Low frequency asymptotics and local energy decay for the Schrödinger equation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Low frequency asymptotics and local energy decay for the Schrödinger equation

Résumé

We prove low frequency resolvent estimates and local energy decay for the Schrödinger equation in an asymptotically Euclidean setting. More precisely, we go beyond the optimal estimates by comparing the resolvent of the perturbed Schrödinger operator with the resolvent of the free Laplacian. This gives the leading term for the developpement of this resolvent when the spectral parameter is close to 0. For this, we show in particular how we can apply the usual commutators method for generalized resolvents and simultaneously for different operators. Finally, we deduce similar results for the large time asymptotics of the corresponding evolution problem.
Fichier principal
Vignette du fichier
asymptotics-Schrodinger.pdf (446.95 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03380292 , version 1 (15-10-2021)

Identifiants

Citer

Julien Royer. Low frequency asymptotics and local energy decay for the Schrödinger equation. 2021. ⟨hal-03380292⟩
193 Consultations
181 Téléchargements

Altmetric

Partager

More