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LOW FREQUENCY ASYMPTOTICS AND LOCAL ENERGY DECAY
FOR THE SCHRODINGER EQUATION

JULIEN ROYER

ABSTRACT. We prove low frequency resolvent estimates and local energy decay for the
Schrodinger equation in an asymptotically Euclidean setting. More precisely, we go
beyond the optimal estimates by comparing the resolvent of the perturbed Schrodinger
operator with the resolvent of the free Laplacian. This gives the leading term for the
developpement of this resolvent when the spectral parameter is close to 0. For this, we
show in particular how we can apply the usual commutators method for generalized
resolvents and simultaneously for different operators. Finally, we deduce similar results
for the large time asymptotics of the corresponding evolution problem.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Let d > 2. We consider on R¢ the Schrodinger equation

—i0u + Pu =0 R; x R?
wpu + Fu , on :lr X , (1.1)
u|t:0 = f7 on R s
where f e L? and P is a general Laplace operator. More precisely we set
1
P=———divG(x)V 1.2
A G@)Y. (12)

where w(z) and the symmetric matrix G(z) are smooth and uniformly positive functions:
there exists C' > 1 such that for all 2 € R? and ¢ € R? we have

CHEP < (G(a)€,&)pa < ClEF and C7' <w(z) <C.

We assume that P is associated to a long range perturbation of the flat metric. This
means that G(z) and w(x) are long range perturbations of Id and 1, respectively, in the
sense that for some py €]0, 1] there exist constants Cy, > 0, o € N?, such that for all
xzeRY,

|0%(G(x) — 1d)| + 0% (w(z) — 1)| < Cy () 071, (1.3)
Here and everywhere below we use the standard notation (x) = (1 + |x\2)% We also
denote by Ag the Laplace operator in divergence form corresponding to G:
Ag = divG(z)V.
This definition of P includes in particular the cases of the free Laplacian, a Laplacian

in divergence form, or a Laplace-Beltrami operator. We recall that the Laplace-Belbrami
operator associated to a metric g = (g; r)1<j k<d IS given by

d
1 0 1 0
Pp=———5 > = 9@ ¢F ()5,
l9(@)|7 ;a2 0% O
where |g(z)| = |det(g(z))| and (¢"*(z))1<jk<a = g(z)"'. Then P, is of the form (1.2)

with w = |g|% and G = |g|% g L.
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2 JULIEN ROYER

After a Fourier transform with respect to time, (1.1) can be rewritten as a frequency
dependent (stationary) problem. In this paper, we are mainly interested in the contri-
bution of low frequencies. More precisely, we study the behavior of the corresponding
resolvent and its powers when the spectral parameter approaches 0. Then, using the
already known results for the contribution of high frequencies, we will discuss the large
time behavior of the solution of (1.1).

The operator P is defined on L? with domain H?. Its spectrum is the set R, of non-
negative real numbers. We are interested in the properties of the resolvent (P — ¢)~*
(and its powers) when ( is close to Ry. The limiting absorption principle (limit of the
resolvent when ¢ goes to some A\ > 0) is an important topic in mathematical physics
and is now well understood. In particular, it is known that if K is a compact subset of
C*, then for n e N* and 0 > n — % the operator

(@) (P=¢) " (@)°
is uniformly bounded in £(L?) for ( € K\Ry. From this result, we can deduce that
the contribution of a compact interval of positive frequencies for the time dependant
problem decays faster than any negative power of time in suitable weighted L?-spaces.

The contribution of high frequencies for (1.1) depends on the properties of (P —¢)~"
for ¢ large (Re(¢) » 1 and 0 < Im(¢) « 1). These properties depend themselves on
the geometry of the problem, and more precisely on the classical trajectories of the
corresponding Hamiltonian problem.

We always have as much decay for the solution of (1.1) as we wish if we allow a
loss of regularity for the initial data. This decay is in fact uniform in weighted LZ2-
spaces under the usual non-trapping condition. We denote by ¢' the geodesic flow
corresponding to the metric G™' on R* ~ T*R?. For (z,&) € R* and t € R we
set ¢'(xo, &) = (z(t, z0,&0),E(t, 20,&0)). Then we have non-trapping if all the classical
trajectories escape to infinity:

¥(w0,60) € RY x (RN {0}),  [a(t, 20, &)

T T (1.4)

We set
Ci={CeC:Im({)>0}, D={(eC:[{|]<1}, Dy=DnC,.

Under the assumption (1.4), it is known that for n € N* and § > n —  there exists
¢ > 0 such that for ¢ € C\(R; u D) we have

(@ P-0™ @7 <

L(L?) m%'

C

(1.5)

The proof is based on semiclassical analysis. We refer for instance to [RT87] for a
Schrodinger operator with a potential, to [Bur02] for a general compactly supported
perturbation of the Laplacian in an exterior domain and to [Boulla] for a long range
perturbation of the flat metric.

The analysis of low frequencies is more recent. We first recall that given R > 0 the
behavior of the localized resolvent for the free Laplacian at ¢ € C\R is given by

|<|min(0,%fn) if n # %l’

[log(¢)] if n= %l

|1 pr) (Po — C)_n]lB(R)HL(Lz) < { (1.6)

Estimates of the resolvent near 0 for a long range perturbation of the free Laplacien
have first been proved in [Boullb| (operator in divergence form), [BH10] (Laplace-
Beltrami operator) and [Boulla] (estimates for the powers of the resolvent). Earlier
papers also considered the limiting absorption principle at zero energy in some particular
settings (see for instance [Wan06, DS09] and references therein). For a similar result
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in a non-selfadjoint setting we also refer to [KR17], and in a more general geometrical
setting we mention [GHO8, GH09, GHS13] and [BR15].

The optimal estimates for these powers have finally been proved in the recent pa-
per [BB21]. More precisely, it is proved that the estimates for the resolvent of the
Schrodinger operator P are the same as for the free Laplacian in (1.6).

In this paper we go beyond this optimal estimate and give the asymptotic profile of
(P —¢)~! at the limit ¢ — 0, in the sense that the difference between the resolvent and
the profile is smaller than the resolvent or the profile themselves.

Such asymptotic expansions of the resolvent at the low frequency limit have already
been studied for a Schrdodinger operator with potential. We refer for instance to [JK79].
We also mention the more recent papers [Wan20] and [Aaf21] for complex-valued poten-
tials. The difficulty in these cases is that one might have an eigenvalue or a resonance
at the bottom of the spectrum, which gives a singularity for the resolvent. This is why
these results require much stronger decay assumption on the potential.

We already know that the size of the powers of the resolvent for the Schrédinger
operator is the same as for the free Laplacian Py = —A. We prove that, at the first
order, they are actually given by the powers of this model operator modified by the
factor w. More precisely, our main result is the following.

Theorem 1.1. Let p; € [0, po[, n € N* and § > n+ % There exists C > 0 such that for
¢ € D\R we have
-5 —n —n -5 min(0, 221 _p)
P — — (P — H <C 2 .
(@) (P =07 = (B =0 ") ()], <CIC

This proves that for ¢ close to 0 the difference between (P —¢)™" and (Py— () "w is
smaller that (Py — ¢) "w (see (1.6)). We deduce in particular that (P — {)~" behaves
in weighted spaces exactly as (Py — {)""w at the low frequency limit. As a corollary,
we recover the optimal estimate for the resolvent as given in [BB21].

Corollary 1.2. Let ne N* and 6 > n + % There exists C > 0 such that for ¢ € D\Ry
we have o
PO i 2,

log()] =2

As usual for this kind of resolvent estimates, the proof will rely in particular on the
Mourre commutators method. To prove our result we show that this method can be
applied with much more flexibility than usual.

We have to apply the result simultaneously for P and Fy. One of the difficulty is that
P is selfadjoint the weighted space L2, = L?(w dz) while Py is selfadjoint on L?. Thus,
unless w = 1, the operators P and P, are not selfadjoint on the same Hilbert space.

For this reason, we do not estimate the resolvent of P in L2, but stay in the usual L?
space. Then P is no longer selfadjoint, but we can rewrite its resolvent as

(P=O7" = (-A¢ — Cw) . (1.8)

Now the difficulty is that (—Ag — (w)~! is not a resolvent in the usual sense, and in
particular its derivatives are no longer given by its powers. We will see that it is not
necessary to apply the Mourre method to a resolvent. We will just see (—Ag — Cw) ™!
as the inverse of a parameter-dependant dissipative operator. In particular, even if we
discuss a selfadjoint operator, our proof never really uses this selfadjointness and our
method is robust with respect to non-selfadjoint (dissipative) perturbations. This is
important in the perspective to apply the same method to different models.

Finally, we do not apply the Mourre method to a power of the resolvent of some
operator, but to the product of some different parameter-dependant operators. Some of

(@) (P=O) @) <C (1.7)
L(L2)
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the factors will be of the form (—Ag —(w) ™! as discussed above, there will be resolvents
of Py, but we will also have the factor w which appears in (1.8) and factors comming
from the difference (—Ag — (w) — (=A — ().

The smallness at infinity of the corresponding coefficients given by (1.3) will play a
crucial role in the proof of Theorem 1.1. In particular, it is usual to use decaying weights
on both sides of the resolvent, but here we will also have to use the weights which appear
between the resolvents.

Note that replacing (P — ¢)~! by (=Ag — (w)~lw is not Just a technical issue. It
is really (—Ag — (w)~! that we can compare with (—A — ()71, and (1.8) explains the
additional factor w in the estimates of Theorem 1.1.

Now we discuss one of the important applications of the resolvent estimates, namely
the analysis of the large time behavior for the time dependent problem (1.1).

After Theorem 1.1, it is expected that for large times the solution of (1.1) should be-
have in weighted spaces like a solution of the free Schrodinger equation, with a different
initial condition.

The model problem is

{i&tuo — Aug =0, on R, x R,

1.9
u0|t=0 = f07 on Rda ( )

where fo € L?. The L?-norm of the solution wug(t) is constant but, given R > 0, there
exists a constant C' > 0 such that if fy is compactly supported in the ball B(R) then
the energy of the solution wug of the free Schrédinger equation satisfies

VE= 0, [Lpmyuo()] L. < C )% ol

Moreover this estimate is optimal (see [BB21]). The local energy decay has been proved
for various perturbations of this model case, see for instance [Rau78, Tsu84]. For a long
range perturbation of the metric and under the non-trapping condition, local energy
decay has been proved in [Boulla, BH12] with a loss of size O(t°). The optimal decay

at rate O(t_%) has then been proved in [BB21].

Again, our purpose is to go further and to give the large time asymptotic profile for
the solution u of (1.1). Since the contribution of high frequencies decays very fast under
the non-trapping condition, the large time behavior of u depends on the contribution of
low frequencies. Then, with Theorem 1.1 we will see that for large times the solution u
looks like a solution of the free Schrédinger equation (1.9):

Theorem 1.3. Assume that the non-trapping condition (1.4) holds. Let p1 € [0, po| and
0= % + 2. There exists C = 0 such that fort = 0 we have
§ —itP _ —itPy —5” <C —%—%
x) (e e w) (x <O (t .
@) ( ) @7 e <0
This statement says that for ¢ large the solution u of (1.1) is close in weighted spaces
to the solution of (1.9) with fy = wf. In particular, since we know that e~ 0w decays

like t~% in [Z(LQ"; , LQ’*‘S), we recover the optimal local energy decay for u.

+ 2.

[\CIsH

Corollary 1.4. Assume that the non-trapping condition (1.4) holds. Let 0 =
There exists C' = 0 such that for t = 0 we have

|7 @]y < 0007
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Organization of the paper. After this introduction, we give in Section 2 the main
arguments for the proofs of Theorem 1.1. The proofs of the intermediate results are
then given in the following three sections. In particular we improve and apply the
commutators method in Section 5. Finally we prove Theorem 1.3 in Section 6.

2. STRATEGY FOR LOW FREQUENCY ASYMPTOTICS
In this section we explain how Theorem 1.1 is proved. We only give the main steps,

and the details will be postponed to the following three sections.

2.1. Difference of the resolvents. We recall that the operator P was defined on L?
by (1.2), with domain H2. This is a non-negative and selfadjoint operator on L2, and
its resolvent (P—¢)~! is well defined for any ¢ € C\R; with norm dist(¢, R, )~!in £(L2).

For z € D, we set P(z) = —Ag — z%w and
R(z) = (P -2 tw™! = (~Ag — 2%w)™ L.
In order to have consistent notation, we also set
Py(z) = —A— 2% and Ry(z) = (—A —22)7L
For n e N* and z € D, we set

RIM(2) = o (P — 22) 7w ™! = 2" (R(2)w)" ™"

R(z) (2.1)
and
RI(z) = 122" Ro(2)".

Since w defines a bounded operator on the weighted space L2 = L2((z)? dz), the
estimate of Theorem 1.1 is equivalent, for a possibly different constant C' > 0, to

R R

It is usual in this kind of context to estimate powers (in particular products) of
resolvents. The first step is to rewrite the difference RI™(z) — R([)m](z) as a sum of
products of factors R(z) and Ry(z).

Lemma 2.1. For n e N* and z € D, we have

n—1
R["](z) _ Rgn](z) _ R[nfk](z)(w . 1)R([)k](z)
k=1
N glik1l ) PE) = Ro2) pik
T

Proof. By the resolvent identity we have
R(z) — Ro(2) = —R(2)(P(2) — Po(2)) Ro(2)
(this gives the case n = 1), and hence
R(2)w — Ro(z) = R(2)(w — 1) — R(2)(P(z) — Po(2)) Ro(2).
Since for n € N* we have
RUU(z) = R (2) = 2 R(2)w(RM(2) - R (2)
+ 12l (B(z)w — Ro(2)) By (2),

the lemma follows by induction. O
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For z € D, we set

P(z) — P
() == ) = T (23
z
(of course 6y(z) does not depend on z, but it will be convenient to have analogous
notation for these two operators). Then, by Lemma 2.1, we have to estimate operators
of the form

R ()0,(2) R (2), 0e{01), 1<k<n-1+o (2:4)

These operators are now products of resolvents of the form R(z) or Ry(z), with inserted
factors w, 6p(z) or 01(z). The additional smallness in (2.2) compared to the estimates

of RI™(z) or R([)m](z) alone will come from the smallness (in a suitable sense) of the

factors 0p(z) and 61(z).

The estimate (2.2) and hence Theorem 1.1 are then consequences of the following
result.

Proposition 2.2. Let p; € [0, po[. Let ny,ny € N*, 0 € {0,1} and 6 > ny; +ny—o + %
Then there exists C > 0 such that for z € D, we have

H <x>75 R[nl] (Z)HJ(Z)R([]nQ] (Z) <x>75H£(L2) <C |Z|min(d+p1,2n1+2ngf2o) ) (2‘5)
2.2. Estimates given by the commutators method. It will be the purpose of Sec-
tion 5 to prove that we can apply the Mourre commutators method to operators of the
form (2.4).

It is usual for a Schrédinger operator that this method gives uniform estimates for
the resolvent near a positive frequency. Near 0, the size of the weighted resolvent is as
required uniform with respect to the imaginary part of the spectral parameter, but the
estimate blows up if its real part also goes to 0.

It is standard that an important role is played by the generator of dilations

AV 44V - id
Aosz A (2.6)
2 2
Here we will not apply the commutators method directly with the operator Ay as
the conjugate operator. Since P(z) is a small perturbation of Py(z) only at infinity,
we will use as in [BB21] a version of Ag localized at infinity. More precisely, for some
x € CP(RY,[0,1]) equal to 1 on a neighborhood of 0, we consider the operator
1-— AVAE AV A0
AX:_( X)z -3V + 4V -l —x) 27)
2
Its domain is the set of u € L? such that (1 — x(z))(x - V)u € L? in the sense of distri-
butions. This is also a selfadjoint operator on L? and for § € R, v € L? and z € R? we
have

—i 1
(e ) (z) = det(dy 0 (2)) Fuld? (2). (23)
where 0 — ¢ is the flow corresponding to the vector field (1 — x(z))z.

For r € D, and z € R? we set x,.(x) = x(rz). We will work with the operator
Ap = Ay,. For z €D we set x, = x|, and

A=A, (2.9)

With the rescaled versions of the resolvents, the estimates given by the commutators
method read as follows.
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Theorem 2.3. (i) Letn € N* and § > n—3. There exists C > 0 such that for z € Dy
we have

H (A)7° R () (4,)~° Hqu) <c. (2.10)

(i) Let p € [0,po[. Let ni,no € N* and § > ny +ny — 3. Let o € {0,1}. There exists
C > 0 such that for z € Dy we have

(427 R0, () BE ) (4070 < CLeP- (2.11)

The proof of Theorem 2.3 is postponed to Section 5.

2.3. Elliptic regularity in the low frequency Sobolev spaces. Theorem 2.3 is not
enough to prove Proposition 2.2. As in [Boulla, BR14, Roy18] we use the gain of reg-
ularity to get some smallness when z is close to 0.

For z € Dy and r = |z| we have the resolvent identity
R(z) — R(ir) = (22 + r)R(ir)wR(z) = (2* + r*)R(2)wR(ir). (2.12)
These factors R(ir) will give the required regularity. Then we will use the weights <x>_6
to recover, in the end, estimates in £(L?).

The following two propositions will be proved in Section 4.

Proposition 2.4. Let p € [0,po[. Let n1,ny € N* and o € {0,1}. Let s1,s2 € [0,%[,
91 > s1 and 6y > so. There exists C > 0 such that for z € Dy and r = |z| we have
(@)™ R )0 (RE i) (2)72] ) Clafieresmeimineseo,

We observe that in Proposition 2.2 we work in weighted spaces, and the weight is
given by negative powers of x. But for the commutators method in Theorem 2.3 we
need negative powers of the generator of dilations A,, which also contains derivatives.
Thus we also have to use the regularity of R(ir) to turn estimates with weights <AZ>_6
into estimates with (z) .

Proposition 2.5. Let p € [0, po[ and o € {0,1}. Letse [0, %[ and§ > s. Let N,n € N*,
There exist Ny € N and C > 0 such that if N = Ny then for z €Dy and r = |z| we have

| ()0 RIN( ir)w(A Ve < Clal, (2.13)

H <w>“5R["](ir)9 ) (i) (A" |y < Cla™™, (2.14)
| (A @) (@) gy < Clal’, (2.15)

” <Az>5wR[N](ir)0 () @) (@) gy < Cl® (2.16)

To prove these two results, we will work in rescaled Sobolev spaces. We set D = v/—A
and, for r €]0,1], we define D, = D/r. Then for s € R we denote by H? and H? the
usual Sobolev spaces H® and H®, endowed repectively with the norms defined by

lallzze = 14D ull gz el = [ D7ulpe -

In particular
lullgrs =7 el s (2.17)

and for a € N and s € R the operator D = (—id,)® defines an operator from H? to
H; ol of gige rlal. Finally, for » > 0 we denote by O, the dilation defined by

Oyu(x) = T%u(m:). (2.18)
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Then O, is a unitary operator from H* to H? of from H*® to H?. For z € D, we set
H; =H, and O, = Oy,

=l

2.4. Proof of Theorem 1.1. Assuming Theorem 2.3 and Propositions 2.4 and 2.5 we
can now give a proof for Proposition 2.2. We recall that Proposition 2.2 implies Theorem
1.1.

Proof of Proposition 2.2. Let z € D.. We set r = |z| and Z = z/r. Let n € N*. With
(2.12) we can prove by induction on N € N that

N

RIM(z) = YT Cn7h(1+ 2™ RM (ir) (2.19)
+ > o+ AN RN inwRM(2). (2.20)
v=max(1l,n—N)
Similarly,
N
RNz = Y enzin+ 22 Ry (i) (2.21)
+ Y orra 2N R RM ). (2.22)

v=max(1l,n—N)

Assume that in (2.5) we replace RI"(z) and R([)m] (z) by terms of the form (2.19) and
(2.21), respectively. Then it is enough to prove that for some m; = ny and mg = ngy

H<x>75 R[ml](iT)HU(Z)R([]mQ](iT) <x>75H < |Z|min(d+p1,2(n1+n27¢7)) ) (2.23)
Given p €]p1, po[, this is a consequence of Proposition 2.4 applied with §; = d2 = ¢ and

d+p1—p

5 ,n1 + no — a) . (2.24)

31232=min(

Now assume that in (2.5) we replace R"1](z) and Rgm] (z) by terms of the form (2.20)
and (2.22), where N can be chosen as large as we wish. By (2.11), (2.13) and (2.15)
applied with s as in (2.24) we have for v; < ny, v9 < ng and Ny, Ny = Ny

H <1‘>75 R[Nl] (i?“)wR[Vl] (Z)HO(Z)R([]VQ] (Z)R([)NQ] (Z?”) <x>f5H < |Z|min(d+p1,2(n1+n27¢7)) )

Then we consider the case where R[™1(2) is replaced by a term of the form (2.20)

and R([]mﬂ(z) is replaced by a term of the form (2.21). In this case we have to estimate
an operator of the form

()70 RN (ir)yw RN (2)6, (2) R (ir) ()2,

where 11 < nq, mo = no, and Ny can be chosen arbitrarily large. If mo is too small,
we cannot apply (2.15) on the right of R[*1(2) (to which we apply Theorem 2.3). Then
we proceed with more resolvent identities. More precisely, we apply (2.19)-(2.20) to
RMI(2), replacing RN (ir)wRM(2) by RM(2)wRWN(ir) in (2.20). Now we have to
estimate terms of the form (2.23) or

(@)~ RV (iryw R (2)w R (ir)0, (2) R (i) ()~ |

with NV, Ny large, v < ny and mgy = no. For such a term, we apply Theorem 2.3 to the
factor R[¥1(2), and then (2.13) and (2.16) on each side.

Finally, if R"(2) is replaced by a term of the form (2.19) and R([)m] (z) by a term of
the form (2.22) we proceed as in the previous case. We omit the details. U
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3. PRELIMINARY RESULTS

In this section we give some preliminary results which will be used in the next two
sections. We fix p € [0, po[ and p €]p, pol.

3.1. Decaying coefficients. The gain |z|” in all the estimates involving 6,(z) (see
(2.11), (2.14), (2.16) and Proposition 2.4) is due to the decay of the coefficients given
by the assumption (1.3). We recall this property in this paragraph.

We fix an integer dy greater than %l. For k = 0 we denote by S™" the set of smooth
functions ¢ such that

|65 = sup sup | (z)""1*T 0% (z)| < +o0. (3.1)

\oz\<do zeR4
After conjugation by O, (see (2.18)), the following statement is Proposition 7.2 in
[BR14].

Proposition 3.1. Letse] —g,g[ and k = 0 be such thats—me] —5,5[ Let n > 0.

There exists C = 0 such that for ¢ € S~ ", uwe H® and r €]0,1] we have

|pull == < Cr™ P g |0l gz -
Remark 3.2. In particular, if ¢ € S7" for some 1 > 0, then for any s € ] — %l %[ the
multiplication by (1 + ¢) defines a bounded operator on H; uniformly in r €]0, 1].
Remark 3.3. In [BR14], Proposition 3.1 was only given for x < g, but if Kk = g we

necessarily have s — k < 0 < s and in this case we simply write, by the Sobolev
embeddings and the Holder inequality,

[¢ul gy < lullgg-n = ™" lGul v < v ol s o
SNl Nl 2a S TSl s nen [l s S 77 (@l g—nmn Nl gy (3:2)
S bl s—rn lul s -

Proposition 3.1 explains how the weights which appear in the resolvent estimates can
be used to convert some regularity into a power of the small spectral parameter z. As
a particular case of (3.2), we record the following estimates.

Lemma 3.4. Let s € [0, %] and § > s. There exists C > 0 such that for r €]0,1] we
have
_5 —0
| @) ez < Cr® and () | g2 sy < O

With Proposition 3.1 we also see that the decay of the coefficients in (1.3) gives
smallness for the operators 0,(z) defined in (2.3).

Proposition 3.5. Let p’ € [0,p] and s € | — %l + 0, %l[ There exists C > 0 which only
depends on s, p' and p such that for z € D, we have

0= U g gy rz-ory < C =gy 2P
and
2 2
[P) = B2 e e, < C (121G =l + o 0~ 154 )
In particular, for any s € ] — g, %[ we have

[P pggerr ey < 1+ C L (1G — gy + w0 — 1 50)
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Proof. The first estimate directly follows from Proposition 3.1 applied with x = p’ and
n=p—p >0. Then for j,k € {1,...,d} we have

2
HDj (Gj,k - 5j,k)Dk HL(H§+17H§*1*PI) < |Z‘ H(Gj,k‘ - 5j7k)”l:(H§,H287PI)
2 /
< 2| MY ”(Gj,k - 5j,k)||3_,3,
which gives the estimate on P(z) — Py(z). With p’ = 0 this gives the last property since
HPO(Z)||L(H§+17H§_1) = 1. O
In Proposition 4.2 below, we will apply Proposition 3.5 with p’ = 0 because we can
only pay two derivatives. Because of this, the difference between P(z) and Py(z) is not
small even for z close to 0, unless |G —Id|s-5 is. Since we have not assumed that this

is the case, we will write the perturbation G — Id as a sum of a small perturbation and
a compactly supported contribution which will be handled differently.

Lemma 3.6. Lety > 0. We can write G = Go+Gy where Gy € Ci° and |G — Id|g-5 <
7.

Proof. Let ¢ € C§° be equal to 1 on a neighborhood of 0. For ¢ > 0 and z € R? we set
¢e(x) = ¢(ex). Then (G — Id)¢. is always compactly supported, and on the other hand,

(G = 1d)(1 — ¢.)| g-5 < € P. We conclude by choosing e small enough and by setting
Go = (G —Id)¢- and G = Id + (G — Id)(1 — ¢.). O

3.2. Commutators. All along the proofs of the following two sections we are going to
use commutators of the different operators involved with the operators of multiplication
by the variables ; and the generator of dilations localized at infinity A.,.

Let T be a linear map on the Schwartz space S. For r €]0,1] and j € {1,...,d} we
set adyy;(T) = Troy —ra;T : S — S. For z € Dy we set ad;, = ad|2‘xj. Then for

p=(p1,...,p1q) € N we set (notice that ady;; and ad,;, commute for j, k€ {1,...,d})

B — qdHL . Hd
ad), = ad;; o---oad.d .

We fix x € Cf° equal to 1 on a neighborhood of 0 and we define A, by (2.7) and then
A, by (2.9).

We set adg .(T) = ads, (T) = TA, — A, T : S — S. Finally, for N € N we set Iy =
U {0,...,d}", and for J = (ji,...,jx) € Zn (with k € {0,..., N} and ji,...,jx €
{0,...,d}) we set

adzJ(T) = (adjhz Ot 0 adjkvz) (T).
And if for some s1, s € R the operator adg(T) defines a bounded operator from H:' to
H3? for all J € Iy, then we set

HTHc;V(Hﬁl,H?) = Z “ad;}(T)HE(Hﬁl,H?)'
JEIN

We write |Tlex (grsy for |Tllen (grs prsy- Notice that for Ty, Ty : § — S we have

12T llew arzn sy < | Thllew arer ey 1 ellew a2 sy - (3.3)
Note that we can rewrite AX as
-V id ) -V
A= (1 =x)40 + — X - —5 1 =x) = (1 =x)r iV + — X,
Then the commutators of A, with derivatives and multiplication operators are given by
[V, Ay] = i(1 = )z WV, (3.4)

and . .
[0j, Ay] = —i(1 = x)0; +i(9;x)(z - V) + g(ajx) + %(%‘(w - Vx))- (3.5)
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By induction on k € N we get in particular
. k
A];xj =z;(Ay —i(1—x)) (3.6)
Lemma 3.7. Let N € N and s € R. Let p' € [0,p]. There exists C > 0 such that the

following assertions hold for all z € D..

(i) If se | — g, %[, we have HGHc;V(Hg) < C and Hch;V(Hg) <C.

(i) If se | — 2+ p/, 2| then |G — Id”ch(Hg,Hj"") < Clz|° and ||w — 1”C;V(Hg,H§‘P') <
Clz”.
(iii) For j e {1,...,d} we have ||6chév(H§7st—1) < C|z| and Haj”c;V(Hiﬂ,Hg) < Clz|.

Proof. For G — |d we observe that, by (3.4) and Proposition 3.1,

N
IG — IdHcéV(H;stfp’) S Z—O H((l —xz)(@ - v))m(G - |d)H£(H§’H§7p/)

N
< l2” D] - V™G = 1d)] g5 -
m=0

This gives the estimate on (G — Id). The estimates on (w — 1), G and w are similar.
With (3.5) applied with x, (and (3.4)) we can check by induction on m € N that for
z € D, we have

adi’s_(9j) = (1 = x2)™0j + bjm([2[2) - V + |2| ¢jm(|2] 2),

where b; , : R? — C? and Cjm * R? — C are smooth and compactly supported. Then
multiplications by (1 — x.)™, bj.m(]z|z) and ¢;,(|2] ) define bounded operators on H?
uniformly in z € Dy for any s € R. This is clear for s € N and the general case follows
by interpolation and duality. This gives the last statement. U

With Lemma 3.7 and (3.3) we deduce the following result.

Proposition 3.8. Let s € | — g, g[, N e N and p' € [0, p]. There exists C > 0 such that
for z € Dy we have

2
IPGley e g1y < 12

Moreover, if s€ | — % + 0, %[ then for o € {0,1} we also have

/
HHO'(Z)Hcé\I(H;+17H§—l—p’) < C|Z|p .

Finally, it is known that the commutators method that we will use to prove Theorem
2.3 is based on the positivity of the commutator between the real part of the operator
under study and the conjugate operator (see (H5) in Definition 5.1 below). In Section
5 we will use the following result. For z € D, we set

Pr(z) = —Ag — wRe(2?) (3.7)
and
K(z) = [Pr(z),iA.] — 2(1 — x.) (Pr(2) + Re(2?)). (3.8)

Proposition 3.9. (i) There exists C > 0 such that the commutator [Pr(z), A.] ex-
tends to a bounded operator from H} to H, ! and H[PR(Z)7Az]HL(H1 u-y SC 2|2
(ii) There ezists C' > 0 such that for z € Dy we have

H(zx)g K(2) (zz)® <Oz,

L(HYHI')
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Proof. The first statement follows from Lemma 3.7 as Proposition 3.8. We prove the
second property. We have

K(2) = [-Aq,iA.] +2(1 — x2)Ag — Re(2?)[w,iA.] + 2(1 — x.)Re(2?)(w — 1).

The contributions of the last two terms are estimated in £(L?) with (3.4) and the decay
of w—1 and z - Vw. For the terms involving Ag we write

[Ag,iA] =21 = x2)Ag = D ([05i4.] = (1 — x2)05) G0k

1<jk<d

+ > 0i[Gjn iAo
1<j,k<d (3 9)

+ >, 0Gk([0kiA.] — (1 — x2)0%k)
1<j,k<d

— ) (9x:)Gik0%-
1<j k<d

For j, ke {1,...,d} we have
| (22)~ 2 0y (2x) Hz:(Hl 2y = |7l | (x) o (@ Hz:(Hl 2 S 2l

SO
| (z2)% (b1(12] @) - V + |2] ¢ja(l2] 7)) Gyl (220) HLHIH 1

4 £ 2
S l2l| G2) 8 (byallzl ) - ¥+ Ll ena(lzl @) () [ g gy S 12
This gives the estimate for the contribution of the first term in the right-hand side of
(3.9). The third term is estimated similarly. For the second we write
H <zx> 0i|Gjk, 1A:) 0k (2x)

2 P
gty < 1R ) (G il () [ ) 1212
and finally we observe that |0;x.|, < z| to prove that the last term in (3.9) is also of

size O(|z|%) in L(H], H;'). The proof is complete. O

We finish this paragraph with general considerations about commutators in an ab-
stract setting. Let H be a Hilbert space and let IC be a reflexive Banach space densely
and continuously embedded in H. We identify H with its dual.

We denote by L(K,K*) the space of semilinear maps from K to its dual £*. We
similarly define £(K*,K). In particular, £L(H,H*) is identified with £(H).

We consider a selfadjoint operator A on H with domain Dy < H (endowed with the
graph norm). Then A can also be seen as an operator Ay € L(Dy,H). Moreover, for
€ H we have ¢ € Dy if and only if A},p € H and in this case Ap = Aj,p. We set

Dk ={peKnDy : ApeK}. (3.10)
By restriction, A defines an operator Ax on K with domain Dx. Then Dy is endowed
with the graph norm of Ax. We can see Ax as an operator in £(Dx,K) and A} maps
K* to Dg.. We set
2 2 2
Dix ={peK* : Agpe K}, olp, ., = lelics + [Akelics

and for ¢ € Dix we set Axxp = Agp. We have Dx < Dy < Dgx. Moreover, for
Ko € {K,H,K*} we have

Dx, = {ngICO : A,*CakgoelCo},

and for ¢ € Di, we have A¥..o = Axyp.
0

Let K1, € {’C,H,’C*} We set Cg(’Cl,Kz) = £(IC1,IC2) and for S € L(ICl,ICg)
we set ad%(S) = S. Then, by induction on n € N*, we say that S € C%(Ky,Ky) if
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S e C% 1 (K1,Ks) and the commutator ad’y '(S)Ax, — A;"Cgadﬁfl(S) € E(DKl,D;‘%;)
extends to an operator ad’;(S) in £(K;,/2). Then we set

[Sllen ks 00y = é”adms)”c(m,m)'

We write C"(K;) for C"(K1,K1). We also write C% (K1, Ks) instead of C% (K1, K2) for

semi-linear operators.

The general properties which will be used in the sequel are the following.

Proposition 3.10. Let K1, K2, K3 € {K, H,K*}.
(i) For S e CL(K1,Ks) we have S* € CY(K3,K¥) and ada(S*) = —ada(S)*.
(ii) Let S € CY(K1,K2). Then S maps Dk, to Dk, and on Dy, we have

Aj, S = SAi, —ady(9). (3.11)
(iii) For Sy € C114(IC1,IC2) and Sy € C}4(IC2,’C3) we have S9S51 € C114(IC1,IC3) and
adA(SgSl) = SgadA(Sl) + adA(Sg)Sl. (3.12)

Proof. The first statement is clear. Let ¢ € Dx,. We have S¢ € K9 and
A,"&;Sgp = SAi,p —ada(S)p € Ka,

so Sy belongs to Dy, and (3.11) follows. Then, applying S to (3.11) gives

S9S1AKc, p — Sa Ak, S1p = S2ad 4 (S1)p.
Since S1¢ € Dx, we similarly have S257¢ € D, and

SoAic, S1p — Aicy S2S1¢ = ad4(S2)S10.
This proves that S357 € C}l(ICl,ICg) with ad 4(S251) given by (3.12). O

We finally recall from [BR14] the following result.

Proposition 3.11. Let N € N.
(i) Let 6 € [~N,N]. There exists C > 0 such that for S € CY (H) we have

é -0
[ 54477, < ClSleyen-
(ii) Let §_,84 = 0 such that 6_+6, < N. There exists C > 0 such that for S € CY (H)

we have

() 1R (4) ST, () (A)] < ClSleygn -

L(H)

Proof. The first statement is [BR14, Proposition 5.12] and second easily follows from
[BR14, Proposition 5.13]. O

4. ELLIPTIC REGULARITY

In this section we prove Propositions 2.4 and 2.5. The parameter p € [0, po[ is fixed
by these statements. We also fix p €]p, pol.

Proposition 2.4 will be given by (4.4) while Proposition 2.5 will follow from Proposi-
tion 4.3.(ii) and Proposition 4.4.

Let s € R. For r €]0,1] the resolvent Ry(ir) = r~2(D? + 1)~! defines a bounded
operator from H:~! to H:*! with norm r~2. More generally, if we set

D, = {zeID)+ arg(2) € [%%ﬂ]}
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then there exists ¢y > 0 such that for s € R and z € D we have

Co

Then, for k € N* and s, s’ € R such that s’ — s < 2k we have

|RY(2) 2P | Ro(2)* <d. (4.2)

Our first purpose is to prove a similar property for R(z). By the usual elliptic reg-
ularity this holds for any fixed z € D, the difficulty is to get uniform estimates for z
close to 0.

Hg(Hg,Hg’) =| HL(HZS,Hg’)

We cannot extend (4.1) to R(z) in full generality. We begin with the case s = 0.

Proposition 4.1. There exists ¢ > 0 such that for all z € D we have
B ezt < T

More generally, for N € N there exists cy > 0 such that for z € Dy we have
HR(Z)H(:;V(Hgl,H;) S é%

Proof. Let z € D and ¥, € [f z

; 37
e~"=P(z) defines an operator in £(
we have

] be such that arg(z) = § + .. The operator
1

s
3
H!, H; ') uniformly in z € D;. Moreover for u € H}

z)

Re <e_“92P(z)u, u>H71 = cos(9;) ((G(z)Vu, Vu) 2 + |2|? (wu, ) )

2112
2 |of2 Juls
The Lax-Milgram Theorem gives the first estimate.
Now let N e N. For J € Ty, we can write ad’ (R(z)) as a sum of terms of the form

R(z)ad? (P(2))R(2) ... ad *(P(z))R(z)

where k € N and Jy,...,J;y € Zy. The general statement follows from (3.3) and Propo-
sition 3.8. U

On the other hand, we have a result similar to (4.1) if G is a small perturbation of

the flat metric and s is not too large:
Proposition 4.2. Let s € ] — %,%[
|G —Id|g-5 <~ then for z € Dy we have

There exist v > 0 and ¢ > 0 such that if

C
”R(Z)||£(H§_1,H§+1) < W

More generally, for N € N there exists cy > 0 such that for z € Dy we have

CN
IR() e (21 oty < o

Proof. Let cg > 0 be given by (4.1). If |G — Id| -5 is small enough, then by Proposition

3.5 applied with p’ = 0 there exists ¢ €]0, 1] such that for z € Dy with |z] < ry we have
Els

Then

_ 2
IR £t gty = [(1+ Rol2) (P(2) = Po(2)) ™ Ro(@)] pygger preer) < |c‘°

For z € Dy with |z| = rp we use the standard elliptic estimates, and the first estimate is
proved. The second estimate follows as in the proof of Proposition 4.1. O
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The first part of the following result with 2’ = i |z| gives Proposition 2.4. With z = 2’
and s; = sy = 0 it also gives Theorem 2.3 for z € D (without any weight). The second
part of the result gives Proposition 2.5 with (zz)° instead of (A)°.

Proposition 4.3. Let s1,59,5 € [ [ 01 > 81, 02 > s9 and 6 > s. Let o € {0,1}. Let
ny,no,n € N*,
(i) There exists C > 0 such that for z € Dy and 2’ € Dy with |z| = |2'| we have

H (z)" RIM () (z) o S C' | mintesrtsn2n) (4.3)

H P RN (1) < Ol
(ii) There ezists C > 0 such that for z€ Dy and r = |z| we have

H<x>_6 Rl (ir)w (mc>5 ) < Cpmin(s2n) (4.5)

@)~ R As RGNy (ra)®] ) < ormineremaITin, - (4g)

Jtra) R (@) < o, (4.7)

[ R 0 RS (07 O,y

Proof. ¢ Let v > 0 to be chosen small enough. Let Gy and G be given by Lemma
3.6. Let Ry (2') and R([)g](z’) be defined as R(2') and RI™(2') with G replaced by Ge.
Then Proposition 4.2 applies to Ry (2').
o Let ay,as e N? with |aq], |az| < 1. We prove
H -5 DalR ]( /)DCVQ <£C>752 <C |Z|min(81+sz+|a1\+|a2\,2n) . (4‘9)
L(L?)

With a3 = ay = 0 this will give (4.3). Since we can choose s; and sy smaller, it is
enough to consider the case s, + so < 2n— |a1| — |ag|. We first prove (4.9) with R ()
replaced by R([].?] (2/). By Remark 3.2, the multiplication by w defines a bounded operator

on HY uniformly in z for any s € ] — 5, 5[ With Proposition 4.2, we obtain that the
operator R([)g](z’ ) is uniformly bounded in L£(H. if v > 0 was chosen
small enough, and then Do‘lRC[E]( "YD®2 is of size O(|z||a1‘+|a2‘) in L(H; %2, H:'). Then
(4.9) for Rgg](z’) follows from Lemma 3.4.

e Similarly, we prove (4.4) for RE.? 1](2’ ) with an additional derivative. Let o € N? with
|a] < 1. We consider the case s; + s2 < 2ny + 2ny — 20 — |a| — p. Assume that o = 0
oro=0o0orn;>1ors < Ql — p. Then there exists se] — % —i—p,g[ such that

52 oz HS1+|a1 \)

51+ |a| —2n14+0+p<s<—sy+2ny—o. (4.10)

Then R([]m]( "} is uniformly bounded in £(H} %2, H5*7), by Proposition 3.5 applied with
o' = p the operator 0,(z) is of size O(|z|”) in L(HST, H: 7 ") and finally DO‘R([;)”](Z’)
is of size O(|z]1*) in L(HS™7, Hs') if v > 0 is small enough. With Lemma 3.4 this
gives

H <1’>_61 DaRC[gl] (ZI)GU(Z)R([)HQ] (Z/) <1’>_62 min(s1+s2+p+|al,2n1+2n2—20) ) (411)

s |7l

Notice that this does not apply if o] =1, 0 = 1, n; = 1 and s7 > g — p, since then
there is no s smaller than % which satisfies (4.10).
e Now we finish the proof of (4.9). Using the resolvent identity

R(Z) = Roo(2') + Rop (2 ) Ay Roo (7)) + Rop (2 ) Ay R(2)) Ay R (7)),
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we check by induction on n € N* that we can write R[™(2') as a sum of terms of the
form
T() = R () Bu() R () Ba(?) . R () Byl B (),

where k € N, ng,...,n; € N* are such that ng +--- +nx =n+k, and for j € {1,...,k}
the operator B;(2') is equal to || > Ag, or || "> Ag,R(2')Ag,. By Proposition 4.1,
an operator of the form Dy, R(2')Dy,, 1 < {1,¢3 < d, extends to a bounded operator on
L? uniformly in 2’ € ;. Using (4.9) proved for Ry, the compactness of the support of
Go and the derivatives given by the operator Ag,, we obtain

d
< Z J\/gl,---,f%

H(xfél DT () DO ()~
01, lop=1

L(L2)

o (@)™ D REE) Dy (@)

H H - Dbj Ri[gj](Z/)DijH <$>752

(@) Dy, REH () D% ()

k—1

S |Z|72k |Z|min(81+82+|a1|+1,2n0) « H |Z|min(81+sz+2,2nj) | |m1n (s1+s2+1+|az|, 2nk)

z
j=1

We can check that this gives (4.9) if one of the minima is equal to the first argument.

Otherwise the sum of the powers of |z| is equal to —2k + Zj _o02n; = 2n. Then we also

have (4.9) and hence (4.3).

e For (4.4) we replace RI"(2’) by the following expression, also given by the resolvent

identity:

RI™l(2") = R RM () Ag, R FH1 (21, 4.12
)= R+ o ) ¢ )
The contribution of the term R([gl](z’ ) in (4.4) is already estimated by (4.11) applied

with @ = 0. We set s} = max(s;—1,0) < % —p and consider & > s{. Let k€ {1,...,m}.
By (4.9) and (4 11) we have

H )7 R A, RE ()60, () R () () 7

L(L?)

<! . —02
Sip 2 H () Dy, ()™

‘ H<w>* ' Dy, R0, (2) RE™ () ()~

g |Z|72 |Z|min(sl+82+1,2k) |Z|min(sll+32+1+p,2(n17k+1)+2n2720)

< |Z|m1n(sl+82+p,2n1+2n2720) )

This concludes the proof of (4.4).
e We turn to the proofs of (4.5)-(4.8). We can forget the factor w in (4.5) and (4.8)

since it commutes with (mc>5 and defines a bounded operator on L?. As above, for (4.5),
(4.6) and (4.8) we first give a proof for R (ir) with an additional derivative, and then
we deduce the general case with (4.12) and (4.9). We begin with (4.5). Let k£ € N and
B e N with |8] < 2k. Let a € N with |a| < 1. We can write (rz) ¥ DO‘RQg] (ir) (rz)?
as a sum of terms of the form

(ra)y” 2k (7“:6)513d52 (DO‘R[ ](zr))
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where 51 + 2 = 5. Assume that s < 2n —|a|. By Lemma 3.7, Proposition 4.2 and (3.3),
the operator ad? (DRI (ir)) is of size O(rl®l) in £(L?, H$). Since (rz) =2k (rz)P is
uniformly bounded in £(H?), this proves that (raz) 2" DR (ir) (rz)®* is of size O(r®)
in £(L? H?) for any k € N. By interpolation we get

(o) DR ) )]s

On the other hand, by Lemma 3.4,

—0 1) -0
o) )| S IO @) g 1)
-5 =
< (@) gz + 70| 121 (2) lez2y
<t
These estimates together prove
H <1’>_6 DO‘R(EQ] (ZT) <r1_>5H£(L2) < Tmin(s+|a|,2n). (413)
Ifm¢1ora=00rs<%l—porazO,wesimilarlyprove
H<x>—6 DO‘Rgg”] (iT)@O(Z)Rgn2] (ZT) <T1,>5H£(L2) < 7nmin(s+p+\o¢|,2n1Jr2n272<7). (4.14)

Finally, we also have (4.8) with R[™(ir) replaced by Rgg“](ir).
o Letke {1 ...,n}. By (4.9) and (4.13) we have

— H —0 poRlk zr)AGORggka] (ir) (rm)éH

d
1 _ }
= Y @ bRy,
l1,05=1
< T72rmin(s+|a\+1,2k)rmin(s+1,2(nfk+1))

A

(@)™ D RE i) (|

< Tmin(s+\o¢\,2n)

With (4.12) and (4.13) this proves

(@) DRI i) (ra)’” qu < pmin(stlal.2n) (4.15)
This gives (4.5). Similarly,
H <T1’>6 R[n] (iT)Da <x>—5H£(L2) < Tmin(s+|a|,2n). (416)

This gives (4.7) as a particular case.
e  We finish the proof of (4.6) as we did for (4.4). We set s’ = max(s — p,0) and for
Ee{l,...,n1} we use (4.9) and (4.14) to write

H (ir)Ag R£§1 kH](zr)HJ(z)R([)nQ](ir) (rm)éH
» i l(@)? RIir) Dy, ()0

1,b2=
< 7472rmin(s+p+1,2k)rmin(s’+1+p,2(n1 —k+1)+2n2—20)

<

; 0 Dy R ir)9, ) R i) ()]

< 7,,min(s—i—p,in +2n2—20)

Finally, the proof of (4.8) similarly follows from (4.12), the fact that it is already proved
for Ry and, for ke {1,...,n1}, (4.16) and (4.11) applied with s; =0 and sy =s. O
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To finish the proof of Proposition 2.5 we have to replace (rz)° by (A.)° in (4.5)-(4.8).
For this we use again the elliptic regularity to compensate the derivatives with appear

in (A,)°.
Proposition 4.4. Let § = 0 and let n be an even positive integer at least equal to §.
Then there exists C' > 0 such that all r €]0, 1] we have

H ()0 B (i { AT>5H <c, H< AN wRM i) (ra) 0 H <C

L£(L2) L£(L?)

Moreover, the same estimates hold with RU™ (ir) and w replaced by R([)n] (ir) and 1.

Proof. We prove the first estimate, the second is similar. We start by proving by induc-
tion on k € N that for n > k and p € N we have

<1 (4.17)

—k n|/; k
H(’I“$> adffx(R[ ](’LT’)’U))AT S

The case k = 0 is given by Proposition 4.1 (we use the convention that R (ir)w = Id).
Let k€ N* n >k and p € N%. We can write ad”, (R["] (ir)w) as a sum of terms of the
form ad®! (RI"~H(ir)w)ad#2 (R(ir)w) where p1 + pg = p. For such a term we have

<rm>_k adhl (R["_l] (ir)w)adff; (R(ir)w) Alﬁ

k
- Z (ra) " ad (R (ir)w) Alad’y 7 (ad!2 (R(ir)w)).

Jj=

o

For the contribution of j € {0, ...,k — 1} we apply the induction assumption, Proposition
4.1 and (3.4) to get a uniform bound in £(L?). Now we consider the term corresponding
to j = k. We have

. . d
_qix - Vx,r —d(1l — - -
Alﬁ:Alﬁ 1 Xr 5 ( Xr) +A7]f 1(1_Xr) E rzg - r LDy
/=1

The contribution of the first term is estimated as before (note that = - Vx, is uni-
formly bounded). Now let ¢ € {1,...,d}. By Proposition 4.1 again, the operator
r~1Dyad!2 (R(ir)w) extends to a uniformly bounded operator in £(L?). On the other
hand, by (3.6) we have

<T£C>7k adh! (R[”fl] (ir)w) Afflrxg
= (rw>_k adhl (R[”*l] (ir)w)rxg(Ar —i(1— XT))k*1
= rag (re)F ad® (R (i) w) (A, — i(1 — x,))F !
+ (ra) " ad,y, (ad® (R (i) ) (A, — i(1 — xi))F

Both terms are estimated with the induction assumption, and (4.17) is proved. With
u = 0 this gives the first estimate of the proposition when ¢ is an even integer. The
general case follows by interpolation. O

5. THE COMMUTATORS METHOD

In this section we prove Theorem 2.3. The proof relies on the abstract positive
commutators method. Compared to the already known versions, we show that we can
apply the result to operators like R(z) even though they are not exactly resolvents, and
that the estimates for the powers of the resolvent can in fact be applied to a product
of different operators. Notice that we will not use the selfadjointness of the original
operator P. The method is naturally adapted to dissipative operators.
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5.1. Abstract uniform estimates. Let H and K be as in the beginning of Section
3.2.

For Q € L(K,K*) we have Q* € L(K,K*). We set Re(Q) = (Q + Q*)/Q and
Im(Q) = (Q—Q%)/2i. We similarly define the real and imaginaly parts of R € L(K*,K).
We say that @ € L(K, K*) is non-negative if for all ¢ € K we have (Qep, ¢)jcx = 0, and

that R € £(K,K*) is non-negative if for all 1) € K* we have (1/),R1/)>,C*Jc > 0. Finally
we say that @ is dissipative if Im(Q) < 0.

We consider Q € £(K,K*) with negative imaginary part: there exists cg > 0 such
that

) Qi = ~Im(Q) > T,
where Z € L(C, £*) is the natural embedding. By the Lax-Milgram Theorem, @ has an
inverse in L(K*, K).

Let A be a selfadjoint operator on H. We use the notation of Section 3.2.

Definition 5.1. Let N € N* and T > 1. We say that A is T-conjugate to @ up to order

N if the following conditions are satisfied.

(H1) For ¢ € KK we have [¢ll; <Y o] -

(H2) For all # € [—1,1] the propagator e~**4 € £L(H) defines by restriction a bounded
operator on K.

(H3) Q belongs to C4 (K, K*) with ”QHC?X“(IC,IC*) < Y and Q4 belongs to C} (K, K*)
with Q1 e xoxy < T

(H4) There exist Q@ € L(K,K*) dissipative, QT € L(K,K*) non-negative and II €
CL(H,K) such that, with II; = ldx — T € L(K),

( ) Q QJ_ Z.Qla
(b) HQLHL (xs) S T, HHHCl ) < T, and for ¢ € H we have [Ig| . < T [Ip],,
(c) Q. has an inverse R; € L£(K* K) which satisfies LR [ zgcx o) < T and
HRLHEHE(K*,K) <7

(H5) There exists 8 € [0, T] such that if we set
M =iada(Q) + BQ. € LK, K*),
then in the sense of quadratic forms on H we have
IT*Re(M)TI = Y~ HT*ZTI.
The main assumption in this definition is (H5). The uniform estimates given by the

commutators method are the following. We give a proof adapted to this setting in
Section 5.4.

Theorem 5.2. Let N € N* and Y = 1. Assume that A is Y-conjugate to Q up to order
N.
(i) Let 6 > % There exists C' > 0 which only depends on Y and ¢ such that
H Q| < 5.1
e, (5.1)
(ii) Assume that N = 2 and let §1,02 = 0 be such that § + 9o < N — 1. There exists
C > 0 which only depends on N, Y, 61 and d2 such that

() 1 (D)@ e, (4) (4)] < C (5.2)

(iii) Assume that N >2 and let § € |3, N[. There exists C > 0 which only depends on
N, T and 0 such that

[ e () (< (53)
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and
A Mg (AQ )| <C 5.4
(@™ 1 (e (5.4)
We explain the notation of Definition 5.1 on the model case, namely the free Laplacian
with the generator of dilation (2.6) as the commutator. To get estimates on H = L2
for the resolvent (—A — ¢)~! with Im(¢) > 0 and Re(¢) close to some E > 0, we choose
Q = (A — () (seen as a bounded operator from K = H! to H~! ~ K*  this last
identification being semilinear) and in particular we have Q4 = Im({). Then we set

II = ]1[27@](—A) = ]1[_572](—A —E), QL = Q, QI = 0 and ﬂ = (. Since
M[-A AL = =2A1;_ g py(-A - E) > —EA,

the commutators method give in particular a uniform bound in L? for

- — -5

(A7 (A=A,
from which we can deduce an estimate for the resolvent in £(L?°, L*»~%). Our proof in
the next paragraph is a perturbation of this model case with ¢ = z? and E of order |z|2

5.2. Application to the Schrodinger operator. In this paragraph we apply the
abstract commutators method to prove uniform estimates for R(z). For z € Dj, Theorem
2.3 follows from Proposition 4.3 applied with 2’ = z and s; = s = 0. Thus, it is enough
to prove Theorem 2.3 for z in

Dr =D} uDg, where DE = {z eD,; : +2Re(z?) > |z|2}.

We prove all the intermediate estimates for z € ]D;g and, in the end, we will deduce
Theorem 2.3 for z € Di by a duality argument. We begin with estimates for a single
resolvent.

Proposition 5.3. Let § > % and 01,09 € R. There exists C' > 0 such that for z € ID)JRr
we have

(A7 R A7 < (55)
(A T (A2 R(2) T, (A2) (A2)* can S # (5.6)
|47 R, () (A7 < 2 (5.7
H YWl 1 (A)R(2) (AZ>*5H£(L2) < # (5.8)

To prove Proposition 5.3, we apply Theorem 5.2 to \z|_2 P(z) (seen as an operator
in £(H!,H;') uniformly in 2 € D} and for any N € N*. Then Proposition 5.3 is a
consequence of Theorem 5.2 and Proposition 5.4 below.

In the proof of Proposition 5.4 we will use the Helffer-Sjostrand formula. Let A be
a selfadjoint operator on a Hilbert space H, m > 2 and let ¢ € C*(R) be such that
¢") (1) < Cy (7)™ for some k> 0 and for all k € {0,...,m + 1}. Then we have

o) =1 [ Lioa-07 ano, (59

where A is the Lebesgue measure on C and for some ¢ € C§°(R,[0,1]) supported on
[—2,2] and equal to 1 on [—1,1] we have defined the almost analytic extension ¢ of ¢

by
<73(T+iu)=¢(<7>) G >(k,) :

k=0
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In particular,

99
¢
See for instance [DS99, Section 8.

< > lfnfm‘

— (7 + i) S Lnyapu<an (1) 7" + Lppaain 0™

Proposition 5.4. Let N € N. There ezist x € C® and Y > 1 such that for all z € DY
the operator A, defined by (2.9) is Y-conjugate to |z| > P(z) € L(H!, H; ') up to order
N.

Proof. e Assumption (H1) is clear in our setting and (H2) follows from (2.8). For any
X € CF, the fact that |z|* P(z) is uniformly in CNH(HI,H;l) is given by Proposition
3.8. Finally, Q; = —Im(P(z)) = Im(2%)w, so @ belongs to C}42(H;,HZ_1) uniformly in
z by Lemma 3.7. This gives (H3).

e Now we construct the operator I, which appears in (H4) and (H5). For z € D} we
have already set Pr(z) = —Ag — wRe(z?). We similarly define P3(z) = —A — Re(2?).
These two operators can be seen as selfadjoint operators on L? with domain H? or as
bounded operators from H} to H; !. Let ¢ € C{(R,[0,1]) be equal to 1 on [—1,1] and
supported in | — 2,2[. For 1 €]0, 1] we set

Pr(2) PR(z)
m,. — & (?72R|Z|2> and 100, = ¢ (772R|Z|2) .
>

By the Helffer-Sjostrand formula (5.9) (applied with m
the difference 1I,, . — I1° . can be rewritten as

3) and the resolvent identity,

0,2
) (1) _ ) O ) (R ) O
A O\EEE ) T \pRE ) B
We can check that for z € D, and ¢ € 5D\R, we have
1 0 -1
PY(2) > 1
+ —¢ < . (5.10)
H n* |2 | c(H: Y HY) <’72 2" coeayy M)

On the other hand, as in the proof of Proposition 3.5 we can check that

H Pr(z) — PR(2) 2l
TR = R 12"
n* 2|

~

citemsy N

This proves

(PR<z> B <>_1 Pr(z) — FR(2) <P£<z> B C)‘l
n? |z |z n? |2

Since 85(5 is supported in 5D and decays faster than |Im(¢)|* near the real axis, we
deduce

i

P S]

| B (5.11)
nzllee,ny) ~ e '

T2
There also exists C' > 0 such that for all z € D and 7 €]0, 1] we have
1T, 2 cH HY) S C. (5.12)

e By a compactness argument (we can also use Proposition 3.1), there exists x € C°
equal to 1 on a neighborhood of 0 and such that

1
el e nzy = IXleqn ) < 1650
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where C' > 0 is given by (5.12). Then for all z € D} and 7 €]0, 1] we have
1
[Ty 210y 2 £y S 16

e We have defined K(z) in (3.8). By (5.12) and Proposition 3.9 there exists C7 > 0
such that

(5.13)

L L
10,2 K (2) (z2) 2 | qan o) S 1K (2) (22) 2 | pgpgn gty < Cr Lzl (5.14)
Let 79 € [%, ] Since <m>_§ ¢(—A —72) is compact as an operator from L? to H! and

¢(—1AT) goes weakly to 0 as 79 goes to 0, there exists ng € ]O —] such that

s —A — 715 |7] —A— 175 |7|
o £ (A Yo (ST

L(L2,HY)
P —A—72 1
= {2V "2 p(—A — 72 <70) <—. (615
Wt s (Tpat)| g 69
If [Rez) 7'2‘ < 812 we have
|z|2 o]~ 0

ALY, (AP
m = 70 U R R
2n0,2 QS < ‘ | > QS < 16770 ‘ |2 2n0,2°

We also have Iy, . = Ilay, .11 2, so (5.14) and (5.15) give

EN

HH2770,ZK( ) 210,z “E(LQ) < ?

(5.16)

Since [% 1] is compact, we can choose 79 so small that (5.16) holds for any z € Df.

By (5.16), (5.11) and (5.14) there exists rg €]0, 1] such that for z € Dg with |z| < 9 we
have
N

HH27707ZK(Z)H2?70, < 4 (5.17)

Mo
We set
={zeDf : |z] = ro}.

Let 2z € Df. The operator Iy ., K (20)I1; -, is compact on L?. Since 0 is not an eigenvalue
of Pr(20), the operator II,, ,, goes weakly to 0 as 7 goes to 0, so there exists 7., €]0,1]
such that
Jzof”

8
By continuity with respect to z and compactness of D, there exists 7y €]0, 1] such that
(5.17) holds for all z € Df, and hence for all z € Dg. We can also assume that 7y is so
small that

HHQUzoyz()K(ZO)HQUzO7ZO “l:(LQ) <

ES

o (5.18)

e Now that 7 is fixed, we prove that (H4) and (H5) are satisfied. We begin with (H5).
We choose 3 = 0. Let z € D}. By definition of K(z) we have

Moy =[PR(2), iA: M2y, - = 2Re(2*)I15,, . + S(2),

2 HPR(Z)HQWOJJHL(L?) <

where

S(z) = 72Re(22)n2no,zXzH2no,Z + 2H2170,2(1 - Xz)PR(Z)HQWmZ + H27707ZK(Z)H2770,Z'
By (5.13), (5.18) and (5.17) have

EN

15(2) 212y < BN
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and hence

2
; z
HQUO,Z[PR(Z)alAZ]H2n07Z > 2Re(z2)]'[%n07z _ %

Since 2Re(22) = |2|? we get after composition by II,,, . on both sides

|Z‘2 2

HUO,Z[PR(z)viAZ]HW()vZ > 7 n0,2"

This gives (H5) with II, = I, ..
e By the Helffer-Sjostrand formula as above and Proposition 3.9 we have

~ —1
d¢ Pr(z) ;
85(0‘ <773 W C) 1A, dA(Q)

L(H:',HY)
S |Z|72 | ||[PR(Z)J'AZ]HL(HZI7H;1)

< 1

Iy AL sty S L

We set

QL(2) = Pr(z) — i|r|1;(z2)wmin . E(H;,H;l),

|z

where Wi, = mingeg w(z) > 0. Then

Q1 (2) = i(P(2) — Qu(2)) = IM(z2) (1 — wypin)
is non-negative, ()| (z) is invertible and by the functional calculus we have
_ _ 1
|1 - 11.)Q.(2) 1“L(m) = Qi)' - Hz)HL(L?) S 77_(2]
As for (5.10) we obtain similar estimates in £(H; ', H!). Finally, since II, = Ily,, .II,
we have [ILu| 1 < |[ay,, £(L2,HY) | ul,, for all we L*. With (5.12) this gives (H4)
and the proof is complete. O

5.3. Multiple resolvent estimates. In this paragraph we generalize the uniform es-
timates for the powers of a resolvent. Compared to the usual setting, we also consider
a product of different resolvents. In fact, we can consider the product of any finite se-
quence of operators having a suitable behavior with respect to the conjugate operator.
Everything is based on the following abstract lemma.

Lemma 5.5. Let H be a Hilbert space. Letne N*, Ty,..., T, € L(H) and T =T ...T,.
Let N € N*,

For j € {0,...,n} we consider on H a (possibly unbounded) selfadjoint operator ©; =
1, and HJ._,H;F € L(H) such that I + H}" = Idy. For j € {1,...,n} we assume that
there exist v; = 0, o; € [0,v;] and a collection C; = {Cj;(Cjs,.5,): (Cjs)} of constants
such that for 61,02 = 0 with 61 + 62 < N —v; and 6 € [0;, N] we have

10557505 3y < Ci (5.19)

|©3 1 T1, TiTTF ©2 2y < Cjo 0 (5.20)
’|9§:11/jHJ‘11Tj@j_6’|g(H) < Cjs, (5.21)
He)fflTJH;r@j‘inHL(H) < Cjs- (5.22)

Let

n n—1 n
y:Zyj, O’+=Zl/j+0'n, J_zal—i-Zyj.
J=1 J=1 Jj=2
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Assume that N > v. We set II_ = II; and Iy = IL}. There exists a collection of
constants C = {C; (Cs_5,); (C5 ); (C5)} which only depend on the constants Cj, 1 < j <
n and such that

||@(;J+T®;LJ_H£(H) < C, (5.23)
for 6_,01 =0 such that 6_ + 6, < N — v we have
|€0 T-TTL007 | 5 < Ci s (5.24)
for 6 € [o—, N[ we have
o—v —0 < (-
H@O e (5.25)
and finally, for § € [o4, N[ we have
H@géTm@f;” con <G8 (5.26)

Proof. The result is proved by induction on n € N*, the case n = 1 being the assumption.
Forn > 2 weset T/ = T1...T,,q, Iy = H:ffl, O =0,1,V =v1+ - +v,_1,
o =i+ +v,2+o0on and 0. = o1 + 1o+ + vy_1. To prove (5.23)-(5.26)
we insert the sum II” + I, between 7" and T,,, and for each term we insert a factor
©70©~7 for a suitable v € R (on the left of II” and on the right of IT', ). More precisely,

for (5.23) we write

Heg“+ TO -

< H@g(”T'@—Oi

H@(”—H’_ T,07-

+ H@g T, 0% | [0~ 1,057 .

Then we apply (5.21) and (5.19) for T,,, and (5.23) and (5.26) for 7”. Similarly, for
(5.24) we write

Jog T, 0% | < |65 T T'e~ =+ |e* T 1,11, 6|
<|ef m_Tm, 0% Jo- T, 0 |

and we apply (5.20) and (5.22) for T}, and (5.25) and (5.24) for 7”. Finally, for € [o_, N]
we have

o Te;?| < |ef i r'emtr)

H@éf”nn’_ T,0°

o—v n
+ |©) VII_T'II, 67

‘e—"nTn@;‘S

and, for § € [o4, N],

0y, 05| < |egT'e " | et LT, 11, 05

+ ‘ oy T, @

‘@*(5*”’)Tnn+®g*”

We deduce (5.25) and (5.26), and the result follows by induction. O

It is important that the constants in the conclusion of the lemma only depend on
the constants in the assumptions. Thus if for some operators Tj(z), 1 < j < n, the
estimates (5.19)-(5.21) are independant of the parameter z, then so are the estimates
(5.23)-(5.26).

We will usually apply Lemma 5.5 with ©; = (4), II;" = 1gx(A4) and H}" = 1, (A),
where A is the conjugate operator.

With Proposition 5.3 and Lemma 5.5 we can prove Theorem 2.3. Notice that we have
used all the assumptions of Definition 5.1 to prove Proposition 5.3, but for the rest of the
proof we no longer need a conjugate operator and only use the estimates of Proposition
5.3.
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Proof of Theorem 2.3. For z € ]DJRr we apply Lemma 5.5 with factors T} of the form w
or |z|* R(z) and constants independant of z. For factors T; = w we take v; = 05 = 0
by Lemma 3.7 and Proposition 3.11, while for factors T; = |z|*> R(z) we can choose
v; =1 and any o € ]%, 1] by Proposition 5.3. Then the assumptions of Lemma 5.5 hold
uniformly in z € D}. In particular, (5.23) gives (2.10) for z € Dy.

We turn to (2.11). If n1,ny > 2 we use the resolvent identity (see (2.12) for R™1(z))
to write

Rl (Z)HU(Z)R([]M] (2)
— (R =U(2) + (1 + 22)RIM(2))0, (2) (R (2) + (1 + 2R (2))
with 0,(z) = wRM (ir)é?a(z)Rt[)l] (ir) (r = |2|). Since |z| 7?4 (z) belongs to C (L?) with
a norm uniform in z € Dg, we deduce (2.11) for z € Df. The proof is similar if ny = 1

or ng = 1.
We similarly prove, for z € ID)JRF,

(427 R0 ()R () (4277 5 1el (5.27)
Taking the adjoint in (2.10) and (5.27), we get (2.10) and (2.11) for z € Dg, and the
proof of Theorem 2.3 is complete. O

5.4. Proof of the abstract resolvent estimates. In this paragraph we prove Theo-
rem 5.2. The strategy is inpired by the original papers [Mou81, JMP84, Jen85] and the
earlier dissipative versions [Roy10, BR14, Roy16], but we need a proof adapted to our
setting. We use the notation introduced in Paragraph 5.1.

For ¢ € [0, 1] we set
Q- = Q —iell*MIT e L(K,K*).
By (H5), Q- has a negative imaginary part. We set R. = Q-! € L(K*,K). We prove
estimates on R. for € €]0,1]. At the limit ¢ — 0 this will give estimates for R = QL.
Note that by Assumptions (H3)-(H4) and Proposition 3.10 we have Q. € C4(K,K*). In
the following proposition, we check that R. also has a nice behavior with respect to A.

Proposition 5.6. (i) Dy is dense in K.
(ii) For € €]0,1] we have R. € CY(K*,K) with ada(R.) = —R.ad(Q:)R-.
(i) R. maps Dy to Dk and Di. to D3, for all € €]0,1].

Proof. e Assumption (H2) holds for any # € R and the restriction of e~ defines a

one-parameter group (T (0))ger on K. Taking the adjoint also gives a one-parameter

group (T;(6))ger on K*, and for all 6 € R the restriction of T3(6) to H is . Since H

is dense in K*, we can check that (T)¢(6)) is strongly continuous on K*. Then (Ti(0))

is weakly continuous, and hence strongly continuous (see [EN00, Th. 1.5.8]). Finally

we check that the generator of (Tx(0)) is Ak, defined on the domain Dy. This gives in

particular the first statement by [EN0O, Th. II.1.4].

o There exists C' > 1 and w > 0 such that |Tic(0)] ;) < Ce?l’! for all § € R (see

[ENOO, Prop. 1.5.5]). Then ([EN00, Th. II1.1.10]) for |[Im(\)| > w we have A € p(Ax) and
C

—1

) HZJ(IC) < Im(\)| —w’

In particular Ax(Ax —ipn)~' and —iu(Ax —ip)~! go strongly to 0 and Id, respectively,
as [t goes to +oo. B
o For > w weset Ax(p) = —ipAx(Ax —ip)~t e L(K). In L(K*,K) we have

REAIC(_M)* - AIC (:U')Re = Ra (AIC<_M)*Q6 - QeAIC(M))Rea (5'28)

(A — A
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and in (K, K*),
A (=) Qe — Qe Axc (1)
= ip(Af — i) (AR Q- — QeAx)in(Ax —ip)
—ip(Af —ip) T ARQe(in(Ax — i) T+ 1)
+(ip( A —ip) ! + 1) QeAxcip(Ax — ip) "
This goes strongly to —ada(Q:) as p — +00. Then, taking the strong limit in (5.28)
gives in L(Dcx, Di-+ )
R.A%Y — AfR. = —R.ada(Q:)R. € L(K*,K).
This proves the second statement. By Proposition 3.10, R. maps Dy (and in particular
D) to Dxc. We similarly prove that R¥ maps Dy to Dy, so R. also maps D to D, O
The Mourre method relies on the so-called quadratic estimates. Here we will use the
following version:
Proposition 5.7. Let Qe L(K,K*) be dissipative. We assume that Q has an inverse
Re LIK* K). Let Q4 € LIK,K*) be such that 0 < Q4+ < —Im(Q). Then we have
R*Q.R<Im(R) and RQ,R* <Im(R).
Proof. We simply observe that

RQ QR R-R
= = | .
2% 2 m(R)
The second estimate is similar. O
Remark 5.8. Given two Banach spaces K1 and Ky, Th € L(K1,K) and Ty € L(K2, K),
we have by the Cauchy-Schwarz inequality

R*Q.R <

1 1
HTI*Q-‘:-TQHE(ICQ,IC’I") < HTI*Q-FTl H%(ICLICT) HTQ*Q-FTQH%(KQ,K;) :
With Assumption (H5) we can apply the quadratic estimates to R.. This gives the

following properties.

Proposition 5.9. Let Ky € {IC,H,K*}. Let © € L(K,Ky). There exists C > 0 which
only depends on Y and such that for all € €]0,1] we have

<

\/g
1

L RO £ oy + ORI £icx o) < € (@HL(K,ICO) + H@Re@*ﬂz(qxo)) (5.30)

and

IRO% 2 ) + IORe £ i) < € (HGL(K,KO) + % @REG*"%(K?)‘JCO)) - (56.31)
Proof. ¢ By (H5) we have eII"II < eTRe(II*MII) < —TIm(Q:), so we can apply
Proposition 5.7 with @Q = TQ. and @, = II*II. This gives

eORIT*IIR.O" < OIm(R.)O*.
With (H4) we obtain for ¢ € K
ITR-©%¢[; < [TR-O%¢|3; = (ORIT*TIR0%¢, ¢) , scx

|OR.0* (5.29)

1
RO zicx o) + ORI zgcx o) < 1Zecs 000

1
§ glm <®R5@*@a SD>IC07’C§ .
This gives the first part of (5.29). Similarly,

_1 3
IMRZO%] 2z sy < €72 1ORO| 7 e oy -
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Taking the adjoint concludes the proof of (5.29). B
e Wehave Q. = Q| —iQT —ieIl* MII. With the resolvent identity we have in L(K§, K)

I, R.O* =11, R ©* +ill, R QT R-O" + iell | R IT* MIIR.O*. (5.32)
By Remark 5.8, (H4) and Proposition 5.7 applied with Q, = QT < —Im(Q.) we have
+
HHLRLQLREG*HZ(IC;’;JC)

1
 [ORZQT RO%|Z e

1
< HHJ_RJ_QI(HJ-RJ—)*”%(IC*JC

0)

1
SO0 2 ek iy -

On the other hand, by (H4), (H3) and (5.29),

1
e | RIT*MIIRO% | zcx i) < € [TIR-O™| £ ) < Ve H@)Re@*\\%mg,m) :

The first term in (5.32) is estimated by (H4), and the first part of (5.30) follows. As

above, we prove the same estimate for R} and get the second part by taking the adjoint.
Finally, (5.30) and (5.29) give (5.31). O

Now we can prove the first part of Theorem 5.2:

Proof of Estimate (5.1). Without loss of generality, we can assume that § € ]%, 1].

e Foree[0,1] weset ©, = (A)° (¢A)°~ 1. This defines a bounded selfadjoint operator
on H and by the functional calculus we have

[Ocleiy <1, 140cl e + [0=Al gy £ &°7F and [SAPIRES el (5.33)
where we denote by a prime the derivative with respect to . We set F. = ©.R.0.. By
(5.33) and Proposition 5.9 applied with © = ©. we get for ¢ €]0, 1]

1
Pl
ﬁ 7

A
—_

1 Fe ] 220) < 1ROc] 23 )
and hence
”FsHL(’H) < é- (5.34)
The derivative of F' is given by
F! = OLR.O. + O.R.O. +iO.RIT* MIIR.O..
By (5.31) and (5.33) we have

_ _1 3
|OLR-6: + O-R-0.| 5, < M (14672 |2y )- (5.35)
For the last term we write in L(/C, K*)
IM*MII = M — II* MTI; — 117 M.

By Proposition 5.9 and (H3)-(H4) for M we have

1
HF&:HE(H) 4 HF6||£(H)
Ve Ve o
It remains to estimate ©.R.M R-O.. By Proposition 5.6 we can write
O:Reada(Q)R-0: = O:R(QAx — AR Q)R-O-
= 0.AR.0. — ©.R.AO, + icO.R.ad ,(II* MII) R O..
With (5.33) and Proposition 5.9 we get

HeeRan*MniRegaHL(H) + H@gRgnj_MRggauﬁ(H) <1+

- _3 3
HeaRaadA(Q)REGEHL(H) S 4t HFSHZ(H) + HFaHL(H) .
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On the other hand, by Remark 5.8 and Proposition 5.7,

1 1
”96R5Q+R€@€HL(’H) < ”@€R€Q+R:®€HZ(’H) ||®€RZQ+R€®€HZ(’H) < ||F€HL(H)'
All these estimates together give

5— _1 5—3 !
HFE/“L(’H) se’l e [ Fell piagy +2°72 1FEll 23y -

It is classical (see for instance Lemma 3.3 in [JMP84]) that this implies
I Fellz 0y < 1. (5.36)
Taking the limit € — 0 gives (5.1). O

We continue with the proofs of Estimates (5.2) to (5.4). For € € [0,1] and N € N* we
set
N )
Qe = ), 7adh(Q) € L(K,K”).

=g

Proposition 5.10. Let N € N*. There exist ey €]0,1] and ¢ > 0 which only depend on
N and Y such that for all € €]0,en] the operator QN has an inverse Ry, € LIK*,K)

and
c c

Lk k) S 27 HRN,a <A>_1H£(H7K) S (5.37)

|RN .

Moreover, the function € — Ry is differentiable in L(Dy,Dj,) and

N
g
Ry .= Ry:Ay — A5 Ry, + FRNﬁadJX Q)R ..

Proof. e By Proposition 5.9 applied with Ky = K and © = Idx we have

1 1
|Bellzges iy < 2 and LR ggon o) + [ Bl zgex k) < NG (5.38)
With (5.36) and Proposition 5.9 applied with Ko = H and © = (A)~" we also get
1
R (A)7" < —. 5.39
H < (4) LK)~ AE (5-39)

e We have QN = Q. + P. + P. where

B N

P = igfTT*Q T + elT*ad A (Q)TIL + ) Fac|f4(Q) and P. = ell* adA(Q).

=2
We have H]Se”E(IC,IC*) < ¢ and, by (5.38),
HPaReHL(K*) S e QIR fiexy + & [T R piies iy + &? I1Rel £ 0% 1
S €)@+ Re g iexy + € [Q+IILR: | sy + Ve
By Remark 5.8 and Proposition 5.7 for the first term, and (5.38) for the second we get
”psRsHL(IC*) < \/E

In particular the operator Idcs + P-R. is invertible in L(K*) for € small enough. Then

the operator Q. = Q. + P. is invertible and its inverse R. is given by
R. = R. — R.(Idicx + P.R.)"'P.R..

With this expression we can check that R, satisfies the same estimates (5.38)-(5.39) as
R.. Similarly, we have | Pz c#) < € and

| ReP-| 20y < €| RITE | e oy S Ve
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Thus for € small enough the operator Qn . = Q- + P. is invertible and its inverse Ry .
is given by

Ry = R. — R.P-(Idx + R.P.)"'R..
We deduce (5.37).

e Tor the last statement we observe that in £(KC, K*) we have
N
Qv = 2da(Qune) — 172} 1 (Q).
As in Proposition 5.6 we can check that Ry € CA(IC* ,KC) withads(Rye) = —Rncada(Qne) RN
We deduce in £(K,K*)

N
19
Ry.=—Rn:Qy.Rne=ada(Rn.) + mJ:aN,gade (Q)Ry . O

Now we can finish the proof of Theorem 5.2.

Proof of Estimate (5.2). Let ey be given by Proposition 5.10. For ¢ €]0,ex] we set in
L(H)
Fy. = (A 5 (A)Ry g, (A)e 4 (4)%.

Then in the strong sense we have

N
€ _
Ne =57 (A7 ¢p_(A) Ry cad) Q)R ez, (A)e™ (4).
By Proposition 5.10 and the functional calculus we deduce

HFJ,V,»SHg(H) < N-01-2-82

Since N — 01 — 62 — 2 > —1, this proves that Fi. is bounded in £(#) uniformly in
e €]0,en]. O

Proof of Estimates (5.3) and (5.4). o Letn > 1. Let ¢; €]0, 1] be given by Proposition
5.10. For € €]0,e1] we set

Fl,a = ]I]R, (A)GSARLa <A>_77 .
By Proposition 5.10 we have |[Fi .| .4, < £72. On the other hand we have
Fi. = Tr_ (AR A (A + elg_(A)e* Ry cad% (Q)Ry . (A)7". (5.40)

By interpolation we have

1—1

[t (e R ()] < [0 ()R] [t (A R (4)7]

<e | B

For the second term in (5.40) we use (H3) and Proposition 5.10. Finally,
1,,

“Fl EHE(H) <e: +e " 1F1 el
so Fi . is bounded. At the limit ¢ — 0 we get
|1r_(AR(A) ] o5 S 1. (5.41)
We similarly get a uniform bound for 1g, (A)R* (A)~". Taking the adjoint gives
|(A)™" Rlg, (A)| ey S L (5.42)
e For I R we write Ay for 1;(A). We prove that we have, uniformly in n,m € N,
||A[n7n+1[RA[m7m+1[”1;(%) <1 (5.43)

We observe that for any A € R the operator A — X is also T-conjugated to @ up to order
N, so the estimates (5.1) and (5.2) hold with A replaced by A — A uniformly in A. In
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particular, with (5.1) applied to A —n we get (5.43) when n = m. This also holds with
R replaced by R*. For the general case we write

Apn1[RBAmm1] = At 1[A1-0,m BApmm11[ + Apn+ 1[A1m, +oo B Apnme1]
+ A[n,nJrl[A]m,Jroo[(R - R*)A[m,erl[-
The first two terms are estimated by (5.41) and (5.42) applied with A —m instead of A.

For the third term we observe that R — R* = 2R*(Q), R is non-negative, so by Remark
5.8 we have

HA[n,nJrl[(R - R*)A[m,erl[”E(fH)

1 1
< ||A[n,n+1[(R - R*)A[n,n+1[”2(q{) ||A[m,m+1[(R - R*)A[m7m+1[HZ('H) .

We can apply (5.43) already proved when n = m to R and R*, which concludes the
proof of (5.43) when n # m.
e From (5.43) we deduce

HA[n,n+1[RA[O,n+1[ (A)°~! wHH < 0 m+ D Apnr 1] 5,

m=0

uniformly in n € N and ¢ € ‘H. Then, for ¢,y € H,

2 ’<<A>_6 Appnr1RAp e (A1, <P>

neN H

n

< ) [ Apnsaely, O+ 0 Apmaae]y, S Il [0l - (5.44)

neN m=0

For the last step we have used the Cauchy-Schwarz inequality, Lemma 3.4 in [Jen85]
and the fact that the families (Ap, p417%)nen and (A m+1[%)o<ms<n are orthogonal in
H.

e Now we prove
2 (A7 A BA s o (A 000) | S el 1ol (5.45)
neN

If § < 1 this is a consequence of (5.2) applied to A — (n+1). If 1 < § < N we observe
that | (A — (n+ D)0 (a)ot “E(H) < n971 so, again by (5.2) applied to A — (n + 1),

2 (A7 A BA 1 (A ) | < 307 Al n ™ 1l

neN neN
and (5.45) follows. With (5.44) we obtain
-5 6—1
[4)77 A et R e (4)° 7Y S 1
With (5.2) we finally get (5.3). The proof of (5.4) is similar. O

6. LOCAL ENERGY DECAY

In this section we show how the local energy decay of Theorem 1.3 can be deduced
from the resolvent estimates given by Theorem 1.1.

Proof of Theorem 1.3. o Let f € S and p €]0,1]. All along the proof we use the
notation ¢ for 7 + iu, where 7 is a variable in R. For ¢t > 0 we have

L f e (P —¢) " far.

um R
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We consider x4+ € C*(R,[0,1]) equal to 0 on | — 00, 1] and equal to 1 on [2,+[. For
7€ R we set x_(7) = x4+ (—7) and xiow = 1 — X_(7) — x4+ (7). Then for * € {—, low, +}
we set

1

5im | (e (P =

Us (1) =

We similarly define ug, , with P replaced by Py and f replaced by fy = wf.
e Let m € N* such that
d d
% em<

We have § > m + % After integrations by parts and using the uniform estimates for the
resolvent of P far from its spectrum, we see that

+ 1.

HWWmmwg<%£]kMW(<xP< )f) dr < e

where the constant hidden in the symbol < is independant of p. Similarly, using (1.5)
to estimate the derivatives of (P — ¢)~! near the positive real axis, we obtain

[ @) wrnl®)] 2 < €] (@) o

We have similar estimates for u(l,M(t) and u(-)hu(t)‘
e By integrations by parts we have

CNT— 1 i .
(i)™ (wiow (t) — g jow(t)) = T Re tC@L (r)dr,

where we have set

0#(7—) = X'OW(T)((P - C)_l - (PO - C)_lw)f

By Theorem 1.1 we have, uniformly in g > 0,

)’ f

2"~ L2’

For t > 1 we have on the one hand

lf 7”( HELm*l) (1)dr

L2
—1

t
< e
,t—l

On the other hand, with another integration by parts,

5 _q_dtpy
)° 7|, dr ST e

/ f e~ ()0 60 (1) dr

‘T|>t ! 2

< e (@)™ (B D () — 6D )) | 4 et j (@) 6im(r)| ar
t—1<|r|<2

< 7 (@)1 f 2.

Finally,
"
H <$>_6 (ulow(t) — UQ,low (t)) 12 <e pl H fHLQ'

All the estimates being uniform in x4 > 0, we can let u go to 0 to conclude. U
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