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LOW FREQUENCY ASYMPTOTICS AND LOCAL ENERGY DECAY

FOR THE SCHRÖDINGER EQUATION

JULIEN ROYER

Abstract. We prove low frequency resolvent estimates and local energy decay for the
Schrödinger equation in an asymptotically Euclidean setting. More precisely, we go
beyond the optimal estimates by comparing the resolvent of the perturbed Schrödinger
operator with the resolvent of the free Laplacian. This gives the leading term for the
developpement of this resolvent when the spectral parameter is close to 0. For this, we
show in particular how we can apply the usual commutators method for generalized
resolvents and simultaneously for different operators. Finally, we deduce similar results
for the large time asymptotics of the corresponding evolution problem.

1. Introduction and statement of the main results

Let d ě 2. We consider on R
d the Schrödinger equation

#

´iBtu` Pu “ 0, on R` ˆ R
d,

u|t“0 “ f, on R
d,

(1.1)

where f P L2 and P is a general Laplace operator. More precisely we set

P “ ´ 1

wpxq divGpxq∇, (1.2)

where wpxq and the symmetric matrix Gpxq are smooth and uniformly positive functions:
there exists C ě 1 such that for all x P R

d and ξ P R
d we have

C´1 |ξ|2 ď 〈Gpxqξ, ξ〉
Rd ď C |ξ|2 and C´1 ď wpxq ď C.

We assume that P is associated to a long range perturbation of the flat metric. This
means that Gpxq and wpxq are long range perturbations of Id and 1, respectively, in the
sense that for some ρ0 Ps0, 1s there exist constants Cα ą 0, α P N

d, such that for all
x P R

d,
ˇ

ˇBαpGpxq ´ Idq
ˇ

ˇ `
ˇ

ˇBαpwpxq ´ 1q
ˇ

ˇ ď Cα 〈x〉
´ρ0´|α| . (1.3)

Here and everywhere below we use the standard notation 〈x〉 “ p1 ` |x|2q 1

2 . We also
denote by ∆G the Laplace operator in divergence form corresponding to G:

∆G “ divGpxq∇.
This definition of P includes in particular the cases of the free Laplacian, a Laplacian

in divergence form, or a Laplace-Beltrami operator. We recall that the Laplace-Belbrami
operator associated to a metric g “ pgj,kq1ďj,kďd is given by

Pg “ ´ 1

|gpxq|
1

2

d
ÿ

j,k“1

B
Bxj

|gpxq|
1

2 gj,kpxq B
Bxk

,

where |gpxq| “ |detpgpxqq| and pgj,kpxqq1ďj,kďd “ gpxq´1. Then Pg is of the form (1.2)

with w “ |g|
1

2 and G “ |g|
1

2 g´1.
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After a Fourier transform with respect to time, (1.1) can be rewritten as a frequency
dependent (stationary) problem. In this paper, we are mainly interested in the contri-
bution of low frequencies. More precisely, we study the behavior of the corresponding
resolvent and its powers when the spectral parameter approaches 0. Then, using the
already known results for the contribution of high frequencies, we will discuss the large
time behavior of the solution of (1.1).

The operator P is defined on L2 with domain H2. Its spectrum is the set R` of non-
negative real numbers. We are interested in the properties of the resolvent pP ´ ζq´1

(and its powers) when ζ is close to R`. The limiting absorption principle (limit of the
resolvent when ζ goes to some λ ą 0) is an important topic in mathematical physics
and is now well understood. In particular, it is known that if K is a compact subset of
C

˚, then for n P N
˚ and δ ą n´ 1

2
the operator

〈x〉´δ pP ´ ζq´n 〈x〉´δ

is uniformly bounded in LpL2q for ζ P KzR`. From this result, we can deduce that
the contribution of a compact interval of positive frequencies for the time dependant
problem decays faster than any negative power of time in suitable weighted L2-spaces.

The contribution of high frequencies for (1.1) depends on the properties of pP ´ ζq´n

for ζ large (Repζq " 1 and 0 ă Impζq ! 1). These properties depend themselves on
the geometry of the problem, and more precisely on the classical trajectories of the
corresponding Hamiltonian problem.

We always have as much decay for the solution of (1.1) as we wish if we allow a
loss of regularity for the initial data. This decay is in fact uniform in weighted L2-
spaces under the usual non-trapping condition. We denote by φt the geodesic flow
corresponding to the metric G´1 on R

2d » T ˚
R
d. For px0, ξ0q P R

2d and t P R we
set φtpx0, ξ0q “ pxpt, x0, ξ0q, ξpt, x0, ξ0qq. Then we have non-trapping if all the classical
trajectories escape to infinity:

@px0, ξ0q P R
d ˆ pRdz t0uq, |xpt, x0, ξ0q| ÝÝÝÝÑ

tÑ˘8
`8. (1.4)

We set

C` “ tζ P C : Impζq ą 0u , D “ tζ P C : |ζ| ď 1u , D` “ D X C`.

Under the assumption (1.4), it is known that for n P N
˚ and δ ą n ´ 1

2
there exists

c ą 0 such that for ζ P CzpR` Y Dq we have
›

›

›
〈x〉´δ pP ´ ζq´n 〈x〉´δ

›

›

›

LpL2q
ď c

|ζ|
n
2

. (1.5)

The proof is based on semiclassical analysis. We refer for instance to [RT87] for a
Schrödinger operator with a potential, to [Bur02] for a general compactly supported
perturbation of the Laplacian in an exterior domain and to [Bou11a] for a long range
perturbation of the flat metric.

The analysis of low frequencies is more recent. We first recall that given R ą 0 the
behavior of the localized resolvent for the free Laplacian at ζ P CzR` is given by

›

›1BpRqpP0 ´ ζq´n
1BpRq

›

›

LpL2q À
#

|ζ|minp0, d
2

´nq if n ‰ d
2
,

|logpζq| if n “ d
2
.

(1.6)

Estimates of the resolvent near 0 for a long range perturbation of the free Laplacien
have first been proved in [Bou11b] (operator in divergence form), [BH10] (Laplace-
Beltrami operator) and [Bou11a] (estimates for the powers of the resolvent). Earlier
papers also considered the limiting absorption principle at zero energy in some particular
settings (see for instance [Wan06, DS09] and references therein). For a similar result
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in a non-selfadjoint setting we also refer to [KR17], and in a more general geometrical
setting we mention [GH08, GH09, GHS13] and [BR15].

The optimal estimates for these powers have finally been proved in the recent pa-
per [BB21]. More precisely, it is proved that the estimates for the resolvent of the
Schrödinger operator P are the same as for the free Laplacian in (1.6).

In this paper we go beyond this optimal estimate and give the asymptotic profile of
pP ´ ζq´1 at the limit ζ Ñ 0, in the sense that the difference between the resolvent and
the profile is smaller than the resolvent or the profile themselves.

Such asymptotic expansions of the resolvent at the low frequency limit have already
been studied for a Schrödinger operator with potential. We refer for instance to [JK79].
We also mention the more recent papers [Wan20] and [Aaf21] for complex-valued poten-
tials. The difficulty in these cases is that one might have an eigenvalue or a resonance
at the bottom of the spectrum, which gives a singularity for the resolvent. This is why
these results require much stronger decay assumption on the potential.

We already know that the size of the powers of the resolvent for the Schrödinger
operator is the same as for the free Laplacian P0 “ ´∆. We prove that, at the first
order, they are actually given by the powers of this model operator modified by the
factor w. More precisely, our main result is the following.

Theorem 1.1. Let ρ1 P r0, ρ0r, n P N
˚ and δ ą n` 1

2
. There exists C ą 0 such that for

ζ P DzR` we have
›

›

›
〈x〉´δ

`

pP ´ ζq´n ´ pP0 ´ ζq´nw
˘

〈x〉´δ
›

›

›

LpL2q
ď C |ζ|minp0, d`ρ1

2
´nq .

This proves that for ζ close to 0 the difference between pP ´ ζq´n and pP0 ´ ζq´nw is
smaller that pP0 ´ ζq´nw (see (1.6)). We deduce in particular that pP ´ ζq´n behaves
in weighted spaces exactly as pP0 ´ ζq´nw at the low frequency limit. As a corollary,
we recover the optimal estimate for the resolvent as given in [BB21].

Corollary 1.2. Let n P N
˚ and δ ą n` 1

2
. There exists C ą 0 such that for ζ P DzR`

we have
›

›

›
〈x〉´δ pP ´ ζq´n 〈x〉´δ

›

›

›

LpL2q
ď C

#

|ζ|minp0, d
2

´nq if n ‰ d
2
,

|logpζq| if n “ d
2
.

(1.7)

As usual for this kind of resolvent estimates, the proof will rely in particular on the
Mourre commutators method. To prove our result we show that this method can be
applied with much more flexibility than usual.

We have to apply the result simultaneously for P and P0. One of the difficulty is that
P is selfadjoint the weighted space L2

w “ L2pw dxq while P0 is selfadjoint on L2. Thus,
unless w “ 1, the operators P and P0 are not selfadjoint on the same Hilbert space.

For this reason, we do not estimate the resolvent of P in L2
w but stay in the usual L2

space. Then P is no longer selfadjoint, but we can rewrite its resolvent as

pP ´ ζq´1 “ p´∆G ´ ζwq´1w. (1.8)

Now the difficulty is that p´∆G ´ ζwq´1 is not a resolvent in the usual sense, and in
particular its derivatives are no longer given by its powers. We will see that it is not
necessary to apply the Mourre method to a resolvent. We will just see p´∆G ´ ζwq´1

as the inverse of a parameter-dependant dissipative operator. In particular, even if we
discuss a selfadjoint operator, our proof never really uses this selfadjointness and our
method is robust with respect to non-selfadjoint (dissipative) perturbations. This is
important in the perspective to apply the same method to different models.

Finally, we do not apply the Mourre method to a power of the resolvent of some
operator, but to the product of some different parameter-dependant operators. Some of
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the factors will be of the form p´∆G ´ζwq´1 as discussed above, there will be resolvents
of P0, but we will also have the factor w which appears in (1.8) and factors comming
from the difference p´∆G ´ ζwq ´ p´∆ ´ ζq.

The smallness at infinity of the corresponding coefficients given by (1.3) will play a
crucial role in the proof of Theorem 1.1. In particular, it is usual to use decaying weights
on both sides of the resolvent, but here we will also have to use the weights which appear
between the resolvents.

Note that replacing pP ´ ζq´1 by p´∆G ´ ζwq´1w is not just a technical issue. It
is really p´∆G ´ ζwq´1 that we can compare with p´∆ ´ ζq´1, and (1.8) explains the
additional factor w in the estimates of Theorem 1.1.

Now we discuss one of the important applications of the resolvent estimates, namely
the analysis of the large time behavior for the time dependent problem (1.1).

After Theorem 1.1, it is expected that for large times the solution of (1.1) should be-
have in weighted spaces like a solution of the free Schrödinger equation, with a different
initial condition.

The model problem is
#

´iBtu0 ´ ∆u0 “ 0, on R` ˆ R
d,

u0|t“0 “ f0, on R
d,

(1.9)

where f0 P L2. The L2-norm of the solution u0ptq is constant but, given R ą 0, there
exists a constant C ą 0 such that if f0 is compactly supported in the ball BpRq then
the energy of the solution u0 of the free Schrödinger equation satisfies

@t ě 0,
›

›1BpRqu0ptq
›

›

L2
ď C 〈t〉´ d

2 }f0}L2 .

Moreover this estimate is optimal (see [BB21]). The local energy decay has been proved
for various perturbations of this model case, see for instance [Rau78, Tsu84]. For a long
range perturbation of the metric and under the non-trapping condition, local energy
decay has been proved in [Bou11a, BH12] with a loss of size Optεq. The optimal decay

at rate Opt´ d
2 q has then been proved in [BB21].

Again, our purpose is to go further and to give the large time asymptotic profile for
the solution u of (1.1). Since the contribution of high frequencies decays very fast under
the non-trapping condition, the large time behavior of u depends on the contribution of
low frequencies. Then, with Theorem 1.1 we will see that for large times the solution u
looks like a solution of the free Schrödinger equation (1.9):

Theorem 1.3. Assume that the non-trapping condition (1.4) holds. Let ρ1 P r0, ρ0r and
δ ě d

2
` 2. There exists C ě 0 such that for t ě 0 we have

›

›

›
〈x〉δ

`

e´itP ´ e´itP0w
˘

〈x〉´δ
›

›

›

LpL2q
ď C 〈t〉´ d

2
´ ρ1

2 .

This statement says that for t large the solution u of (1.1) is close in weighted spaces
to the solution of (1.9) with f0 “ wf . In particular, since we know that e´itP0w decays

like t´
d
2 in LpL2,δ, L2,´δq, we recover the optimal local energy decay for u.

Corollary 1.4. Assume that the non-trapping condition (1.4) holds. Let δ ě d
2

` 2.
There exists C ě 0 such that for t ě 0 we have

›

›

›
〈x〉´δ e´itP 〈x〉´δ

›

›

›

LpL2q
ď C 〈t〉´ d

2 .
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Organization of the paper. After this introduction, we give in Section 2 the main
arguments for the proofs of Theorem 1.1. The proofs of the intermediate results are
then given in the following three sections. In particular we improve and apply the
commutators method in Section 5. Finally we prove Theorem 1.3 in Section 6.

2. Strategy for low frequency asymptotics

In this section we explain how Theorem 1.1 is proved. We only give the main steps,
and the details will be postponed to the following three sections.

2.1. Difference of the resolvents. We recall that the operator P was defined on L2

by (1.2), with domain H2. This is a non-negative and selfadjoint operator on L2
w, and

its resolvent pP´ζq´1 is well defined for any ζ P CzR` with norm distpζ,R`q´1 in LpL2
wq.

For z P D` we set P pzq “ ´∆G ´ z2w and

Rpzq “ pP ´ z2q´1w´1 “ p´∆G ´ z2wq´1.

In order to have consistent notation, we also set

P0pzq “ ´∆ ´ z2 and R0pzq “ p´∆ ´ z2q´1.

For n P N
˚ and z P D` we set

Rrnspzq “ |z|2n pP ´ z2q´nw´1 “ |z|2n
`

Rpzqw
˘n´1

Rpzq (2.1)

and

R
rns
0 pzq “ |z|2nR0pzqn.

Since w defines a bounded operator on the weighted space L2,δ “ L2p〈x〉2δ dxq, the
estimate of Theorem 1.1 is equivalent, for a possibly different constant C ą 0, to

›

›

›
〈x〉´δ

`

Rrnspzq ´R
rns
0 pzq

˘

〈x〉´δ
›

›

›

LpL2q
ď C |z|minpd`ρ1,2nq . (2.2)

It is usual in this kind of context to estimate powers (in particular products) of

resolvents. The first step is to rewrite the difference Rrmspzq ´ R
rms
0 pzq as a sum of

products of factors Rpzq and R0pzq.

Lemma 2.1. For n P N
˚ and z P D` we have

Rrnspzq ´R
rns
0 pzq “

n´1
ÿ

k“1

Rrn´kspzqpw ´ 1qRrks
0 pzq

´
n
ÿ

k“1

Rrn´k`1spzqP pzq ´ P0pzq
|z|2

R
rks
0 pzq.

Proof. By the resolvent identity we have

Rpzq ´R0pzq “ ´Rpzq
`

P pzq ´ P0pzq
˘

R0pzq
(this gives the case n “ 1), and hence

Rpzqw ´R0pzq “ Rpzqpw ´ 1q ´Rpzq
`

P pzq ´ P0pzq
˘

R0pzq.
Since for n P N

˚ we have

Rrn`1spzq ´R
rn`1s
0 pzq “ |z|2Rpzqw

`

Rrnspzq ´R
rns
0 pzq

˘

` |z|2
`

Rpzqw ´R0pzq
˘

R
rns
0 pzq,

the lemma follows by induction. �
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For z P D` we set

θ0pzq “ w ´ 1, θ1pzq “ P pzq ´ P0pzq
|z|2

(2.3)

(of course θ0pzq does not depend on z, but it will be convenient to have analogous
notation for these two operators). Then, by Lemma 2.1, we have to estimate operators
of the form

Rrn´k`σspzqθσpzqRrks
0 pzq, σ P t0, 1u, 1 ď k ď n´ 1 ` σ. (2.4)

These operators are now products of resolvents of the form Rpzq or R0pzq, with inserted
factors w, θ0pzq or θ1pzq. The additional smallness in (2.2) compared to the estimates

of Rrmspzq or R
rms
0 pzq alone will come from the smallness (in a suitable sense) of the

factors θ0pzq and θ1pzq.

The estimate (2.2) and hence Theorem 1.1 are then consequences of the following
result.

Proposition 2.2. Let ρ1 P r0, ρ0r. Let n1, n2 P N
˚, σ P t0, 1u and δ ą n1 ` n2 ´ σ ` 1

2
.

Then there exists C ą 0 such that for z P D` we have
›

›

›
〈x〉´δ Rrn1spzqθσpzqRrn2s

0 pzq 〈x〉´δ
›

›

›

LpL2q
ď C |z|minpd`ρ1,2n1`2n2´2σq . (2.5)

2.2. Estimates given by the commutators method. It will be the purpose of Sec-
tion 5 to prove that we can apply the Mourre commutators method to operators of the
form (2.4).

It is usual for a Schrödinger operator that this method gives uniform estimates for
the resolvent near a positive frequency. Near 0, the size of the weighted resolvent is as
required uniform with respect to the imaginary part of the spectral parameter, but the
estimate blows up if its real part also goes to 0.

It is standard that an important role is played by the generator of dilations

A0 “ ´x ¨ i∇ ` i∇ ¨ x
2

“ ´ id

2
´ x ¨ i∇. (2.6)

Here we will not apply the commutators method directly with the operator A0 as
the conjugate operator. Since P pzq is a small perturbation of P0pzq only at infinity,
we will use as in [BB21] a version of A0 localized at infinity. More precisely, for some
χ P C8

0 pRd, r0, 1sq equal to 1 on a neighborhood of 0, we consider the operator

Aχ “ ´p1 ´ χqx ¨ i∇ ` i∇ ¨ xp1 ´ χq
2

. (2.7)

Its domain is the set of u P L2 such that p1 ´ χpxqqpx ¨ ∇qu P L2 in the sense of distri-
butions. This is also a selfadjoint operator on L2 and for θ P R, u P L2 and x P R

d we
have

pe´iθAχuqpxq “ detpdxφθχpxqq 1

2upφθχpxqq. (2.8)

where θ ÞÑ φθχ is the flow corresponding to the vector field p1 ´ χpxqqx.
For r P D` and x P R

d we set χrpxq “ χprxq. We will work with the operator
Ar “ Aχr . For z P D we set χz “ χ|z| and

Az “ Aχz . (2.9)

With the rescaled versions of the resolvents, the estimates given by the commutators
method read as follows.
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Theorem 2.3. (i) Let n P N
˚ and δ ą n´ 1

2
. There exists C ą 0 such that for z P D`

we have
›

›

›
〈Az〉

´δ Rrnspzq 〈Az〉
´δ
›

›

›

LpL2q
ď C. (2.10)

(ii) Let ρ P r0, ρ0r. Let n1, n2 P N˚ and δ ą n1 ` n2 ´ 1
2
. Let σ P t0, 1u. There exists

C ą 0 such that for z P D` we have
›

›

›
〈Az〉

´δ Rrn1spzqθσpzqRrn2s
0 pzq 〈Az〉

´δ
›

›

›

LpL2q
ď C |z|ρ . (2.11)

The proof of Theorem 2.3 is postponed to Section 5.

2.3. Elliptic regularity in the low frequency Sobolev spaces. Theorem 2.3 is not
enough to prove Proposition 2.2. As in [Bou11a, BR14, Roy18] we use the gain of reg-
ularity to get some smallness when z is close to 0.

For z P D` and r “ |z| we have the resolvent identity

Rpzq ´Rpirq “ pz2 ` r2qRpirqwRpzq “ pz2 ` r2qRpzqwRpirq. (2.12)

These factors Rpirq will give the required regularity. Then we will use the weights 〈x〉´δ

to recover, in the end, estimates in LpL2q.

The following two propositions will be proved in Section 4.

Proposition 2.4. Let ρ P r0, ρ0r. Let n1, n2 P N
˚ and σ P t0, 1u. Let s1, s2 P

“

0, d
2

“

,
δ1 ą s1 and δ2 ą s2. There exists C ą 0 such that for z P D` and r “ |z| we have

›

›

›
〈x〉´δ1 Rrn1spirqθσpzqRrn2s

0 pirq 〈x〉´δ2
›

›

›

LpL2q
ď C |z|minps1`s2`ρ,2n1`2n2´2σq .

We observe that in Proposition 2.2 we work in weighted spaces, and the weight is
given by negative powers of x. But for the commutators method in Theorem 2.3 we
need negative powers of the generator of dilations Az, which also contains derivatives.

Thus we also have to use the regularity of Rpirq to turn estimates with weights 〈Az〉
´δ

into estimates with 〈x〉´δ.

Proposition 2.5. Let ρ P r0, ρ0r and σ P t0, 1u. Let s P
“

0, d
2

“

and δ ą s. Let N,n P N
˚.

There exist N0 P N and C ą 0 such that if N ě N0 then for z P D` and r “ |z| we have
›

› 〈x〉´δ RrNspirqw 〈Az〉
δ
›

›

LpL2q ď C |z|s , (2.13)
›

› 〈x〉´δ RrnspirqθσpzqRrNs
0 pirq 〈Az〉

δ
›

›

LpL2q ď C |z|s`ρ , (2.14)
›

› 〈Az〉
δ R

rNs
0 pirq 〈x〉´δ

›

›

LpL2q ď C |z|s , (2.15)
›

› 〈Az〉
δ wRrNspirqθσpzqRrns

0 pirq 〈x〉´δ
›

›

LpL2q ď C |z|s`ρ . (2.16)

To prove these two results, we will work in rescaled Sobolev spaces. We set D “
?

´∆
and, for r Ps0, 1s, we define Dr “ D{r. Then for s P R we denote by Hs

r and 9Hs
r the

usual Sobolev spaces Hs and 9Hs, endowed repectively with the norms defined by

}u}Hs
r

“ }〈Dr〉
s u}L2 , }u} 9Hs

r
“ }Ds

ru}L2 .

In particular

}u} 9Hs “ rs }u} 9Hs
r
, (2.17)

and for α P N
d and s P R the operator Dα “ p´iBxqα defines an operator from Hs

r to

H
s´|α|
r of size r|α|. Finally, for r ą 0 we denote by Or the dilation defined by

Orupxq “ r
d
2uprxq. (2.18)
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Then Or is a unitary operator from Hs to Hs
r of from 9Hs to 9Hs

r . For z P D` we set
Hs

z “ Hs
|z| and Oz “ O|z|.

2.4. Proof of Theorem 1.1. Assuming Theorem 2.3 and Propositions 2.4 and 2.5 we
can now give a proof for Proposition 2.2. We recall that Proposition 2.2 implies Theorem
1.1.

Proof of Proposition 2.2. Let z P D`. We set r “ |z| and ẑ “ z{r. Let n P N
˚. With

(2.12) we can prove by induction on N P N that

Rrnspzq “
N
ÿ

m“n

Cn´1
m´1p1 ` ẑ2qm´nRrmspirq (2.19)

`
n
ÿ

ν“maxp1,n´Nq
Cn´ν
N p1 ` ẑ2qN´n`νRrNspirqwRrνspzq. (2.20)

Similarly,

R
rns
0 pzq “

N
ÿ

m“n

Cn´1
m´1p1 ` ẑ2qm´nR

rms
0 pirq (2.21)

`
n
ÿ

ν“maxp1,n´Nq
Cn´ν
N p1 ` ẑ2qN´n`νR

rνs
0 pzqRrNs

0 pirq. (2.22)

Assume that in (2.5) we replace Rrn1spzq and Rrn2s
0 pzq by terms of the form (2.19) and

(2.21), respectively. Then it is enough to prove that for some m1 ě n1 and m2 ě n2
›

›

›
〈x〉´δ Rrm1spirqθσpzqRrm2s

0 pirq 〈x〉´δ
›

›

›
À |z|minpd`ρ1,2pn1`n2´σqq . (2.23)

Given ρ Psρ1, ρ0r, this is a consequence of Proposition 2.4 applied with δ1 “ δ2 “ δ and

s1 “ s2 “ min

ˆ

d ` ρ1 ´ ρ

2
, n1 ` n2 ´ σ

˙

. (2.24)

Now assume that in (2.5) we replace Rrn1spzq and Rrn2s
0 pzq by terms of the form (2.20)

and (2.22), where N can be chosen as large as we wish. By (2.11), (2.13) and (2.15)
applied with s as in (2.24) we have for ν1 ď n1, ν2 ď n2 and N1, N2 ě N0

›

›

›
〈x〉´δ RrN1spirqwRrν1spzqθσpzqRrν2s

0 pzqRrN2s
0 pirq 〈x〉´δ

›

›

›
À |z|minpd`ρ1,2pn1`n2´σqq .

Then we consider the case where Rrm1spzq is replaced by a term of the form (2.20)

and R
rm2s
0 pzq is replaced by a term of the form (2.21). In this case we have to estimate

an operator of the form

〈x〉´δ RrN1spirqwRrν1spzqθσpzqRrm2s
0 pirq 〈x〉´δ ,

where ν1 ď n1, m2 ě n2, and N1 can be chosen arbitrarily large. If m2 is too small,
we cannot apply (2.15) on the right of Rrν1spzq (to which we apply Theorem 2.3). Then
we proceed with more resolvent identities. More precisely, we apply (2.19)-(2.20) to

Rrν1spzq, replacing RrNspirqwRrνspzq by RrνspzqwRrNspirq in (2.20). Now we have to
estimate terms of the form (2.23) or

〈x〉´δ RrN1spirqwRrνspzqwRrNspirqθσpzqRrm2s
0 pirq 〈x〉´δ ,

with N,N1 large, ν ď n1 and m2 ě n2. For such a term, we apply Theorem 2.3 to the
factor Rrνspzq, and then (2.13) and (2.16) on each side.

Finally, if Rrn1spzq is replaced by a term of the form (2.19) and R
rn2s
0 pzq by a term of

the form (2.22) we proceed as in the previous case. We omit the details. �



LOW FREQUENCY ASYMPTOTICS FOR THE SCHRÖDINGER EQUATION 9

3. Preliminary results

In this section we give some preliminary results which will be used in the next two
sections. We fix ρ P r0, ρ0r and ρ̄ Psρ, ρ0r.

3.1. Decaying coefficients. The gain |z|ρ in all the estimates involving θσpzq (see
(2.11), (2.14), (2.16) and Proposition 2.4) is due to the decay of the coefficients given
by the assumption (1.3). We recall this property in this paragraph.

We fix an integer d0 greater than d
2
. For κ ě 0 we denote by S´κ the set of smooth

functions φ such that

}φ}S´κ “ sup
|α|ďd0

sup
xPRd

ˇ

ˇ 〈x〉κ`|α| Bαφpxq
ˇ

ˇ ă `8. (3.1)

After conjugation by Or (see (2.18)), the following statement is Proposition 7.2 in
[BR14].

Proposition 3.1. Let s P
‰

´ d
2
, d
2

“

and κ ě 0 be such that s´ κ P
‰

´ d
2
, d
2

“

. Let η ą 0.
There exists C ě 0 such that for φ P S´κ´η, u P Hs and r Ps0, 1s we have

}φu}Hs´κ
r

ď Crκ }φ}S´κ´η }u}Hs
r
.

Remark 3.2. In particular, if φ P S´η for some η ą 0, then for any s P
‰

´ d
2
, d
2

“

the
multiplication by p1 ` φq defines a bounded operator on Hs

r uniformly in r Ps0, 1s.

Remark 3.3. In [BR14], Proposition 3.1 was only given for κ ă d
2
, but if κ ě d

2
we

necessarily have s ´ κ ď 0 ď s and in this case we simply write, by the Sobolev
embeddings and the Hölder inequality,

}φu}Hs´κ
r

ď }φu} 9Hs´κ
r

“ rκ´s }φu} 9Hs´κ À rκ´s }φu}
L

2d
d`2pκ´sq

À rκ´s }φ}
L

d
κ

}u}
L

2d
d´2s

À rκ´s }φ}S´κ´η }u} 9Hs À rκ }φ}S´κ´η }u} 9Hs
r

À rκ }φ}S´κ´η }u}Hs
r
.

(3.2)

Proposition 3.1 explains how the weights which appear in the resolvent estimates can
be used to convert some regularity into a power of the small spectral parameter z. As
a particular case of (3.2), we record the following estimates.

Lemma 3.4. Let s P
“

0, d
2

“

and δ ą s. There exists C ą 0 such that for r Ps0, 1s we
have

} 〈x〉´δ }LpHs
r ,L

2q ď C rs and } 〈x〉´δ }LpL2,H´s
r q ď C rs.

With Proposition 3.1 we also see that the decay of the coefficients in (1.3) gives
smallness for the operators θσpzq defined in (2.3).

Proposition 3.5. Let ρ1 P r0, ρs and s P
‰

´ d
2

` ρ1, d
2

“

. There exists C ą 0 which only
depends on s, ρ1 and ρ̄ such that for z P D` we have

}w ´ 1}
LpHs

z ,H
s´ρ1
z q ď C }w ´ 1}S´ρ̄ |z|ρ1

and
›

›P pzq ´ P0pzq
›

›

LpHs`1
z ,H

s´1´ρ1
z q ď C

´

|z|2`ρ1 }G ´ Id}S´ρ̄ ` |z|2`ρ }w ´ 1}S´ρ̄

¯

.

In particular, for any s P
‰

´ d
2
, d
2

“

we have
›

›P pzq
›

›

LpHs`1
z ,Hs´1

z q ď 1 `C |z|2 p}G´ Id}S´ρ̄ ` }w ´ 1}S´ρ̄q .
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Proof. The first estimate directly follows from Proposition 3.1 applied with κ “ ρ1 and
η “ ρ̄´ ρ1 ą 0. Then for j, k P t1, . . . , du we have

}DjpGj,k ´ δj,kqDk}
LpHs`1

z ,H
s´1´ρ1
z q ď |z|2 }pGj,k ´ δj,kq}

LpHs
z ,H

s´ρ1
z q

À |z|2`ρ1 }pGj,k ´ δj,kq}S´ρ̄ ,

which gives the estimate on P pzq ´P0pzq. With ρ1 “ 0 this gives the last property since
}P0pzq}LpHs`1

z ,Hs´1
z q “ 1. �

In Proposition 4.2 below, we will apply Proposition 3.5 with ρ1 “ 0 because we can
only pay two derivatives. Because of this, the difference between P pzq and P0pzq is not
small even for z close to 0, unless }G ´ Id}S´ρ̄ is. Since we have not assumed that this
is the case, we will write the perturbation G ´ Id as a sum of a small perturbation and
a compactly supported contribution which will be handled differently.

Lemma 3.6. Let γ ą 0. We can write G “ G0`G8 where G0 P C8
0 and }G8 ´ Id}S´ρ̄ ď

γ.

Proof. Let φ P C8
0 be equal to 1 on a neighborhood of 0. For ε ą 0 and x P R

d we set
φεpxq “ φpεxq. Then pG´ Idqφε is always compactly supported, and on the other hand,
}pG ´ Idqp1 ´ φεq}S´ρ̄ À ερ0´ρ̄. We conclude by choosing ε small enough and by setting
G0 “ pG ´ Idqφε and G8 “ Id ` pG ´ Idqp1 ´ φεq. �

3.2. Commutators. All along the proofs of the following two sections we are going to
use commutators of the different operators involved with the operators of multiplication
by the variables xj and the generator of dilations localized at infinity Az.

Let T be a linear map on the Schwartz space S. For r Ps0, 1s and j P t1, . . . , du we
set adrxj

pT q “ Trxj ´ rxjT : S Ñ S. For z P D` we set adj,z “ ad|z|xj
. Then for

µ “ pµ1, . . . , µdq P N
d we set (notice that adrxj

and adrxk
commute for j, k P t1, . . . , du)

adµrx “ adµ1

rx1
˝ ¨ ¨ ¨ ˝ adµd

rxd
.

We fix χ P C8
0 equal to 1 on a neighborhood of 0 and we define Aχ by (2.7) and then

Az by (2.9).

We set ad0,zpT q “ adAzpT q “ TAz ´ AzT : S Ñ S. Finally, for N P N we set IN “
ŤN

k“0 t0, . . . , duk, and for J “ pj1, . . . , jkq P IN (with k P t0, . . . , Nu and j1, . . . , jk P
t0, . . . , du) we set

adJz pT q “
`

adj1,z ˝ ¨ ¨ ¨ ˝ adjk,z
˘

pT q.
And if for some s1, s2 P R the operator adJz pT q defines a bounded operator from Hs1

z to
Hs2

z for all J P IN , then we set

}T }CN
z pHs1

z ,H
s2
z q “

ÿ

JPIN

›

›adJz pT q
›

›

LpHs1
z ,H

s2
z q .

We write }T }CN
z pHs

z q for }T }CN
z pHs

z ,H
s
z q. Notice that for T1, T2 : S Ñ S we have

}T2T1}CN
z pHs1

z ,H
s3
z q ď }T1}CN

z pHs1
z ,H

s2
z q }T2}CN

z pHs2
z ,H

s3
z q . (3.3)

Note that we can rewrite Aχ as

Aχ “ p1 ´ χqA0 ` ix ¨ ∇χ
2

“ ´ id

2
p1 ´ χq ´ p1 ´ χqx ¨ i∇ ` ix ¨ ∇χ

2
.

Then the commutators of Aχ with derivatives and multiplication operators are given by

rV,Aχs “ ip1 ´ χqx ¨ ∇V, (3.4)

and

rBj , Aχs “ ´ip1 ´ χqBj ` ipBjχqpx ¨ ∇q ` id

2
pBjχq ` i

2

`

Bjpx ¨ ∇χq
˘

. (3.5)
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By induction on k P N we get in particular

Ak
χxj “ xj

`

Aχ ´ ip1 ´ χq
˘k

(3.6)

Lemma 3.7. Let N P N and s P R. Let ρ1 P r0, ρs. There exists C ą 0 such that the
following assertions hold for all z P D`.

(i) If s P
‰

´ d
2
, d
2

“

, we have }G}CN
z pHs

z q ď C and }w}CN
z pHs

z q ď C.

(ii) If s P
‰

´ d
2

` ρ1, d
2

“

then }G ´ Id}
CN
z pHs

z ,H
s´ρ1
z q ď C |z|ρ1

and }w ´ 1}
CN
z pHs

z ,H
s´ρ1
z q ď

C |z|ρ1

.
(iii) For j P t1, . . . , du we have }Bj}CN

z pHs
z ,H

s´1
z q ď C |z| and }Bj}CN

z pHs`1
z ,Hs

z q ď C |z|.

Proof. For G´ Id we observe that, by (3.4) and Proposition 3.1,

}G´ Id}
CN
z pHs

z ,H
s´ρ1
z q À

N
ÿ

m“0

›

›

`

p1 ´ χzqpx ¨ ∇q
˘mpG ´ Idq

›

›

LpHs
z ,H

s´ρ1
z q

À |z|ρ1
N
ÿ

m“0

}px ¨ ∇qmpG ´ Idq}S´ρ̄ .

This gives the estimate on pG ´ Idq. The estimates on pw ´ 1q, G and w are similar.
With (3.5) applied with χz (and (3.4)) we can check by induction on m P N that for

z P D` we have

admiAz
pBjq “ p1 ´ χzqmBj ` bj,mp|z|xq ¨ ∇ ` |z| cj,mp|z|xq,

where bj,m : Rd Ñ C
d and cj,m : Rd Ñ C are smooth and compactly supported. Then

multiplications by p1´χzqm, bj,mp|z| xq and cj,mp|z| xq define bounded operators on Hs
z

uniformly in z P D` for any s P R. This is clear for s P N and the general case follows
by interpolation and duality. This gives the last statement. �

With Lemma 3.7 and (3.3) we deduce the following result.

Proposition 3.8. Let s P
‰

´ d
2
, d
2

“

, N P N and ρ1 P r0, ρs. There exists C ą 0 such that
for z P D` we have

}P pzq}CN
z pHs`1

z ,Hs´1
z q ď C |z|2

Moreover, if s P
‰

´ d
2

` ρ1, d
2

“

then for σ P t0, 1u we also have

}θσpzq}
CN
z pHs`1

z ,H
s´1´ρ1
z q ď C |z|ρ1

.

Finally, it is known that the commutators method that we will use to prove Theorem
2.3 is based on the positivity of the commutator between the real part of the operator
under study and the conjugate operator (see (H5) in Definition 5.1 below). In Section
5 we will use the following result. For z P D` we set

PRpzq “ ´∆G ´ wRepz2q (3.7)

and

Kpzq “ rPRpzq, iAzs ´ 2p1 ´ χzq
`

PRpzq ` Repz2q
˘

. (3.8)

Proposition 3.9. (i) There exists C ą 0 such that the commutator rPRpzq, Azs ex-

tends to a bounded operator from H1
z to H´1

z and }rPRpzq, Azs}LpH1
z ,H

´1
z q ď C |z|2.

(ii) There exists C ą 0 such that for z P D` we have
›

›

›
〈zx〉

ρ
2 Kpzq 〈zx〉

ρ
2

›

›

›

LpH1
z ,H

´1
z q

ď C |z|2 .
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Proof. The first statement follows from Lemma 3.7 as Proposition 3.8. We prove the
second property. We have

Kpzq “ r´∆G, iAzs ` 2p1 ´ χzq∆G ´ Repz2qrw, iAzs ` 2p1 ´ χzqRepz2qpw ´ 1q.
The contributions of the last two terms are estimated in LpL2q with (3.4) and the decay
of w ´ 1 and x ¨ ∇w. For the terms involving ∆G we write

r∆G, iAzs ´ 2p1 ´ χzq∆G “
ÿ

1ďj,kďd

`

rBj , iAzs ´ p1 ´ χzqBj
˘

Gj,kBk

`
ÿ

1ďj,kďd

BjrGj,k, iAzsBk

`
ÿ

1ďj,kďd

BjGj,k

`

rBk, iAzs ´ p1 ´ χzqBk
˘

´
ÿ

1ďj,kďd

pBjχzqGj,kBk.

(3.9)

For j, k P t1, . . . , du we have
›

› 〈zx〉´ ρ
2 Bk 〈zx〉

ρ
2

›

›

LpH1
z ,L

2q “ |z|
›

› 〈x〉´ ρ
2 Bk 〈x〉

ρ
2

›

›

LpH1,L2q À |z| ,
so
›

› 〈zx〉
ρ
2

`

bj,1p|z| xq ¨ ∇ ` |z| cj,1p|z| xq
˘

Gj,kBk 〈zx〉
ρ
2

›

›

LpH1
z ,H

´1
z q

À |z|
›

› 〈zx〉
ρ
2

`

bj,1p|z|xq ¨ ∇ ` |z| cj,1p|z| xq
˘

〈zx〉
ρ
2

›

›

LpL2,H´1
z q À |z|2 .

This gives the estimate for the contribution of the first term in the right-hand side of
(3.9). The third term is estimated similarly. For the second we write
›

› 〈zx〉
ρ
2 BjrGj,k, iAzsBk 〈zx〉

ρ
2

›

›

L̄pH1
z ,H

´1
z q À |z|2

›

› 〈zx〉
ρ
2 rGj,k, iAzs 〈zx〉

ρ
2

›

›

LpL2q À |z|2 ,
and finally we observe that }Bjχz}8 À |z| to prove that the last term in (3.9) is also of

size Op|z|2q in LpH1
z ,H

´1
z q. The proof is complete. �

We finish this paragraph with general considerations about commutators in an ab-
stract setting. Let H be a Hilbert space and let K be a reflexive Banach space densely
and continuously embedded in H. We identify H with its dual.

We denote by L̄pK,K˚q the space of semilinear maps from K to its dual K˚. We
similarly define L̄pK˚,Kq. In particular, L̄pH,H˚q is identified with LpHq.

We consider a selfadjoint operator A on H with domain DH Ă H (endowed with the
graph norm). Then A can also be seen as an operator AH P LpDH,Hq. Moreover, for
ϕ P H we have ϕ P DH if and only if A˚

Hϕ P H and in this case Aϕ “ A˚
Hϕ. We set

DK “ tϕ P K X DH : Aϕ P Ku . (3.10)

By restriction, A defines an operator AK on K with domain DK. Then DK is endowed
with the graph norm of AK. We can see AK as an operator in LpDK,Kq and A˚

K maps
K˚ to D˚

K. We set

DK˚ “ tϕ P K˚ : A˚
Kϕ P K˚u , }ϕ}2D

K˚
“ }ϕ}2K˚ ` }A˚

Kϕ}2K˚ ,

and for ϕ P DK˚ we set AK˚ϕ “ A˚
Kϕ. We have DK Ă DH Ă DK˚ . Moreover, for

K0 P tK,H,K˚u we have

DK0
“
 

ϕ P K0 : A˚
K˚

0

ϕ P K0

(

,

and for ϕ P DK0
we have A˚

K˚
0

ϕ “ AK0
ϕ.

Let K1,K2 P tK,H,K˚u. We set C0
ApK1,K2q “ LpK1,K2q and for S P LpK1,K2q

we set ad0ApSq “ S. Then, by induction on n P N
˚, we say that S P Cn

ApK1,K2q if
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S P Cn´1
A pK1,K2q and the commutator adn´1

A pSqAK1
´ A˚

K˚
2

adn´1
A pSq P LpDK1

,D˚
K˚

2

q
extends to an operator adnApSq in LpK1,K2q. Then we set

}S}Cn
ApK1,K2q “

n
ÿ

k“0

›

›

›
adkApSq

›

›

›

LpK1,K2q
.

We write CnpK1q for CnpK1,K1q. We also write C̄n
ApK1,K2q instead of Cn

ApK1,K2q for
semi-linear operators.

The general properties which will be used in the sequel are the following.

Proposition 3.10. Let K1,K2,K3 P tK,H,K˚u.
(i) For S P C1

ApK1,K2q we have S˚ P C1
ApK˚

2 ,K
˚
1 q and adApS˚q “ ´adApSq˚.

(ii) Let S P C1
ApK1,K2q. Then S maps DK1

to DK2
and on DK1

we have

AK2
S “ SAK1

´ adApSq. (3.11)

(iii) For S1 P C1
ApK1,K2q and S2 P C1

ApK2,K3q we have S2S1 P C1
ApK1,K3q and

adApS2S1q “ S2adApS1q ` adApS2qS1. (3.12)

Proof. The first statement is clear. Let ϕ P DK1
. We have Sϕ P K2 and

A˚
K˚

2

Sϕ “ SAK1
ϕ ´ adApSqϕ P K2,

so Sϕ belongs to DK2
and (3.11) follows. Then, applying S2 to (3.11) gives

S2S1AK1
ϕ ´ S2AK2

S1ϕ “ S2adApS1qϕ.
Since S1ϕ P DK2

we similarly have S2S1ϕ P DK3
and

S2AK2
S1ϕ ´ AK3

S2S1ϕ “ adApS2qS1ϕ.
This proves that S2S1 P C1

ApK1,K3q with adApS2S1q given by (3.12). �

We finally recall from [BR14] the following result.

Proposition 3.11. Let N P N.

(i) Let δ P r´N,N s. There exists C ą 0 such that for S P CN
A pHq we have

›

›

›
〈A〉δ S 〈A〉´δ

›

›

›

LpHq
ď C }S}CN

A pHq .

(ii) Let δ´, δ` ě 0 such that δ´ `δ` ă N . There exists C ą 0 such that for S P CN
A pHq

we have
›

›

›
〈A〉δ´

1R´pAqS 1R`pAq 〈A〉δ`

›

›

›

LpHq
ď C }S}CN

A pHq .

Proof. The first statement is [BR14, Proposition 5.12] and second easily follows from
[BR14, Proposition 5.13]. �

4. Elliptic regularity

In this section we prove Propositions 2.4 and 2.5. The parameter ρ P r0, ρ0r is fixed
by these statements. We also fix ρ̄ Psρ, ρ0r.

Proposition 2.4 will be given by (4.4) while Proposition 2.5 will follow from Proposi-
tion 4.3.(ii) and Proposition 4.4.

Let s P R. For r Ps0, 1s the resolvent R0pirq “ r´2pD2
r ` 1q´1 defines a bounded

operator from Hs´1
r to Hs`1

r with norm r´2. More generally, if we set

DI “
"

z P D` : argpzq P
„

π

6
,
5π

6

*

,
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then there exists c0 ą 0 such that for s P R and z P DI we have

}R0pzq}LpHs´1
z ,Hs`1

z q ď c0

|z|2
. (4.1)

Then, for k P N
˚ and s, s1 P R such that s1 ´ s ď 2k we have

›

›R
rks
0 pzq

›

›

LpHs
z ,H

s1
z q “ |z|2k

›

›

›
R0pzqk

›

›

›

LpHs
z ,H

s1
z q

ď ck0 . (4.2)

Our first purpose is to prove a similar property for Rpzq. By the usual elliptic reg-
ularity this holds for any fixed z P D`, the difficulty is to get uniform estimates for z
close to 0.

We cannot extend (4.1) to Rpzq in full generality. We begin with the case s “ 0.

Proposition 4.1. There exists c ą 0 such that for all z P DI we have

}Rpzq}LpH´1
z ,H1

z q ď c

|z|2
.

More generally, for N P N there exists cN ą 0 such that for z P DI we have

}Rpzq}CN
z pH´1

z ,H1
z q ď cN

|z|2
.

Proof. Let z P DI and ϑz P
“

´ π
3
, π
3

‰

be such that argpzq “ π
2

` ϑz. The operator

e´iϑzP pzq defines an operator in LpH1
z ,H

´1
z q uniformly in z P DI. Moreover for u P H1

z

we have

Re
〈

e´iϑzP pzqu, u
〉

H´1
z ,H1

z

“ cospϑzq
`

〈Gpxq∇u,∇u〉L2 ` |z|2 〈wu, u〉L2

˘

Á |z|2 }u}2H1
z
.

The Lax-Milgram Theorem gives the first estimate.
Now let N P N. For J P IN , we can write adJz pRpzqq as a sum of terms of the form

RpzqadJ1z pP pzqqRpzq . . . adJkz pP pzqqRpzq
where k P N and J1, . . . , Jk P IN . The general statement follows from (3.3) and Propo-
sition 3.8. �

On the other hand, we have a result similar to (4.1) if G is a small perturbation of
the flat metric and s is not too large:

Proposition 4.2. Let s P
‰

´ d
2
, d
2

“

. There exist γ ą 0 and c ą 0 such that if
}G´ Id}S´ρ̄ ď γ then for z P DI we have

}Rpzq}LpHs´1
z ,Hs`1

z q ď c

|z|2
.

More generally, for N P N there exists cN ą 0 such that for z P DI we have

}Rpzq}CN
z pHs´1

z ,Hs`1
z q ď cN

|z|2
.

Proof. Let c0 ą 0 be given by (4.1). If }G ´ Id}S´ρ̄ is small enough, then by Proposition
3.5 applied with ρ1 “ 0 there exists r0 Ps0, 1s such that for z P DI with |z| ď r0 we have

}P pzq ´ P0pzq}LpHs`1
z ,Hs´1

z q ď |z|2
2c0

.

Then

}Rpzq}LpHs´1
z ,Hs`1

z q “
›

›

`

1 `R0pzq
`

P pzq ´ P0pzq
˘˘´1

R0pzq
›

›

LpHs´1
z ,Hs`1

z q ď 2c0

|z|2
.

For z P DI with |z| ě r0 we use the standard elliptic estimates, and the first estimate is
proved. The second estimate follows as in the proof of Proposition 4.1. �
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The first part of the following result with z1 “ i |z| gives Proposition 2.4. With z “ z1

and s1 “ s2 “ 0 it also gives Theorem 2.3 for z P DI (without any weight). The second

part of the result gives Proposition 2.5 with 〈zx〉δ instead of 〈A〉δ.

Proposition 4.3. Let s1, s2, s P
“

0, d
2

“

, δ1 ą s1, δ2 ą s2 and δ ą s. Let σ P t0, 1u. Let
n1, n2, n P N

˚.

(i) There exists C ą 0 such that for z P D` and z1 P DI with |z| “ |z1| we have
›

›

›
〈x〉´δ1 Rrnspz1q 〈x〉´δ2

›

›

›

LpL2q
ď C |z|minps1`s2,2nq (4.3)

and
›

›

›
〈x〉´δ1 Rrn1spz1qθσpzqRrn2s

0 pz1q 〈x〉´δ2
›

›

›

LpL2q
ď C |z|minps1`s2`ρ,2n1`2n2´2σq . (4.4)

(ii) There exists C ą 0 such that for z P D` and r “ |z| we have
›

›

›
〈x〉´δ Rrnspirqw 〈rx〉δ

›

›

›

LpL2q
ď Crminps,2nq, (4.5)

›

›

›
〈x〉´δ Rrn1spirqθσpzqRrn2s

0 pirq 〈rx〉δ
›

›

›

LpL2q
ď Crminps`ρ,2n1`2n2´2σq, (4.6)

›

›

›
〈rx〉δ R

rns
0 pzq 〈x〉´δ

›

›

›

LpL2q
ď Crminps,2nq, (4.7)

›

›

›
〈rx〉δ wRrn1spirqθσpzqRrn2s

0 pirq 〈x〉´δ
›

›

›

LpL2q
ď Crminps`ρ,2n1`2n2´2σq. (4.8)

Proof. ‚ Let γ ą 0 to be chosen small enough. Let G0 and G8 be given by Lemma

3.6. Let R8pz1q and R
rns
8 pz1q be defined as Rpz1q and Rrnspz1q with G replaced by G8.

Then Proposition 4.2 applies to R8pz1q.
‚ Let α1, α2 P N

d with |α1| , |α2| ď 1. We prove
›

›

›
〈x〉´δ1 Dα1Rrnspz1qDα2 〈x〉´δ2

›

›

›

LpL2q
ď C |z|minps1`s2`|α1|`|α2|,2nq . (4.9)

With α1 “ α2 “ 0 this will give (4.3). Since we can choose s1 and s2 smaller, it is
enough to consider the case s1 ` s2 ď 2n´ |α1| ´ |α2|. We first prove (4.9) with Rrnspz1q
replaced by R

rns
8 pz1q. By Remark 3.2, the multiplication by w defines a bounded operator

on Hs
z uniformly in z for any s P

‰

´ d
2
, d
2

“

. With Proposition 4.2, we obtain that the

operator R
rns
8 pz1q is uniformly bounded in LpH´s2´|α2|

z ,H
s1`|α1|
z q if γ ą 0 was chosen

small enough, and then Dα1R
rns
8 pz1qDα2 is of size Op|z||α1|`|α2|q in LpH´s2

z ,Hs1
z q. Then

(4.9) for R
rns
8 pz1q follows from Lemma 3.4.

‚ Similarly, we prove (4.4) for R
rn1s
8 pz1q with an additional derivative. Let α P N

d with
|α| ď 1. We consider the case s1 ` s2 ď 2n1 ` 2n2 ´ 2σ ´ |α| ´ ρ. Assume that α “ 0
or σ “ 0 or n1 ą 1 or s1 ă d

2
´ ρ. Then there exists s P

‰

´ d
2

` ρ, d
2

“

such that

s1 ` |α| ´ 2n1 ` σ ` ρ ď s ď ´s2 ` 2n2 ´ σ. (4.10)

Then R
rn2s
0 pz1q is uniformly bounded in LpH´s2

z ,Hs`σ
z q, by Proposition 3.5 applied with

ρ1 “ ρ the operator θσpzq is of size Op|z|ρq in LpHs`σ
z ,H

s´σ´ρ
z q and finally DαR

rn1s
8 pz1q

is of size Op|z||α|q in LpHs´σ´ρ
z ,Hs1

z q if γ ą 0 is small enough. With Lemma 3.4 this
gives

›

›

›
〈x〉´δ1 DαR

rn1s
8 pz1qθσpzqRrn2s

0 pz1q 〈x〉´δ2
›

›

›
À |z|minps1`s2`ρ`|α|,2n1`2n2´2σq . (4.11)

Notice that this does not apply if |α| “ 1, σ “ 1, n1 “ 1 and s1 ě d
2

´ ρ, since then

there is no s smaller than d
2
which satisfies (4.10).

‚ Now we finish the proof of (4.9). Using the resolvent identity

Rpz1q “ R8pz1q `R8pz1q∆G0
R8pz1q `R8pz1q∆G0

Rpz1q∆G0
R8pz1q,
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we check by induction on n P N
˚ that we can write Rrnspz1q as a sum of terms of the

form
T pz1q “ R

rn0s
8 pz1qB1pz1qRrn1s

8 pz1qB2pz1q . . . Rrnk´1s
8 pz1qBkpz1qRrnks

8 pz1q,
where k P N, n0, . . . , nk P N

˚ are such that n0 ` ¨ ¨ ¨ ` nk “ n` k, and for j P t1, . . . , ku
the operator Bjpz1q is equal to |z1|´2∆G0

or |z1|´2∆G0
Rpz1q∆G0

. By Proposition 4.1,
an operator of the form Dℓ1Rpz1qDℓ2 , 1 ď ℓ1, ℓ2 ď d, extends to a bounded operator on
L2 uniformly in z1 P DI. Using (4.9) proved for R8, the compactness of the support of
G0 and the derivatives given by the operator ∆G0

, we obtain

›

›

›
〈x〉´δ1 Dα1T pz1qDα2 〈x〉´δ2

›

›

›

LpL2q
À

d
ÿ

ℓ1,...,ℓ2k“1

Nℓ1,...,ℓ2k

where

Nℓ1,...,ℓ2k

À 1

|z|2k
›

›

›
〈x〉´δ1 Dα1R

rn0s
8 pz1qDℓ1 〈x〉

´δ2
›

›

›

ˆ
k´1
ź

j“1

›

›

›
〈x〉´δ1 Dℓ2jR

rnjs
8 pz1qDℓ2j`1

〈x〉´δ2
›

›

›

›

›

›
〈x〉´δ1 Dℓ2kR

rnks
8 pz1qDα2 〈x〉´δ2

›

›

›

À |z|´2k |z|minps1`s2`|α1|`1,2n0q ˆ
k´1
ź

j“1

|z|minps1`s2`2,2njq ˆ |z|minps1`s2`1`|α2|,2nkq .

We can check that this gives (4.9) if one of the minima is equal to the first argument.

Otherwise the sum of the powers of |z| is equal to ´2k ` řk
j“0 2nj “ 2n. Then we also

have (4.9) and hence (4.3).

‚ For (4.4) we replace Rrn1spz1q by the following expression, also given by the resolvent
identity:

Rrn1spz1q “ R
rn1s
8 pz1q ` 1

|z|2
n1
ÿ

k“1

Rrkspz1q∆G0
R

rn1´k`1s
8 pz1q. (4.12)

The contribution of the term R
rn1s
8 pz1q in (4.4) is already estimated by (4.11) applied

with α “ 0. We set s1
1 “ maxps1´1, 0q ă d

2
´ρ and consider δ1

1 ą s1
1. Let k P t1, . . . , n1u.

By (4.9) and (4.11) we have

1

|z|2
›

›

›
〈x〉´δ1 Rrkspz1q∆G0

R
rn1´k`1s
8 pz1qθσpzqRrn2s

0 pz1q 〈x〉´δ2
›

›

›

LpL2q

À 1

|z|2
d
ÿ

ℓ1,ℓ2“1

›

›

›
〈x〉´δ1 Rrkspz1qDℓ1 〈x〉

´δ2
›

›

›

ˆ
›

›

›
〈x〉´δ1

1 Dℓ2R
rn1´k`1s
8 pz1qθσpzqRrn2s

0 pz1q 〈x〉´δ2
›

›

›

À |z|´2 |z|minps1`s2`1,2kq |z|minps1
1

`s2`1`ρ,2pn1´k`1q`2n2´2σq

À |z|minps1`s2`ρ,2n1`2n2´2σq .

This concludes the proof of (4.4).
‚ We turn to the proofs of (4.5)-(4.8). We can forget the factor w in (4.5) and (4.8)

since it commutes with 〈rx〉δ and defines a bounded operator on L2. As above, for (4.5),
(4.6) and (4.8) we first give a proof for R8pirq with an additional derivative, and then
we deduce the general case with (4.12) and (4.9). We begin with (4.5). Let k P N and

β P N
d with |β| ď 2k. Let α P N

d with |α| ď 1. We can write 〈rx〉´2kDαR
rns
8 pirqprxqβ

as a sum of terms of the form

〈rx〉´2k prxqβ1adβ2

rx

`

DαR
rns
8 pirq

˘

,
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where β1 `β2 “ β. Assume that s ď 2n´|α|. By Lemma 3.7, Proposition 4.2 and (3.3),

the operator adβ2

rx

`

DαRrnspirq
˘

is of size Opr|α|q in LpL2,Hs
r q. Since 〈rx〉´2k prxqβ1 is

uniformly bounded in LpHs
r q, this proves that 〈rx〉´2kDαR

rns
8 pirq 〈rx〉2k is of size Oprαq

in LpL2,Hs
r q for any k P N. By interpolation we get

›

›

›
〈rx〉´δDαR

rns
8 pirq 〈rx〉δ

›

›

›

LpL2,Hs
r q

À r|α|.

On the other hand, by Lemma 3.4,
›

›

›
〈x〉´δ 〈rx〉δ

›

›

›

LpHs
r ,L

2q
À
›

›p1 ` |rx|δq 〈x〉´δ
›

›

LpHs
r ,L

2q

À } 〈x〉´δ }LpHs
r ,L

2q ` rδ
›

› |x|δ 〈x〉´δ
›

›

LpL2q
À rs.

These estimates together prove
›

›

›
〈x〉´δDαR

rns
8 pirq 〈rx〉δ

›

›

›

LpL2q
À rminps`|α|,2nq. (4.13)

If n1 ‰ 1 or α “ 0 or s ă d
2

´ ρ or σ “ 0, we similarly prove
›

›

›
〈x〉´δDαR

rn1s
8 pirqθσpzqRrn2s

0 pirq 〈rx〉δ
›

›

›

LpL2q
À rminps`ρ`|α|,2n1`2n2´2σq. (4.14)

Finally, we also have (4.8) with Rrn1spirq replaced by R
rn1s
8 pirq.

‚ Let k P t1, . . . , nu. By (4.9) and (4.13) we have

1

r2

›

›

›
〈x〉´δDαRrkspirq∆G0

R
rn´k`1s
8 pirq 〈rx〉δ

›

›

›

À 1

r2

d
ÿ

ℓ1,ℓ2“1

›

›

›
〈x〉´δDαRrkspirqDℓ1

›

›

›

›

›

›
〈x〉´δDℓ2R

rn´k`1s
8 pirq 〈rx〉δ

›

›

›

À r´2rminps`|α|`1,2kqrminps`1,2pn´k`1qq

À rminps`|α|,2nq.

With (4.12) and (4.13) this proves
›

›

›
〈x〉´δDαRrnspirq 〈rx〉δ

›

›

›

LpL2q
À rminps`|α|,2nq. (4.15)

This gives (4.5). Similarly,
›

›

›
〈rx〉δ RrnspirqDα 〈x〉´δ

›

›

›

LpL2q
À rminps`|α|,2nq. (4.16)

This gives (4.7) as a particular case.
‚ We finish the proof of (4.6) as we did for (4.4). We set s1 “ maxps ´ ρ, 0q and for
k P t1, . . . , n1u we use (4.9) and (4.14) to write

1

r2

›

›

›
〈x〉´δ Rrkspirq∆G0

R
rn1´k`1s
8 pirqθσpzqRrn2s

0 pirq 〈rx〉δ
›

›

›

À 1

r2

d
ÿ

ℓ1,ℓ2“1

›

›

›
〈x〉´δ RrkspirqDℓ1 〈x〉

´ρ0
›

›

›

›

›

›
〈x〉´δDℓ2R

rn1´k`1s
8 pirqθσpzqRrn2s

0 pirq 〈rx〉δ
›

›

›

À r´2rminps`ρ`1,2kqrminps1`1`ρ,2pn1´k`1q`2n2´2σq

À rminps`ρ,2n1`2n2´2σq.

Finally, the proof of (4.8) similarly follows from (4.12), the fact that it is already proved
for R8 and, for k P t1, . . . , n1u, (4.16) and (4.11) applied with s1 “ 0 and s2 “ s. �
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To finish the proof of Proposition 2.5 we have to replace 〈rx〉δ by 〈Az〉
δ in (4.5)-(4.8).

For this we use again the elliptic regularity to compensate the derivatives with appear

in 〈Az〉
δ.

Proposition 4.4. Let δ ě 0 and let n be an even positive integer at least equal to δ.
Then there exists C ą 0 such that all r Ps0, 1s we have

›

›

›
〈rx〉´δ Rrnspirqw 〈Ar〉

δ
›

›

›

LpL2q
ď C,

›

›

›
〈Ar〉

δ wRrnspirq 〈rx〉´δ
›

›

›

LpL2q
ď C.

Moreover, the same estimates hold with Rrnspirq and w replaced by R
rns
0 pirq and 1.

Proof. We prove the first estimate, the second is similar. We start by proving by induc-
tion on k P N that for n ě k and µ P N

d we have
›

›

›
〈rx〉´k

adµrx
`

Rrnspirqw
˘

Ak
r

›

›

›

LpL2q
À 1. (4.17)

The case k “ 0 is given by Proposition 4.1 (we use the convention that Rr0spirqw “ Id).

Let k P N
˚, n ě k and µ P N

d. We can write adµrx
`

Rrnspirqw
˘

as a sum of terms of the

form adµ1

rx

`

Rrn´1spirqw
˘

adµ2

rx

`

Rpirqw
˘

where µ1 ` µ2 “ µ. For such a term we have

〈rx〉´k
adµ1

rx

`

Rrn´1spirqw
˘

adµ2

rx

`

Rpirqw
˘

Ak
r

“
k
ÿ

j“0

〈rx〉´k
adµ1

rx

`

Rrn´1spirqw
˘

Aj
rad

k´j
Ar

`

adµ2

rx

`

Rpirqw
˘˘

.

For the contribution of j P t0, . . . , k ´ 1u we apply the induction assumption, Proposition
4.1 and (3.4) to get a uniform bound in LpL2q. Now we consider the term corresponding
to j “ k. We have

Ak
r “ Ak´1

r

ix ¨ ∇χr ´ idp1 ´ χrq
2

`Ak´1
r p1 ´ χrq

d
ÿ

ℓ“1

rxℓ ¨ r´1Dℓ.

The contribution of the first term is estimated as before (note that x ¨ ∇χr is uni-
formly bounded). Now let ℓ P t1, . . . , du. By Proposition 4.1 again, the operator
r´1Dℓad

µ2

rx

`

Rpirqw
˘

extends to a uniformly bounded operator in LpL2q. On the other
hand, by (3.6) we have

〈rx〉´k
adµ1

rx

`

Rrn´1spirqw
˘

Ak´1
r rxℓ

“ 〈rx〉´k
adµ1

rx

`

Rrn´1spirqw
˘

rxℓpAr ´ ip1 ´ χrqqk´1

“ rxℓ 〈rx〉
´k

adµ1

rx

`

Rrn´1spirqw
˘

pAr ´ ip1 ´ χrqqk´1

` 〈rx〉´k
adrxj

`

adµ1

rx

`

Rrn´1spirq
˘˘

pAr ´ ip1 ´ χrqqk´1.

Both terms are estimated with the induction assumption, and (4.17) is proved. With
µ “ 0 this gives the first estimate of the proposition when δ is an even integer. The
general case follows by interpolation. �

5. The Commutators method

In this section we prove Theorem 2.3. The proof relies on the abstract positive
commutators method. Compared to the already known versions, we show that we can
apply the result to operators like Rpzq even though they are not exactly resolvents, and
that the estimates for the powers of the resolvent can in fact be applied to a product
of different operators. Notice that we will not use the selfadjointness of the original
operator P . The method is naturally adapted to dissipative operators.
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5.1. Abstract uniform estimates. Let H and K be as in the beginning of Section
3.2.

For Q P L̄pK,K˚q we have Q˚ P L̄pK,K˚q. We set RepQq “ pQ ` Q˚q{2 and
ImpQq “ pQ´Q˚q{2i. We similarly define the real and imaginaly parts of R P L̄pK˚,Kq.
We say that Q P L̄pK,K˚q is non-negative if for all ϕ P K we have 〈Qϕ,ϕ〉K˚,K ě 0, and

that R P L̄pK,K˚q is non-negative if for all ψ P K˚ we have 〈ψ,Rψ〉K˚,K ě 0. Finally

we say that Q is dissipative if ImpQq ď 0.

We consider Q P L̄pK,K˚q with negative imaginary part: there exists c0 ą 0 such
that

Q` :“ ´ImpQq ě c0I,

where I P L̄pK,K˚q is the natural embedding. By the Lax-Milgram Theorem, Q has an
inverse in L̄pK˚,Kq.

Let A be a selfadjoint operator on H. We use the notation of Section 3.2.

Definition 5.1. Let N P N
˚ and Υ ě 1. We say that A is Υ-conjugate to Q up to order

N if the following conditions are satisfied.

(H1) For ϕ P K we have }ϕ}H ď Υ }ϕ}K.
(H2) For all θ P r´1, 1s the propagator e´iθA P LpHq defines by restriction a bounded

operator on K.
(H3) Q belongs to C̄N`1

A pK,K˚q with }Q}C̄N`1

A pK,K˚q ď Υ and Q` belongs to C̄1
ApK,K˚q

with }Q`}C̄1

ApK,K˚q ď Υ.

(H4) There exist QK P L̄pK,K˚q dissipative, Q`
K P L̄pK,K˚q non-negative and Π P

C1
ApH,Kq such that, with ΠK “ IdK ´ Π P LpKq,
(a) Q “ QK ´ iQ`

K ,
(b)

›

›Q`
K
›

›

L̄pK,K˚q ď Υ, }Π}C1

ApH,Kq ď Υ, and for ϕ P H we have }Πϕ}K ď Υ }Πϕ}H,
(c) QK has an inverse RK P L̄pK˚,Kq which satisfies }ΠKRK}L̄pK˚,Kq ď Υ and

}RKΠ˚
K}L̄pK˚,Kq ď Υ.

(H5) There exists β P r0,Υs such that if we set

M “ iadApQq ` βQ` P L̄pK,K˚q,
then in the sense of quadratic forms on H we have

Π˚RepMqΠ ě Υ´1Π˚IΠ.

The main assumption in this definition is (H5). The uniform estimates given by the
commutators method are the following. We give a proof adapted to this setting in
Section 5.4.

Theorem 5.2. Let N P N
˚ and Υ ě 1. Assume that A is Υ-conjugate to Q up to order

N .

(i) Let δ ą 1
2
. There exists C ą 0 which only depends on Υ and δ such that

›

›

›
〈A〉´δ Q´1 〈A〉´δ

›

›

›

LpHq
ď C. (5.1)

(ii) Assume that N ě 2 and let δ1, δ2 ě 0 be such that δ1 ` δ2 ă N ´ 1. There exists
C ą 0 which only depends on N , Υ, δ1 and δ2 such that

›

›

›
〈A〉δ1 1R´pAqQ´1

1R`pAq 〈A〉δ2
›

›

›

LpHq
ď C. (5.2)

(iii) Assume that N ě 2 and let δ P
‰

1
2
, N

“

. There exists C ą 0 which only depends on
N , Υ and δ such that

›

›

›
〈A〉´δ Q´1

1R`pAq 〈A〉δ´1
›

›

›

LpHq
ď C (5.3)
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and
›

›

›
〈A〉δ´1

1R´pAqQ´1 〈A〉´δ
›

›

›

LpHq
ď C. (5.4)

We explain the notation of Definition 5.1 on the model case, namely the free Laplacian
with the generator of dilation (2.6) as the commutator. To get estimates on H “ L2

for the resolvent p´∆ ´ ζq´1 with Impζq ą 0 and Repζq close to some E ą 0, we choose
Q “ p´∆ ´ ζq (seen as a bounded operator from K “ H1 to H´1 » K˚, this last
identification being semilinear) and in particular we have Q` “ Impζq. Then we set
Π “ 1rE

2
, 3E

2
sp´∆q “ 1r´E

2
,E
2

sp´∆ ´ Eq, QK “ Q, Q`
K “ 0 and β “ 0. Since

Πr´∆, iAsΠ “ ´2∆1r´E
2
,E
2

sp´∆ ´ Eq ě ´E∆,

the commutators method give in particular a uniform bound in L2 for

〈A〉´δ p´∆ ´ ζq´1 〈A〉´δ ,

from which we can deduce an estimate for the resolvent in LpL2,δ, L2,´δq. Our proof in

the next paragraph is a perturbation of this model case with ζ “ z2 and E of order |z|2.
5.2. Application to the Schrödinger operator. In this paragraph we apply the
abstract commutators method to prove uniform estimates for Rpzq. For z P DI, Theorem
2.3 follows from Proposition 4.3 applied with z1 “ z and s1 “ s2 “ 0. Thus, it is enough
to prove Theorem 2.3 for z in

DR “ D
`
R Y D

´
R , where D

˘
R “

!

z P D` : ˘2Repz2q ě |z|2
)

.

We prove all the intermediate estimates for z P D
`
R and, in the end, we will deduce

Theorem 2.3 for z P D
´
R by a duality argument. We begin with estimates for a single

resolvent.

Proposition 5.3. Let δ ą 1
2
and δ1, δ2 P R. There exists C ą 0 such that for z P D

`
R

we have
›

›

›
〈Az〉

´δ Rpzq 〈Az〉
´δ
›

›

›

LpL2q
ď c

|z|2
, (5.5)

›

›

›
〈Az〉

δ1
1R´pAzqRpzq1R`pAzq 〈Az〉

δ2
›

›

›

LpL2q
ď c

|z|2
, (5.6)

›

›

›
〈Az〉

´δ Rpzq1R`pAzq 〈Az〉
δ´1

›

›

›

LpL2q
ď c

|z|2
, (5.7)

›

›

›
〈Az〉

δ´1
1R´pAzqRpzq 〈Az〉

´δ
›

›

›

LpL2q
ď c

|z|2
. (5.8)

To prove Proposition 5.3, we apply Theorem 5.2 to |z|´2 P pzq (seen as an operator
in LpH1

z ,H
´1
z ) uniformly in z P D

`
R

and for any N P N
˚. Then Proposition 5.3 is a

consequence of Theorem 5.2 and Proposition 5.4 below.

In the proof of Proposition 5.4 we will use the Helffer-Sjöstrand formula. Let A be
a selfadjoint operator on a Hilbert space H, m ě 2 and let φ P C8pRq be such that

φpkqpτq À Ck 〈τ〉
´k´κ for some κ ą 0 and for all k P t0, . . . ,m` 1u. Then we have

φpAq “ ´ 1

π

ż

C

Bφ̃
Bζ̄ pζqpA ´ ζq´1 dλpζq, (5.9)

where λ is the Lebesgue measure on C and for some ψ P C8
0 pR, r0, 1sq supported on

r´2, 2s and equal to 1 on r´1, 1s we have defined the almost analytic extension φ̃ of φ
by

φ̃pτ ` iµq “ ψ

ˆ

µ

〈τ〉

˙ m
ÿ

k“0

φpkqpτqpiµqk
k!

.
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In particular,
ˇ

ˇ

ˇ

ˇ

ˇ

Bφ̃
Bζ̄ pτ ` iµq

ˇ

ˇ

ˇ

ˇ

ˇ

À 1〈τ〉ď|µ|ď2〈τ〉 〈τ〉
´1´κ ` 1|µ|ď2〈τ〉 |µ|m 〈τ〉´1´κ´m .

See for instance [DS99, Section 8].

Proposition 5.4. Let N P N. There exist χ P C8
0 and Υ ě 1 such that for all z P D

`
R

the operator Az defined by (2.9) is Υ-conjugate to |z|´2 P pzq P LpH1
z ,H

´1
z q up to order

N .

Proof. ‚ Assumption (H1) is clear in our setting and (H2) follows from (2.8). For any

χ P C8
0 , the fact that |z|2 P pzq is uniformly in CN`1

Az
pH1

z ,H
´1
z q is given by Proposition

3.8. Finally, Q` “ ´ImpP pzqq “ Impz2qw, so Q` belongs to C1
Az

pH1
z ,H

´1
z q uniformly in

z by Lemma 3.7. This gives (H3).
‚ Now we construct the operator Πz which appears in (H4) and (H5). For z P D

`
R we

have already set PRpzq “ ´∆G ´ wRepz2q. We similarly define P 0
Rpzq “ ´∆ ´ Repz2q.

These two operators can be seen as selfadjoint operators on L2 with domain H2 or as
bounded operators from H1

z to H´1
z . Let φ P C8

0 pR, r0, 1sq be equal to 1 on r´1, 1s and
supported in s ´ 2, 2r. For η Ps0, 1s we set

Πη,z “ φ

ˆ

PRpzq
η2 |z|2

˙

and Π0
η,z “ φ

ˆ

P 0
Rpzq

η2 |z|2
˙

.

By the Helffer-Sjöstrand formula (5.9) (applied with m ě 3) and the resolvent identity,
the difference Πη,z ´ Π0

η,z can be rewritten as

1

π

ż

C

Bφ̃
Bζ̄ pζq

ˆ

PRpzq
η2 |z|2

´ ζ

˙´1
PRpzq ´ P 0

Rpzq
η2 |z|2

ˆ

P 0
Rpzq

η2 |z|2
´ ζ

˙´1

dλpζq.

We can check that for z P D` and ζ P 5DzR` we have
›

›

›

›

›

ˆ

PRpzq
η2 |z|2

´ ζ

˙´1
›

›

›

›

›

LpH´1
z ,H1

z q
`
›

›

›

›

›

ˆ

P 0
Rpzq

η2 |z|2
´ ζ

˙´1
›

›

›

›

›

LpL2,H2
z q

À 1

|Impζq| . (5.10)

On the other hand, as in the proof of Proposition 3.5 we can check that
›

›

›

›

PRpzq ´ P 0
Rpzq

η2 |z|2
›

›

›

›

LpH1`ρ
z ,H´1

z q
À |z|ρ

η2
.

This proves
›

›

›

›

›

ˆ

PRpzq
η2 |z|2

´ ζ

˙´1 PRpzq ´ P 0
Rpzq

η2 |z|2
ˆ

P 0
Rpzq

η2 |z|2
´ ζ

˙´1
›

›

›

›

›

LpL2,H1
z q

À |z|ρ

η2 |Impζq|2
.

Since Bζ̄ φ̃ is supported in 5D and decays faster than |Impζq|2 near the real axis, we
deduce

›

›Πη,z ´ Π0
η,z

›

›

LpL2,H1
z q À |z|ρ

η2
. (5.11)

There also exists C ą 0 such that for all z P D` and η Ps0, 1s we have

}Πη,z}LpH´1
z ,H1

z q ď C. (5.12)

‚ By a compactness argument (we can also use Proposition 3.1), there exists χ P C8
0

equal to 1 on a neighborhood of 0 and such that

}χz}LpH1
z ,L

2q “ }χ}LpH1,L2q ď 1

16C2
,
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where C ą 0 is given by (5.12). Then for all z P D` and η Ps0, 1s we have

}Πη,zχzΠη,z}LpL2q ď 1

16
. (5.13)

‚ We have defined Kpzq in (3.8). By (5.12) and Proposition 3.9 there exists C1 ą 0
such that

}Π1,zKpzq 〈zx〉
ρ
2 }LpH1

z ,L
2q À }Kpzq 〈zx〉

ρ
2 }LpH1

z ,H
´1
z q ď C1 |z|2 . (5.14)

Let τ0 P
“

1?
2
, 1
‰

. Since 〈x〉´ ρ
2 φp´∆ ´ τ20 q is compact as an operator from L2 to H1 and

φp´∆´τ2
0

16η2
0

q goes weakly to 0 as η0 goes to 0, there exists η0 P
‰

0, 1
8

‰

such that

›

›

›

›

›

〈zx〉´ ρ
2 φ

˜

´∆ ´ τ20 |z|2

|z|2

¸

φ

˜

´∆ ´ τ20 |z|2

16η20 |z|2

¸›

›

›

›

›

LpL2,H1
z q

“
›

›

›

›

〈x〉´ ρ
2 φp´∆ ´ τ20 qφ

ˆ´∆ ´ τ20
16η20

˙›

›

›

›

LpL2,H1q
ď 1

8C1

. (5.15)

If
ˇ

ˇ

ˇ

Repz2q
|z|2 ´ τ20

ˇ

ˇ

ˇ
ď 8η20 we have

Π0
2η0,z

“ φ

˜

´∆ ´ τ20 |z|2

|z|2

¸

φ

˜

´∆ ´ τ20 |z|2

16η20 |z|2

¸

Π0
2η0,z

.

We also have Π2η0,z “ Π2η0,zΠ1,z, so (5.14) and (5.15) give

›

›Π2η0,zKpzqΠ0
2η0,z

›

›

LpL2q ď |z|2
8
. (5.16)

Since
“

1?
2
, 1
‰

is compact, we can choose η0 so small that (5.16) holds for any z P D
`
R .

By (5.16), (5.11) and (5.14) there exists r0 Ps0, 1s such that for z P DR with |z| ď r0 we
have

}Π2η0,zKpzqΠ2η0,z}LpL2q ď |z|2
4
. (5.17)

We set
D

˚
R “

 

z P D
`
R

: |z| ě r0
(

.

Let z0 P D
˚
R. The operator Π1,z0Kpz0qΠ1,z0 is compact on L2. Since 0 is not an eigenvalue

of PRpz0q, the operator Πη,z0 goes weakly to 0 as η goes to 0, so there exists ηz0 Ps0, 1s
such that

›

›Π2ηz0 ,z0
Kpz0qΠ2ηz0 ,z0

›

›

LpL2q ď |z0|2
8

.

By continuity with respect to z and compactness of D˚
R, there exists η0 Ps0, 1s such that

(5.17) holds for all z P D
˚
R, and hence for all z P DR. We can also assume that η0 is so

small that

2 }PRpzqΠ2η0 ,z}LpL2q ď |z|2
8
. (5.18)

‚ Now that η0 is fixed, we prove that (H4) and (H5) are satisfied. We begin with (H5).
We choose β “ 0. Let z P D

`
R . By definition of Kpzq we have

Π2η0,zrPRpzq, iAzsΠ2η0,z “ 2Repz2qΠ2
2η0,z

` Spzq,
where

Spzq “ ´2Repz2qΠ2η0,zχzΠ2η0,z ` 2Π2η0,zp1 ´ χzqPRpzqΠ2η0 ,z ` Π2η0,zKpzqΠ2η0,z.

By (5.13), (5.18) and (5.17) have

}Spzq}LpL2q ď |z|2
2
,
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and hence

Π2η0,zrPRpzq, iAzsΠ2η0,z ě 2Repz2qΠ2
2η0,z

´ |z|2
2
.

Since 2Repz2q ě |z|2 we get after composition by Πη0,z on both sides

Πη0,zrPRpzq, iAzsΠη0,z ě |z|2
2

Π2
η0,z

.

This gives (H5) with Πz “ Πη0,z.
‚ By the Helffer-Sjöstrand formula as above and Proposition 3.9 we have

}rΠz, iAzs}LpH´1
z ,H1

z q À
ż

C

ˇ

ˇ

ˇ

ˇ

ˇ

Bφ̃
Bζ̄ pζq

ˇ

ˇ

ˇ

ˇ

ˇ

›

›

›

›

›

›

»

–

˜

PRpzq
η20 |z|2

´ ζ

¸´1

, iAz

fi

fl

›

›

›

›

›

›

LpH´1
z ,H1

z q

dλpζq

À |z|´2
ˇ

ˇ }rPRpzq, iAzs}LpH1
z ,H

´1
z q

À 1.

We set

QKpzq “ PRpzq ´ iImpz2qwmin

|z|2
P LpH1

z ,H
´1
z q,

where wmin “ minxPRwpxq ą 0. Then

Q`
Kpzq “ i

`

P pzq ´QKpzq
˘

“ Impz2qpw ´wminq
is non-negative, QKpzq is invertible and by the functional calculus we have

›

›p1 ´ ΠzqQKpzq´1
›

›

LpL2q “
›

›QKpzq´1p1 ´ Πzq
›

›

LpL2q ď 1

η20
.

As for (5.10) we obtain similar estimates in LpH´1
z ,H1

z q. Finally, since Πz “ Π2η0,zΠz

we have }Πzu}H1
z

ď }Π2η0,z}LpL2,H1
z q }Πzu}L2

for all u P L2. With (5.12) this gives (H4)

and the proof is complete. �

5.3. Multiple resolvent estimates. In this paragraph we generalize the uniform es-
timates for the powers of a resolvent. Compared to the usual setting, we also consider
a product of different resolvents. In fact, we can consider the product of any finite se-
quence of operators having a suitable behavior with respect to the conjugate operator.
Everything is based on the following abstract lemma.

Lemma 5.5. Let H be a Hilbert space. Let n P N
˚, T1, . . . , Tn P LpHq and T “ T1 . . . Tn.

Let N P N
˚.

For j P t0, . . . , nu we consider on H a (possibly unbounded) selfadjoint operator Θj ě
1, and Π´

j ,Π
`
j P LpHq such that Π´

j ` Π`
j “ IdH. For j P t1, . . . , nu we assume that

there exist νj ě 0, σj P r0, νjs and a collection Cj “ tCj; pCj,δ1,δ2q; pCj,δqu of constants
such that for δ1, δ2 ě 0 with δ1 ` δ2 ă N ´ νj and δ P rσj , N s we have

›

›Θ
´σj

j´1TjΘ
´σj

j

›

›

LpHq ď Cj, (5.19)

›

›Θδ1
j´1Π

´
j´1TjΠ

`
j Θ

δ2
j }LpHq ď Cj,δ1,δ2 , (5.20)

›

›Θ
δ´νj
j´1 Π´

j´1TjΘ
´δ
j

›

›

LpHq ď Cj,δ, (5.21)

›

›Θ´δ
j´1TjΠ

`
j Θ

δ´νj
j

›

›

LpHq ď Cj,δ. (5.22)

Let

ν “
n
ÿ

j“1

νj, σ` “
n´1
ÿ

j“1

νj ` σn, σ´ “ σ1 `
n
ÿ

j“2

νj.
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Assume that N ą ν. We set Π´ “ Π´
0 and Π` “ Π`

n . There exists a collection of
constants C “ tC; pCδ´,δ`q; pC´

δ q; pC`
δ qu which only depend on the constants Cj, 1 ď j ď

n and such that
›

›Θ
´σ`

0 TΘ´σ´
n

›

›

LpHq ď C, (5.23)

for δ´, δ` ě 0 such that δ´ ` δ` ă N ´ ν we have
›

›Θ
δ´

0 Π´TΠ`Θ
δ`
n

›

›

LpHq ď Cδ´,δ`, (5.24)

for δ P rσ´, N r we have
›

›

›
Θδ´ν

0 Π´TΘ
´δ
n

›

›

›

LpHq
ď C´

δ , (5.25)

and finally, for δ P rσ`, N r we have
›

›

›
Θ´δ

0 TΠ`Θ
δ´ν
n

›

›

›

LpHq
ď C`

δ . (5.26)

Proof. The result is proved by induction on n P N
˚, the case n “ 1 being the assumption.

For n ě 2 we set T 1 “ T1 . . . Tn´1, Π1
˘ “ Π˘

n´1, Θ “ Θn´1, ν
1 “ ν1 ` ¨ ¨ ¨ ` νn´1,

σ1
` “ ν1 ` ¨ ¨ ¨ ` νn´2 ` σn´1 and σ1

´ “ σ1 ` ν2 ` ¨ ¨ ¨ ` νn´1. To prove (5.23)-(5.26)
we insert the sum Π1

´ ` Π1
` between T 1 and Tn, and for each term we insert a factor

ΘγΘ´γ for a suitable γ P R (on the left of Π1
´ and on the right of Π1

`). More precisely,
for (5.23) we write

›

›

›
Θ

´σ`

0 TΘ´σ´
n

›

›

›
ď
›

›

›
Θ

´σ`

0 T 1Θ´σ1
´

›

›

›

›

›

›
Θσ1

´Π1
´TnΘ

´σ´
n

›

›

›

`
›

›

›
Θ

´σ`

0 T 1Π1
`Θ

σn

›

›

›

›

›Θ´σnTnΘ
´σ´
n

›

› .

Then we apply (5.21) and (5.19) for Tn, and (5.23) and (5.26) for T 1. Similarly, for
(5.24) we write

›

›Θ
δ´

0 Π´TΠ`Θ
δ`
n

›

› ď
›

›Θ
δ´

0 Π´T
1Θ´pδ´`ν1q›

›

›

›Θδ´`ν1
Π1

´TnΠ`Θ
δ`
n

›

›

ď
›

›Θ
δ´

0 Π´T
1Π1

`Θ
δ``νn

›

›

›

›Θ´pδ``νnqTnΠ`Θ
δ`
n

›

›,

and we apply (5.20) and (5.22) for Tn and (5.25) and (5.24) for T 1. Finally, for δ P rσ´, N s
we have

›

›

›
Θδ´ν

0 Π´TΘ
´δ
n

›

›

›
ď
›

›

›
Θδ´ν

0 Π´T
1Θ´pδ´νnq

›

›

›

›

›

›
Θδ´νnΠ1

´TnΘ
´δ
n

›

›

›

`
›

›

›
Θδ´ν

0 Π´T
1Π1

`Θ
σn

›

›

›

›

›

›
Θ´σnTnΘ

´δ
n

›

›

›

and, for δ P rσ`, N s,
›

›

›
Θ´δ

0 TΠ`Θ
δ´ν
n

›

›

›
ď
›

›

›
Θ´δ

0 T 1Θ´σ1
´

›

›

›

›

›

›
Θσ1

´Π1
´TnΠ`Θ

δ´ν
n

›

›

›

`
›

›

›
Θ´δ

0 T 1Π1
`Θ

δ´ν1
›

›

›

›

›

›
Θ´pδ´ν1qTnΠ`Θ

δ´ν
n

›

›

›
.

We deduce (5.25) and (5.26), and the result follows by induction. �

It is important that the constants in the conclusion of the lemma only depend on
the constants in the assumptions. Thus if for some operators Tjpzq, 1 ď j ď n, the
estimates (5.19)-(5.21) are independant of the parameter z, then so are the estimates
(5.23)-(5.26).

We will usually apply Lemma 5.5 with Θj “ 〈A〉, Π´
j “ 1R

˚
´

pAq and Π`
j “ 1R`pAq,

where A is the conjugate operator.
With Proposition 5.3 and Lemma 5.5 we can prove Theorem 2.3. Notice that we have

used all the assumptions of Definition 5.1 to prove Proposition 5.3, but for the rest of the
proof we no longer need a conjugate operator and only use the estimates of Proposition
5.3.
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Proof of Theorem 2.3. For z P D
`
R we apply Lemma 5.5 with factors Tj of the form w

or |z|2Rpzq and constants independant of z. For factors Tj “ w we take νj “ σj “ 0

by Lemma 3.7 and Proposition 3.11, while for factors Tj “ |z|2Rpzq we can choose

νj “ 1 and any σj P
‰

1
2
, 1
‰

by Proposition 5.3. Then the assumptions of Lemma 5.5 hold

uniformly in z P D
`
R . In particular, (5.23) gives (2.10) for z P D

`
R .

We turn to (2.11). If n1, n2 ě 2 we use the resolvent identity (see (2.12) for Rrn1spzq)
to write

Rrn1spzqθσpzqRrn2s
0 pzq

“
`

Rrn1´1spzq ` p1 ` ẑ2qRrn1spzq
˘

θ̃σpzq
`

R
rn2´1s
0 pzq ` p1 ` ẑ2qRrn2s

0 pzq
˘

with θ̃σpzq “ wRr1spirqθσpzqRr1s
0 pirq (r “ |z|). Since |z|´ρ θ̃σpzq belongs to CN

Az
pL2q with

a norm uniform in z P DR, we deduce (2.11) for z P D
`
R . The proof is similar if n1 “ 1

or n2 “ 1.
We similarly prove, for z P D

`
R
,

›

›

›
〈Az〉

´δ R
rn2s
0 pzqθσpzqRrn1spzq 〈Az〉

´δ
›

›

›

LpL2q
À |z|ρ . (5.27)

Taking the adjoint in (2.10) and (5.27), we get (2.10) and (2.11) for z P D
´
R
, and the

proof of Theorem 2.3 is complete. �

5.4. Proof of the abstract resolvent estimates. In this paragraph we prove Theo-
rem 5.2. The strategy is inpired by the original papers [Mou81, JMP84, Jen85] and the
earlier dissipative versions [Roy10, BR14, Roy16], but we need a proof adapted to our
setting. We use the notation introduced in Paragraph 5.1.

For ε P r0, 1s we set

Qε “ Q´ iεΠ˚MΠ P L̄pK,K˚q.
By (H5), Qε has a negative imaginary part. We set Rε “ Q´1

ε P L̄pK˚,Kq. We prove
estimates on Rε for ε Ps0, 1s. At the limit ε Ñ 0 this will give estimates for R “ Q´1.
Note that by Assumptions (H3)-(H4) and Proposition 3.10 we have Qε P C̄1

ApK,K˚q. In
the following proposition, we check that Rε also has a nice behavior with respect to A.

Proposition 5.6. (i) DK is dense in K.
(ii) For ε Ps0, 1s we have Rε P C̄1

ApK˚,Kq with adApRεq “ ´RεadApQεqRε.
(iii) Rε maps DH to DK and D˚

K to D˚
H for all ε Ps0, 1s.

Proof. ‚ Assumption (H2) holds for any θ P R and the restriction of e´iθA defines a
one-parameter group pTKpθqqθPR on K. Taking the adjoint also gives a one-parameter
group pT ˚

KpθqqθPR on K˚, and for all θ P R the restriction of T ˚
Kpθq to H is eitA. Since H

is dense in K˚, we can check that pT ˚
Kpθqq is strongly continuous on K˚. Then pTKpθqq

is weakly continuous, and hence strongly continuous (see [EN00, Th. I.5.8]). Finally
we check that the generator of pTKpθqq is AK, defined on the domain DK. This gives in
particular the first statement by [EN00, Th. II.1.4].

‚ There exists C ě 1 and ω ě 0 such that }TKpθq}LpKq ď Ceω|θ| for all θ P R (see

[EN00, Prop. I.5.5]). Then ([EN00, Th. II.1.10]) for |Impλq| ą ω we have λ P ρpAKq and
›

›pAK ´ λq´1
›

›

LpKq ď C

|Impλq| ´ ω
.

In particular AKpAK ´ iµq´1 and ´iµpAK ´ iµq´1 go strongly to 0 and IdK, respectively,
as µ goes to ˘8.
‚ For µ ą ω we set AKpµq “ ´iµAKpAK ´ iµq´1 P LpKq. In L̄pK˚,Kq we have

RεAKp´µq˚ ´AKpµqRε “ Rε

`

AKp´µq˚Qε ´QεAKpµq
˘

Rε, (5.28)
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and in L̄pK,K˚q,
AKp´µq˚Qε ´QεAKpµq

“ iµpA˚
K ´ iµq´1

`

A˚
KQε ´QεAK

˘

iµpAK ´ iµq´1

´iµpA˚
K ´ iµq´1A˚

KQεpiµpAK ´ iµq´1 ` 1q
`
`

iµpA˚
K ´ iµq´1 ` 1

˘

QεAKiµpAK ´ iµq´1.

This goes strongly to ´adApQεq as µ Ñ `8. Then, taking the strong limit in (5.28)
gives in L̄pDK˚ ,D˚

K˚ q
RεA

˚
K ´A˚

KRε “ ´RεadApQεqRε P L̄pK˚,Kq.
This proves the second statement. By Proposition 3.10, Rε maps DK˚ (and in particular
DH) to DK. We similarly prove that R˚

ε maps DH to DK, so Rε also maps D˚
K to D˚

H. �

The Mourre method relies on the so-called quadratic estimates. Here we will use the
following version:

Proposition 5.7. Let Q̃ P L̄pK,K˚q be dissipative. We assume that Q̃ has an inverse

R̃ P L̄pK˚,Kq. Let Q̃` P L̄pK,K˚q be such that 0 ď Q̃` ď ´ImpQ̃q. Then we have

R̃˚Q̃`R̃ ď ImpR̃q and R̃Q̃`R̃
˚ ď ImpR̃q.

Proof. We simply observe that

R̃˚Q̃`R̃ ď R̃˚pQ̃˚ ´ Q̃qR̃
2i

“ R̃ ´ R̃˚

2i
“ ImpR̃q.

The second estimate is similar. �

Remark 5.8. Given two Banach spaces K1 and K2, T1 P LpK1,Kq and T2 P LpK2,Kq,
we have by the Cauchy-Schwarz inequality

}T ˚
1 Q`T2}L̄pK2,K

˚
1

q ď }T ˚
1 Q`T1}

1

2

L̄pK1,K
˚
1

q }T ˚
2 Q`T2}

1

2

L̄pK2,K
˚
2

q .

With Assumption (H5) we can apply the quadratic estimates to Rε. This gives the
following properties.

Proposition 5.9. Let K0 P tK,H,K˚u. Let Θ P LpK,K0q. There exists C ą 0 which
only depends on Υ and such that for all ε Ps0, 1s we have

}ΠRεΘ
˚}L̄pK˚

0
,Kq ` }ΘRεΠ

˚}L̄pK˚,K0q ď C?
ε

}ΘRεΘ
˚}

1

2

L̄pK˚
0
,K0q , (5.29)

}ΠKRεΘ
˚}L̄pK˚

0
,Kq ` }ΘRεΠ

˚
K}L̄pK˚,K0q ď C

ˆ

}Θ}LpK,K0q ` }ΘRεΘ
˚}

1

2

L̄pK˚
0
,K0q

˙

(5.30)

and

}RεΘ
˚}L̄pK˚

0
,Kq ` }ΘRε}L̄pK˚,K0q ď C

ˆ

}Θ}LpK,K0q ` 1?
ε

}ΘRεΘ
˚}

1

2

L̄pK˚
0
,K0q

˙

. (5.31)

Proof. ‚ By (H5) we have εΠ˚Π ď εΥRepΠ˚MΠq ď ´ΥImpQεq, so we can apply

Proposition 5.7 with Q̃ “ ΥQε and Q̃` “ εΠ˚Π. This gives

εΘR˚
εΠ

˚ΠRεΘ
˚ À ΘImpRεqΘ˚.

With (H4) we obtain for ϕ P K˚
0

}ΠRεΘ
˚ϕ}2K À }ΠRεΘ

˚ϕ}2H “ 〈ΘR˚
εΠ

˚ΠRεΘ
˚ϕ,ϕ〉K0,K

˚
0

À 1

ε
Im 〈ΘRεΘ

˚ϕ,ϕ〉K0,K
˚
0

.

This gives the first part of (5.29). Similarly,

}ΠR˚
εΘ

˚}L̄pK˚
0
,Kq À ε´ 1

2 }ΘRεΘ
˚}

1

2

L̄pK˚
0
,K0q .
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Taking the adjoint concludes the proof of (5.29).
‚ We have Qε “ QK ´iQ`

K ´iεΠ˚MΠ. With the resolvent identity we have in L̄pK˚
0 ,Kq

ΠKRεΘ
˚ “ ΠKRKΘ

˚ ` iΠKRKQ
`
KRεΘ

˚ ` iεΠKRKΠ
˚MΠRεΘ

˚. (5.32)

By Remark 5.8, (H4) and Proposition 5.7 applied with Q̃` “ Q`
K ď ´ImpQεq we have

›

›ΠKRKQ
`
KRεΘ

˚›
›

L̄pK˚
0
,Kq

ď
›

›ΠKRKQ
`
KpΠKRKq˚›

›

1

2

L̄pK˚,Kq
›

›ΘR˚
εQ

`
KRεΘ

˚›
›

1

2

L̄pK˚
0
,K0q

À }ΘRεΘ
˚}

1

2

L̄pK˚
0
,K0q .

On the other hand, by (H4), (H3) and (5.29),

ε }ΠKRKΠ
˚MΠRεΘ

˚}L̄pK˚
0
,Kq À ε }ΠRεΘ

˚}L̄pK˚
0
,Kq À

?
ε }ΘRεΘ

˚}
1

2

L̄pK˚
0
,K0q .

The first term in (5.32) is estimated by (H4), and the first part of (5.30) follows. As
above, we prove the same estimate for R˚

ε and get the second part by taking the adjoint.
Finally, (5.30) and (5.29) give (5.31). �

Now we can prove the first part of Theorem 5.2:

Proof of Estimate (5.1). Without loss of generality, we can assume that δ P
‰

1
2
, 1
‰

.

‚ For ε P r0, 1s we set Θε “ 〈A〉´δ 〈εA〉δ´1. This defines a bounded selfadjoint operator
on H and by the functional calculus we have

}Θε}LpHq ď 1, }AΘε}LpHq ` }ΘεA}LpHq À εδ´1 and
›

›Θ1
ε

›

›

LpHq À εδ´1, (5.33)

where we denote by a prime the derivative with respect to ε. We set Fε “ ΘεRεΘε. By
(5.33) and Proposition 5.9 applied with Θ “ Θε we get for ε Ps0, 1s

}Fε}LpHq ď }RεΘε}LpH,Kq À 1 `
}Fε}

1

2

LpHq?
ε

,

and hence

}Fε}LpHq À 1

ε
. (5.34)

The derivative of F is given by

F 1
ε “ Θ1

εRεΘε ` ΘεRεΘ
1
ε ` iΘεRεΠ

˚MΠRεΘε.

By (5.31) and (5.33) we have
›

›Θ1
εRεΘε ` ΘεRεΘ

1
ε

›

›

LpHq À εδ´1
`

1 ` ε´ 1

2 }Fε}
1

2

LpHq
˘

. (5.35)

For the last term we write in LpK,K˚q
Π˚MΠ “ M ´ Π˚MΠK ´ Π˚

KM.

By Proposition 5.9 and (H3)-(H4) for M we have

}ΘεRεΠ
˚MΠKRεΘε}LpHq ` }ΘεRεΠ

˚
KMRεΘε}LpHq À 1 `

}Fε}
1

2

LpHq?
ε

`
}Fε}LpHq?

ε
.

It remains to estimate ΘεRεMRεΘε. By Proposition 5.6 we can write

ΘεRεadApQqRεΘε “ ΘεRεpQAK ´A˚
KQqRεΘε

“ ΘεARεΘε ´ ΘεRεAΘε ` iεΘεRεadApΠ˚MΠqRεΘε.

With (5.33) and Proposition 5.9 we get

}ΘεRεadApQqRεΘε}LpHq À εδ´1 ` εδ´ 3

2 }Fε}
1

2

LpHq ` }Fε}LpHq .
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On the other hand, by Remark 5.8 and Proposition 5.7,

}ΘεRεQ`RεΘε}LpHq ď }ΘεRεQ`R
˚
εΘε}

1

2

LpHq }ΘεR
˚
εQ`RεΘε}

1

2

LpHq ď }Fε}LpHq .

All these estimates together give
›

›F 1
ε

›

›

LpHq À εδ´1 ` ε´ 1

2 }Fε}LpHq ` εδ´ 3

2 }Fε}
1

2

LpHq .

It is classical (see for instance Lemma 3.3 in [JMP84]) that this implies

}Fε}LpHq À 1. (5.36)

Taking the limit ε Ñ 0 gives (5.1). �

We continue with the proofs of Estimates (5.2) to (5.4). For ε P r0, 1s and N P N
˚ we

set

QN,ε “
N
ÿ

j“0

εj

j!
ad

j
ApQq P L̄pK,K˚q.

Proposition 5.10. Let N P N
˚. There exist εN Ps0, 1s and c ą 0 which only depend on

N and Υ such that for all ε Ps0, εN s the operator QN,ε has an inverse RN,ε P L̄pK˚,Kq
and

}RN,ε}L̄pK˚,Kq ď c

ε
,

›

›

›
RN,ε 〈A〉

´1
›

›

›

LpH,Kq
ď c?

ε
. (5.37)

Moreover, the function ε ÞÑ RN,ε is differentiable in LpDH,D
˚
Hq and

R1
N,ε “ RN,εAH ´A˚

HRN,ε ` εN

N !
RN,εad

N`1
A pQqRN,ε.

Proof. ‚ By Proposition 5.9 applied with K0 “ K and Θ “ IdK we have

}Rε}L̄pK˚,Kq À 1

ε
, and }ΠKRε}L̄pK˚,Kq ` }RεΠ

˚
K}L̄pK˚,Kq À 1?

ε
. (5.38)

With (5.36) and Proposition 5.9 applied with K0 “ H and Θ “ 〈A〉´1 we also get
›

›

›
Rε 〈A〉

´1
›

›

›

LpH,Kq
À 1?

ε
. (5.39)

‚ We have QN,ε “ Qε ` Pε ` P̃ε where

P̃ε “ iεβΠ˚Q`Π ` εΠ˚adApQqΠK `
N
ÿ

j“2

εj

j!
ad

j
ApQq and Pε “ εΠ˚

KadApQq.

We have }P̃ε}LpK,K˚q À ε and, by (5.38),

}P̃εRε}LpK˚q À ε }Q`ΠRε}LpK˚q ` ε }ΠKRε}LpK˚,Kq ` ε2 }Rε}LpK˚,Kq

À ε }Q`Rε}LpK˚q ` ε }Q`ΠKRε}LpK˚q `
?
ε.

By Remark 5.8 and Proposition 5.7 for the first term, and (5.38) for the second we get

}P̃εRε}LpK˚q À
?
ε.

In particular the operator IdK˚ ` P̃εRε is invertible in LpK˚q for ε small enough. Then

the operator Q̃ε “ Qε ` P̃ε is invertible and its inverse R̃ε is given by

R̃ε “ Rε ´RεpIdK˚ ` P̃εRεq´1P̃εRε.

With this expression we can check that R̃ε satisfies the same estimates (5.38)-(5.39) as
Rε. Similarly, we have }Pε}LpK,K˚q À ε and

}R̃εPε}LpKq À ε}R̃εΠ
˚
K}LpK˚,Kq À

?
ε.
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Thus for ε small enough the operator QN,ε “ Q̃ε ` Pε is invertible and its inverse RN,ε

is given by
RN,ε “ R̃ε ´ R̃εPεpIdK ` R̃εPεq´1R̃ε.

We deduce (5.37).
‚ For the last statement we observe that in L̄pK,K˚q we have

Q1
N,ε “ adApQN,εq ´ εN

N !
adN`1

A pQq.

As in Proposition 5.6 we can check that RN,ε P C̄1
ApK˚,Kq with adApRN,εq “ ´RN,εadApQN,εqRN,ε.

We deduce in L̄pK,K˚q

R1
N,ε “ ´RN,εQ

1
N,εRN,ε “ adApRN,εq ` εN

N !
RN,εad

N`1
A pQqRN,ε. �

Now we can finish the proof of Theorem 5.2.

Proof of Estimate (5.2). Let εN be given by Proposition 5.10. For ε Ps0, εN s we set in
LpHq

FN,ε “ 〈A〉δ1 eεA1R´pAqRN,ε1R`pAqe´εA 〈A〉δ2 .

Then in the strong sense we have

F 1
N,ε “ εN

N !
〈A〉δ1 eεA1R´pAqRN,εad

N`1
A pQqRN,ε1R`pAqe´εA 〈A〉δ2 .

By Proposition 5.10 and the functional calculus we deduce
›

›F 1
N,ε

›

›

LpHq À εN´δ1´2´δ2 .

Since N ´ δ1 ´ δ2 ´ 2 ą ´1, this proves that FN,ε is bounded in LpHq uniformly in
ε Ps0, εN s. �

Proof of Estimates (5.3) and (5.4). ‚ Let η ą 1. Let ε1 Ps0, 1s be given by Proposition
5.10. For ε Ps0, ε1s we set

F1,ε “ 1R´pAqeεAR1,ε 〈A〉
´η .

By Proposition 5.10 we have }F1,ε}LpHq À ε´ 1

2 . On the other hand we have

F 1
1,ε “ 1R´pAqeεAR1,εA 〈A〉´η ` ε1R´pAqeεAR1,εad

2
ApQqR1,ε 〈A〉

´η . (5.40)

By interpolation we have
›

›

›
1R´pAqeεAR1,ε 〈A〉

1´η
›

›

›

LpHq
ď
›

›1R´pAqeεAR1,ε

›

›

1

η

›

›

›
1R´pAqeεAR1,ε 〈A〉

´δ
›

›

›

1´ 1

η

À ε
´ 1

η }F1,ε}1´ 1

η .

For the second term in (5.40) we use (H3) and Proposition 5.10. Finally,
›

›F 1
1,ε

›

›

LpHq À ε´ 1

2 ` ε
´ 1

η }F1,ε}1´ 1

η ,

so F1,ε is bounded. At the limit ε Ñ 0 we get
›

›1R´pAqR 〈A〉´η
›

›

LpHq À 1. (5.41)

We similarly get a uniform bound for 1R`pAqR˚ 〈A〉´η. Taking the adjoint gives
›

›〈A〉´η R1R`pAq
›

›

LpHq À 1. (5.42)

‚ For I Ă R we write AI for 1IpAq. We prove that we have, uniformly in n,m P N,
›

›Arn,n`1rRArm,m`1r
›

›

LpHq À 1. (5.43)

We observe that for any λ P R the operator A´λ is also Υ-conjugated to Q up to order
N , so the estimates (5.1) and (5.2) hold with A replaced by A ´ λ uniformly in λ. In
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particular, with (5.1) applied to A´ n we get (5.43) when n “ m. This also holds with
R replaced by R˚. For the general case we write

Arn,n`1rRArm,m`1r “ Arn,n`1rAs´8,msRArm,m`1r `Arn,n`1rAsm,`8rR
˚Arm,m`1r

`Arn,n`1rAsm,`8rpR ´R˚qArm,m`1r.

The first two terms are estimated by (5.41) and (5.42) applied with A´m instead of A.
For the third term we observe that R ´ R˚ “ 2R˚Q`R is non-negative, so by Remark
5.8 we have

›

›Arn,n`1rpR ´R˚qArm,m`1r
›

›

LpHq

ď
›

›Arn,n`1rpR ´R˚qArn,n`1r
›

›

1

2

LpHq
›

›Arm,m`1rpR ´R˚qArm,m`1r
›

›

1

2

LpHq .

We can apply (5.43) already proved when n “ m to R and R˚, which concludes the
proof of (5.43) when n ‰ m.
‚ From (5.43) we deduce

›

›

›
Arn,n`1rRAr0,n`1r 〈A〉

δ´1 ψ
›

›

›

H
À

n
ÿ

m“0

〈m` 1〉δ´1
›

›Arm,m`1rψ
›

›

H
,

uniformly in n P N and ψ P H. Then, for ϕ,ψ P H,

ÿ

nPN

ˇ

ˇ

ˇ

〈

〈A〉´δ Arn,n`1rRAr0,n`1r 〈A〉
δ´1 ψ,ϕ

〉

H

ˇ

ˇ

ˇ

À
ÿ

nPN
〈n〉´δ

›

›Arn,n`1rϕ
›

›

H

n
ÿ

m“0

〈m` 1〉δ´1
›

›Arm,m`1rψ
›

›

H
À }ϕ}H }ψ}H . (5.44)

For the last step we have used the Cauchy-Schwarz inequality, Lemma 3.4 in [Jen85]
and the fact that the families pArn,n`1rϕqnPN and pArm,m`1rψq0ďmďn are orthogonal in
H.
‚ Now we prove

ÿ

nPN

ˇ

ˇ

ˇ

〈

〈A〉´δ Arn,n`1rRArn`1,`8r 〈A〉
δ´1 ψ,ϕ

〉

H

ˇ

ˇ

ˇ
À }ϕ}H }ψ}H . (5.45)

If δ ď 1 this is a consequence of (5.2) applied to A ´ pn ` 1q. If 1 ă δ ă N we observe

that
›

› 〈A´ pn` 1q〉1´δ 〈A〉δ´1
›

›

LpHq À nδ´1 so, again by (5.2) applied to A´ pn` 1q,
ÿ

nPN

ˇ

ˇ

ˇ

〈

〈A〉´δ Arn,n`1rRArn`1,`8r 〈A〉
δ´1 ψ,ϕ

〉

H

ˇ

ˇ

ˇ
À

ÿ

nPN
n´δ

›

›Arn,n`1rϕ
›

›

H
nδ´1 }ψ}H ,

and (5.45) follows. With (5.44) we obtain
›

›

›
〈A〉´δ Ar0,`8rRAr0,`8r 〈A〉

δ´1
›

›

›

LpHq
À 1.

With (5.2) we finally get (5.3). The proof of (5.4) is similar. �

6. Local energy decay

In this section we show how the local energy decay of Theorem 1.3 can be deduced
from the resolvent estimates given by Theorem 1.1.

Proof of Theorem 1.3. ‚ Let f P S and µ Ps0, 1s. All along the proof we use the
notation ζ for τ ` iµ, where τ is a variable in R. For t ą 0 we have

e´itP f “ 1

2iπ

ż

R

e´itζpP ´ ζq´1f dτ.
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We consider χ` P C8pR, r0, 1sq equal to 0 on s ´ 8, 1s and equal to 1 on r2,`8r. For
τ P R we set χ´pτq “ χ`p´τq and χlow “ 1 ´ χ´pτq ´ χ`pτq. Then for ˚ P t´, low,`u
we set

u˚,µptq “ 1

2iπ

ż

R

χ˚pτqe´itζ pP ´ ζq´1f dτ.

We similarly define u0˚,µ with P replaced by P0 and f replaced by f0 “ wf .
‚ Let m P N

˚ such that
d` ρ1

2
ă m ă d ` ρ1

2
` 1.

We have δ ą m` 1
2
. After integrations by parts and using the uniform estimates for the

resolvent of P far from its spectrum, we see that

}pitqmu´,µptq}
L2 ď 1

2π

ż ´1

´8

›

›

›
e´itζBmτ

`

χ´pτqpP ´ ζq´1
˘

f
›

›

›
dτ À etµ }f}L2 ,

where the constant hidden in the symbol À is independant of µ. Similarly, using (1.5)
to estimate the derivatives of pP ´ ζq´1 near the positive real axis, we obtain

›

›pitqm 〈x〉´δ u`,µptq
›

›

L2 À etµ
›

› 〈x〉δ f
›

›

L2 .

We have similar estimates for u0´,µptq and u0`,µptq.
‚ By integrations by parts we have

pitqm´1
`

ulowptq ´ u0,lowptq
˘

“ 1

2iπ

ż

R

e´itζθpm´1q
µ pτq dτ,

where we have set

θµpτq “ χlowpτq
`

pP ´ ζq´1 ´ pP0 ´ ζq´1w
˘

f.

By Theorem 1.1 we have, uniformly in µ ą 0,
›

›

›
〈x〉´δ θpm´1q

µ pτq
›

›

›

L2

À |τ |
d`ρ1

2
´m

›

›

›
〈x〉δ f

›

›

›

L2

.

For t ě 1 we have on the one hand

›

›

›

›

›

ż t´1

´t´1

e´itζ 〈x〉´δ θpm´1q
µ pτq dτ

›

›

›

›

›

L2

À
ż t´1

´t´1

etµ |τ |
d`ρ1

2
´m

›

›

›
〈x〉δ f

›

›

›

L2

dτ À tm´1´ d`ρ1
2 etµ }f}L2,δ .

On the other hand, with another integration by parts,

t

›

›

›

›

›

ż

|τ |ět´1

e´itζ 〈x〉´δ θpm´1q
µ pτq dτ

›

›

›

›

›

L2

ď etµ
›

›

›
〈x〉´δ

`

θpm´1q
µ p´t´1q ´ θpm´1q

µ pt´1q
˘

›

›

›
` etµ

ż

t´1ď|τ |ď2

›

›

›
〈x〉´δ θpmq

µ pτq
›

›

›
dτ

À tm´ d`ρ1
2 etµ} 〈x〉δ f}L2 .

Finally,
›

›

›
〈x〉´δ

`

ulowptq ´ u0,lowptq
˘

›

›

›

L2

À etµ 〈t〉´ d`ρ1
2

›

› 〈x〉δ f
›

›

L2 .

All the estimates being uniform in µ ą 0, we can let µ go to 0 to conclude. �
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[DS09] J. Dereziński and E. Skibsted. Quantum scattering at low energies. J. Funct. Anal.,
257(6):1828–1920, 2009.

[EN00] K.J. Engel and R. Nagel. One-parameter semigroups for linear evolution equations. Springer,
2000.

[GH08] C. Guillarmou and A. Hassell. Resolvent at low energy and Riesz transform for Schrödinger
operators on asymptotically conic manifolds. I. Math. Ann., 341(4):859–896, 2008.

[GH09] C. Guillarmou and A. Hassell. Resolvent at low energy and Riesz transform for Schrödinger
operators on asymptotically conic manifolds. II. Ann. Inst. Fourier, 59(4):1553–1610, 2009.

[GHS13] C. Guillarmou, A. Hassell, and A. Sikora. Resolvent at low energy III: the spectral measure.
Trans. Amer. Math. Soc., 365(11):6103–6148, 2013.

[Jen85] A. Jensen. Propagation estimates for Schrödinger-type operators. Trans. A.M.S., 291(1):129–
144, 1985.

[JK79] A. Jensen and T. Kato. Spectral properties of Schrödinger operators and time-decay of the
wave functions. Duke Mathematical Journal, 59(3):583–611, 1979.

[JMP84] A. Jensen, E. Mourre, and P. Perry. Multiple commutator estimates and resolvent smoothness
in quantum scattering theory. Ann. Inst. H. Poincaré, 41(2):207–225, 1984.
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