evolution of the system disturbed from the steady state solution by a perturbation

varying in space. The dispersion relation is then given by setting the determinant of

the linear system to zero and takes the generic form:(
γ − A

)(
γ −B

)
+ C = 0 (28a)

The coefficients A, B, C of this dispersion relation are:

A = γκ − k2
⊥Dκ∗ −

2

Dω

κ∗ − ik‖ u‖ (28b)

B = γε − k2
⊥Dε∗ −

2V

κ
3/2
∗
ε∗ − ik‖ u‖ (28c)

C =
3V

κ
5/2
∗
ε2
∗ (28d)

Stabilizing effects are governed by the diffusion coefficients of the form k2
⊥D∗ and by

parallel transport, the latter depending on the physics controlling the Doppler shift

k‖u‖. The contribution of the transport terms thus generate damping processes that

inhibit the drive terms and consequently govern the occurrence of threshold effects.

One then recovers effectively a more complex form of the growth rate, including in

particular a threshold in pressure gradient as well as damping processes governed by

parallel transport. These are usually taken into account when computing γI as in

Refs.[34, 39, 68]. However, since the physics of parallel transport and diffusive cross-

field transport appear independently in the evolution equations of κ-ε (17), the present

approach consists of using the growth rate proportional to γI (19) and let the physics

included in the κ-ε system (17) modify this drive.

The closure based on the SOL width involves the choice of the characteristic time but

also that of the dominant transport process, either ballistic with characteristic velocity

Vb or diffusive with diffusion coefficient D. The standard approximation for transport is

to consider a diffusive process such that the flux depends on a gradient and consequently

on the departure from thermodynamic equilibrium. Introducing ballistic transport,

typically of the form Vb n for density yields transport even without departure from

thermodynamic equilibrium, which simply makes no sense unless Vb itself depends on
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a gradient. In the present case, both expressions of Vτ (24a) and Vγ (24b) depend

on the departure from equilibrium Θ (23b). It would therefore be possible to add to

the diffusive transport an outward ballistic transport proportional to κ1/2 since κ 6= 0 is

governed by a departure from equilibrium, either directly via the growth rate of the form

19 or via spreading from a region with positive growth rate. In the present work, for the

sake of simplicity, we make the choice of only retaining diffusive transport as done in

neutral fluids. Still, the non-linearity of the diffusion coefficient can generate transport

properties that are quite similar to ballistic transport. Indeed, the diffusive transport

of any field F with diffusion coefficient of the form D = κ2/ε yields a divergence of the

flux of the form:

−∇⊥
(
D∇⊥F

)
= −D∇2

⊥F −D∇⊥F
(

2
∇⊥κ
κ
− ∇⊥ε

ε

)
(29a)

The divergence is simplified by considering here a slab geometry. Such a structure is

comparable to that induced by convective transport, hence driven by a flux of the form

−Dpinch∇⊥F + VpinchF , where Vpinch must stand for the coupling to another field and

be proportional to the gradient of that other field. The divergence of this flux is then:

∇⊥
(
−Dpinch∇⊥F + VpinchF

)
= −Dpinch∇2

⊥F −Dpinch∇⊥F
(∇⊥Dpinch

Dpinch

− Vpinch
Dpinch

)
+
(
∇⊥Vpinch

)
F (29b)

Identifying the latter form of the flux divergence with expression (29a) for constant

Dpinch and Vpinch, one obtains Vpinch = D(∇⊥Log(ε) − 2∇⊥Log(κ)). The structure of

these two transport models departs when the variation of Vpinch, ∇⊥Vpinch contributes

significantly to the transport. This seems to be a rather particular transport property.

But for this specific case, the fact that κ and ε can vary in space generates transport

features that are reminiscent of convection although the mathematical structure of the

transverse transport term is diffusive. The non-linear dependence of D in κ and ε

can therefore generate complex transport properties that depart significantly from the

standard case with constant diffusion parameter, such as spreading [93]. Given these

properties, the reduced κ-ε model of cross-field transport can be relevant to model slow

transients and not only steady states. This is particularly important for a non-linear

system, such as that governing plasma-wall interaction, since one cannot assume that a

steady state does exist. Indeed, clear oscillatory behavior has been reported [94].

3. Confrontation of κ-ε transport with scaling laws

We first test the model in a 1D transport model. The results can then be compared to

the available empirical scaling laws characterizing global properties such as the energy

confinement time and the SOL width. One can also test means to extend the capability

of the model towards self-consistent generation of transport barriers Section 3.4.
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3.1. The 1D κ-ε transport model

The 1D model is obtained by averaging the transport equations in the poloidal and

toroidal directions. Transport is taken into account by diffusion that replace all

convective transport processes at the microscopic level. The diffusion coefficients are

chosen as discussed in Section 2.1 equation (18). The plasma transport equations for

the particle density, and the density of electron and ion thermal energy are presented

in Appendix A. In these equations a mask function defines the SOL region for r ≥ a

where parallel losses to the wall apply. The plasma equations are completed by a

vorticity equation (A.1b). It will be used when addressing the impact of velocity shear

on the transport properties in Section 3.4. A simplified transport model for neutrals is

also introduced so that the particle source by ionization, and in particular its location,

changes consistently with the plasma parameters. A feed-back controlled gas injection

ΦN0 is set to ensure that the separatrix density is fixed, equal to 1. 1019 m−3. The

cross-field diffusion coefficients of plasma transport are determined by the κ-ε coupled

equations (17), restricted to the 1-D radial direction (A.1d). A core energy source with

given radial profile is used. The scan in additional heating power is performed by varying

the source amplitude (A.2b).

3.2. Impact of a parameters scan on the SOL width

The SOL width estimated by the numerical model is compared to the empirical scaling

law for the heat flux width λq given by ref.[87] in mm for L-mode discharges:

λq = (1.44± 0.67)B−0.8±0.32
T q1.4±0.67P 0.22±0.1

in R−0.03±0.28 (30a)

As shown in Appendix B, this scaling law is not dimensionaly correct since the

adimensional ratio λq/a still depends on BT as well as on the dimensionless parameters

q, A, β, ν∗ and ρ∗.

λq
a
∝ q2.15 A0.03 β0.46 ν−0.17

∗ ρ0.85
∗ B0.156

T (30b)

Within the error bars of (30a), the only modification of a single exponent that allows

one recovering a dimensionaly correct expression is to change the exponent of the power

law on BT from −0.8 to −0.8−0.156 = −0.956 so that the same expression (30b) is ob-

tained but with an exponent for BT equal to zero. In order to determine the dependence

of λq/a on the dimensionless parameters, we use the dimensionless scaling law for the

energy confinement time ITER96-th [91]. It is to be remarked that also for this empirical

scaling law, a correction on the exponent of R is made to achieve a dimensionaly correct

expression [91], see also Appendix B. In both cases, the modification of the quality of

the scaling law by the dimensionality constraint, the so-called Kadomtsev constraint

[95, 96, 97], is lacking. Finally, it is to be underlined that the assumption λSOL/a ∝ qρ∗
used to define the free parameter V , Section 2.5 (22d) is not recovered here since one

obtains typically λq/a ∝ q2.15ρ0.85
∗ . There seems to be a consistency issue between the
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assumed dependence λq/a ∝ qρ∗ as claimed in the literature and the effective scaling

law and that stemming from the proposed scaling law.

Since the decay rate of the energy flux in the SOL region depends on the parallel heat

conductivity, which is not taken into account by the 1D model, we determine here the

e-folding length of the pressure profile λp and use it as a proxy for λq. The fall-off region

of the pressure profile used to determine λp is restricted to the vicinity of the separatrix,

typically the first 20% of the SOL width. Based on the oversimplified use of e-folding

lengths of density and temperature, one can predict that λq/λp ≈ 0.75‡, this ratio being

a constant depending on the sheath transmission factor and respective heat and particle

cross-field transport. The SOL width determined by this method could overestimate

the actual width but should exhibit the same parameter dependence.

In a first series of simulations analyzed here, we perform a scan of the input power

Pin ∈ [0.1, 0.5, 1, 2, 3, 4, 6] MW . The lowest values of Pin of 0.1 and 0.5 MW are not

realistic but useful when analyzing the results in terms of scaling laws. The particle

source is adjusted to impose the same density at the separatrix na = 1019m−3. One

can then expect that the neutral penetration into the plasma will be roughly constant

so that the ionization source will have the same shape but varying amplitude to match

the particle outflux. Experimentally this would correspond to a feedback process on a

density measurement at the midplane separatrix, a control scenario particularly suitable

to investigate divertor physics [98]. With such a scenario for the power scan one readily

expects an increase of the plasma thermal energies Te and Ti with Pin as well as an in-

creased SOL width given the scaling law (30a). Based on a straightforward analysis [99],

one can show that the ratio between core and separatrix density n0/na is expected to be

n0/na = 1 + λI/λSOL. The neutral ionization mean free path λI determines the radial

distance between the particle source and the separatrix. One thus finds that the source

is all the more effective that it is closest to the plasma center. This effect is balanced by

particle transport characterized by λSOL. The main change when scanning the power is

then the impact on the transport features characterized by λSOL. This effect drives a

reduction of the core density with increasing power. These trends are recovered in the

simulations, Figure 5. On the top-left figure labeled (a), are plotted the outer density

profiles, these being characterized by flat core profiles. As the power is increased the

core density decreases while the density profile at the separatrix becomes flatter. The

ratio n0/na is observed to decrease -na the separatrix density is feedback controlled to

be constant- when increasing Pin, Figure 6 left hand side. However, one can observe that

the density decrease is less pronounced for Pin ≥ 1MW compared to the very low power

cases. Conversely, the thermal energies, Figure 5 top right labeled (b), increase with the

injected power. Analyzing the core T0 and separatrix Ta thermal energy, one finds that

the temperature profile scales with the injected power, Ta ∝ P 0.537
in and T0 ∝ P 0.513

in , 6

‡ This value is estimated using an e-folding length for both density λn and and temperature λT , and

given equal ion and electron temperatures. Assuming that the profile of the heat flux is governed by

the sheath conditions, one then obtains λq/λp = (1 + λT /λn)/( 3
2 + λT /λn) equal to 2

3 for λT /λn → 0

and increasing to 1 for λT /λn → +∞. The quoted value λq/λp = 0.75 is obtained for λT /λn → 0.5.
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Figure 5. Radial profiles of plasma quantities when increasing the input power with

feedback control on the separatrix density. (a) density. (b) Electron temperature. (c)

Effective diffusion coefficient estimated from κ and ε. (d) Electric potential.

right hand side. The overall effect on the plasma pressure p = nT is an increase. In

the core, Figure 6 left hand side, the pressure increase p0 does not exhibit a power law

because of the particular response of the core density. At the separatrix, where the

density is maintained constant by the chosen feedback, the pressure is governed by the

behavior of the thermal energy, and exhibits the same power law with respect to the

injected power. The pressure gradient at the separatrix drives the turbulent energy κ as

well as the turbulent energy transfer rate ε, these determine the plasma transport and

consequently the pressure gradient at prescribed fluxes: feedback controlled for the par-

ticles and externally controlled for the energy. The particle radial diffusion Dn governed

by the fluctuating convection process is a key element of this non-linear loop: see Figure

5 bottom left labeled (c) where the profiles of Dn are plotted for different powers Pin in
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Figure 6. Left hand side: Dependence of the core density n0 and of the core pressure

p0 on the input power Pin. Right hand side: scaling of the core T0 and separatrix

Ta thermal energy in terms of the input power. The values in bracket are the scaling

exponents.

the vicinity of the separatrix. The profiles are similar in the region r ≤ a, and exhibit

differences in the SOL r > a and in particular in the far SOL region at lowest power in

regions where the plasma is weakly ionizing. Considering the values at the separatrix,

Figure 7. At the separatrix, power law dependence on the input power Pin, Left hand

side: particle diffusion coefficient Dn and density gradient length Ln = (∇rn/n)−1,

Right hand side: neutral particle flux Φn.

one finds that Dn exhibits a power law dependence on the injected power, Dn ∝ P 0.644
in ,

Figure 7 left hand side. Furthermore, from the density profiles Figure 5 top-left, one

can determine the density gradient length Ln = (∇rn/n)−1. The latter is also observed

to scale with the injected power, Ln ∝ P 0.263
in , Figure 7 left hand side. Assuming that

this scaling is consistent with the choice made to determine the parameter V (22d), one

expects Ln/a ∝ qρ∗ and thus Ln ∝ T
1/2
a , yielding the power law exponent 0.269 in good

agreement with that obtained for Ln. One can also compare the scaling law for Ln to

that observed experimentally as described by the scaling law of λq (30a). Balancing

the cross-field diffusive flux and the parallel losses, one expects the exponent of Ln to
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be 0.19, half of the exponent of Dn minus one fourth of the exponent of the thermal

energy Ta§. Both exponents stand within the error bars of the experimental scaling

law (30a). Their difference stems from the particle source in the SOL that must be

taken into account for the steady state particle flux balance together with the parallel

and cross-field fluxes. One can expect this particle source to exhibit another power law

dependence on Pin than the two flux divergence terms. One thus finds that the SOL

behavior is governed by the balance of three terms that are characterized by different

underlying scaling laws. The overall behavior can only exhibit a power law, governed by

a single exponent, on a restricted range of Pin. The amplitude of the ionization source

term can be addressed by analyzing the cross-field particle flux at the separatrix that

balances in steady state neutral influx. The flux of neutrals that are ionized in the edge

plasma is therefore determined by Φn = Dnn/Ln at the separatrix, Figure 7 right hand

side. This flux, and consequently the particle source, is governed by the feedback loop

that maintains the separatrix density na = 1019 m−3. Owing to the enhanced particle

transport with the injected power, the neutral particle influx must increase with the

latter and indeed one finds Φn ∝ P 0.386
in .

A last observation from the simulation is the plasma electric potential profiles shown on

Figure 5 bottom-left labeled (d). One finds that a potential well develops in the core,

typically governed by the ion temperature profile, while the SOL values are positive

and slaved to the electron temperature in the SOL, the outer wall being grounded and

defining the reference electric potential. As a consequence of this drive, a maximum

E × B shear region is located in the vicinity of the separatrix where the electric field

reverses.

Let us now address the scaling of λSOL determined by the pressure e-folding length

λp and compare it to the experimental scaling law (30a). On Figures 8 and 9 are

plotted the variation of λp from the present κ-ε 1D model -black curves open squares-

and power law variations: the experimental scaling law -dash dot black curve, and a fit

of the results of the 1D model, dashed blue curve. The gray-shaded area stands for the

95% confidence interval of the regression used to determine λp.

parameter Pin Bpol R BT

κ-ε power law fit 0.105 −0.844 −1.06 0.277

Scaling law (30a) 0.22 −1.4 −1.43 0.6 (0.444)

Table 1. Exponents of the power law dependence on the engineering control parameter

for the fit of the κ-ε simulations and the experimental scaling law. The second value

of the scaling law coefficient for BT is that proposed to recover a dimensionally correct

experimental scaling law.

Table 1 summarizes the various results for the main parameter scans. One can notice

that with the chosen closure, the κ-ε model exhibits the same trend as the experimental

§ One considers here L2
n = DnL‖/cs and therefore Ln ∝ D1/2

n T−1/4.
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scaling law since all the power law exponents have the same sign. However, the

magnitude of these exponents observed in the κ-ε simulations are systematically smaller.

We first discuss the results for the power scan, Figure 8 left hand side. The values

obtained with the simulations are typically a factor 3 larger than the values given by

the scaling law. Furthermore, there is a factor two in the exponents. For this parameter,

the match between the experimental scaling law and the κ-ε simulations is rather poor.

The dependence of λq on the magnitude of the poloidal magnetic field, hence on the

plasma current, is governed by that on q in (30a) when the other engineering parameters

are kept constant, hence λq ∝ B−1.4
pol . In the experimental findings on a single machine

this is the main parameter dependence as evidenced in [90, 100]. The latter trend,

typically λq ∝ B−0.5
pol reported in [90, 100], or the direct behavior stemming from λq ∝ q,

hence λq ∝ B−1
pol is approximately recovered with the κ-ε simulations, Figure 8 right hand

side. However, this exponents departs by nearly a factor 1.5 from that in (30a). The

Figure 8. Power law dependence of the plasma pressure e-folding length, used as a

proxy for the SOL width λSOL black open squares, approximate power law following

these results dashed blue line, and power law governed by the experimental scaling

law, black dashed-dot line. Left hand side scaling with Pin ∈ [0.1 MW, 6 MW ]. Right

hand side scaling with Bpol ∈ [0.1 T, 0.25 T ]. The gray-shaded area stands for the 95%

confidence interval of the regression used to determine λp.

dependence onR, keeping all other engineering parameters constant, hence minor radius,

poloidal and toroidal magnetic field, density and input power, Figure 9 left hand side, is

mainly governed in (30a) by the dependence of q on 1/R, leading to λq ∝ R−1.43. Again

the trend of the scaling law and the simulation agree, see Figure 9 left hand side, but

the power law behavior is clearly different. Finally, when varying the toroidal magnetic

field alone, Figure 9 right hand side, the κ-ε model yields a rather weak dependence

while that of the scaling law is a factor two larger. The latter combines the explicit

dependence on BT as well as that embedded in the safety factor leading to the effective

power law B0.6
T . With the proposed correction such that the experimental scaling law

fulfills the Kadomtsev constraint, the exponent for the BT scaling is decreased to 0.444

reducing the mismatch with the κ-ε result.
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When addressing the comparison between the κ-ε results and the scaling law (30a)

Figure 9. Power law dependence of the plasma pressure e-folding length, assumed as

a proxy for the SOL width λSOL black open squares, approximate power law following

these results dashed blue line, and power law governed by the experimental scaling

law, black dashed-dot line. Left hand side scaling with R ∈ [1 m, 4 m]. Right hand

side scaling with BT ∈ [2 T, 3 T ]. The gray-shaded area stands for the 95% confidence

interval of the regression used to determine λp.

several issues are raised which can readily explain the observed differences. First, as we

have just recalled, the reference expression is not dimensionally correct, second, when

written in terms of the standard dimensionless parameters, one does not recover the

assumed underlying form, and, third, the error bars on the coefficients of the power law

are considerable. These issues can explain the mismatch, or when taking into account

the error bars, enable finding some form of agreement despite significant differences in

behavior and predictions. The κ-ε results are further discussed in the following Section

considering the core energy confinement together with the SOL width.

3.3. Physics background of the scaling law for the SOL width and global energy

confinement time

Considering the two definitions τE ≈ a2/Dcore and λ2
q = τ‖DSOL one can readily

determine the relationship between the energy confinement time and the SOL width,

τE = τ‖(a/λq)
2DSOL/Dcore, therefore:

τEλ
2
q ∝ τ‖a

2DSOL

Dcore

(31a)

When assuming the same scaling properties for DSOL and Dcore, one can then estimate

λq given the scaling of τE or vice-versa that of τE given that of λq.

τE ∝ τ‖
a2

λ2
q

≈ q2R

Ω0λq

R2

A2λ2
q

= (qA−1)2 (Rλ−1
q )3 Ω−1

0 (31b)
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Such a connection between the global energy confinement time and the width of the

boundary layer has been investigated experimentally [101]. With the approximation

λq ≈ qρ0 with ρ0 = cs/Ω0, Ω0 being the reference ion Larmor gyration pulsation, one

obtains the confinement time τ
(qρ0)
E,λ :

Ω0τ
(qρ0)
E,λ ∝ q−1A ρ−3

∗ (31c)

Using the scaling of λq (30a) obtained for L-mode operation, one thus obtains a scaling

law for τLE

τLE,λ ∝ q−2.2 A−2 R3.09 B1.4 P−0.66
in (32a)

Recalling the approximation made for the safety factor 1/q ≈ A2Ip/(RBk), where Ip
is the plasma current and k the elongation, see Appendix B, the scaling for τE derived

from that of the SOL width is:

τLE,λ ∝ I2.2
p B−0.8 P−0.66

in R0.89 A2.2 k−2.2 (32b)

The latter expression is to be compared to a scaling law for the energy confinement

time, such as the ITER96-th scaling law for L-mode [91]:

τLE,th = 0.023 I0.96
p B0.03 P−0.73

in R1.83 A0.06 k0.64 n0.4M0.2 (33a)

where τE is obtained in [s], for Ip, the plasma current in [MA], BT the toroidal magnetic

field in [T ], P the loss power in [MW ], n the line-averaged density in [1019m−3], M the

average ion mass in [AMU ], R the major radius in [m] and finally A and k the aspect

ratio and elongation, respectively.

Apart from a similarity regarding the scaling on the injected power Pin, the

agreement between the two expressions is poor, a major difference being the difference

in scaling with the plasma current governed by the strong dependence of the λq-scaling

on the safety factor. Using the scaling of τE, one can also determine that of λq:

λE,Lq = q0.99 P 0.26 n−0.13 M−0.07 R0.07 A−0.05 k−0.63 (33b)

As readily expected, this scaling law exhibits a weaker dependence on the safety factor

q, and a similar scaling on the injected power Pin. The other engineering scaling factors

appear to have a small impact but for the elongation k at given safety factor. Plasma

shaping appears to enhance confinement (33a) which consequently drives a reduction of

the SOL width (33b).

In the framework of the κ-ε approach, one can also estimate the energy confinement

time given the diffusion coefficient D (25) stemming from κ and ε. The latter are

governed by the the closure constraint on the SOL width that is used to determine V .
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For the chosen scaling relationship of DV (26), one can estimate the confinement time

τ
(κ−ε)
E considering that τ

(κ−ε)
E ∝ a2/DV :

Ω0τ
(κ−ε)
E ∝ ρ−1−2ερ

∗ q−εq A−εA (34a)

The Larmor pulsation Ω0 = eB/m is used to enforce the standard time normalization.

The values obtained for the different exponents ερ, εq and εA for the different scaling

laws and for the κ-ε model are summarized in Table 2. As shown in Appendix B, the

adimensional parameter form of the τLE,th scaling is:

Ω0τ
L
E,th ∝ ρ−1.85

∗ q−3.74 A0.37 β−1.41 ν0.19
∗ k3.22 (34b)

The expression of ν∗ used here is the collision frequency normalized by the passing

particle transit frequency 1/τ‖. Therefore, it does not contain the aspect ratio

dependence governed by the trapped particles physics so that ν∗ is proportional to

A. Because of this difference in definition, the scaling exponent on the aspect ratio is

different from that of the ITER physics basis [91]. Comparing (34a) and (34b) then

yields the condition ερ = 0.425, εq = 3.74 and εA = −0.37 to match the power law

dependencies. For the two characteristic times addressed above, one finds that the

choice τ ∝ 1/γI discussed at the beginning of this Section departs less from the present

results than τ ∝ τ‖ used in Section 2.2. While the transport governed by the local

diffusion coefficient derived in the κ-ε framework is typically GyroBohm ερ = 1, the

value obtained to match the L-mode scaling law is not even Bohm-like ερ < 1/2. The

β dependence also leads to a significant difference. However, it is to be mentioned that

the dependence on β is presently being questioned [102]. Finally, the ν∗ dependence

is relatively small and has therefore a rather weak effect. Given the differences, in

particular regarding the β and ρ∗ scaling, it is interesting to compare the κ-ε expression

of τE (34a) to the latest analysis of the empirical data base of the energy confinement

time [102].

Ω0τ
H
E,th ∝ ρ−3.0

∗ β0.0 ν−0.14
∗ q−1.7 k3.22 A0.9 (34c)

This expression is slightly different from that in Ref.[102] because in this reference ν∗
includes the aspect ratio dependence of the trapped particle physics but does not appear

to include the dependence on the safety factor. We have thus modified the scaling law

to take into account the differences in the definitions of ν∗. This scaling law being

GyroBohm, one readily finds ερ = 1. One can also identify εq = 1.7 and εA = −0.9 that

are somewhat closer to the values obtained with τ ∝ 1/γI , εq = 2, εA = −0.5, than with

τ ∝ τ‖, εq = 1, εA = −1, see Table 2. This is when having in mind that the dependence

on the safety factor is based on a more complete experimental evidence than that on the

aspect ratio. The fact that the new scaling law of the energy confinement time does not

depend on β, makes the connection between energy confinement time and SOL width

more relevant since the SOL width does not appear to depend on β.

The 1D model allows one comparing the predicted energy confinement time to that
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scaling law ερ εq εA
ITER− L [91] 0.425 3.74 0.37

ITER−H [102] 1 1.7 −0.9

κ− ε, τ ∝ 1/γI 1 2 −0.5

κ− ε, τ ∝ τ‖ 1 1 −1

Table 2. Given the definition D = acsρ
2ερ
∗ q−εqA−εA , see (26), leading to (34a), values

of the exponents ερ, εq, εA for the ITER confinement time scaling laws compared to

values obtained with the κ-ε model assuming λ/a ∝ qρ∗ (22b).

achieved in the steady state 1D κ-ε simulations. The appropriate trend of the

dependence on the input power Pin is recovered, Figure 10 left hand side. The power

law fitting the numerical results, black open squares, is P−0.64
in blue short-dash line,

comparable to P−0.73
in given by the ITER L-mode scaling (33a), dashed black line. One

finds that the simulation data also compares well with the power law (32b) stemming

from the empirical SOL width scaling P−0.66
in , dash-dot black line. The gyroBohm scaling

of transport used for the κ-ε model, hence for ερ = 1 in (34a), yields P−0.6
in blue long-

dash line. The scan in Bpol, hence in Ip appears to qualitatively right, Figure 10 right

hand side but the quantitative power law fitting leads to more discrepancy The model

data, open black squares, is fitted by the power law B0.98
pol short dash blue line, which

is quite close to B0.96
pol given by the ITER L-mode scaling (33a). However, the power

law computed using various closures do not give such a good match. Using the SOL

width scaling law one obtains B2.2
pol (32b) black dash-dot line. The theory based κ-ε

models (34a) yield B0.8
pol for εq = 2 long-dash blue line B0.4

pol for εq = 1 dotted blue line.

For such models the perfect fit would be obtained with εq = 2.4. One finds therefore

that the characteristic time that must be considered to recover the turbulent transport

properties appears to be more difficult to define and understand than the properties

governed by the characteristic amplitude of the fluctuating velocity.

3.4. Including turbulence shearing by large scale flows

The proposed κ-ε model for plasma turbulent transport is closely linked to that used in

neutral fluids. In particular, the field ε governs the energy cascade providing conditions

for steady state turbulent spectra. However, a key physics mechanism that controls

plasma turbulent transport is eddy shearing by large scale flows, typically the zonal

flows [103]. In particular, the regimes of improved confinement reported in magnetically

confined plasmas are observed to be governed by turbulence shearing by large scale

flows, see Ref.[104] and references therein. A means to include such a mechanism is to

introduce a second predator of the energy of the turbulence, typically the zonal flows

[51, 103, 58, 52]. Alternatively, we propose to take into account the shear stabilization

in a simplified way.

The previous Sections indicate that the physics enforced by the κ-ε model of this

paper can be addressed in terms of the effective microscopic velocity V that governs
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Figure 10. Comparison of the power law dependence of the thermal energy

confinement time τE on the injected power Pin, Left hand side, and on the plasma

current Ip given Bpol ∝ Ip, Right hand side. The 1D simulation data, open black

squares is fitted with the power law plotted with blue short-dash lines. The ITER

L-mode scaling law (33a) yields the black dashed line. The κ-ε scaling stemming from

the empirical scaling law of the SOL width (32b) is plotted with dash-dot black lines

while the theory based κ-ε models (34a) are plotted with blue long-dash lines for εq = 2

and blue dotted line for εq = 1. Note that for the injected power scaling law, these

two cases yield the same behavior.

the convective transport at the smallest scales. As discussed, this velocity is found to

be of the order of magnitude as the E × B drift velocity, thus proportional to csρ∗.

We now change the definition of V to take into account the large scale velocity shear

effect. Let ωz be the radial shear of the zonal flows and let τz be the characteristic time

to enforce the shearing effect, the new dimensionless control parameter is then (ωzτz)
2

since the shearing stabilization does not depend on the direction of the large scale flow,

and therefore does not depend on the sign of ωz. We then write the modified expression

of V as:

V = csρ∗V0
1 + (ωzτz)

2

1 + r(ωzτz)2

qηq

AηA
G(Θ)1/2 (35a)

The parameter r governs the ratio between the two asymptotic limits, the small shear

limit (ωzτz)
2 → 0, such that the term standing for the shearing effect is equal to 1, and

the large shear limit, (ωzτz)
2 → +∞, such that this factor is equal to 1/r. The values

r > 1 govern a reduction of the turbulent energy amplitude. The proposed dependence

of V on the shearing efficiency (ωzτz)
2 is devised as a simple expression that governs a

reduction of V by the factor r between the no-shear asymptotic limit and the strong

shear asymptotic limit. The fixed point for κ-ε is such that κ = V 2 and ε = γIκ so that
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D = κ/γI . Given 1/γI = a
√
A/cs, the modified diffusion coefficient is then:

D =
V 2a
√
A

cs
=
c2
sρ

2
∗a
√
A

csG(Θ)

[ 1 + (ωzτz)
2

1 + r(ωzτz)2

]2 q2ηq

A2ηA

= acsρ
2
∗V

2
0

[ 1 + (ωzτz)
2

1 + r(ωzτz)2

]2 q2ηq

A2ηA−0.5
(35b)

λ = a qρ∗

[ 1 + (ωzτz)
2

1 + r(ωzτz)2

] qηq−1/2

AηA−3/4
(35c)

In the 1D simulation case the parameter ωz is defined given the electric potential profile

solution of the vorticity equation (A.1b). Two free parameters then remain to be fixed, τz
that governs the sensitivity to the shearing mechanism and r that governs the amplitude

of the transition from the low to the high shear limits. For a factor two change in the

diffusion coefficient, one must choose r ≈
√

2. For the more important variation between

the L and H mode characterized by a decrease of the SOL width by a factor 2 to 3,

as discussed previously for the parameter αs, one must consider r ≥ 2. However, the

modification of the ionization source in the core plasma, and consequently modified

density gradients in the edge and SOL region also contribute to the changes of κ and ε

making the overall effect more complicated than the argument solely based on the value

of the correction of V due to the flow shear. The modified model is found to undergo

Figure 11. Stabilization by E × B shear. Left hand side: Radial profiles of the

ion thermal energy Ti when ranging the input power Pin from 0.5 MW to 8 MW ,

closed square Pin = 0.5 MW , close circle Pin = 1 MW , closed head down triangle

Pin = 2 MW , open head up triangle Pin = 2.5 MW , ope circle Pin = 4 MW and open

square Pin = 8 MW . Right hand side: variation of plasma diffusivity Dn with input

power Pin at different radial positions. Within the separatrix: open square ρ = 0.96;

open circle ρ = 0.98, head up open triangle ρ = 0.999, closed head down triangle open

square ρ = 0.998, and outside the separatrix: closed circle open square ρ = 1.0, open

square ρ = 1.2.

a transition from the no-shear regime to the strong shear regime when the injected
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power is increased Figure 11. The effect of shear appears to be localized just inside

the separatrix, close to the inversion point of the electric field Figure 11 left hand side.

Indeed, the profiles appear to undergo a transition between the low power regime, closed

symbols, and the high power regime, open symbols. Steepening of the ion thermal energy

gradient is observed in the vicinity of the separatrix, a behavior that is reminiscent of an

interface barrier [59]. The mechanism driving the shear layer is the transition from the

core where the electric potential is typically proportional to −Ti/e to the SOL region

where the sheath boundary condition lead to an electric potential proportional to Te/e.

The increase of the electric field in the vicinity of the separatrix is then governed by

enhanced temperature gradients in the edge when increasing Pin. When plotting the

variation of the plasma diffusion coefficient Dn with injected power Pin, Figure 11 right

hand side, One can observe that for the inner most radial position ρ = 0.96, Dn increases

monotonically with Pin and as the position gets closer to the separatrix, a decrease of

Dn sets in for 2 MW ≤ Pin ≤ 2.5 MW . The enhanced gradient is driven both by the

heating source and by the decrease of the turbulent transport Dn driven by the velocity

shear. The latter depending on the gradients as well as on turbulent transport provides

a mechanism for a nonlinear feedback process, and therefore a transition to improved

confinement driven by the heating power.

The modification of turbulent transport governed by the flow shear we have presented

here is an ad hoc way of generating a feedback on turbulence and governing a further

process of self-organization of plasma transport. The transition to barrier formation

could then be modeled self-consistently provided the free parameters can be determined

by matching the simulations to experimental evidence. It is to be underlined that

the chosen expression of V determines the impact of the flow shear on transport. It

is devised to govern a reduction of the cross-field diffusive transport. The observed

transition follows the standard feedback loop where the reduction of transport drives

steeper gradients that in turn enhance the shear stabilization [104]. However, the

reduced model used here does not account for an initial step enforced by Reynolds’s

stress generation of zonal flows [105, 106]. Alternative reduced models governing the

local behavior of κ and ε driven by this physics have been proposed to investigate the

transition to transport barriers [51, 56, 58]. It is to be noted that in the ad hoc model

proposed here, a modest change in the magnitude of V with a monotonic dependence on

the shear, is enough to drive a bifurcation behavior. This result must be confronted to

experimental evidence and matching parameters tuned to obtain a universal behavior. If

this can be achieved, this minimal model could be used to investigate the compatibility

of high performance divertor regimes preserving the H-mode confinement in the core.

4. SolEdge2D-Eirene modeling of a WEST discharge

This Section introduces the first results provided by the 2D κ-ε model of a WEST

experiment [107, 45] in the lower-single-null configuration, discharge #55049. The

transport code SolEdge2D-Eirene [11] is used for pure deuterium plasma (no impurity
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physics), and without the mean field velocity drifts. The equations are recalled in

Appendix C. The coefficients of the diffusive and conductive perpendicular fluxes (Dn,

χe, χi and ν) are self-consistently estimated using the κ-ε model, Section 2. The

equations are discretized using a second-order finite volume scheme associated to a

volume penalization technique [108, 109] on a structured mesh based on a grid aligned

on the magnetic flux surfaces for numerical efficiency, Fig. 12. Typically 106 iterations

Figure 12. Left hand side: Example of mesh decomposition for a WEST magnetic

equilibrium with double X-point [107, 45]. Each sub-domain is characterized by a

different color. The penalization technique allows one to add an axisymmetric object,

such as a baffle or a toroidal secondary limiter within this computational domain and

investigate its impact on plasma-wall interaction. Right-hand side: corresponding

mesh for Eirene, overlapping the plasma domain in black, and in regions shielded from

the plasma in red within the circular vacuum vessel.

are needed to reach steady state conditions with, as well as without, the κ-ε model.

The plasma parameters for this WEST discharge as well as the control parameters of

the simulation are presented in Table 3 and Table 4, respectively.

As expected from the chosen dependence of the growth rate (19), one finds that

the SolEdge2D-Eirene simulation of the WEST shot 55049 exhibits a clearly ballooned

pattern for the field κ localized on the low-field side of the torus, Figure 13 left hand

side. Using a logarithmic scale for κ normalized by its maximum value, allows one

to highlight the difference of magnitude and to observe spreading governed by parallel

transport in the near SOL region of the turbulence energy κ. The far SOL region

on the high field side, with near zero plasma pressure, exhibits spurious values of κ,

also highlighted by the logarithmic scale. These have very weak effect on the plasma

properties. The ballooned pattern is recovered for the diffusion coefficient D, Figure 13

right hand side. In the radial direction, D becomes small in the outer SOL, beyond the

secondary separatrix and up to the wall. One can also notice a spreading of D in the
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Table 3. Main parameters of the shot WEST − 55049. Top line particle and energy

control: line averaged density obtained by feedback control n̄e, additional heating

power Padd by Lower Hybrid, split onto two antennas, core P corerad and edge P edgerad

radiated power. Middle line: magnetic equilibrium parameters, plasma current Ip,

toroidal magnetic field BT , major R and minor a radius. Lower line: dimensionless

control parameters, safety factor q95, elongation k, aspect ratio A and X-point height

from the divertor floor hX normalized by the elongation times the minor radius k a.

n̄e[m
−2] Padd[MW ] P core

rad [MW ] P edge
rad [MW ]

4.0 1019 4.0 2.0 0.6

Ip[MA] BT [T ] R[m] a[m]

0.5 3.6 2.50 0.5

q95 k A hX/(k a)[m]

3.4 1.25 5.0 0.132

Table 4. Control parameters for the SolEdge2D-Eirene simulation of the shot

WEST − 55049, density at the inner boundary nOMP
e , heating power into the

simulation domain Pin, poloidal field at the outer midplane BOMP
pol .

nOMP
e [m−3] Pin[MW ] BOMP

pol [T ]

2.5 1019 1.0 0.2

near SOL, governed by parallel advection from the low field towards the high field side.

The SolEdge2D-Eirene radial profiles for the density ne and the electron thermal energy

Figure 13. SolEdge2D-Eirene simulation of the WEST shot 55049. Left hand side:

variation in the poloidal plane of κ normalized by its maximum value with logarithmic

scale. Right-hand side: poloidal plane variation of D, units m2s−1, with logarithmic

scale.
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Figure 14. Divertor profiles and radial profiles at the outer midplane of the electron

thermal energy, Left hand side, and density, Right hand side, obtained with the

SolEdge2D-Eirene simulation of the shot WEST-55049. The divertor profiles are

remapped at the midplane. Midplane profile, blue curve closed circles, divertor profile

black curve open circles.

Te are shown on Figure 14 at the outer midplane and at the divertor. A logarithmic

scale is used to highlight the SOL part of the profiles. The profiles indicate that the

thermal energy and density only weakly vary from the midplane to the divertor that

corresponds to the so-called sheath limited or hot divertor regime. Let us notice that

in the experiment however one observes a factor two drop in the thermal energy from

midplane to the divertor, this is closer to the so-called high recycling regime. The

difference appears to be related to the particle recycling pattern and via the boundary

condition to a change in the parallel transport behavior. This issue will be further

analyzed elsewhere. For the present comparison, the shape of the divertor profiles,

which is governed by the cross-field transport and thus the κ-ε model, is more relevant

than the actual values. One can notice the sharp drop of the divertor profiles towards the

private flux region and slightly stronger gradients in the outer SOL, R−Rsep ≥ 0.03 m.

4.0.1. Midplane profiles The radial density and electron thermal energy profiles are

compared to the experimental profiles at the outer midplane, Figure 15. One can

notice the agreement between the measurement points and the simulation output in

the near SOL region 0.01 ≤ R − Rsep ≤ 0.03 m. The SolEdge2D-Eirene profile of

the electron thermal energy exhibits a too strong gradient, in particular in the outer

SOL 0.03 ≤ R − Rsep ≤ 0.05 m, driving a departure between the simulation profile

and the measurements. For the density, the mismatch is restricted to the outer SOL

0.03 ≤ R−Rsep ≤ 0.05 m where the simulation profile exhibits a too small decay length.

These differences are highlighted by the logarithmic scales, and are hardly noticeable

with linear scales. Given the fact that there is a single free parameter to tune all cross-

field transport in the whole simulation domain the overall agreement is remarkable.
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Figure 15. Radial profiles at the outer midplane for the shot WEST-55049.

SolEdge2D-Eirene (black curve closed circles), probe data (blue dashed line and open

triangles). The experimental data measured with the reciprocating Langmuir probes

(RLP) located at the top of the device with vertical plunge are mapped at the midplane.

The radial extent is restricted to the region where the experimental data is reliable,

in the far SOL R − Rsep ≥ 0.05 m, the density is small and the interpretation of the

probe characteristics is difficult, when approaching the separatrix R − Rsep ≤ 0.01 m

the probe head interacting with a hot plasma starts behaving as a secondary limiter.

Left hand side: electron thermal energy. Right hand side: density.

4.0.2. Divertor profiles Figure 16 and Figure 17 show radial divertor profiles, remapped

to the midplane in terms of the distance to the separatrix, the SOL profile connected

to the midplane for R − Rsep ≥ 0 and for R − Rsep ≤ 0 the profile towards the private

flux region. The figures use left and right axis presentation, with on the left hand side

axis the scale for the WEST experimental data labeled ”WEST”, closed blue point

dashed line, and on the right hand side axis the scale for the SolEdge2D-Eirene output,

labeled ”SE2D”, black plain line. The difference between these two scales underlines the

shortfall regarding the magnitude, while splitting the results between left (experimental)

and right (simulation) scales highlights the profile similarities.

On Figure 16, are presented the parallel fluxes to the divertor, the saturation current

jsat proportional to the particle flux, left hand side panel, and the parallel heat flux Q‖
onto the divertor target plate, right hand side panel. The heat flux pattern exhibits

comparable magnitude with a peak value for the simulation typically 10 % smaller

than the experimental measurement. Agreement regarding the shape is also found with

close to exponential fall-off in the SOL region and sharp decay towards the private

flux. The e-folding lengths in the SOL are λWEST
SOL = 9.1 mm and λSE2D

SOL = 7.3 mm,

with a difference of order 20 %, and the decay length towards the private flux are

λWEST
pf = 1.1 mm, smaller than estimated from the simulation λSE2D

pf = 1.5 mm.
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Figure 16. Experimental and simulation divertor profiles remapped at the outer

midplane for the shot WEST-55049. Experimental data from Langmuir probes, labeled

WEST, embedded in the divertor floor, closed blue circles, SolEdge2D-Eirene plain

black line, labeled SE2D. Left and right logarithmic scales have the same ratio between

max and min, but are shifted to ensure overlap of the peak values. Left hand side: ion

saturation current. Right hand side: parallel heat flux.

Figure 17. Experimental and simulation divertor profiles remapped at the outer

midplane for the shot WEST-55049. Experimental data from Langmuir probes, labeled

WEST, embedded in the divertor floor, closed blue circles, SolEdge2D-Eirene plain

black line, labeled SE2D. Linear right and left scales are adjusted to ensure the overlap

of the maxima. Left hand side: plasma density. Right hand side: electron thermal

energy.

Regarding the ion saturation current, the experimental peak value is typically 1.6 times

the value achieved in SolEdge2D-Eirene. The simulation is thus characterized by a too

large fueling efficiency, and consequently, smaller particle flux to the target plate for the

same core density.

Since the electron thermal energy Te is proportional to the divertor heat flux divided by

the particle flux, one expects a factor 1.9 drop of Te between simulation and experiment,

Figure 17 right hand side. In practice one finds a ratio of the order of 2.2, therefore
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Table 5. SOL width for WEST: λSE2D
pe from the pressure e-folding length given by

SolEdge2D-Eirene in the plasma midplane, λWEST
pe from the pressure e-folding length

given by the reciprocating Langmuir probe data in the plasma midplane, from λSE2D
SOL

the heat flux channel width in SolEdge2D-Eirene simulation, λWEST
SOL the heat flux

channel width from Langmuir probe embedded in the divertor. SOL width prediction

for WEST according to available scaling laws, λH according to [89], λL = 2 λH , λq
according to [87], λmaxq , λminq maximum and minimum value according to [87] taking

the error bars into account. All values in [mm].

λSE2D
pe λWEST

pe λSE2D
SOL λWEST

SOL | λH λL λq λmaxq λminq

8.8 7.3 7.3 9.1 | 4.1 8.2 2.9 18 0.3

reasonably close. One also notices that the profiles shapes do not compare well.

Differences in the density ne profiles, Figure 16 left hand side should behave as the

inverse of the thermal energy, and one finds indeed that the density is about 2.3 times

larger in the experiment compared to the simulation together with a difference in shape

that is the opposite to that seen for the electron thermal energy. Although, there are

differences, one finds consistency most likely governed by the conservation of the total

plasma pressure along the field lines and by the agreement between simulation and

experiment of the plasma energy flux onto the divertor.

Regarding the various ways of determining the SOL width, from e-folding length

of the plasma pressure in the midplane, given by SolEdge2D-Eirene λSE2D
SOL , or by the

reciprocating Langmuir probe λWEST
pe , or from the heat flux deposition pattern, λSE2D

SOL

given by SolEdge2D-Eirene, and λWEST
SOL given by the probe data, Table 5 yield quite

comparable values 8±0.8 [mm] in the SolEdge2D-Eirene simulations and 8.2±0.9 [mm]

for the WEST experiment. This value agrees with the scaling law λH = 0.64 B−1.15
pol

[89] for the SOL width in H-mode, with a factor 2 increase from H-mode to L-mode,

one obtains λL ≈ 2λH = 8.2 [mm]. The latter value agrees with both simulation and

experimental results. Conversely, the scaling law for L-mode [87] leads to λq which

is about 2.8 times smaller than the observed value. Furthermore, the considerable

uncertainty governed the error bars on the exponents leads to a range of values from

0.3 [mm] to 18 [mm]. One finds that the SolEdge2D-Eirene simulation with the κ-ε

transport model has better predictive capability than the scaling law built for L-mode

data. The latter appears to exhibit a too strong dependence on the safety factor. The

uncertainty on the exponents and that for the safety factor is also an issue. Finally,

the WEST experiment analyzed here is characterized by a large aspect ratio. The

dependence on that parameter is not well known because of the lack of appropriate

data in the databases that have been used. As discussed in Section 3.3, a complete

picture of cross-field dependence on aspect ratio and safety factor is still missing. This

issue is partly made more complicated because of the dependence of the safety factor

on the aspect ratio A, qcylA = BT/Bpol, where qcyl is the cylindrical approximation of

the safety factor. The open issue appears to be therefore the balance between magnetic

field properties BT/Bpol and geometry A = R/a.
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With the confrontation to the WEST experiment we thus find that the κ-ε cross-field

model of transport is robust and compares well with experimental evidence despite the

fact that the simulation exhibits differences in the divertor regime, most likely governed

by a reduced particle screening capability in the simulation compared to the experiment.

5. Discussion and conclusion

In the present paper we have developed the theoretical background of the κ-ε model,

and we have shown its relevance to quite significantly improve the predictive capability

of 2D plasma transport models based on averaged fluid equations. Assuming turbulent

diffusive transport, the model allows to self-consistently estimate the cross-field fluxes in

the edge and SOL regions of diverted plasmas. Instead of tuning by hand the coefficients

of perpendicular transport for particles, momentum and heat with some kind of trial

process to match as well as possible a given experiment, they are computed at each

time and each position from two fields κ and ε governed by two additional transport

equations algebraically derived. κ is the turbulence kinetic energy, and ε is interpreted

in this paper as the loss via the energy cascade to the energy dissipation scale. One can

then define a diffusion coefficient D = κ2/ε and a characteristic time τ = κ/ε.

While inspired from neutral fluid dynamics, we show that both predator-prey

models [50, 51, 52] and quasilinear [60, 61, 62] frameworks used to describe plasma

turbulence provide a theoretical background to the κ-ε description of turbulent

transport.

The local evolution of each field is governed by a linear term driving exponential

transients and a quadratic saturation term. Non vanishing fields are obtained with

an interchange like growth rate γI . The dissipation contribution in the κ equation is

of the form κ2/Dω + ε. Consistently with the neutral fluid approach we have used

the asymptotic limit Dω � 1 in the simulations so that only ε acts as dissipation of

the kinetic energy of the velocity fluctuations. The quadratic dissipation term in the

ε equation, of the form βε2, is defined with β = V/κ3/2, where V is a characteristic

velocity. The choice made for the velocity V is governed by the dimensionless scaling

of the width of the plasma boundary layer, the SOL width λSOL that is supposedly the

background of well known empirical scaling laws of the SOL width [88, 87]. We have then

obtained V/cs ∝ ρ∗
√
γIτ‖, cs being the sound velocity, ρ∗ the ratio of a characteristic

Larmor radius and plasma minor radius a, and τ‖ ∝ qAa/cs the parallel connection

time, see (22d).

Results of the 1D model are confronted to experimental evidence by analyzing the

computed SOL width and comparing the results to the existing scaling law for L-mode

plasmas [87]. Since the chosen closure for V accounts for the latter, one could expect

close agreement between the empirical scaling law and the 1D model. It is not the

case. This has led us to analyze the scaling law and several shortcomings have been

identified, the most striking being that its dimensionless form departs significantly from

the reference qρ∗ dependence and that in fact it is not even dimensionaly correct. One
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also finds that the dependence on the safety factor appears to have a too big exponent

leading to a too strong dependence on the plasma current. Since the transport model

also governs the energy confinement time, we have also compared the 1D simulations

with scaling law of the energy confinement time, addressing both the dependence in

terms of the engineering parameters and the dimensionless aspects. Modification of

the scaling exponents of ρ∗, A and q in the expression of V/cs have been calculated to

match the L-mode and H-mode confinement time dependencies. Finally the 1D model

has been used to illustrate one of the possible problems that can be addressed in the κ-ε

framework. Introducing in the definition of the velocity V a dependence on the shear of

large scale flows, typically the zonal flows [56], so that V exhibits a monotonic decrease

from the low shear limit to the large shear limit, the ratio between these values rang-

ing from ≈
√

2 to ≈ 2, we have reported in 1D simulations an H-mode like transition

when increasing the input power, generating an increased stored energy thanks to an

interface barrier located at the separatrix [59]. This result is not quite a surprise since

the predator-prey models have been introduced in fusion plasmas to investigate such

barrier formation [51, 103, 58, 52]. Furthermore, the model has been devised to exhibit

the appropriate trend, namely a decrease of V with flow shear. However, the bifurcation

aspect is not introduced specifically in the model. The transition thus appears via a

monotonic dependence of V on the shear completed by a feedback mechanism which

governs a further increase of the flow shear as transport is reduced. This shows that

the κ-ε model has the capability to generate changes of the transport regimes in a self-

consistent manner.

Stepping to the 2D plasma-wall simulations in L-mode, we find that the κ-ε model

yields a good match with the experimental profiles, both at the divertor and at the

midplane. The transport is shown to be ballooned, as expected for an interchange like

instability, driving turbulent transport in the divertor SOL and nearly no transport

in the private flux region. The SOL width of WEST is recovered far more precisely

than when using the L-mode scaling for the SOL width [87]. It appears in fact that

twice the H-mode scaling [89] does a better job in predicting the SOL width. These

first simulations with the κ-ε model demonstrate the ability of the model to predict

equilibrium profiles at midplane and at the outer divertor target as well as providing a

2D distribution of turbulent transport with radial and poloidal dependencies determined

self-consistently, in particular the ballooning aspect reported in experiments [29, 30, 31].

We have thus shown the remarkable capability of the κ-ε model to capture key

aspects of the physics of turbulent transport throughout the plasma. The present

simulations, which are first tests of the model, use a single scalar as tuning parameter

to describe the whole 2D dependence of the turbulent diffusion coefficient. The

confrontation to experimental data is quite convincing, both for midplane and divertor

profiles. The width of the energy exhaust channel is also recovered in an L-mode

simulation of WEST.
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Further adjustment of the model can be achieved using experiments and/or micro-

turbulence simulations. The model can be used to model the core plasma as well as self

consistent transitions to improved confinement regimes. Indeed, the non-linear depen-

dence of the diffusion coefficients could allow one extending the use of such transport

modeling to transients. This modeling effort would no longer be restricted to steady

state as the usual diffusive ansatz would imply. Similarly, because the diffusive coeffi-

cients governing the transport of the two fields κ and ε are defined to depend non-linearly

on their values, typically like κ2/ε, the transport dynamics can depart significantly from

that stemming from fixed diffusion processes. Finally, in the present implementation of

the model a single instability drives the turbulent fluctuations on the ion characteristic

length scale but the model could be completed using other instability growth rates, and

one could also split the model according to fluctuations on either ion or electron scales.
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Appendix A. The 1D transport model

Appendix A.1. The transport equations

The 1D model is obtained by averaging the transport equations Appendix C in the

poloidal and toroidal directions. Transport is taken into account by diffusion that replace

all convective transport processes at the microscopic level. The diffusion coefficients are

chosen as discussed in Section 2.1 equation (18). For the closed magnetic surfaces,

this average must be considered as a flux surface average while for the open field lines

a standard averaging on the parallel direction is used so that the parallel divergence

terms yield contributions that are identified as the outflux onto the wall components.

Since the parallel dynamics are ignored, the transport equations are then reduced to the

density n and thermal energy evolution Ei = 3
2
nTi for the ion and Ee = 3

2
nTe for the

electron. This simplified model assumes quasineutrality and a low Mach number regime.

The Mach number of the ion flow ui/cs -where cs is the sound velocity- is thus assumed

to be small on average, hence
〈
Ei + 1

2
minu

2
i

〉
≈ 〈Ei〉, and is only taken into account

via the boundary condition where it is assumed to be finite and typically of order one.

While the Bohm condition enforces |M | ≥ 1 with respect to the local boundary value of

cs, it is not the case on average 〈miu
2
i 〉 � Ti. The brackets of the average are dropped

in the following to simplify the notations. The plasma transport equations solved in the

model are then:

∂tn−
1

r
∇r

(
rDn∇rn

)
= Sn −H(r − a)

n

τ‖

∂tEe −
1

r
∇r

(
rDnTe∇rn+ χenr∇rTe

)
= SE −H(r − a)

nTeγe
τ‖

∂tEi −
1

r
∇r

(
rDnTi∇rn+ χinr∇rTi

)
= SE −H(r − a)

nTiγi
τ‖

(A.1a)

In these equations, the function H(r− a) is the Heaviside step function used as a mask

that defines the SOL region, H(r − a) = 0 for r < a and H(r − a) = 1 for r ≥ a so

that the parallel loss terms apply. For these averaged equations, the convective loss

term appear to be governed by the effective SOL confinement time for the particles, τ‖,

typically of order L‖/cs. The coefficients γe and γi are reminiscent of that computed

for the kinetic sheath transmission, but also take into account effects governed by the

relationship between the sheath values of the density and thermal energy and their

parallel average. The same remark holds for the transport terms since the average

of the product of the local values of χ, n T and ∇T is not equal to the product of

the average of these fields. The transport coefficients must therefore be considered as

effective. For the heat conductivity, the transport coefficient χeff to be used is such that

χeff < n >< ∇T >=< χn∇T >. This issue is not specific of the present model.

The plasma equations are completed by a vorticity equation for Ω ≡ mi∇⊥ ·(
en∇⊥φ/B2 + ∇⊥pi/B2

)
, where the electrostatic potential is φ, e the electron charge,

and pi the ion pressure. This equation is derived from the charge balance equation
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including the polarization drift current for the ions.{
∂tΩ−

1

r
∇r

(
rν∇rΩ

)
= H(r − a)

1

τ‖

(
eφ

Te
− Λ

)
(A.1b)

The constraint governed by current loss at the sheath is modified to take the linear

form of a restoring force of the electric potential φ towards ΛTe/e. The steady state

solution in the core plasma thus governs φ ≈ −Ti/e while in the SOL one has φ ∝ Te/e,

provided |∇Te| � |∇pi|/n. At the separatrix the viscosity ν will then bridge these two

asymptotic behaviors. In the standard use of this 1D model, as well as for the SolEdge2D

simulation addressed in the paper, large scale flows are not taken into account in the

transport. On the same footing the non-linear drive of the vorticity via the Reynolds’s

stress, mandatory for micro-turbulence simulations is not included in (A.1b). Solving

the vorticity equation (A.1b) is only useful when considering an ad hoc modification of

the control parameter V governed by the E ×B shear.

A simplified transport model for neutrals is also introduced so that the particle source

by ionization Sn, and in particular its location, changes consistently with the plasma

parameters. Only the particle balance equation is used for the neutrals with density N0,

diffusive transport with constant diffusion coefficient DN0 and a feed-back controlled

gas injection ΦN0. In this 1D model, we address an ionizing plasma regime such that

the ionization and charge exchange cross sections are comparable. The diffusive nature

of neutral transport is not particularly well suited since ionization occurs in a couple of

steps, charge exchange being subdominant.{
∂tN0 −

1

r
∇r

(
rDN0∇rN0

)
= ΦN0 H(r − a)− Sn (A.1c)

The source term ΦN0 should be localized at the outer wall as well as peaked towards

r = a to describe recycling via the private flux region of a divertor or in the vicinity of

a limiter tip. We simplify these aspects by taking ΦN0 constant throughout the SOL

region, hence of the form ΦN0 H(r − a).

Finally, the cross-field diffusion terms of the plasma transport equations are determined

by the κ-ε coupled equations.
∂tκ−

1

r
∇r

(
rD∇rκ

)
= γκκ− ζκ2 − ε

∂tε−
1

r
∇r

(
rD∇rε

)
= γεε−

V

κ3/2
ε2

(A.1d)

It is to be noted that no parallel convective loss term is retained here to account for the

SOL transport to the wall. These would reduce the drive governed by the local dynamics,

for instance substituting in the κ equation γκ by γκ − σκ/τ‖ where σκ is a constant

of order unity. However, a similar parallel loss term occurs on the closed magnetic

surfaces for parallel currents, which have a stabilizing effect on the interchange drive.

Consequently, a similar correction should be applied to γκ in the region r < a. The

control parameters that appear in the 1D model (A.1d) should therefore be understood

as effective parameters, as discussed for plasma transport (A.1a) and (A.1b). Although,
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the control parameters in (A.1d) should be modified to account for the parallel transport,

in practice we have assumed that this effect is small for both fields κ and ε.

Appendix A.2. The sources

The particle source distribution in space depends mostly on the neutral penetration into

the plasma. The crude model for neutral transport is tuned to obtain realistic profiles

of Sn = nN0〈σv〉i, where 〈σv〉i is the ionization rate. The latter is computed using an

expression of the form 〈σv〉i ∝ x1/2/(xi + x) exp(−1/x) [110], where x = Te/Ei and

Ei = 13.6 eV is the ionization energy. With xi = 6 the maximum of the ionization rate

occurs at x = 10. Overall, this analytical expression yields a dependence of the ioniza-

tion rate with the electron temperature that is roughly comparable to published data

[111, 112]. The neutral source ΦN0 is set to ensure that the density at the separatrix

is maintained equal to 1.1019 m−3. This can be understood as a particle injection rate

with feedback on the plasma separatrix density. A typical radial profile for the neutral

density in this model is displayed on Figure A1 left hand side for the following reference

plasma parameters typical of a WEST experiment: R = 2.5 m, a = 0.5 m, BT = 3.7 T ,

BP = 0.2 T , Pin = 1 MW . One finds that the neutral density decreases from the wall

into the plasma. The typical e-folding length is approximately 0.05 m, hence a tenth of

the chosen minor radius a. This decay rate is a combined effect of the diffusive trans-

port and of the ionization sink, the latter prevailing in the confined plasma region. The

Figure A1. For WEST like parameters Pin = 1MW , R = 2.5m, a = 0.5m,

BT = 3.7T , Left hand side axis: Radial profile of the neutral density N0 blue line

open circles, Right hand side axis: radial profile of the ionization source term Sn black

line closed circles.

source term, Figure A1 right hand side, is peaked close to the separatrix and decays

rapidly towards the plasma core. The ionization source in the SOL is localized in the

vicinity of the separatrix.
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Figure A2. Radial distribution of the energy source VSE , where V is the plasma

volume and SE the source of energy density in MW/m3.

For a typical plasma volume V = 2πRπk a2, where R is the major radius, a the

minor radius and k the plasma elongation, the chosen heat source profile SE, Figure A2,

is defined as a function of the normalized radius ρ = r/a:

VSE =
Pin
p0

exp
(
− 1

1− ρ2

)
(A.2a)

p0 =

∫ 1

0

ρdρ exp
(
− 1

1− ρ2

)
= 7.425 10−2 (A.2b)

where the constant p0 = 7.425 10−2 ensures that the cylindrical integral of VSE is Pin,

the injected power.
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Appendix B. Adimensional scaling laws

Appendix B.1. Adimensional scaling of the confinement time

The generic form of the scaling laws that are considered for the energy confinement time

is given in terms of the so-called engineering parameters as follows:

τE ∝ IαIp BαB
T nαn P−αp MαM RαR AαA kαK (B.1)

where τE is obtained in [s], for Ip, the plasma current in [MA], BT the toroidal magnetic

field in [T ], P the loss power in [MW ], n the line-averaged density in [1019m−3], M

the average ion mass in [AMU ], R the major radius in [m] and finally A and k the

aspect ratio and elongation, respectively. It must be underlined that in fact this

αI αB αn αp αM αR αA αk
0.96 0.03 0.4 0.73 0.2 1.83 0.06 0.64

Table B1. Exponents of the engineering scaling lax of the energy confinement time

of the ITER1996 L-mode scaling.

kind of expression is a mix including dimensional parameters Ip, BT , n, P and R

and dimensionless parameters M , k and A. Some parameters govern the magnetic

equilibrium including its geometry, Ip, BT , R, A, k, while others are less directly

controlled such as the density n and the average mass ratio M that are really governed

by particle confinement and sources, and the heating power coupled to the plasma P .

One can understand such a scaling law either as a fit that holds over a limited range

of the parameter values, hence a local tangential fit, or as an effective scaling holding

for all values of the parameters. Implicitly, the latter understanding of the underlying

similarity appears to be favored since the former tangential form would generically

introduce offsets, typically (1 +G/G0)α for a given parameter G. For G� G0 this does

not make any difference but the asymptotic behavior for G→ 0 for α > 0, respectively

G→∞ for α < 0 is different, and, more importantly has different implications in terms

of the underlying physics. Regarding the latter, a more relevant formulation is that

given in terms of dimensionless parameters. For fusion plasmas these are the safety

factor q, ν∗ the normalized collisionality, β the normalized plasma pressure and ρ∗ the

normalized ion Larmor radius. If only four dimensionless control parameters exist, then

the normalized confinement time ΩτE must depend on these parameters, hence the 5

dimensional parameters must be expressed as functions of 4 dimensionless parameters.
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This generates a constraint, the so-called Kadomtsev similarity constraint [91].

ν∗ =
[n a
T 2

] [
qA
]
Asνν∗0 ; ν∗0 =

(
e2/(4πε0)

)2
n0a0

T 2
0

(B.2a)

β =
[nT
B2

]
β0 ; β0 =

n0T0

B2
0/(2µ0)

(B.2b)

ρ∗ =
T 1/2

aB
ρ∗0 ; ρ∗0 =

√
mpT0

eB0a0

(B.2c)

q = Fq(k, δ)qcyl ; qcyl =
aBT

RBpol

; Bpol =
µ0

2π

Ip
akFI(k, δ)

(B.2d)

In these expressions the quantities with 0 subscript stand for the parameter values

used for normalization, most often done implicitly by specifying the units. When ν∗ is

governed by the physics of the trapped particles sν = 3/2, otherwise, as more readily

done for the edge region sν = 0. The parameter ρ∗ is defined with the proton mass mp,

however, regarding the physics of cross-field transport, the effective ion Larmor radius

is of interest. One must therefore take this effect into account when addressing the

dependence on the effective ion mass M . The safety factor is split into the cylindrical

contribution qcyl and two dimensionless functions of the magnetic equilibrium Fq and

FI , that depend typically on dimensionless parameters such as the ellipticity k, the

triangularity δ, etc. Given these 3 dimensionless parameters one can express the density

n, the product aB = RBT/A, an the square root of the thermal energy T 1/2.

n =
[ T 2

a B

][ν∗/Asν
qA

][
B
] 1

ν∗0
(B.3a)

a B = T 1/2 1

ρ∗
ρ∗0 (B.3b)

T 1/2 =
[
B
]1/5[ qAβ

ρ∗ν∗/Asν

]1/5[ρ∗0ν∗0
β0

]1/5

(B.3c)

Given (B.3c), one thus obtains:

n = n0

[
B
]8/5[ρ∗ν∗/Asν

qA

]2/5[
β
]3/5

(B.4a)

a B = (aB)0

[
B
]1/5[ qAβ

ρ6
∗ν∗/A

sν

]1/5

(B.4b)

T 1/2 = T
1/2
0

[
B
]1/5[ qAβ

ρ∗ν∗/Asν

]1/5

(B.4c)

The various constants that appear in (B.4) lead to the definitions of n0, (aB)0 and T0.

In a similar way one can express the plasma current from the definition (B.2d) of the

safety factor:

Ip =
2π

µ0

[ k

A qcyl

][
aB
]

= I0

[ k

A qcyl

][ qAβ

ρ6
∗ν∗/A

sν

]1/5[
B
]1/5

(B.5a)
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The four dimensional parameters n, (aB), T , Ip are found to depend on the dimensionless

parameters q, ν∗, β and ρ∗ as well as on the dimensional parameter B. Finally, one must

express the heating power. This engineering parameter is specific insofar that it will

depend on the internal energy and on the confinement time for steady state conditions

as follows:

P =
n TV
τE

=
n T

B2/(2µ0)

V
ΩτE

B2/(2µ0)Ω0

=
Akβ

ΩτE
a3B3FV

2π2B2
0eB0

2µ0m
= P0

[Akβ
ΩτE

][
a B

]3

= P0

[Akβ
ΩτE

][ qAβ

ρ6
∗ν∗/A

sν

]3/5[
B
]3/5

(B.5b)

The dimensionless function FV (k, δ) is introduced when writing explicitly the plasma

volume V = πa(ka)2πRFV . The confinement time is normalized here by Ω, where Ω is

a reference Larmor pulsation depending on BT .

ΩτE ∝ IαIp BαB+1 nαn P−αp MαM aαR AαA+αR kαk (B.6a)

ΩτE ∝ kak qaq MaM AaA βaβ ρaρ∗ νaν∗ (B.6b)

One can then identify the exponents of the power law dependence of the confinement

time on the dimensionless parameters. In particular one obtains aB:

aB =
(αI + 8αn − 3αp + 5αB − 4αR + 5)

5(1− αp)
(B.7a)

With the coefficients of the ITER1996th L-mode scaling, Table B1 one obtains aB ≈
−0.15 instead of zero. The scaling law is not homogeneous. One also recovers the

expressions for the other exponents published in Ref.[113]. The three exponents aβ, aν
and aρ characterize the plasma:

aβ =
(αI + 3αn − 8αp + αR)

5(1− αp)
(B.7b)

aν =
(−αI + 2αn + 3αp − αR)

5(1− αp)
(B.7c)

aρ =
(−6αI + 2αn + 18αp − 6αR)

5(1− αp)
(B.7d)

while the magnetic equilibrium properties are characterized by:

ak =
(αI + αK − αp)

1− αp
(B.7e)

aq =
(αR − 4αI − 2αn − 3αp)

5(1− αp)
(B.7f)

aA =
(5αA + 6αR − 4αI − 2αn − 8αp)

5(1− αp)
− sνaν (B.7g)
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and the main ion species effective mass dependence is:

aM =
αM

(1− αp)
(B.7h)

In the ITER physics basis [91], a correction on the exponent αR is proposed to recover

the constraint aB = 0. In practice any of the coefficients contributing to aB could be

corrected as well as any combination of corrections yielding aB = 0. In fact, the scaling

law and the error minimization procedure using the data base should be performed with

the constraint aB = 0. In the ITER physics basis this point is not discussed and no

information is given on the impact of a change of αR on the accuracy of the scaling law.

Another possibility is to modify directly the exponent αB that only contributes to aB.

This would imply a change from αB = 0.03 to αB = −0.01. This can appear as a small

change, however it might be clearly inconsistent with the data, in particular regarding

the change of sign.

Appendix B.2. Adimensional scaling of the empirical SOL width

Let us now consider the scaling law proposed for λq in Ref.[87]:

λq = λ∗,0 B
uB
T quq P up RuR (B.8a)

As for the energy confinement time, this scaling law for λq in millimeters, assumes that

BT is given in Tesla, Pin in MW , R in meters. In a first step, the expression is rearranged

to step towards the dimensionless expression. We then introduce rB = uB + 1 − uR,

rq = uq, rp = up, ra = uR − 1, rA = uR and therefore:

λq
a

= λ∗,0 (BT )rB qrq P rp (aB)ra ArA (B.8b)

The coefficients u of the scaling law (B.8a) are given in Table B2.

λ∗,0 uq uB up uR
1.44± 0.67 −0.8± 0.32 1.4± 0.67 0.22± 0.1 −0.03± 0.28

Table B2. Exponents of the engineering scaling law of the SOL width proposed in

Ref.[87].

λq
a

= (1.44± 0.67)BrBqrqArA

P
rp
0 (ΩτE)−rpq3rp/5A8rp/5A3sνrp/5β8rp/5ν−3rp/5

∗ ρ−18rp/5
∗

[
B
]3rp/5

(a B)ra0 q
ra/5Ara/5Asνra/5βra/5ν−ra/5∗ ρ−6ra/5

∗

[
B
]ra/5

(B.9a)
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The dependence on ΩτE can be expressed directly in dimensionless parameters. It

seems more appropriate when doing to use the expression that satisfies the Kadomtsev

constraint, hence with aB = 0.

λq
a
∝ ArA+8rp/5+ra/5 Asν(3rp+ra)/5 β8rp/5+ra/5 ν−3rp/5−ra/5

∗

qrq+3rp/5+ra/5 ρ−18rp/5−6ra/5
∗ BrB+3rp/5+ra/5

(kak qaq MaM AaA βaβ ρaρ∗ νaν∗ )−rp (B.9b)

One can then express the dimensionless scaling of the SOL width as:

λq
a
∝ k`k q`q M `M A`A β`β ρ`ρ∗ ν`ν∗ B

`B (B.9c)

where the exponents are given by:

`B =
5rB + 3rp + ra

5
− rpaB (B.10a)

`β =
8rp + ra

5
− rpaβ (B.10b)

`ν =
−3rp − ra

5
− rpaν (B.10c)

`ρ =
−18rp − 6ra

5
− rpaρ (B.10d)

`k = −rpak (B.10e)

`q =
5rq + 3rp + ra

5
− rpaq (B.10f)

`A =
5rA + 8rp + ra

5
+ sν

3rp + ra
5

− rpaA (B.10g)

`M = −rpaM (B.10h)

Using the coefficients as given in the scaling one finds again that the scaling law is not

homogeneous leading ot `B = 0.16. The only correction on a single exponent that stands

within the error bars of the scaling law is a decrease of the exponent of B from -0.8 to

-0.956. In that case one obtains:

λq
a
∝ q2.15ρ0.85

∗ A0.03β0.46ν−0.17
∗ (B.11)

This result departs rather strongly from that assumed to hold qρ∗ and used to determine

the parameter V of the κ-ε model (22d). Note that regarding the dependence on the

aspect ratio A, we have used the expression of ν∗ without the trapped particle effect,

hence for sν = 0. For sν = 3
2
, the exponent for the aspect ratio scaling is found to be

−0.01.

Appendix B.3. Adimensional scaling of the κ-ε SOL width

The parameter scans performed with the 1-D κ-ε model indicate that:

λq ∝ BvB
T B

−vq
pol P vp RvR (B.12a)
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vq vB vp vR
0.844 0.277 0.12 −1.06

Table B3. Exponents of the engineering scaling law obtained with the 1-D κ-ε model.

The coefficients v of the scaling law obtained are given in Table B3. With Bpol =

BT/(Aq) one can rewrite this dependence as:

λq
a
∝ qvqB

vB−vq+1−vR
T Avq+vR P vp(aB)vR−1 (B.12b)

We the introduce rB = vB − vq + 1− vR, rq = vq, rp = vp, ra = vR− 1, rA = vq + vR and

therefore:

λq
a
∝ k`k q`q M `M A`A β`β ρ`ρ∗ ν`ν∗ B

`B (B.13)

where the exponents are given by (B.10). Using the coefficients as given in Table B3,

one finds again that the scaling law is not homogeneous leading to `B = 1.15. However,

the variation of the density during the various scans, governed by the chosen feedback

scheme, and that does not exhibit a power law behavior, can explain this issue.

λq
a
∝ q0.95ρ2.26

∗ A−0.48β−0.05ν−0.05
∗ B1.15

T (B.14)

One finds therefore that the result exhibits a dependence onBTρ∗, hence typically inverse

to the size a, that appears to be spurious. Such a size effect can be related to a relative

change of the particle source and can have therefore have an impact on the turbulent

transport. One can also observe that the κ-ε 1D model appears to exhibit a too strong

dependence on R, see Table B4, which could be the drive for the difference between

the ρ∗
2.26 of the 1D model SOL width scaling and the input ∝ ρ∗ used to determine

V . This difference in scaling law can also be related to the particle source localization

and consequently the particular feedback scheme used in the present simulations. For

a complete comparison further 1D simulations using a proper database of relevant

experiments are required, with the same control scheme of the particle source as in

the experiments. Furthermore, uncertainty propagation will be needed to identify the

parameters that have a strong impact on the observed difference in the ρ∗ dependence,

and then address the physics and measurements that are crucial. Finally, this work

could also lead us to modify the input assumption used to determine V and its ρ∗
dependence to obtain a simulation output matching the experimental database.

Appendix B.4. Dimensional scaling of the SOL width qρ∗

Assuming that the SOL width λq/a is of the form:

λq
a
∝ qεqρερ∗ A

εA (B.15)
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one can step backwards to determine the expected scaling law in terms of the engineering

parameters. Given ρ∗

ρ∗ ∝
T 1/2

BTa
(B.16)

and:

T ∝ PτE
nV

(B.17)

so that:

ρ∗ ∝
(
PτE

)1/2(
na3Ak

)1/2
BTa

(B.18)

One can also use q = aBT/(AIp) to obtain:

λq
a
∝
(aBT

AIp

)εq( (
PτE

)1/2(
na3Ak

)1/2
BTa

)ερ
AεA (B.19)

Given the expression of τE (B.1), one then has:

λq
a
∝
(
IαIp B

(αB−2)
T n(αn−1) P (1−αp) MαM a(αR−5) A(αA+αR−1) k(αK−1)

)ερ/2
(aBT

AIp

)εq
AεA (B.20a)

which then yields the scaling law of the SOL width given in terms of engineering

parameters:

λq ∝ IαIερ/2−εqp B
(αB−2)ερ/2+εq
T P (1−αp)ερ/2 n(αn−1)ερ/2 a1+(αR−5)ερ/2+εq

AεA−εq+(αA+αR−1)ερ/2 MαM ερ/2 k(αK−1)ερ/2 (B.20b)

Let us consider the case ερ = εq = 1, εA = 0 that corresponds to the qρ∗ SOL width

scaling:

λq ∝ IαI/2−1
p B

(αB−2)/2+1
T P (1−αp)/2 n(αn−1)/2 a1+(αR−5)/2+1

A−1+(αA+αR−1)/2 MαM/2 k(αK−1)/2 (B.21a)

For the L-mode confinement scaling, Table B1, this leads to:

λq ∝ I−0.52
p B0.015

T P 0.135 n−0.3 a0.415A−0.555 M0.1 k−0.18 (B.21b)

Since Bpol ∝ Ip/a and A = R/a one can rewrite this result to obtain an expression

comparable to (B.12a).

λq ∝ B−0.52
pol B0.015

T P 0.135 R−0.555 n−0.3 a0.45 M0.1 k−0.18 (B.21c)

These results can be compared to those obtained with the scans performed with the

1-D κ-ε model, see Table B4. The agreement is rather poor, but at least there is no

disagreement regarding the sign of the exponents. As discussed previously, the feedback

process, leading to a change of the core density at fixed separatrix density, is an issue

since the density n, assumed to be an independent engineering parameter changes during

each of the scans that have been performed.
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exponents vq vB vp vR
κ-ε model 0.844 0.277 0.12 −1.06

expected scaling 0.52 0.015 0.135 −0.555

Table B4. Exponents of the engineering scaling law obtained with the 1-D κ-ε model

compared to its expected scaling.

Appendix C. The SolEdge2D model

The model [11] is typically a system of Braginskii drift-reduced fluid equations [114]

that govern the evolution of the plasma density n, the parallel momentum and the total

energy temperature for both electrons and ions assuming quasi-neutrality ne = ni and

ambipolarity v‖,e = v‖,i. The latter constraint can be relaxed but the charge balance

equation must then be solved to determine the electric field and consequently take

into account the large scale E × B convective transport. In the simplified case with

ambipolarity, the equations write as follows:

∂n

∂t
+ ∇ ·

(
nv‖b + nv⊥

)
= ∇ ·

[
Dn∇⊥n

]
+ Sn (C.1a)

∂(nv‖)

∂t
+ ∇ ·

[
nv‖

(
v‖b + v⊥

)]
= −∇‖

(
nTi
mi

)
+
qinE‖
mi

+
Rei

mi

+ ∇ · (νn∇⊥v‖) + Snv (C.1b)

∂

∂t

(
3

2
nTi +

1

2
minv

2
‖

)
+ ∇ ·

[(
5

2
nTi +

1

2
minv

2
‖

)(
v‖b + v⊥

)]
= ∇ ·

[
κi∇‖Tib + χin∇⊥Ti + νn∇⊥

(
1

2
miv

2
‖

)]
+ qinv‖E‖ +Reiv‖ +Qei + SEi (C.1c)

∂

∂t

(
3

2
nTe

)
+ ∇ ·

[(
5

2
nTe

)(
v‖b + v⊥

)]
= ∇ ·

(
κe∇‖Teb + χen∇⊥Te

)
− env‖E‖ −Reiv‖ −Qei + SEe (C.1d)

where ∇‖ = ~b · ~∇ and ~∇⊥ = ~∇ − ~b · ∇‖ define gradients along the parallel and

perpendicular direction, ~b = ~B/B being the unit vector along the magnetic field defining

the parallel direction. v⊥ = v − v‖b is the velocity component perpendicular to the

magnetic flux surfaces due to the large scale flows when determined (for the present

simulations v⊥ = 0), E‖ is the parallel component of the electric field, Rei is the parallel

electron-ion friction force, Sn, Snv, SEi and SEe are the particle, momentum and energy

sources respectively.

The boundary conditions are derived from the physics of the sheath: at the sheath
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entrance, the absolute value of plasma parallel velocity along the magnetic field lines

reaches minimum sound speed. This is the Bohm condition for the plasma parallel

velocity, expressed by |v‖| ≥ cs =
√

e(Te+Ti)
mi

. The latter is used in SolEdge2D as

immersed boundary condition in the penalization technique. The parallel heat flux

impinging on the solid target q‖,BC will read q‖,BC = (γnTv‖)BC , where γ is the total

sheath transmission coefficient.
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[48] C. Grisolia, Ph. Ghendrih, B. Pégourié, and A. Grosman. Plasma wall particle balance in Tore

Supra. Journal of Nuclear Materials, 196-198:281 – 284, 1992. Plasma-Surface Interactions in

Controlled Fusion Devices.

[49] T. Loarer, B. Meslin, Ph. Ghendrih, C. Grisolia, and A. Grosman. Particle balance modelling in

ergodic divertor experiments on Tore Supra. Journal of Nuclear Materials, 241-243:505 – 510,

1997.

[50] J.D. Murray. Mathematical Biology: I. An Introduction. Interdisciplinary Applied Mathematics.

Springer New York, 2007.

[51] P. H. Diamond, Y.-M. Liang, B. A. Carreras, and P. W. Terry. Self-regulating shear flow

turbulence: A paradigm for the L to H transition. Phys. Rev. Lett., 72:2565–2568, Apr 1994.

[52] E Floriani, G Ciraolo, Ph Ghendrih, R Lima, and Y Sarazin. Self-regulation of turbulence bursts

and transport barriers. Plasma Physics and Controlled Fusion, 55(9):095012, aug 2013.

[53] Suzana J. Camargo, Dieter Biskamp, and Bruce D. Scott. Resistive drift-wave turbulence.

Physics of Plasmas, 2(1):48–62, 1995.

[54] A. Kolmogorov. The Local Structure of Turbulence in Incompressible Viscous Fluid for Very

Large Reynolds’ Numbers. Akademiia Nauk SSSR Doklady, 30:301–305, January 1941.

[55] F.H. Busse. Generation of mean flows by thermal convection. Physica D: Nonlinear Phenomena,

9(3):287 – 299, 1983.

[56] P. H. Diamond et al. Zonal flows in plasma–a review. Plasma Physics and Controlled Fusion,

47(5):R35–R161, April 2005.

[57] K. Itoh, S.-I. Itoh, P. H. Diamond, T. S. Hahm, A. Fujisawa, G. R. Tynan, M. Yagi, and

Y. Nagashima. Physics of zonal flows. Physics of Plasmas, 13(5):055502, 2006.
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