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Abstract. Discrete dynamical systems (DDS) are a model to represent
complex phenomena appearing in many different domains. In the finite
case, they can be identified with a particular class of graphs called dy-
namics graphs. In [9] polynomial equations over dynamics graphs have
been introduced. A polynomial equation represents a hypothesis on the
fine structure of the system. Finding the solutions of such equations val-
idate or invalidate the hypothesis.
This paper proposes new algorithms that enumerate all the solutions
of polynomial equations with constant right-hand term outperforming
the current state-of-art methods [10]. The boost in performance of our
algorithms comes essentially from a clever usage of Multi-valued decision
diagrams.
These results are an important step forward in the analysis of complex
dynamics graphs as those appearing, for instance, in biological regulatory
networks or in systems biology.

Keywords: Multi-valued decision diagrams · Discrete Dynamical Sys-
tems · Graphs semiring .

1 Introduction

Multi-valued Decision Diagrams (MDD) are a generalization of Binary Decision
Diagrams (BDD) [1,5] used to obtain efficient representations of functions (with
finite domains) or (finite) sets of tuples. An MDD is a Directed Acyclic Graph
(DAG) created from a finite set of variables with specific (finite) domains. Asso-
ciating each variable with a level of the structure, the MDD represents a set of
feasible assignments as a path from the root to the final node. A crucial aspect
of MDDs is the exponential compression power of the reduction operation and
the fact that many classical operations (intersection, union, etc.) can be per-
formed without decompression. In the last years, MDDs have been applied in
many disparate research domains proving the potential of this structure. MDDs
are used, for instance, to improve random forest algorithms replacing the classic
binary decision trees [12], to represent and analyze automotive product data of
valid/invalid product configurations [6], and to perform trust analysis in social
networks [16]. There are also applications related to mathematical models like
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Multi-State Systems (MSS) [15]. In this case, MDDs represent the MSS structure
in terms of Multi-Valued Logic to compute some measures. MDDs find appli-
cations also in the analysis of the discrete dynamical systems. Indeed, in [13],
MDD represents logic rules to analyze some properties and dynamics aspects in
the case of regulatory networks (for example, to perform a stable states identi-
fication).

In this work, we propose to apply MDDs to equations over Discrete Dynam-
ical Systems (DDS). DDS are a model to represent complex phenomena which
evolve in (discrete) time coming from different domains such as genetic regu-
latory networks, boolean automata networks, population dynamics, and many
others. DDS consist in a finite set of states and a next-state function. In the fi-
nite case, DDS correspond to a particular class of graphs, called dynamic graphs
(i.e. graphs with outgoing degree one). Therefore, DDS are simple structures
that can be applied to any phenomena that evolve according to a function. Of-
ten, when representing phenomena with DDS, one needs to validate “macro”
dynamics coming from experimental results, or to identify the set of “micro”
dynamics which generate a given “macro” behavior observed.

In [9], operations of sum and multiplication have been introduced to explain
how DDS can be combined to generate new dynamical behaviors. Equipping the
set of DDS with these operations provides a commutative semiring, and this
naturally leads to write polynomial equations over DDS. This is interesting be-
cause these equations (with a constant right-hand term) can model hypotheses
over the dynamics, and if one can prove properties for DDS then they can be
automatically lifted to the application models. The idea is to solve these equa-
tions to validate the corresponding hypotheses. This paper introduces a pipeline
to solve equations over the cycles of dynamics graphs (i.e. equations/hypotheses
over the long term behavior of a phenomenon), formally introduced in [10]. The
first part of this paper proposes a new algorithm which outperforms the state-
of-art technique (Colored-Tree method) using MDDs to enumerate the solutions
set of simple equations. The second part introduces a pipeline to solve general
equations using MDDs to solve basic cases and to limit the exploration of the
solutions space. The overall purpose is to introduce the first complete pipeline,
based on MDD, to solve the equations introduced in [9,10] to study the hypoth-
esis over the long term behavior of a phenomenon modeled by DDS.

2 Preliminaries

2.1 Multi-valued decision diagrams (MDDs)

Multi-valued decision diagrams are the extension of Binary decision diagrams
(BDD) in which the diagram consists of a rooted acyclic graph able to represent
a multi-valued function f : {0...d − 1}r → {true, false}. Considering a generic
MDD, each level represents a variable and a final layer contains the true ter-
minal node (tt). Therefore, the data-structure contains r + 1 layers and a path
from the root to the tt node represents a valid set of assignments. Each node
is characterised by the variable represented in the layer and at most d outgoing
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edges. In general, the edges are directed from an upper layer to a lower one. An
edge corresponds to an assignment of the variable to a certain value specified
over the edge. This data-structure presents only one root and one leaf. The false
node, and the corresponding paths to reach this node, are omitted.

According to [2,8] , an MDD is deterministic if all the nodes have pairwise
distinct labels on outgoing edges. Moreover, an MDD is ordered if given two
nodes A and B such that A is the parent of B, we have that the variable repre-
sented into the node A is the smallest (w.r.t. a given total order over the set of
variables).

r

x1 x1

x2 x2

tt

1 2

2 2 3

2

3

3

Fig. 1: The MDD corresponding to the valid assignments {(1, 2, 3), (2, 2, 3),
(2, 3, 3), (1, 2, 2)} for the variables x0, x1 and x2. The structure presents 4 layers.
The root and its edges represent the variable x0 and its possible assignments.

One of the most interesting aspects of MDDs is their reduction. According
to this procedure, they can gain an exponential factor in representation space.
The reduction of MDDs aims at merging equivalent nodes i.e. that have equiva-
lent outgoing paths. In particular, two nodes are equivalent if they have the same
label and destination for each edge. The idea is to identify and merge equivalent
nodes from the bottom to the top of the MDD, see Figure 2 for an example.
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Fig. 2: An MDD before reduction (left) and its reduced version (right).

Several reduction algorithms for MDDs have been introduced [3, 7]. In our
software we use the pReduce algorithm [14] since the time complexity per
node is bounded by its number of outgoing arcs and the complexity is linear on
the size of the MDD.

Another big advantage of using MDDs is that classical set operations such
as Cartesian product, complement, intersection, union, difference, and many
others can be performed without decompressing the structure. For instance, the
cartesian product over MDDs can be performed just by transforming the root of
an MDD into the tt node of another one (see Figure 3 for an example).
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Fig. 3: The MDD representing the Cartesian product of the MDD in Figure 1
and the MDD in Figure 2 (right). The diagram is drawn horizontally for lack of
room.

Given two MDDs, the intersection algorithm creates a new MDD to represent
the solutions contained in both the original ones (see Figure 4). To achieve this
goal, the process starts with the creation of a new root, and only the outgoing
edges that are common between the two structures are recreated. In this way,
each new node corresponds to two original nodes and the process is iterated.
It is important to remember that in the end, it is necessary to verify if there
are nodes without children; if any, they must be deleted. The drawback of this
algorithm is that the resulting MDD can be larger than the original ones. For
more details, we refer the reader to [14] and [4].
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Fig. 4: Two MDDs (left and center) and their intersection (right).

2.2 Discrete Dynamical Systems and dynamics graphs

A Discrete Dynamical System (DDS) is a structure 〈χ, f〉 where χ is a finite
set of states and f : χ → χ is a function called the next state map. When
modelling a phenomenon by a DDS 〈χ, f〉, χ is its set of states and f is the law
which brings from state α ∈ χ at time t to the state f(α) at time t+ 1.

When χ is finite, any DDS 〈χ, f〉 can be identified with its dynamics graph
G ≡ 〈V,E〉 where V = χ and E = {(α, β) ∈ V × V, f(α) = β}. Therefore, all the
properties of the DDS can be deduced from the properties of its dynamics graph.
As a first property, one can remark that they are graphs with outgoing degree
one and hence each strongly connected components of such graphs is made by a
single cycle (or loop). From now on, we will turn all the discussion about DDS in
terms of dynamics graphs. Call DG the set of all dynamics graphs up to (graph)
isomorphism. One can define on DG two operations: sum and product as follows.
Given two graphs, G1 = 〈V1, E1〉 ∈ DG and G2 = 〈V2, E2〉 ∈ DG, the sum
G1 +G2 is the graph G = 〈V1 t V2, E1 t E2〉 ∈ DG, where t is the disjoint union
operator. The product G1 · G2 is the graph 〈V ′, E′〉 ∈ DG with V ′ = V1 × V2

and E′ = {((α1, α2), (β1, β2)) ∈ V ′ × V ′, (α1, β1) ∈ E1 and (α2, β2) ∈ E2}. The
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product defined above consists in the parallel synchronous execution of the two
dynamics graphs. The sum is the mutually exclusive alternative between the two
behaviours.

R := 〈DG,+, ·〉 is a commutative semiring in which 〈∅, ∅〉 is the neutral
element w.r.t. + and 〈{α} , {(α, α)}〉 is the neutral element w.r.t. multiplication.

Now, consider the semiring R[x1, x2, . . . , xs] of polynomials over R in the
variables xi, naturally induced by R. Polynomial equations of the form (1) model
hypotheses about a certain dynamics deduced from experimental data.

a1 · xw1
1 + a2 · xw2

2 + . . .+ ak · xws
s = C (1)

Equation (1) can be interpreted as follows. The constant term C on the right-
hand side is the dynamical system deduced from experimental data. The point
is that C comes just from experimental data and hence it might be the “macro”
result of many cooperating hidden variables at a “micro” level. On the left
hand side of (1), we have a hypothesis on the “micro” structure based on par-
tial information (the coefficients) and unknown information (the variables). In
other words, the coefficients ai are hypothetical sub-dynamical systems that
should cooperate to produce the observed dynamics C. Finding valid values for
the unknown variables provides a finer structure for C which can bring further
knowledge about the observed phenomenon.

More generally, one can interpret Equation (1) as a question over
dynamics graphs (i.e. directed graphs with outgoing degree 1). The
constant right-hand side represents the current graph and the left-hand side is a
question (hypothesis) about a possible decomposition (according to the semi-ring
operations).

In [9], it has been proved that finding solutions to generic polynomial equa-
tions (i.e. in which both left and right-hand side of the equation are made by
polynomials) over DDS is undecidable, while the problem is decidable when the
right-hand side of the equation is constant. However, even in the decidable case,
the complexity of the problem is beyond NP, except for very particular cases.

Some abstractions are introduced to progressively filter the solutions space
according to features of the real solutions. Therefore, the general solutions are
found in the intersection of the solutions of these abstractions. For this reason,
the solutions enumeration of each abstraction is fundamental.

At least three abstractions can be devised on dynamics graphs, namely, ab-
straction on cycles, on cardinality (of the vertex set) and on paths. Studying
each abstraction separately allows to study different aspects of a dynamics. In
particular, solving equations over cycles leads to the validation of hypotheses
over the long term behavior of a phenomenon.

3 The abstraction on cycles

In this paper we analyze equations over the cyclic part of the dynamics. Con-
sidering a generic Equation (1), we introduce a pipeline to solve the abstraction
over the long term behavior but before we need to recall some notation and some
concepts that will be useful in the sequel.
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For a dynamics graph G, let G̊ be the subgraph of G which contains only the
cycles and the loops. Denote R the restriction of R such that for any G ∈ R,
G̊ ∈ R. It is not difficult to see that 〈R,+, ·〉 is a sub-semiring of 〈R,+, ·〉. Thus,
solving Equation (1) over R is a necessary step for solving it over R. This also
implies that we have to enumerate all solutions in R first and then filter them
out using the other abstractions to find the general solutions.

Notation 1 A cycle {α1, α2, . . . , αp} of length p can be conveniently denoted by

C1
p . A subgraph, with K different lengths of cycles is denoted

K⊕
i=1

Cni
pi

.

Fig. 5: A dynamics graph G, in which the subgraph G̊ is the red part and it is
denoted C2

2 ⊕ C1
3 ⊕ C1

5 according to our notation.

The operations of sum and product over R can be conveniently applied to the
new notation. Graphically, we can consider the result of a sum as a new system
composed by all the cycles of the input systems, and the product one as a new
system generated with the Cartesian product of the cycles of the input systems.

Definition 1 (Sum). Consider two dynamics graphs Å ≡
KA⊕
i=1

CnAi
pAi

and B̊ ≡
KB⊕
j=1

C
nBj
pBj , Å⊕B̊ is

KA⊕
i=1

CnAi
pAi
⊕

KB⊕
j=1

C
nBj
pBj = CnA1

pA1
⊕. . .⊕CnAKA

pAKA
⊕CnB1

pB1
⊕. . .⊕CnBKB

pBKB
.

Considering two sets of cycles CnAi
pAi

and C
nBj
pBj , if they have the same cycles length

(pAi = pBj), then they can be rewritten like C
nAi+nBj
pAi .

Definition 2 (Product). Consider Å ≡
KA⊕
i=1

CnAi
pAi

and B̊ ≡
KB⊕
j=1

C
nBj
pBj , Å� B̊ is

KA⊕
i=1

CnAi
pAi
�

KB⊕
j=1

C
nBj
pBj =

KA⊕
i=1

KB⊕
j=1

CnAi
pAi
� CnBj

pBj =
KA⊕
i=1

KB⊕
j=1

C
nAi·nBj ·gcd(pAi,pBj)

lcm(pAi,pBj) where

gcd is the greatest common divisor and lcm is the least common multiple.

With the help of the previous notation, Equation (1) can be rewritten as

(

K1⊕
i=1

Cn1i
p1i
� x̊1

w1)⊕ (

K2⊕
i=1

Cn2i
p2i
� x̊2

w2)⊕ . . .⊕ (

Ks⊕
i=1

Cnsi
psi
� x̊sws) =

m⊕
j=1

Cnj
pj

(2)

whereKz is the number of distinct cycles size in the system az with z ∈ {1, . . . , s}
(cf. Equation (1)) and nzi is the number of cycles of length pzi of az. In the right
term C, there are m different periods, where for the jth different period there
are nj cycles of period pj . However, Equation (2) is still hard to solve in the
present form. We can simplify it further by performing a contraction step
which consists in cutting Equation (2) into two simpler equations

Cn11
p11
� x̊1

w1 =

m⊕
j=1

Cuj
pj

C1
1 � ẙ =

m⊕
j=1

Cvj
pj

(3a)

(3b)
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with ẙ = (
K1⊕
i=2

Cn1i
p1i
� x̊1

w1)⊕ (
K2⊕
i=1

Cn2i
p2i
� x̊2

w2)⊕ . . .⊕ (
Ks⊕
i=1

Cnsi
psi
� x̊sws) and

nj = uj + vj for j ∈ {1, . . . ,m}. By recursively applying contraction steps, and
for all possible uj , vj values in Equations (3a) and (3b), solving Equation (2)
boils down to solve multiple times simple equations i.e. equations of the form

C1
p �X = Cn

q (4)

where p ∈ {p11, p12, . . . , psKs
}, q ∈ {p1, p2, . . . , pm}, and n is smaller than the

number of cycles of length q in the right part.
Assume that X is x̊z

wz such that z ∈ {1, . . . , s}. It is necessary to find x̊z from
X i.e. we need to compute the wz root of X. Given 2M integers pi, ki ∈ N, with
pi > 0 for all i ∈ {1, . . . ,M}, let l(p1, p2, ..., pt, k1, k2, ..., kt) be the lcm between
the pi for which ki 6= 0 and t ≤ M (with l(p1, p2, ..., pt, k1, k2, ..., kt) = 1 iff
∀1 ≤ i ≤ t, ki = 0). Assume Å ≡ C1

p1
⊕ C1

p2
⊕ ...⊕ C1

pM
. Then,

(
Å
)w
≡

M⊕
i=1

C
pw−1
i

pi ⊕
⊕

k1+k2+...+kM=w
0≤k1,k2,...,kM<w

(
w

k1,k2,...,kM

)
C

∏M
t=1
kt 6=0

p
kt−1
t ·

∏M
t=2
kt 6=0

gcd(l(p1,...,pt−1,k1,...,kt−1),pt)

l(p1,p2,...,pM ,k1,k2,...,kM ) . (5)

3.1 The state-of-art method

In [10], two computational problems are devised concerning simple equations.
The SOBFID (SOlve equation on BIjective Finite DDS ) problem is a decision
problem which takes in input p, n, q ∈ N \ {0} and returns true iff C1

p �X = Cn
q

admits a solution. EnumSOBFID is the problem which takes the same input as
SOBFID and outputs the list of all solutions of C1

p �X = Cn
q .

To the best of our knowledge, the Colored-Tree Method (CTM) proposed
in [10] is the best current technique to solve this problem. The method exploits
a connection between EnumSOBFID and the well-known Change-making prob-
lem [11] coupled with a completeness-check (running in exponential time) to
explore the feasible solutions space. Essentially, the right term n is decomposed
in every possible way and these possibilities are represented in a tree. The method
comprises two main phases: tree building and solutions aggregation. In the first
one, the algorithm uses a tree to decompose the right part of the equation in a
certain number of subgraphs, searching for each node of the tree (each subgraph)
the minimum number of product operations (minimum number of cycles in the
variable or minimum number of children) which are necessary to produce it. The
subgraphs found are then divided into subsets of children. Iterating this idea on
each subset produced, the method arrives to enumerate all the possible ways
to generate the cycles involved in the right part. During the second phase, the
method computes (bottom-up) the real solutions of the equation represented in
the tree.

4 Boosting everything up with MDDs
The enumeration of solutions for Equation (2) is one of the main objective of
this paper. In order to achieve this, we solve the EnumSOBFID problem and
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show that MDDs boost up the enumeration. In other words, we are interested to
find all the possible ways to generate Cn

q cycles starting with one cycle of length
p. This last problem is similar to the well-known Change-making problem (in
its enumeration version) in which one aims at finding all the possible ways to
change a total amount with a given set of coins. In our case, the total amounts
are the Cn

q cycles but to complete the similarity we need to find the coins which
can be part of a solution. Remark that a cycle C1

u generates Cr
q cycles in the

right part iff r divides q, u = q
p · r, gcd(p, qp · r) = r and lcm(p, qp · r) = q. A cycle

C1
u with the previous properties is called feasible and r is a feasible divisor

of q.
Let Dp,q = {d1, . . . , dl} be the set of feasible divisors (w.r.t. Equation (4) of

course). There is a solution to (4) iff there exist x1, . . . , xl such that
∑l

i=1 dixi =
n (i.e. there is a solution to the Change-making problem for a total amount n and
a coins system Dp,q). To solve EnumSOBFID we need to enumerate all solutions
of the previous Change-making problem. At this point MDDs come into play.
We are going to use them to have a compact and handful representation of the
set of all possible solution to Equation (4).

SB-MDD The MDDMp,q,n containing all solutions to Equation (4) is a labelled

digraph 〈V,E, `〉 where V =
⋃Z

i=1 Vi with Z = b n
minDp,q

c + 1 and V1 = {root},
Vi is a multiset of {1, . . . , n− 1}, and, finally, VZ = {tt}. For any node α ∈ V ,
let val(α) = α if α 6= root and α 6= tt, val(root) = 0 and val(tt) = n. For
any i ∈ {1, . . . , Z − 1} and for any α ∈ Vi and β ∈ Vi+1 ∪ {tt}, (α, β) ∈ E iff
val(β)−val(α) ∈ Dp,q and val(β) ≤ val(tt). The labelling function ` : E → Dp,q

is such that for any (α, β) ∈ E, `((α, β)) = val(β)− val(α) ∈ Dp,q.
Graphically, Mp,q,n can be represented by layers as usual, interpreting each

layer as the usage of the i-th coin. Each node represents the sum of coins from
the root to the node. Moreover, the longest path in Mp,q,n is Z = b n

minDp,q
c+ 1.

Remark that Mp,q,n contains duplicated solutions, indeed, it contains all the
permutations of a solution but according to Equation (4) different permutations
lead to the same solution. For this reason, we impose a symmetry breaking
constraint: for any node α (different from tt), let e be the label of the incoming
edge; the only allowed outgoing edges of α are those with label ` ≤ e. In this way
all the paths of the MDD will be ordered and the size of the MDD will be smaller.
An SB-MDD is an MDD which satisfies the symmetry breaking constraint. The
building of Mp,q,n ends with a pReduction which merges equivalent nodes and
deletes all nodes (and the corresponding edges) which are not on a path from
root to tt . Let us illustrate the construction with an example.

Example 1. Consider the simple equation C1
2 �X = C6

6 . The set of divisors of q
(smaller or equal to n) is {6, 3, 2, 1}. However, Dp,q = {1, 2}. Indeed, we have

r = 6 ∧ u = 18→ gcd(2, 18) 6= 6 ∧ lcm(2, 18) 6= 6
r = 3 ∧ u = 9→ gcd(2, 9) 6= 3 ∧ lcm(2, 9) 6= 6
r = 2 ∧ u = 6→ gcd(2, 6) = 2 ∧ lcm(2, 6) = 6
r = 1 ∧ u = 3→ gcd(2, 3) = 1 ∧ lcm(2, 3) = 6
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Figure 6 shows M2,6,6 in its classic form (left) and in its SB-MDD form (right).
Remark that in Figure 6 (left) many solutions are duplicated. For example,
the solution [2, 2, 1, 1] (in red) is represented (more than) twice. Once M2,6,6 is
built and reduced, reading solutions correspond to paths labels from root to tt :
{[2, 2, 2], [2, 2, 1, 1], [2, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1]}.

r

2

12

34

5 34

5 4

5

tt

12

2 1 1

2

1

2

1

2
1

2

1

1

2 1

1

2

1

21

r

2

12

34

5 34

5 4

5

tt

12

2 1 1

11

2
1

1

1

1

1

1

1

Fig. 6: The reduced MDD representing all the solutions of C1
2 �X = C6

6 in its
classic form (left) and in its SB-MDD form (right).

The solution [2, 2, 2] says that 6 is changed with 3 coins of value r = 2. Recall-
ing that u = q

p · r we can express the solution in term of dynamics graphs as C3
6 .

Operating similarly for all the other solutions we find
{
C3

6 , C
2
6 ⊕ C2

3 , C
1
6 ⊕ C4

3 , C
6
3

}
.

4.1 Equations over dynamics graphs

We have shown how MDDs can be used to compute the solutions set of simple
equations. In this section, we introduce a pipeline to solve Equations of form (2)
to validate hypotheses over discrete systems represented by DDS. The goal is
the enumeration of solutions. The pipeline consists in the following steps:
– identification and resolution of the necessary equations (each necessary equa-

tion corresponds to an SB-MDD);
– enumeration of the contractions steps by an MDD structure;
– computation of the solutions of each contraction step with a particular tech-

nique to compute the intersection between SB-MDDs.

Necessary equations. As we have already seen, to solve a generic equation over
dynamics graphs we need to find the solutions of a certain number of contraction
steps (Equations (3a) and (3b)). Each of these contraction steps ends up with a
system of equations of the form

Cnzi
pzi
�Xz =

m⊕
j=1

Cvj
pj

(6)

where z ∈ {1, . . . , s}, i ∈ {1, . . . ,Kz}, and vj ≤ nj . This means that each
monomial is responsible for the generation of a subgraph of the right term. In
other words, the solution of (6) is the Cartesian product of the solutions of a
certain number of simple equations. Remark that a single simple equation might
occur several times while searching for a solution of a single contraction step or
in multiple contraction steps.
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According to the product rules, each equation Cnzi
pzi
�Xz = C

vj
pj is equivalent

to C1
pzi
�Xz = C

vj
nzi
pj . Remark that if vj/nzi is not an integer, then the equation

has no solutions.

Since there are many contraction steps that need to be explored, we aim
at limiting the exploration by ignoring those which involve simple equations
without solutions. Therefore, the method starts with the computation of the set
of simple equations that can be involved in the result of a contractions step. This
amounts to compute all the SB-MDDs Mpzi,pj ,

n
nzi

with pzi ∈ {p11, . . . , psKs},
pj ∈ {p1, . . . , pm}, for all n ∈ {1, . . . , nj}. In this way, even if a simple equation
is involved in many contraction steps, it is solved only once. A simple equation
with at least one solution is called necessary equation. It is important to
notice that it is not necessary to explore an SB-MDD to decide if a solution
exists. Indeed, by construction, an SB-MDD is generated iff it contains at least
a solution.

Contractions steps. Once the set of necessary equations has been computed,
we create an MDD CS to enumerate all the contractions steps that must be
taken into account to enumerate the solutions of Equation (2). This MDD will
be a Cartesian product of other MDDs, one for each pj of the right term, i.e.
CS =×m

j=1
CSj .

Consider a cycle length pj in the constant term. The MDD CSj accounts for
all the feasible ways (according to the set of necessary equations) to generate
nj cycles of length pj using the monomials of the equation. Therefore, CSj is

a labelled digraph 〈Vj , Ej , `j〉 where Vj =
⋃s+1

z=1

⋃Kz

i=1 Vj,zi with Ks+1 = 1 (see
Equation (2) for the meaning of Ki) and Vj,11 = {root}, Vj,zi ⊆ {0, ..., nj}, and,
finally, Vj,(s+1)1 = {tt}. For any node α ∈ Vj , let val(α) = α if α 6= root and α 6=
tt, val(root) = 0 and val(tt) = nj . The set of possible outgoing edges of level Vj,zi
is Dpzi,pj

= {g ∈ N | 1 ≤ g ≤ nj and Mpzi,pj ,
g

nzi
∈ necessary equations} ∪ {0} .

For any α, β ∈ Vj , (α, β) ∈ Ej iff

1. α ∈ Vj,zi and either β ∈ Vj,z(i+1) for some i < Kz or β ∈ Vj,(z+1)1;
2. val(β)− val(α) ∈ Dpzi,pj

and val(β) ≤ val(tt).
In this MDD the outgoing edges of a level Vj,zi represent the cycles of length
pj generated by the monomial Cnzi

pzi
� Xz of the left part. The labelling func-

tion `j : Ej →
⋃s

z=1

⋃Kz

i=1Dpzi,pj
is such that for any (α, β) ∈ Ej , `j((α, β)) =

val(β)−val(α) ∈ Dpzi,pj
with α ∈ Vj,zi. Starting from each node, a label 0 means

that the monomial is not involved in the generation of the cycles of length pj .
The sum of the labels of each path from the root to the tt node will be equal to
nj , because nj cycles of length pj must be generated.

For each path of CS, it is necessary to perform some some additional steps
to understand if it leads to feasible solutions of the equation as explained in the
next section.

Solve a system. Each contraction step corresponds to a system of Equations
of type (6). To compute the solutions set of these equations one needs to com-
pute the Cartesian product between the different solutions of the corresponding
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simple equations. In its turn, a solution to a simple equation is represented by
a SB-MDD. Therefore, their Cartesian product is computed in linear time by
placing the SB-MDDs one on top of the other to form a new MDD. We call SB-
Cartesian MDD an MDD build in such a way. Remark that an SB-Cartesian
MDD is not a SB-MDD.

Recall that Xz in Equation (6) represents a variable x̊z
wz and if x̊z is involved

in different monomials, then, an intersection operation is required. To compute
the solutions set of the variable, we start considering equations involving x̊z
with the same power wz by computing the intersection over the corresponding
MDDs. Moreover, remark that each x̊z

wz corresponds to a SB-Cartesian MDD
(except for the case in which a monomial is responsible for the generation of
only one cycle length). However, notice that the classic algorithm to perform the
intersection over MDDs cannot be used if the goal is the intersection between
MDDs issued by a Cartesian product (i.e. SB-Cartesian MDDs) because the
result depends on the order of the MDDs. In the next section, we propose a new
algorithm to perform this task independently from the order.

Once x̊z
wz is assigned with a set of solutions, we need to compute the wz-th

root for each value of x̊z
wz and finally the intersection between all the roots

found so far.

Finally, we stress that the root procedure is not a trivial step. Indeed, the
inverse operations of sum and product are not definable in the commutative
semiring of DDS. Therefore, we need an algorithmic technique to compute the
result of the w-th root of x̊. Considering Formula (5), the root can be computed
combinatorially or through a finite number of polynomials equations over real
numbers of increasing degree. We combine both approaches in order to speedup

the computations. Consider a generic system x̊ = C
n
′
1

p
′
1

⊕ Cn
′
2

p
′
2

⊕ . . . ⊕ Cn
′
l

p
′
l

such

that x̊w = Cn1
p1
⊕ Cn2

p2
⊕ . . . ⊕ Cnh

ph
, the number of cycles n

′

1, of the minimum
length p1, involved into the root’s solution is computed with the polynomial
equation (p1)w−1 · (n′1)w = n1 with p1 = p

′

1. The remaining part of the solution
is combinatorially computed knowing that a length of cycle pi may be involved
in the root solution iff ni ≥ (pi)

w−1, and we will have a maximum number of
cycles of this length equals to ni

(pi)w−1 .

SB-Cartesian Intersection. Consider a set M of MDDs in which some are
SB-Cartesian MDDs and others are not. We propose an algorithm (Algorithm 1)
which computes the intersection of all the elements in M . Our algorithm needs
to be started with an initial set of candidate solutions S (initial guess). If M
contains at least a simple SB-MDD (i.e. one which is not a SB-Cartesian MDD),
then S is the set of solutions read in the MDD resulting from classical intersection
of the SB-MDDs in M ; otherwise S is the set of solutions read in an arbitrarily
chosen SB-Cartesian of M . Using S, we will compute the intersection between
the remaining SB-Cartesians. The idea is to search the solutions into each SB-
Cartesian MDD and update each time the remaining solutions.

Each candidate solution is ordered and recursively searched in a SB-Cartesian
MDD in M (Algorithms 2 and 3). If it is not found, then it is removed from the
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set of candidate solutions. Given a SB-Cartesian element M of M , a candidate
solution s is validated if it possible to visit each SB-MDD involved in M using
a subset of the elements of the solution. Starting from the biggest elements of
s, we try to find a path from the root to the first tt node (recall that we are
visiting a SB-Cartesian MDD). We proceed in this way because the paths of each
SB-MDD are ordered. After having gone through the first SB-MDD, we need to
recursively repeat the procedure with the remaining elements of s.
Two special cases need our attention:
– a generic node in which it is not possible to find a common element between

the remaining elements of a solution and the outgoing edges;
– a node (different from the final tt node) in which there are no more elements

of s to compare with the outgoing edges.
In both cases, it is necessary to go back in the visited nodes until there is another
possible outgoing edge that can be taken into consideration. Once the validation
procedure arrives at the last SB-MDD of M , a linear search is performed with
the remaining elements. Finally, s ∈ M if there exists a path from the last root
to the final tt node following the remaining elements (Algorithm 4). If the linear
search fails, then we return to the first node with a different feasible outgoing
edge. If no different feasible edges exist, then s is not a solution. The previous
procedure is performed over each candidate solution of the initial guess.
We stress that in the worst case, for a given candidate solution, our algorithm
explores only the subgraph of a SB-Cartesian MDD made of feasible edges.

Algorithm 1: SB-Cartesian Intersection

Input : M , set of MDDs
Output: S, solutions of the intersection in M
Cartesian← ∅;
Traditional← ∅;
forall m ∈M do

if m is a SB-Cartesian MDD then Cartesian.add(m) ;
else Traditional.add(m) ;

S ← ∅;
if |Traditional|> 0 then

if |Traditional| = 1 then

S ←Traditional[0].readSolutions();
else

MddIntersected←ClassicIntersection(Traditional[0],Traditional[1]);
forall m ∈Traditional \ {Traditional[0], Traditional[1]} do

MddIntersected←ClassicIntersection(MddIntersected,m);

S ←MddIntersected.readSolutions();

else

S ←Cartesian[0].readSolutions();
Cartesian.remove(0);

if |S|6= 0 then
forall m ∈Cartesian do

CartesianSearch(S,m);

return S

The approach introduced to compute the intersection of SB-Cartesian MDDs
is suitable for our needs, its improvement constitutes an interesting future re-
search direction. We need to precise an additional aspect of our application.
As explained above, an SB-MDD corresponding to a simple equation has la-
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bels based on the feasible divisors set (or feasible coins) and each divisor/coin
corresponds to a certain cycle C1

u. However, two different coins of two different
simple equations can correspond to the same C1

u as well as the same coin may
correspond to different cycles lengths for different simple equations. Therefore,
when searching for a solution in a SB-Cartesian MDD, we must take into account
these cases. In our application, two divisors/coins are considered equivalent if
they correspond to the same C1

u.

Algorithm 2: SB-Cartesian Search
Input : S set of solutions, M a SB-Cartesian MDD
Output: S solutions involved in M
S ← ∅;
forall s ∈ S do

s.order();
find←FindSolution(s,0,M);

if find then S.add(s) ;

return S

Algorithm 3: FindSolution
Input : s solution, 0 ≤ i < |M |, M a SB-Cartesian MDD
Output: true if s ∈M , false otherwise
return FindSolutionNode(s,M[i].root,i)

Algorithm 4: FindSolutionNode
Data: S sub-solution, N node, 0 ≤ i < |M |, M a SB-Cartesian MDD
Result: true if S ∈M , false otherwise
find←FALSE;
if N is not a tt then

forall e ∈ S.removeDuplicates() ∧ find=FALSE do
if N.edge.contains(e) then

newSubSolution← S \ {e} ;
find←findSolutionNode(newSubSolution,N.children(e),i);

else
i← i + 1;
if i= |M |−1 then

valid←LinearSearch(S,M[i].root);
if valid then return TRUE ;

else
return FindSolution(S,i)

return find

5 Experiments
The experimental evaluation is divided into two parts: one concerns simple equa-
tions and the other one is devoted to the complete method which solves generic
equations.

Concerning equations of the form C1
p �X = Cn

q , in our experiments, we set
p = q since this grants the existence of at least a solution. Using the MDDs it
is possible to outperform the Colored-Tree method (CTM) w.r.t. both memory
and time. If we compare the dimension (in terms of nodes) of a colored-tree
with the corresponding SB-MDD for a given equation, the second one is smaller.
CTM presents some out of memory cases even for equations with n, q, and p
smaller than 30 and memory limit of 30GB (see Figure 7 (left)). Using MDDs,
we solved equations with n, q, and p up to 100 without any out of memory case
and only 6GB RAM limit (see Figure 7 (right)).
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Analysing the time to solve equations with parameters up to 30, it turns
out that the new technique is faster than the previous one (see Table 1). The
reason is that CTM requires a time consuming check procedure to ensure the
completeness of the solutions which is not necessary in the MDD case. Due to
too high memory and time costs, CTM is unsuitable to solve simple equations
coming from contractions steps. The new method fixes these issues allowing to
solve generic polynomial equations.
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Fig. 7: The number of nodes for the colored-tree with memory limit of 30GB
(left) and for the SB-MDD with memory limit of 4GB (right) in the case of
equation for type C1

q �X = Cn
q . Remark that the black square in the right part

of the left diagram are out of memory cases.

Turning to generic equations, we use the proposed pipeline to find the solu-
tions (if any). If roots computation is not performed then everything depends on
the number of monomials, the number of distinct sizes of cycles in the right side
of the equations. If these quantities grow also the number of contraction steps to
consider grows. Solutions spaces are limited by considering only contraction steps
that are feasible according to the necessary equations. For example, consider the
equation C1

5 � ẙ⊕C1
4 � ẙ2⊕C1

3 � x̊2⊕C1
2 � x̊3 = C3

10⊕C68
4 ⊕C9

3 ⊕C9
6 ⊕C136

12 , the
number of contraction steps is ≈ 2, 42 · 1016, but only 6665400 are considered.

The computation of roots is the most time consuming operation. Indeed,
consider the equation C2

3� x̊⊕C4
3� ẙ = C162

3 ⊕C20
6 ⊕C104

12 , we can find 49329000
solutions considering the 6642 feasible contraction steps in only 58 seconds. If
we consider the same equation but with x̊2 in place of x̊, then the number of
contraction steps explored is the same, but we found 4510 solutions in 5.6 hours
(therefore the average computational time per contraction is 3.04 seconds).

Roots computation is expensive and this is reasonable in a sense. Since the
division and subtraction operations cannot be performed directly, one needs so-
phisticated techniques. The pipeline introduced above leads to the first complete
technique to solve equations over the asymptotic behavior of DDS. In the end,
the pipeline is already proving itself suitable for applications over real experi-
mental data.

6 Conclusions and perspectives

Equations on DDS are useful to analyze dynamics of phenomena. They allow
to model hypotheses on the dynamical behavior and solving them leads to their
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validation or invalidation. In particular, Equation (2) allow studying the long-
term aspects of the dynamics.

This paper introduces new algorithms to solve these equations over cycles
(i.e. long term behavior). In the case of simple equations, our technique outper-
forms the CTM. This is an important breakthrough because CTM was used to
solve simple equations (generated by contractions steps) and it was practically
unusable due to huge memory consumption and time-consuming check proce-
dures. Moreover, this paper proposes a pipeline to solve general equations. The
pipeline computes the necessary equations to limit the exploration of the con-
tractions steps and, in the end, it solves each system of equations corresponding
to a contractions step. This allows the treatment of much larger dynamics graphs
and much more complicated hypotheses.

Future perspectives include the improvement of the pipeline by parallelising
the identification of solutions of different feasible contractions steps. Another
research direction would try to speedup roots computation by increasing the
number of coefficients computed through polynomial equations to reduce the
combinatorics. In the end, this work aims to call for further research in MDDs.
In fact, studying different ways to perform the intersection between SB-Cartesian
MDDs is surely another subject that is worth exploring.

This research work leads to a complete and performing pipeline to validate
hypotheses over the long term behavior of dynamics graphs adding one more
item to the growing list of successful applications of MDDs.

q,p
n

2 3 4 5 6 7 8 9 10

2 56|0 56|0 54|0 54|0 53|0 54|0 54|0 54|0 53|0
3 54|1 54|0 55|1 54|0 55|1 54|0 55|1 54|0 55|1
4 55|2 54|1 56|2 53|0 57|2 54|0 55|2 55|1 55|2
5 55|2 56|2 59|2 54|0 61|30 54|0 58|2 55|3 56|2
6 58|2 56|2 60|2 58|1 63|9 55|0 60|2 56|2 62|2
7 60|3 58|2 63|19 56|1 78|21 54|0 63|29 60|2 61|2
8 63|2 59|2 96|10 60|2 107|20 56|1 97|9 61|2 65|2
9 66|3 60|3 106|21 57|2 153|22 57|1 168|21 60|3 76|20

10 84|3 62|2 140|11 58|2 185|21 57|2 369|11 70|2 120|17

q,p
n

11 12 13 14 15 16 17 18 19 20

11 55|0 824|25 55|0 116|3 74|21 406|22 55|0 1071|22 57|0 1334|23

12 58|1 17678|26 57|0 132|4 88|21 4105|12 56|0 6022|22 56|0 3672|22

13 61|2 177894|27 56|0 246|21 92|21 4163|27 55|0 5967|24 56|0 3332|24

14 59|2 1277979|26 61|1 900|11 116|22 19895|24 56|0 27381|27 56|0 96997|26

15 60|2 -|28 60|2 3721|22 169|22 19711|25 56|0 637457|26 59|0 419000|25

16 62|2 -|29 61|2 19900|12 502|23 -|13 57|0 1185947|26 60|0 759365|26

17 62|2 -|30 62|2 25908|24 554|23 -|26 57|0 -|27 57|0 -|27

18 64|2 -|46 62|2 164167|13 1102|22 -|26 61|2 -|28 61|0 -|30

19 66|2 -|32 63|2 226315|25 950|24 -|27 62|2 -|34 57|0 -|39

20 68|2 -|32 65|2 1707299|25 2749|24 -|16 63|2 -|31 62|2 -|29

q,p
n

21 22 23 24 25 26 27 28 29 30

21 2712|23 343542|26 60|0 -|35 95|4 389971|7 2034|12 -|28 58|0 -|37

22 23399|24 -|14 62|0 -|36 103|4 381929|7 2711|24 -|30 59|0 -|35

23 27430|24 -|27 59|0 -|38 134|4 -|7 2712|24 -|31 59|0 -|37

24 149296|25 -|16 64|2 -|39 149|4 -|8 20641|14 -|42 59|0 -|41

25 162413|25 -|28 65|2 -|40 160|4 -|26 24632|24 -|34 59|0 -|39

26 212277|25 -|16 66|2 -|42 403|5 -|15 24177|25 -|33 60|0 -|40

27 -|25 -|27 69|2 -|45 454|4 -|33 -|15 -|34 59|0 -|45

28 -|26 -|17 70|2 -|47 488|5 -|16 -|25 -|35 60|0 -|44

29 -|28 -|28 69|2 -|66 506|5 -|28 -|27 -|36 61|1 -|46

30 -|26 -|27 69|3 -|51 838|6 -|17 -|17 -|38 65|2 -|48

Table 1: Computation times (millisec) of CTM (left) and MDD (right) over
different input parameters. Symbols ‘-’ represent out of memory cases.
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