
HAL Id: hal-03380258
https://hal.science/hal-03380258v1

Submitted on 15 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Faster Modular Composition
Vincent Neiger, Bruno Salvy, Éric Schost, Gilles Villard

To cite this version:
Vincent Neiger, Bruno Salvy, Éric Schost, Gilles Villard. Faster Modular Composition. Journal of the
ACM (JACM), 2024, 71 (2), pp.1-79. �10.1145/3638349�. �hal-03380258�

https://hal.science/hal-03380258v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Faster Modular Composition
VINCENT NEIGER, Sorbonne Université, France
BRUNO SALVY, Inria, France
ÉRIC SCHOST, University of Waterloo, Canada

GILLES VILLARD, CNRS, France

A new Las Vegas algorithm is presented for the composition of two polynomials modulo a third one, over

an arbitrary field. When the degrees of these polynomials are bounded by n, the algorithm uses O(n1.43)

field operations, breaking through the 3/2 barrier in the exponent for the first time. The previous fastest

algebraic algorithms, due to Brent and Kung in 1978, requireO(n1.63) field operations in general, and n3/2+o(1)

field operations in the particular case of power series over a field of large enough characteristic. If using

cubic-time matrix multiplication, the new algorithm runs in n5/3+o(1)
operations, while previous ones run

in O(n2) operations.

Our approach relies on the computation of a matrix of algebraic relations that is typically of small size.

Randomization is used to reduce arbitrary input to this favorable situation.

CCS Concepts: • Computing methodologies → Algebraic algorithms; • Theory of computation →
Algebraic complexity theory.

Additional Key Words and Phrases: composition of polynomials, complexity

1 INTRODUCTION
Many fundamental operations over univariate polynomials of degree at most n with coefficients in a

commutative ring A can be computed in a number of arithmetic operations in A that is quasi-linear

in n [22]. It is the case for multiplication, division with remainder by a monic polynomial, multipoint

evaluation, interpolation at points whose differences are units in A, and greatest common divisors

when A is a field.

In contrast with these operations, improving the cost bound for modular composition is a long-

standing open question. Given three polynomials a, f ∈ A[x] and д ∈ A[y], with deg(a) < n and

deg(д) < n where n = deg(f), and with f monic, this problem is to compute д(a) rem f , where the
“rem” operation takes the remainder of the Euclidean division.

This operation arises in a variety of contexts. For instance, with f = xn , it amounts to power

series composition. Power series reversion can then be reduced to composition, with a small

overhead [15], as can further operations such as solving families of functional equations [28].

The application of certain algebra morphisms also translates to modular composition. Over a

field K, for f and a in K[x], we denote by a mod f ∈ K[x]/⟨f ⟩ the class of a modulo f . Then, for
e and f in respectively K[y] and K[x], and for an K-algebra morphism ϕ : K[y]/⟨e⟩ → K[x]/⟨f ⟩,
if ϕ(y mod e) = a mod f then for д in K[y], the image ϕ(д mod e) is equal to д(a) mod f .
Over finite fields, with e and f the same polynomial and ϕ the Frobenius endomorphism, this

results in modular composition playing an important role in algorithms for polynomial factor-

ization [23, 44, 45]. Dedicated algorithms exist for modular composition over finite fields, with

quasi-linear complexity (they are discussed later), but there remains a variety of questions that can

be considered over arbitrary fields, and which are impacted by modular composition (or closely

related operations such as power projection, discussed later as well): computing the minimal

Authors’ addresses: Vincent Neiger, Sorbonne Université, Laboratoire LIP6 UMR 7606 CNRS, Sorbonne Université, Paris,

France, vincent.neiger@lip6.fr; Bruno Salvy, Inria, Laboratoire LIP UMR 5668 Univ. Lyon, CNRS, ENS de Lyon, Inria, UCBL,

Lyon, France, bruno.salvy@inria.fr; Éric Schost, University of Waterloo, Cheriton School of Computer Science, Waterloo,

ON, N2L 3G1, Canada, eric.schost@uwaterloo.ca; Gilles Villard, CNRS, Laboratoire LIP UMR 5668 Univ. Lyon, CNRS, ENS

de Lyon, Inria, UCBL, Lyon, France, gilles.villard@ens-lyon.fr.

2 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

polynomial of an algebraic number [65–67], normal bases computations [26, 45], arithmetic opera-

tions with two algebraic numbers [10], computing with towers of algebraic extensions [32, 61, 62],

Riemann-Roch space computations [1, 2], etc.

Modular composition can be performed using Horner’s algorithm with modular reduction at each

stage, which leads to a complexity in Õ(n2) operations if fast polynomial multiplication is used. (The

notation c ′ = Õ(c) means that c ′ = O(c log
k (c)) for some k > 0. In other words, logarithmic factors

are dropped.) In 1978, Brent and Kung gave two algorithms that perform composition modulo xn

(the case of power series) [14, 15]. One relies strongly on Taylor expansion and runs in Õ(n3/2)

operations; the other one, using a baby steps/giant steps approach, uses O(n(ω+1)/2) + Õ(n3/2)

operations, where ω ≤ 3 is a feasible matrix multiplication exponent (two n × n matrices can be

multiplied inO(nω) operations). This second algorithm works verbatim and in the same complexity

for composition modulo an arbitrary polynomial f of degree n not restricted to be xn [23].

Both have remained essentially the best algorithms since then. Huang and Pan used fast rectan-

gular matrix multiplication in the central step of the baby steps/giant steps algorithm to reduce its

complexity toO(nω2/2) + Õ(n3/2) where ω2 ≤ ω + 1 is a feasible exponent such that a n × n2
matrix

can be multiplied by a n2 × n matrix in O(nω2) operations. The currently best known value gives

ω2 ≈ 3.25 [52], which makes the previous algebraic complexity bound O(n1.626) for modular com-

position for an arbitrary f . Even assuming an optimal matrix multiplication, which means ω = 2,

these algorithms do not break the exponent barrier 3/2.

The open problem 2.4 in the book of Bürgisser, Clausen and Shokrollahi [17] asks whether Brent

and Kung’s algorithm can be improved substantially. The research problem 12.19 in von zur Gathen

and Gerhard’s book [22] asks for a complexity in Õ(n1.5) or better. Our main result answers both

questions positively when A is a field, with few extra hypotheses.

Theorem 1.1. Givena, f ∈ K[x] andд ∈ K[y]with coefficients in a fieldK, with deg(f) = n, deg(a)
and deg(д) smaller than n, and a tuple r ofO(n1+1/3) field elements, Algorithm ModularComposition

returns either д(a) rem f or Fail after Õ(nκ) arithmetic operations in K, with

κ = 1 +
1

1

ω−1
+ 2

ω2−2

< 1.43. (1)

It returns Fail with probability at most (2n4+18n2)/card(S) when the entries of r are chosen uniformly

and independently from a finite subset S ⊆ K.

Here we use an algebraic model of computation: roughly, basic arithmetic operations {+,−,×,÷}
and zero-tests in the base field K are counted at unit cost; for more details, see Section 2. As usual

with probabilistic algorithms of Las Vegas type, the algorithm can be repeated until it succeeds, so

that only its running time becomes a random variable.

We assume that the characteristic p of K is known to the algorithms. For K finite of small

cardinality q (namely, q ≤ 2n4+18n2
), the probability statement becomes vacuous. However, in such

cases, one canwork in a sufficiently large field, by constructing an extension ofK of degreeO(log(n))
efficiently (see [22, Sec. 14.9] and references therein). In this extension, each arithmetic operation

can be performed in Õ(log(n)) arithmetic operations in K, so that the asymptotic complexity

estimate is unaffected.

We also give a probabilistic algorithm of the Las Vegas type with the same complexity bound for

computing an annihilating polynomial for a mod f , that is, a nonzero polynomial д ∈ K[y] such
that д(a) rem f = 0.

To compute д(a) rem f , our approach relies on the following main ingredients. Properties of

“generic” inputs are mentioned; throughout the article, genericity is understood in the Zariski sense:

a property is generic if it holds outside of a hypersurface of the corresponding parameter space.

Faster Modular Composition 3

(1) The existence, under genericity conditions, of sufficiently many independent elements of

“small degree” in the ideal ⟨y − a(x), f (x)⟩ generated by the polynomials y − a(x) and f (x)
in K[x,y]. More precisely, we consider matrices of relations: these are nonsingular matrices

in K[y]m×m (the choice ofm is optimized below) with entries of degree smaller than a certain

integer d , and whose columns are vectors of coefficients with respect to x of polynomials

r ∈ K[x,y] such that r (x,a) rem f = 0. The “small degree” condition is that d ≤ ⌈n/m⌉. (See
Sections 4 and 7.)

(2) Fast algorithms on polynomial matrices. We use approximant bases [27] to compute a matrix

of relations from sufficiently many coefficients of the polynomials x iak rem f . Once we

have such a matrix, linear system solving over K[x] [75] allows us to reduce the univariate

д ∈ K[y] to a bivariate д̃ ∈ K[x,y], of degrees smaller thanm and d in x and y, such that

д(a) ≡ д̃(x,a) mod f . These operations have complexity Õ(mωd). (See Sections 4.2 and 5.3.)

(3) An algorithm that computes the firstm coefficients of the 2md polynomials x iak rem f , for
0 ≤ i < m and 0 ≤ k < 2d ; those are needed above, to compute matrices of relations (see

Section 3.3). It uses Õ(m2d + c(n,m,d)) operations in K, with

c(n,m,d) = (m + n/d)dω2/2. (2)

(4) A generalization due to Nüsken and Ziegler [59] of Brent and Kung’s algorithm to the

case of a bivariate polynomial д̃(x,y) ∈ K[x,y]. Ifm and d are the degrees of д̃ in x and y,
their algorithm computes the “uni-bivariate” composition д̃(x,a) rem f using Õ(c(n,m,d))
operations in K. (See Section 3.2.)

(5) A randomized change of basis to bring f and a to a situation where “small” matrices of

relations exist. (See Section 8).

(6) Correctness of the resulting randomized algorithm is established only for f separable (i.e., with

no repeated roots in an algebraic closure K of K) and f purely inseparable (i.e., with only one

root in K). Modular composition modulo an arbitrary f is reduced to these two extreme cases

by separable decomposition of f [53], Chinese remainder theorem, and a slight generalization

of a technique called untangling [30]. The latter allows to transport the composition problem

over K modulo a factor of the separable decomposition, to a composition problem over a

quotient algebra with purely inseparable modulus. (See Section 9.)

Altogether, the costs of the various parts of the algorithm add up to Õ(mωd+c(n,m,d)) operations
in K. As mentioned above, for a givenm, we rely on matrices of relations of degree d = ⌈n/m⌉.
Then choosingm and d so as to minimizemωd + c(n,m,d) leads us tom ∼ nη , where

η =
1

1 + ω−1

(ω2−2)/2

, (3)

and to the complexity estimate Õ(nκ) of Theorem 1.1. Using the known bounds ω < 2.37286 [3, 51]

and ω2 < 3.251640 [52] gives η ≈ 0.3131.

The improvements brought by fast matrix multiplication on one hand and by fast rectangular ma-

trix multiplication on the other hand are made clearer by noting that the exponent κ of composition

satisfies

4

3

≤ κ = 1 +
1

1

ω−1
+ 2

ω2−2︸ ︷︷ ︸
<1.429866

≤
ω + 2

3︸︷︷︸
<1.45762

≤
5

3︸︷︷︸
<1.666667

,

where the first approximation is obtained with the bounds on ω and ω2 given above; the second

one is obtained when no fast rectangular matrix multiplication is used, so that ω2 simply becomes

ω + 1; the last one is obtained when no fast matrix multiplication is used, thus taking ω = 3. In

4 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

the latter case, our algorithm is the first subquadratic one for modular composition. In the other

direction, considering the lower bounds ω ≥ 2 and ω2 ≥ 3 shows that κ ≥ 4/3, giving a lower

bound on the complexity estimate that can be achieved by the algorithm designed in this work.

1.1 Algorithmic Tools
Our work builds upon a sequence of earlier algorithmic progress that we now recall. We denote

by K[x]<n the set of univariate polynomials in x with coefficients in K and degree less than n; by
K[x,y]<(r ,s) the bivariate polynomials in x,y of bi-degree in (x,y) less than (r , s).

1.1.1 Baby steps/giant steps. One of the bottlenecks in algebraic approaches for evaluating д at
a modulo f is the computation of successive powers 1,a,a2, . . . modulo f , which leads to the

question of minimizing the number of powers that are used. The solution used by Brent and Kung

relies on a baby steps/giant steps scheme [15, 60], where only

1,a, . . . ,a ⌈
√
n ⌉

rem f and a2 ⌈
√
n ⌉,a3 ⌈

√
n ⌉, . . . rem f

are computed. The former group forms the baby steps; the latter forms the giant steps. The problem

is then reduced to about

√
n modular compositions “дi (a) rem f ” for дi of degree about

√
n. These

compositions are all obtained simultaneously through the multiplication of two matrices of sizes

roughly

√
n ×
√
n and

√
n × n. This is followed by a less expensive Horner evaluation step using the

powers of a ⌈
√
n ⌉
. See Section 3.1 for a complete description.

1.1.2 Projection-Reconstruction. Wiedemann’s algorithm [72] finds the minimal polynomial of a

matrix A ∈ Kn×n by considering the sequence (vTAkw)k≥0, for two vectors v andw . This sequence

is linearly recurrent and its generating function h(y) =
∑

k≥0
(vTAkw)/yk+1

is rational; for genericv
andw , the denominator of h(y) is the minimal polynomial µA of the matrixA. Writing d ≤ n for the

degree of µA, this polynomial can be reconstructed efficiently from the first 2d terms of the sequence

by the Berlekamp-Massey algorithm or, equivalently, by the computation of a Padé approximant.

Given the expansion in y−1
of a rational power series h(y) = q(y)/µA(y) with polynomials q and µA

of degree at most d − 1 and d , this reconstructs the fraction (q, µA) as a solution of

(h(y) +O(y−2d−1))µA(y) − q(y) = O(y
−d−1).

If the degree of µA is unknown, one can use this approach with the upper bound d = n instead.

Wiedemann’s algorithm can be combined with the baby steps/giant steps paradigm [40, Sec. 3;

65; 45, Algorithm AP]. In particular, when A is the matrixMa of multiplication by a mod f in the

basis B = (1, x, . . . , xn−1) of K[x]/⟨f ⟩, this was used by Shoup to compute the minimal polynomial

of the polynomial a modulo f [65–67]. For irreducible f , Shoup used the vectors v = w = 1
(where 1 is the first column of the identity matrix), in which case the sequence (vTAkw)k becomes

the sequence of power projections (ℓ(1), ℓ(a), ℓ(a2), . . .), where ℓ is the linear form which takes the

coefficient of 1 of an element of K[x]/⟨f ⟩ written on the basis B. For an arbitrary f , Shoup used a

random linear form ℓ, corresponding to a random choice of the vector v andw = 1.
In either case, the required 2d elements of the sequence can be obtained by left multiplication

by vT
of a matrix whose columns are the coefficient vectors of 1, a, a2

, . . . modulo f . Now, the
right multiplication of the exact same matrix by a vector of coefficients corresponds to modular

composition. Using the transposition principle, Shoup described a baby steps/giant steps algorithm

which computes the power projections for an arbitrary linear form ℓ : K[x]/⟨f ⟩ → K in the same

complexity as that of Brent and Kung’s algorithm [65–67]. (See Section 3.1.2.) This principle states

that the existence of an algebraic algorithm for the multiplication of a matrix by a vector induces

the existence of an algorithm for the product of the transpose of that matrix by a vector, both

having essentially the same complexity [17, Thm. 13.20; 11].

Faster Modular Composition 5

The same idea is used by Shoup for another operation that we also need. Given a,b, f , the inverse
modular composition asks for a polynomial д of least degree such that д(a) ≡ b mod f or for a proof

that no such д exists. This problem reduces to the computation of the power projections

(ℓ(1), ℓ(a), . . . , ℓ(a2n−1)) and (ℓ(b), ℓ(ab), . . . , ℓ(an−1b)),

again in the same complexity as that of modular composition, followed by the resolution of a linear

system of Hankel type [65, Thm. 3.5]. The latter is known to be equivalent to Padé approxima-

tion [13], where the equation becomes(∑
k≥0

ℓ(ak)

yk+1

+O(y−2n−1)

)
д(y) − q(y) =

∑
k≥0

ℓ(akb)

yk+1

+O(y−n−1),

to be solved for a numerator q(y) ∈ K[y]<n and the inverse composition д(y) ∈ K[y]≤n .

1.1.3 Blocks for speed and structure. Coppersmith introduced a block version of Wiedemann’s algo-

rithm [18]. There, the scalar sequence (vTAkw)k≥0 is replaced by the matrix sequence (V TAkW)k≥0

for two matrices V ∈ Kn×ℓ andW ∈ Kn×m : the generating function H (y) =
∑

k≥0
(V TAkW)/yk+1

is

a rational ℓ ×m matrix.

Such a matrix admits an irreducible matrix fraction description N (y)D(y)−1
with N ∈ K[y]ℓ×m

and D ∈ K[y]m×m two polynomial matrices (see Section 5.1.1), and the columns of the denom-

inator matrix D form a basis of the K[y]-module of polynomial vectors u ∈ K[y]m such that∑
i≤deg(u)V

TAk+iWui = 0 for all k ≥ 0, where ui denotes the coefficient of yi in u [46, Lem. 2.8].

For m = 1, this module is the ideal generated by the minimal polynomial of the sequence in

Wiedemann’s algorithm. For 1 ≤ m ≤ ℓ ≤ n, the matrix D contains more information: for example,

for generic V andW , its invariant factors are the m invariant factors of largest degree of the

characteristic matrix yIn −A [46, Thm. 2.12], the highest degree one being the minimal polynomial

ofA. Consequently, the determinant of D has degree the sum νm of the degrees of thesem invariant

factors, which implies that νm ≤ n.
The computation of D can be achieved in two steps, which are matrix versions of the methods

used form = 1 in Section 1.1.2. Writing d for the degree of D, it is sufficient to compute the first 2d
matrices of the sequence (V TAkW)k≥0, which can be done by a baby steps/giant steps approach [46].

Next, D is obtained by matrix fraction reconstruction, solving(
V T(yIn −A)

−1W +O(y−2d−1)

)
D(y) − N (y) = O(y−d−1)

for the unknown N ∈ K[y]ℓ×m and D ∈ K[y]m×m of degrees at most d − 1 and d ; this can be done

efficiently by a generalization of Padé approximation called minimal approximant bases, whose

properties are recalled in Section 5.2. (See [46, 47] for bibliographic pointers to algorithms that

compute minimal linear generators of matrix sequences.) The parameter d plays a major role in

the efficiency of both steps: it is usually unknown a priori, and might be as large as Θ(n). Yet, the
interest of this block approach lies in the fact that, for generic V andW and ℓ ≥ m, the matrix D
has degree d = ⌈νm/m⌉ ≤ ⌈n/m⌉ [70, Cor. 6.4].

1.1.4 Efficient projections and small bivariate polynomials. Special choices of the matricesV andW
above, with identity blocks, lead to efficient projections and have been shown to be effective in the

context of black-box matrix inversion [20]. Even simpler matrices, X = (Im 0)T and Y = (0 Im)
T

in Kn×m with m ∈ {1, . . . ,n}, have been used by Villard in his fast algorithm for the bivariate

resultant of two bivariate polynomials f and д in K[x,y] [71]. In this context, for generic f and

д, this choice of X and Y is sufficient to ensure that the denominator matrix D containsm “small”

polynomials in the ideal of K[x,y] generated by f and д.

6 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

1.2 Overview of the core algorithm
When a mod f has a minimal polynomial µa of small degree, µa can be computed efficiently using

power projections (ℓ(1), ℓ(a), ℓ(a2), . . .) by Shoup’s algorithm, since few terms in the sequence are

needed (see Sections 1.1.2 and 3.1.3). Then, for composition, one uses the identityд(a) ≡ д̂(a) mod f ,
where д̂ = д rem µa . Since д̂ has small degree, this reduces the number of powers of a mod f that

need be considered.

Our algorithm can be viewed as a block or bivariate version of this approach, replacing the

univariate polynomial µa by a collection ofm small bivariate polynomials in the ideal generated by

y −a(x) and f (x), for a fixed parameterm. In a generic situation, while µa has degree n, there exists
such a collection with degreesm−1 and ⌈n/m⌉ in x and y. This collection is represented as a matrix

in K[y]m×m and is found efficiently by exploiting the structure of the matrix of multiplication

by a mod f .

Matrices of relations. Let Ma ∈ K
n×n

be the matrix of multiplication by a mod f in the ba-

sis (1, x, . . . , xn−1). Following Section 1.1.3, in the special case whereA = Ma , ifV is a generic matrix

in Kn×ℓ , andW is the matrix X = (Im 0)T withm ≤ ℓ andm ≤ n, the block Wiedemann approach

yields a denominator matrix D ∈ K[y]m×m whose columns represent a basis of the K[y]-module

M
(a,f)
m =

{
r (x,y) = r0(y) + · · · + rm−1(y)x

m−1 | r (x,a(x)) ≡ 0 mod f (x)
}

; (4)

this follows for instance from [70, Lem. 4.2]. The elements of this module are algebraic relations

of degree less than m in x satisfied by a mod f (Section 5.1). We call matrix of relations any

nonsingular matrix R
(a,f)
m ∈ K[y]m×m whose columns are the coefficients of polynomials inM

(a,f)
m

(Section 4.1.1), that is, any nonsingular right multiple of D. Given a matrix of relations R
(a,f)
m , the

composition д(a) rem f is obtained in two steps.

• First, by polynomial matrix division [39, Thm. 6.3-15, p. 389], there exist vectors v,w ∈ K[y]m

such that

(д(y) 0 · · · 0)T = R
(a,f)
m w +v, (5)

where deg(v) < d andd is an upper bound on deg(R
(a,f)
m); finding such vectors takes Õ(mω (d+

n/m)) operations (Section 4.2) [75]. Then, by design, the bivariate polynomial

д̃(x,y) = v1(y) + · · · +vm(y)x
m−1

has degree less thanm and d in x and y, and is such that д(a) ≡ д̃(x,a) mod f .
• The polynomial д̃ can then be evaluated at y = a mod f by the Nüsken-Ziegler algorithm

in Õ(c(n,m,d)) operations, with c(·) from Eq. (2) (Proposition 3.4).

Truncated sequence of projections. In the blockWiedemann approach, usingX as our right projection

matrix, we need the first 2d elements of the matrix sequence (VMk
aX)k , which amounts to a type

of bivariate power projections (see Section 1.6.2). Unfortunately, we do not know how to obtain

them efficiently enough for an arbitrary V . Choosing V = X T
, we design a baby steps/giant

steps algorithm in Section 3.3 that runs in Õ(c(n,m,d) +m2d) operations. With this choice, by

fraction reconstruction the sequence (X TMk
aX)k≥0 yields a denominator D which is a basis of the

K[y]-module

M
(a,f)
m,m =

{
r (x,y) ∈ K[x,y]<(m, ·) |

[
a(x)kr (x,a(x)) rem f (x)

]m−1

0
= 0 for all k ≥ 0

}
,

where [·]m−1

0
is the projection on Span(1, x, . . . , xm−1). The inclusionM

(a,f)
m ⊆ M

(a,f)
m,m holds but

may be strict, leading to a denominator D that is not a matrix of relations.

Faster Modular Composition 7

Matrices of relations of small degree. For an arbitrary f with f (0) , 0 (this is not really a restriction,

see Remark 3.8) and a generic a, two important properties hold (see Section 7.3): the above inclusion

of modules is an equality — making the algorithm correct — and a basis R
(a,f)
m of degree d = ⌈n/m⌉

ofM
(a,f)
m can be reconstructed from the first 2d elements of the sequence (X TMk

aX)k ∈N — making

the algorithm fast.

The reconstruction is done via minimal approximant bases in Sections 5.2 and 5.3. Directly

extending Section 1.1.3, we would solve the equation at infinity(
X T(yIn −Ma)

−1X +O(y−2d−1)

)
R
(a,f)
m (y) − N (y) = O(y−d−1), (6)

for unknown matrices N and R
(a,f)
m of degree at most d − 1 and d . For technical reasons coming

from the reconstruction algorithm, we actually use an expansion at y = 0 rather than at infinity, so

that the sequence we use involves powers ofM−1

a instead ofMa (see Remark 5.7).

Beyond generic cases, a relevant quantity is

ν
(a,f)
m = deg(σ1) + · · · + deg(σm), (7)

where σ1, . . . ,σn ∈ K[y] are the invariant factors of yIn −Ma , ordered by decreasing degree. This

quantity is at most n, and it is the degree of the determinant of any basis ofM
(a,f)
m (Proposition 4.1).

In favorable situations, working with d = ⌈ν
(a,f)
m /m⌉, and a fortiori with ⌈n/m⌉, is sufficient to

obtain such a basisM
(a,f)
m .

1.3 Probabilistic algorithm for f separable or purely inseparable
Our probabilistic algorithm aims at bringing arbitrary inputs to the favorable situation mentioned

above, by means of a random change of basis. For a polynomial γ ∈ K[x] such that the minimal

polynomial µγ of γ mod f has degree n, the powers (1,γ , . . . ,γn−1) mod f form a basis of A =
K[x]/⟨f ⟩. This induces a K-algebra isomorphism:

ϕγ : A→ K[y]/⟨µγ ⟩

that maps γ to y, and more generally u ∈ A to v such that v(γ) ≡ u mod f .
Using ϕγ allows us to transport our problem of modular composition to the right-hand side. For

a in K[x]<n and д in K[y], to find д(a) rem f , this boils down to the following (see Algorithm 8.1):

— a forward change of basis: through inverse modular composition, compute α ∈ K[y]<n such

that a = α(γ) rem f ; this step also determines the minimal polynomial µγ ;
— a modular composition in the new basis: compute β = д(α) rem µγ ;
— a backward change of basis: the modular composition β(γ) rem f , which equals д(a) rem f .

Computational aspects. The second and third steps are modular compositions. They can performed

efficiently by the approach of Section 1.2, by finding and using matrices of relations R
(γ ,f)
m and

R
(α ,µγ)
m , as long as certain genericity assumptions hold; this aspect is discussed below.

The first step, for the forward change of basis, is an instance of inverse modular composition and

the calculation of a minimal polynomial. As mentioned in Section 1.1.2, Shoup’s solutions recover

both α and µγ from the power projections (ℓ(1), ℓ(γ), . . . , ℓ(γ 2n−1)) and (ℓ(a), ℓ(γa), . . . , ℓ(γn−1a)),
in the complexity of Brent and Kung’s modular composition algorithm. Using matrices of relations

we achieve a lower complexity, for a generic γ , as follows.

(1) Matrix of relations and minimal polynomial. Generalizing the power projections of γ , the
algorithm of Section 1.2 computes the first 2d terms of (X TMk

γX)k , where d = ⌈n/m⌉, and

then reconstructs a basis R
(γ ,f)
m ofM

(γ ,f)
m by solving Eq. (6) (with γ instead of a). This basis

8 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

gives in particular the minimal polynomial µγ , which appears as an entry of the Hermite

normal form of this basis (Proposition 4.1).

(2) Bivariate inverse composition. The use of projections (ℓ(a), ℓ(γa), . . . , ℓ(γn−1a)) is directly
generalized by computing the first 2d terms of (X TMk

γMa1)k , where 1 is the first column

of X , and solving(
X T(yIn −Mγ)

−1X +O(y−2d−1)

)
vα̃ (y) −vN (y) = X T(yIn −Mγ)

−1Ma1 +O(y−d−1) (8)

for polynomial vectors vN and vα̃ in K[y]m of degree less than d ; the entries of the vector
vα̃ are the coefficients of a bivariate polynomial α̃(x,y) of small degree such that α̃(x,γ) ≡
a mod f .
As for Eq. (8), we actually work with an expansion at y = 0 rather than infinity.

(3) Bivariate α̃ to univariate α . The situation is now symmetric to that of the composition

algorithm of Section 1.2: we consider again Eq. (5), where now д is unknown (it is α), v is

known (it is α̃(x,y)) and both R
(a,f)
m and v have degree at most d , so that the polynomial

matrix problem can be solved in Õ(mω (d + n/m)) operations.

This approach is detailed in Algorithm ChangeOfBasis, with the steps reordered and combined so

as to retrieve both R
(γ ,f)
m and vα̃ from a single fraction reconstruction.

Probabilistic aspects. For a generic γ , one has deg(µγ) = n, so the isomorphism ϕγ is well de-

fined. Using the Schwartz-Zippel lemma, it is straightforward to control the probability of having

deg(µγ) < n.
For generic γ , we can then follow the approach described in Section 1.2 to perform the last step,

modular composition by γ , with the desired complexity. The quantitative aspects can be worked

out as well, and similar considerations hold for the first step, inverse modular composition by γ .
However, the composition in the second step, д(α) rem µγ , is more delicate to analyze. We need

the equality of modulesM
(α ,µγ)
m =M

(α ,µγ)
m,m , and that a matrix of relations in this module can be

reconstructed from the first 2⌈ν
(α ,µγ)
m /m⌉ ≤ 2⌈n/m⌉ elements of the corresponding matrix sequence;

the analysis is made difficult by the fact that both α and µγ are nonlinear functions of the random

element γ .
We prove that this happens for a generic γ in two cases: when f is separable in Section 8.3, and

when f is purely inseparable, with extra conditions, in Section 8.4; the latter case covers power

series composition with f = xn . In both situations, there is a nonzero polynomial ∆ in n variables

such that the constraints above hold if ∆ does not vanish at the coefficients of γ . We choose a

random γ , and the probability of failure is again bounded by the Schwartz-Zippel lemma.

We do not have a proof that a generic γ satisfies our requirements for an arbitrary f . Our
algorithm for the general case proceeds by reduction to the two extreme cases above, separable

and purely inseparable polynomials.

From Monte Carlo to Las Vegas. At this stage, we have a probabilistic algorithm of Monte Carlo type,

that runs in the announced complexity and returns the correct result with a controlled probability

of error. The next question is to modify the algorithm so that it detects and reports the unlucky

choices of γ for which its result would be incorrect.

In order to certify the result obtained for a random choice of γ ∈ A, it would be sufficient to

check the following properties:

(1) the computed matrix R
(γ ,f)
m is a basis of relations ofM

(γ ,f)
m ;

(2) the minimal polynomial of γ modulo f has degree n;

(3) the computed matrix R
(α ,µγ)
m is a basis of relations ofM

(α ,µγ)
m .

Faster Modular Composition 9

However, we do not know how to check that all the columns of a matrix belong to the ideal

⟨f (x),y − γ (x)⟩ or ⟨µγ (x),y − α⟩ in sufficiently low complexity and in a deterministic way. The

matrix R
(γ ,f)
m is easier to deal with: as it is expected to behave like in the generic case, its expected

degree structure is known and the matrix can be certified by degree considerations (Item (ii) of

Proposition 5.4, and Proposition 6.1). From there, the minimal polynomial of γ can be computed

efficiently via the Hermite normal form ofM
(γ ,f)
m , and it remains to check that it has degree n.

The other matrix, R
(α ,µγ)
m , carries more information about a and cannot be expected to behave as

predictably as R
(γ ,f)
m . Our approach is to extract from its columns two small degree polynomials r

and s in K[x,y]. Since only two such polynomials are considered, they can be checked to vanish

at α mod µγ by the Nüsken-Ziegler algorithm without affecting the asymptotic cost. Then, these

two polynomials are used to construct a Sylvester matrix that can be used for composition instead

of R
(α ,µγ)
m , without increasing the overall complexity (Algorithm 5.2).

Note. Equivalently, the randomization of our probabilistic algorithm can be seen as a change of

projection. Indeed, let P ∈ Kn×n have its jth column formed by the coefficients of γ j−1
rem f .

If γ mod f generates K[x]/⟨f ⟩ and Mα is the matrix of multiplication by α mod µγ with basis

(1,y, . . . ,yn−1), then the multiplications by α and by a are related by

Mα = P−1MaP . (9)

Hence

X TMk
αX = (X

TP−1)Mk
a (PX),

which, for instance on the right side, leads to considering the firstm columns of P instead of X
for projecting. This amounts to kinds of structured projections (V TMk

aW)k≥0, i.e. with matrices V
andW in a special proper subset of Kn×m .

1.4 Algorithm for the general case
The algorithm of Section 1.3 is proved to work when f is either separable, or purely inseparable

(for the latter, with extra conditions that are dealt with in Section 8.4). In Section 9, we address the

general case, by first computing a separable decomposition of f [53], yielding a factorization into a

product into pairwise coprime terms of the form hi (x
pei)ℓi , with hi separable and ei , ℓi integers

(here, p is the characteristic of K).
Working modulo each factor separately, we are thus left with the question of composition modulo

a polynomial of the form h(xp
e
)ℓ , with h separable (all such results are eventually recombined via

the Chinese remainder theorem).

For a modulus of the form h(x)ℓ , van der Hoeven and Lecerf showed how composition can be

reduced to ℓ compositions modulo h, the computation of an annihilating polynomial modulo h,
and a power series composition at precision ℓ with coefficients in L = K[x]/⟨h(x)⟩ [30]. We extend

this result to the case of moduli of the form h(xp
e
)ℓ in Section 9.4, involving essentially the same

steps. The first two operations (compositions and annihilating polynomial modulo h) are directly
handled by our results so far, but this is not quite the case for the latter, power series composition

with coefficients in L.
Our algorithms are written assuming they work over a field, as they perform zero-tests and

inversions (compare this with Brent and Kung’s algorithms, for instance, which apply over a ring).

If h is irreducible, L is a field, but if h is only assumed to be separable, then L is only a product of

fields. The dynamic evaluation paradigm [19] explains how an algorithmwritten for inputs lying in a

field can carry over to inputs in a product of fields, but the original approach induces cost overheads

that go beyond our cost target. Using van der Hoeven and Lecerf’s efficient dynamic evaluation

10 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

strategy [33], we show how our algorithm for power series adapts to this situation (Section 9.2)

without affecting the asymptotic runtime.

1.5 Previous algorithms in special cases
To compute д(a) rem f , previous known improvements upon Brent and Kung’s approach all have

requirements on the input, either on some of the polynomials f , д, and a, or on the ring or field of

coefficients — possibly with non-algebraic algorithms.

1.5.1 Special modulus.

Power series. For the special case f = xn of power series, Brent and Kung’s second algorithm

relying on Taylor expansion performs composition in only Õ(n3/2) operations, provided a′(0) and

(⌈
√
n log(n)⌉)! are invertible in A; the assumption on a′(0) can be weakened [28, Sec. 3.4.3]. In more

variables, even in the specific case д(x,a) rem f handled by the Nüsken-Ziegler algorithm, we do

not know of any algorithm computing composition faster for power series than modulo arbitrary

polynomials.

Faster composition in only Õ(n) operations for д(a) rem xn is possible for many special cases of д:
when д is a polynomial of degree O(1), but also when it is a power series solution of a polynomial

equation of degree O(1) via Newton’s iteration, or when it is a solution of a differential equation

(e.g., exp), by first forming a differential equation for д(a) and then solving it by Newton’s iteration

or other divide-and-conquer algorithms, generally in characteristic 0 or large enough [9, 15, 28, 54;

8, §13.4] Similarly, still in the case when f = xn , if furthermore a has specific properties, then

composition of power series can be performed in Õ(n) operations. This is the case when a is a

polynomial [15] of moderate degree (it is a part of Brent and Kung’s fast composition algorithm),

an algebraic power series [28], but also for a class of truncated power series that can be obtained

via shifts, reversals, scalings, multiplications by polynomials, exponentials and logarithms [12].

Separable polynomials. Ritzmann observed that for a separable modulus f (x) = (x − ϵ1) · · · (x − ϵn)
with distinct ϵ1, . . . , ϵn that are known, modular composition boils down to multipoint evaluation

and interpolation [64], which can be computed in Õ(n) arithmetic operations. When furthermore

the ring of coefficients is Z, he uses well-chosen ϵi ’s to give an efficient algorithm for composing

power series, in a non-algebraic model of computation: if д and a over Z have coefficients bounded

in absolute value by K , then д(a) rem xn can be computed using Õ(n2
log(K)) bit operations, which

is quasi-optimal since the output has bit size Ω(n2
log(K)) in general.

Chinese remainder theorem. In our work, the cases of power series and of separable polynomials

play an important role as well. We use the observation that if a factorization f = f1 · · · fs is known
with the fi ’s relatively prime, then composing modulo f reduces to composing modulo each fi
and reconstructing the result via the Chinese remainder theorem. Several consequences of this

observation have been discussed by van der Hoeven and Lecerf [31].

1.5.2 Special rings or fields. For power series over a ring A of positive characteristic, Bernstein

proposed an algebraic algorithm whose complexity is quasi-linear in n, with a constant factor that

depends on the characteristic of the ring [6]. In particular, this algorithm is very efficient over rings

whose characteristic is a product of small primes; if A is a ring of prime characteristic p then the

algorithm uses Õ(np) operations in A.
A further step forward was achieved by Umans in 2008 [68], with a new algorithm for modular

composition modulo and arbitrary f , over finite fields of small characteristic: if p is no(1), his
algorithm uses n1+o(1)

base field operations. Later, Kedlaya and Umans introduced new techniques

Faster Modular Composition 11

for composition over finite rings of the form (Z/rZ)[z]/⟨h(z)⟩, for an integer r and h monic. For a

finite field K = Fq , their algorithm runs in n1+ϵ
log

1+o(1)(q) bit operations [48, Cor. 7.2].
As in Ritzmann’s work, a key idea in [48, 68] is to exploit fast multipoint evaluation, but this

time in a multivariate setting. The composition д(a) rem f is reduced to the evaluation at suitable

points of a multivariate polynomial constructed from д by an inverse Kronecker substitution,

decreasing degrees at the expense of increasing the number of variables. Umans’ algorithm performs

the evaluation using the properties of the Frobenius endomorphism, while Kedlaya and Umans’

proceeds by lifting to characteristic zero (which requires working in a bit complexity model). For

arbitrary fields, efficient analogues of these multivariate multipoint evaluation algorithms are

currently unknown.

1.6 Related questions
1.6.1 (Multivariate) multipoint evaluation. For simplicity, we limit the discussion to the case of a

field; most of it extends to rings, with minor restrictions. The evaluation of a univariate д ∈ K[x]<n
at n points in the field K, and conversely the interpolation of a polynomial of degree < n from n
values, are computable in quasi-linear complexity [22, Chap. 10]. For polynomials in at least two

variables, however, the situation becomes tightly related to modular composition.

The motivation of Nüsken and Ziegler [59] was the evaluation of a polynomial д ∈ K[x,y]<(m,d)
at n points (xk ,yk)1≤k≤n in general position, with md = O(n). Their algorithm first computes

a univariate interpolation polynomial such that a(xk) = yk for all k ; then the composition b =
д(x,a(x)) rem f , where f =

∏
k (x − xk); and concludes by a univariate multipoint evaluation of b

at x1, . . . , xn . Since the univariate evaluation and interpolation are performed in essentially linear

time, the complexity is dominated by the “uni-bivariate” modular composition д(x,a) rem f .
The case when several points have the same x-value can be handled by an affine change of

coordinates [59]; another approach, taken by Kedlaya and Umans, is to pick n suitable points

t1, . . . , tn in K, to compute two interpolation polynomials ax and ay in K[t], and thus reduce the

evaluation to the fully bivariate modular composition д(ax ,ay) rem f , where now f =
∏

k (t − tk).
This extends to an arbitrary number of variables and shows that multipoint evaluation in s variables
reduces to multivariate modular composition in the same number of variables [48, Thm. 3.3].

As mentioned in Section 1.5.2, Kedlaya and Umans actually make a heavy use of a converse reduc-

tion [48, Thm. 3.1]. If д is a polynomial in K[x1, . . . , xs], the composition д(a1(x), . . . ,as (x)) rem f
reduces to a multipoint evaluation of a polynomial of smaller degree in each of its variables, whose

number is increased. For the univariate case of composition (s = 1) studied here, the smallest

possible number of variables for evaluation would be 2, leading to a bivariate evaluation of a

polynomial of degree

√
n at Θ(n3/2) points, which is too large for our target complexity. The next

possible choice would be a polynomial of 3 variables in degree n1/3
at Θ(n4/3) points. Unfortunately,

we are not aware of a sufficiently efficient multipoint evaluation algorithm in 3 or more variables

to make this approach succeed in the algebraic model.

1.6.2 Bivariate ideals. Viewing the problem of computing д(a)modulo f as a problem of reduction

of д modulo the ideal I = ⟨y − a(x), f (x)⟩, we introduce bivariate polynomials in a way different

from the inverse Kronecker substitution mentioned above. Gröbner bases are commonly used for

reductions modulo multivariate ideals. A division with remainder similar to that in Eq. (5) would

be achieved via reduction by an appropriate Gröbner basis of I, provided we could compute this

basis and perform the reduction in good complexity. However, already the size of the Gröbner basis

itself may be Θ(n3/2) (see the example below), hence exceed our target complexity.

For an ideal given by two generic bivariate polynomials of degree n (hence the ideal is of

degree n2
) and the graded lexicographic order, van der Hoeven and Larrieu avoid the use of an

12 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

explicit Gröbner basis. They show that a concise representation of the basis of size only Õ(n2) is

sufficient for reducing a polynomial modulo the ideal in time Õ(n2) [29]; the concise representation

consists in particular of truncations of well chosen polynomials in the ideal. It is unclear to us

whether a similar truncation strategy could be applied specifically to I, whose degree is only n.
Instead, the matrices of relations we compute give a set of small degree polynomials in I that may

not generate the whole ideal (see Section 4.1), but provide a process of complexity Õ(nκ) for the
reduction modulo I of Eq. (5). These polynomials generate the same ideal as the first polynomials

in the Gröbner basis of I for the lexicographic order (see Corollary 4.3).

The concise representation of Gröbner bases has also been exploited by van der Hoeven and Lecerf

for computing the minimal polynomial of the multiplication by y modulo J , when J = ⟨f1, f2⟩ is
generated by two generic polynomials f1, f2 ∈ K[x,y] and K is a finite field [36, Sec. 4]. They apply

the transposition principle to a bivariate modular composition map modulo J , then compute the

minimal polynomial from the resulting bivariate power projections [41, Sec. 6]. The evaluation of

the composition map modulo J is again in Õ(n2), thanks to the concise representation [36]. In

our case of I = ⟨y − a(x), f (x)⟩ and for a generic a, matrices of relations allow us to compute the

minimal polynomial of the multiplication by y modulo I in complexity Õ(nκ) (see Section 10.1);

matrices of relations are obtained via a bivariate power projection process that can be regarded, in

part, as dual to Nüsken and Ziegler’s bivariate modular composition algorithm (Section 3.4.3).

Note. For a sufficiently large field K, take f = (x − 1) · · · (x −n), where n = k(k + 1)/2, and a ∈ K[x]

the polynomial of degree smaller than n such that a(i) = [
√

2i] for 1 ≤ i ≤ n. Then the reduced

Gröbner bases for the graded lexicographic order and for the lexicographic order, both with y ≺ x ,
coincide. They contain one polynomial with leading term x iyk−i for each i ∈ {0, . . . ,k}. Counting
the number of monomials of these polynomials shows that this basis has k(k + 1)(k + 2)/3+ (k + 1)

monomials; this is of the order of n3/2
.

1.6.3 Modular composition and multipoint evaluation with precomputation. Quasi-linear modular

composition д(a) rem f is feasible after precomputations on (f ,a) only, for a generic and f square-

free [57].

Likewise, after precomputations on the evaluation points and under genericity assumptions

on them, quasi-linear multivariate multipoint evaluation is feasible [35], as well as quasi-linear

bivariate interpolation [57]. Furthermore, for bivariate evaluation, genericity can be replaced by

randomization [34].

In these works, the precomputation stages are at least as expensive as the fastest known corre-

sponding modular composition or multipoint evaluation algorithms. They have a feature common

with our composition algorithm: from f ,a (or from the evaluation points), they compute a set of

polynomials which belong to ⟨y−a(x), f (x)⟩ (or vanish at the points), and allow for efficient degree

reduction of the polynomial to compose with (or to evaluate). This set is either akin to several

matrices of relations ofM
(a,f)
m for a small number of values ofm ranging from 1 to n [57], or is a

collection of well-chosen polynomials in several Gröbner bases for subsets of the points so as to

build a multivariate divide and conquer evaluation tree [34, 35].

1.7 Outline
Section 2 introduces some notation and our computational model. Section 3 details baby steps/giant

steps techniques used in our composition algorithm: known ones such as in Brent and Kung’s

composition, and new ones such as for computing truncated powers which give access to (X TMk
aX)k .

Section 4 studies matrices of relations and how they are used in our composition algorithm, whereas

Section 5 shows how to compute them efficiently by matrix fraction reconstruction under some

Faster Modular Composition 13

assumptions on (f ,a,m). Section 6 presents an algorithm for the change of basis of Section 1.3: it

finds the minimal polynomial µγ and an inverse composition α such that α(γ) ≡ a mod f , under
assumptions on (f ,γ ,m). Section 7 studies these assumptions, and in particular gives precise generic

situations where they hold. Section 8 describes our main randomized composition algorithm and

proves its correctness for a separable f and for a purely inseparable f (generalizing f = xn); then
Section 9 handles the general case of composition modulo any f . Finally, in Section 10, we state

resulting complexity improvements for several variants of modular composition and other related

problems.

2 PRELIMINARIES
Notation. In this article, K is an arbitrary field. For bivariate polynomials in variables x and y, degx
and degy give the degree in x and in y. For any polynomial or power series p =

∑
i pix

i
, we use

the following notation for a “slice” of it: [p]kj = pj + pj+1x + · · · + pj+kx
k
. The ideal generated

by polynomials f1, . . . , fk in an ambient ring (which will be clear from the context) is denoted

by ⟨f1, . . . , fk ⟩.
Vectors, such as elements of Km or K[y]m , are seen as column vectors by default; when row

vectors are considered this is explicit in our notation, e.g. K1×m
or K[y]1×m . We often identify a

polynomial д0(y) + · · · + дm−1(y)x
m−1

in K[x,y]<(m, ·) with the column vector (д0 · · · дm−1)
T
in

K[y]m of its coefficients on the basis (1, x, . . . , xm−1) of the K[y]-module K[x,y]<(m, ·).

For a and f inK[x],Ma denotes the matrix of the linear map of multiplication by a inK[x]/⟨f (x)⟩
with basis (1, x, . . . , xn−1), and µa , resp. χa , denotes the minimal, resp. characteristic polynomial of

a in K[x]/⟨f (x)⟩ (that is, the minimal and characteristic polynomials ofMa).

Whenever the context is sufficiently clear, particularly in Sections 4, 5 and 7, notation such

asM
(a,f)
m , ν

(a,f)
m defined in the introduction is shortened intoMm , νm . We keep the superscripts in

important statements.

Computational model. Our algorithms are written in pseudo-code, using standard syntax elements

(for-loops, if statements, . . .). Informally, we count all arithmetic operations {+,−,×,÷} and zero-

tests in K at unit cost. The underlying complexity model is the computation tree [17, Sec. 4.4].

A computation tree over K is a binary tree whose nodes are partitioned into input nodes that

form an initial segment of the tree starting at the root, computation nodes with outdegree 1,

branching nodes with outdegree 2 and output nodes at the leaves. To each node is associated a label.

Computation nodes are labelled by constants in K or operations in {+,−,×,÷}, in which case they

also carry references to two previous input or computation nodes; branching nodes are labelled by

zero-tests, referring to some previously computed quantity. Each leaf v is labelled with a sequence

of references (u1, . . . ,uℓ(v)) to previous input or computation nodes. The cost of a computation tree

is simply its height τ , that is, the maximum length of a path from the root to a leaf.

It then makes sense to evaluate a computation tree at an element of Ks — called input to the

tree, where s is the number of input nodes, following a path from the root to a leaf. After the input

nodes, the path is constructed as follows. Each computation node is assigned a value derived from

the label it carries, when it is defined. Otherwise, e.g., in case of a division by 0, the path stops.

At a branching node the path branches left or right depending on whether the value it refers to

vanishes or not. At a leaf v with label (u1, . . . ,uℓ(v)), the output of the computation is the tuple of

the values computed at nodes u1, . . . ,uℓ(v). In that case, the computation tree is called evaluable at

the input. Overall, the computation requires at most τ arithmetic operations in K. An algorithm is

called quasi-linear when the height of its computation tree is linear (up to logarithmic factors) in

the number of inputs. It is called quasi-optimal when this height is linear (up to logarithmic factors)

in the number of inputs plus the maximum number of values returned by the output nodes.

14 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

A computation tree takes inputs of fixed length. In order to solve a problem for inputs of arbitrary

size, we need a family of trees, parametrized by the input size. Every algorithm we describe using

pseudo-code in this article, and all algorithms that we rely on from the literature, can be described

by a family of computation trees.

The translation from pseudo-code to computation tree is usually rather direct, and as is customary

in the literature, we do not do it explicitly. In a nutshell, for-loops and recursive calls are “unrolled”;

if statements that test whether a computed quantity vanishes yield branching nodes, etc. Some

operations in our pseudo-code may not be directly available in our model (as we only allow

arithmetic operations in K and zero-test), but they can be rewritten in a way that complies with

our requirements. This is for instance the case when we compute the degree of a polynomial (as in

Euclid’s GCD algorithm): this can be achieved by scanning its coefficients, in order of decreasing

degree, until a nonzero one is found.

We allow our algorithms to return flags (such as Fail, or Cert/NoCert). This can be done in

this model, by returning constants in the vector of outputs, such as 1 for Fail and 0 otherwise.

Finally, several of our algorithms rely on randomization; however, we do not want to introduce

another arithmetic operation for the selection of random field elements. One reason for this is that

we invoke a result by van der Hoeven and Lecerf [33] on the transformation of computation trees

for directed evaluation in Section 9.2, and that result is explicitly written in a deterministic model.

Instead, “random” field elements are given to our procedures as extra input parameters.

3 SIMULTANEOUS MODULAR OPERATIONS BY MATRIX MULTIPLICATION
Akey ingredient in fastmodular composition algorithms is to turn the problem into the simultaneous

evaluation of polynomials of smaller degree, and exploit the structure brought by this simultaneity

using matrix multiplication. In this section, after reviewing Brent and Kung’s original algorithm

and giving a direct extension of it, we use this idea in two further contexts: Nüsken and Ziegler’s

bivariate modular composition algorithm, and the computation of truncations of powers of the

form ak rem f . Both arise in our algorithms, and are bottlenecks in their complexity.

3.1 Brent and Kung’s algorithm
3.1.1 Modular composition. We start with a review of Brent and Kung’s algorithm to compute

д(a) rem f , pointing out the impact of rectangular matrix multiplication [37] and how the runtime

depends on the degrees of both f and д [65, Fact 3.1]. This can be seen as an introduction to the

Nüsken-Ziegler algorithm, which generalizes this approach to a bivariate д.

Proposition 3.1. Given polynomials f ∈ K[x] of degreen, a inK[x]<n andд inK[y]<d , Algorithm
ModularComposition-BrentKung computes д(a) rem f using Õ((1 + n/d)dω2/2) operations in K.

Proof. Correctness follows from noticing that at Step 7,bi ≡ дir+дir+1a+· · ·+дir+r−1a
r−1

mod f
holds for all i , where дj is the coefficient of degree j in д for all j. The cost of the algorithm comes

fromΘ(d1/2)multiplications modulo f , which use Õ(nd1/2) operations inK, and a matrix product in

sizes s ×r and r ×n, with both s and r in Θ(d1/2). This product can be done through ⌈n/d⌉ ≤ n/d + 1

matrix products in sizes s × r and r × d , each of which takes O(dω2/2) operations in K. □

Note. In the analysis, dividing the matrix product into blocks, as we did, is sub-optimal. Using

rectangular matrix multiplication directly, the runtime can be described by the finer estimate

Õ(dω2 log(n)/log(d)/2). Here, the notation ωθ is a feasible exponent for rectangular matrix multiplication

for any real number θ : there is an algorithm which multiplies an n × ⌈nθ ⌉ matrix by an ⌈nθ ⌉ × n
matrix using O(nωθ) operations [52]. However, this refinement complicates notation, and would

Faster Modular Composition 15

Algorithm 3.1ModularComposition-BrentKung(f ,a,д)

Input: f of degree n in K[x], a in K[x]<n , д in K[y]<d
Output: д(a) rem f
1: r ← ⌈d1/2⌉, s ← ⌈d/r⌉
2: â0 ← 1

3: for i = 1, . . . , r do âi ← a · âi−1 rem f ▷ âi = ai rem f

4: A← matrix (coeff(âi , j))0≤i<r
0≤j<n

in Kr×n ▷ coefficient of degree j of âi

5: G ← matrix (coeff(д, ir + j))0≤i<s
0≤j<r

in Ks×r

6: B = (bi , j)0≤i<s
0≤j<n

← GA in Ks×n

7: for i = 0, . . . , s − 1 do bi ← bi ,0 + · · · + bi ,n−1x
n−1

8: return b0 + b1âr + · · · + bs−1â
s−1

r rem f ▷ Horner evaluation

not be of use for our main results. The same remark holds for several other runtime estimates in

this section, such as Lemmas 3.3 and 3.5.

3.1.2 Power projection. The transposition principle implies the existence of an algorithm Power-

Projection with the same asymptotic runtime as Algorithm ModularComposition-BrentKung

and with the following signature [65].

Algorithm 3.2 PowerProjection(f ,a,d, (ri)0≤i<n)

Input: f of degree n in K[x], a in K[x]<n , d in N, (ri)0≤i<n in Kn

Output: (ℓ(1), ℓ(a), . . . , ℓ(ad−1
mod f)), with ℓ(b0 + · · · + bn−1x

n−1) = r0b0 + · · · + rn−1bn−1

Whereas seeing the details of Algorithm ModularComposition-BrentKung is useful as a

preamble to the Nüsken-Ziegler algorithm, Algorithm PowerProjection only plays the role of

a subroutine in one other algorithm given just below. Moreover, giving its pseudo-code would

require us to introduce concepts such as transposed product, that would not used any further in

this text. We refer the reader to [67], which gives all details but uses classical matrix arithmetic

(with ω2 = 4), so the runtime of that version is Õ(d2 + nd) instead of Õ((1 + n/d)dω2/2).

3.1.3 Small minimal polynomial. Modular composition can be sped up when the minimal polyno-

mial µa of a modulo f has degree at most d , for some (small) integer d ≤ n. To compute д(a) rem f ,
the idea is that once µa is known, д̃ = д rem µa can be computed, and then д(a) ≡ д̃(a) mod f . The
computation of the latter by Proposition 3.1 benefits from д̃ having degree less than d .

It remains to discuss how to compute µa . Here, we follow an algorithm of Shoup’s (the determin-

istic version, for f irreducible, is in [65, Thm. 4]; the randomized one is in [66, Sec. 4]). We take a

random linear form ℓ : K[x]/⟨f ⟩ → K and compute the sequence (ℓ(ak mod f))0≤k<2d . With high

probability, its minimal polynomial is µa ; the algorithm verifies whether it is the case, and returns

either a correct result or Fail. In Algorithm ModularComposition-SmallMinimalPolynomial,

µa is computed using an Extended Euclidean scheme called MinimalPolynomialForSeqence [22,

Algo. 12.9].

The following lemma analyses the runtime of this procedure, and the probability of success.

As per our convention at the end of Section 2, the “random” linear form ℓ is actually given as an

argument, through the vector (r0, . . . , rn−1) ∈ K
n
of its coefficients.

Lemma 3.2. Given f ∈ K[x] of degree n, a in K[x]<n , д in K[y]<n , d in {1, . . . ,n} and (ri)0≤i<n
in Kn , Algorithm ModularComposition-SmallMinimalPolynomial uses Õ(nd (ω2/2)−1) operations

16 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

Algorithm 3.3ModularComposition-SmallMinimalPolynomial(f ,a,д,d, (ri)0≤i<n)

Input: f of degree n in K[x], a in K[x]<n , д in K[y]<n , d in {1, . . . ,n}, (ri)0≤i<n in Kn

Output: д(a) rem f or Fail

1: (v0, . . . ,v2d−1) ← PowerProjection(f ,a, 2d, (ri)0≤i<n)
2: µ ← MinimalPolynomialForSeqence(v0, . . . ,v2d−1)

3: t ← ModularComposition-BrentKung(f ,a, µ)
4: if t , 0 then return Fail

5: else return ModularComposition-BrentKung(f ,a,д rem µ)

in K and returns either д(a) rem f or Fail. If µa has degree at most d , and the entries of (ri)0≤i<n
are chosen uniformly and independently from a finite subset S of K, then with probability at least

1 − n/card(S) the algorithm returns д(a) rem f and computes µa as a by-product. If µa has degree

more than d , the algorithm returns Fail.

Proof. For any given a in K[x]<n and (r0, . . . , rn−1), the algorithm computes a polynomial µ
and tests whether µ(a) ≡ 0 mod f ; if it is the case, it reduces д modulo µ before doing a modular

composition. Hence, the output may only be д(a) rem f or Fail, as claimed; it is Fail if and only if

the value t at Step 3 does not vanish.

By the discussion in Section 3.1.2 and Proposition 3.1, the call to PowerProjection takes

Õ((1+n/d)dω2/2) operations inK; because we take d ≤ n, this is Õ(nd (ω2/2)−1). Step 2 then computes

a nonzero annihilating polynomial of degree at most d in Õ(d) operations in K [22, Algo. 12.9]. The

remaining lines call Algorithm ModularComposition-BrentKung with a last argument of degree

at most d , so the cost is Õ(nd (ω2/2)−1) again; this establishes the claim on the runtime.

Suppose first that µa has degree greater than d . Then since deg(µ) ≤ d , µ(a) rem f cannot be

zero, so the output is Fail, as claimed.

Finally, suppose that the minimal polynomial µa has degree at most d and that the entries

of (ri)0≤i<n are chosen uniformly at random and independently from a set S in K. With Ma
the multiplication matrix by a mod f and 1 the vector (1, 0, . . . , 0), the sequence ((ri)TMk

a 1)k≥0 is

(ℓ(ak mod f))k≥0 and the sequence (M
k
a 1)k≥0 is (a

k
rem f)k≥0. Following the probabilistic analysis

of Wiedemann’s algorithm [42, Lem. 2; 43, Lem. 1], the probability that their minimal polynomials

coincide is at least 1 − n/card(S). When this occurs, Step 2 computes µa ; the value t at Step 3 is

then zero, and the output is д(a) rem f . □

The main idea in this algorithm — computing an annihilating polynomial for a and using it to

reduce д — is actually at the core of our main algorithm as well. Key differences are that we compute

several annihilating polynomials (which we call relations), and use them to reduce д into a bivariate
polynomial. We then apply Nüsken and Ziegler’s extension of Brent and Kung’s algorithm, which

we present now.

3.2 Bivariate composition
Here we describe the Nüsken-Ziegler algorithm for modular composition [59], which computes

д(x,a) rem f for a bivariate д in K[x,y].
First, however, we address the following question: given f of degree n in K[x], a in K[x]<n and

an s-uple (д0, . . . ,дs−1) in K[x,y]
s
<(m,r), compute all compositions

(д0(x,a) rem f , . . . ,дs−1(x,a) rem f) ∈ K[x]s .

The solution designed by Nüsken and Ziegler [59] boils down to a multiplication of polynomial

matrices. Writing the polynomials дi as the rows of their coefficients in y gives an s × r matrix G

Faster Modular Composition 17

whose entries are polynomials in K[x]<m . Writing the powers of 1,a, . . . ,ar−1
rem f in a column

vector A reduces the simultaneous composition to a matrix-vector product GA. This is turned into

a matrix-matrix product by spreading the coefficients of A as follows. If

дi (x,y) =
∑

0≤j<r

дi , j (x)y
j ,

then computing the product

B =
©­­«
д0,0(x) · · · д0,r−1(x)
...

...
дs−1,0(x) · · · дs−1,r−1(x)

ª®®¬
©­­­«
[a0

rem f]m−1

0
· · · [a0

rem f]m−1

(⌈n/m ⌉−1)m
...

...
[ar−1

rem f]m−1

0
· · · [ar−1

rem f]m−1

(⌈n/m ⌉−1)m

ª®®®¬
yields a matrix whose entry Bi ,ℓ is

Bi ,ℓ =
∑

0≤j<r

дi , j (x)[a
j

rem f]m−1

ℓm .

Summing the Bi ,ℓx
ℓm

modulo f , for ℓ = 0, . . . , ⌈n/m⌉ − 1, then provides дi (x,a) rem f for i =
0, . . . , s − 1 at low cost. This is detailed in Algorithm 3.4 and Lemma 3.3.

Algorithm 3.4 SimultaneousBivariateModularComposition(f ,a,д0, . . . ,дs−1,m, r)

Input: f of degree n in K[x], a in K[x]<n , (д0, . . . ,дs−1) in K[x,y]
s
<(m,r)

Output: (д0(x,a) rem f , . . . ,дs−1(x,a) rem f)
1: â0 ← 1

2: for i = 1, . . . , r do âi ← a · âi−1 rem f ▷ âi = ai rem f

3: A← matrix ([âi]
m−1

jm)0≤i<r
0≤j< ⌈n/m ⌉

in K[x]r×⌈n/m ⌉m

4: G ← matrix (дi , j (x))1≤i≤s
0≤j<r

in K[x]s×rm , where дi (x,y) =
∑

j дi , j (x)y
j

5: B = (Bi , j)0≤i<r
0≤j< ⌈n/m ⌉

← GA

6: for i = 0, . . . , s − 1 do bi ← (
∑

0≤j< ⌈n/m ⌉ Bi , jx
jm) rem f

7: return (b0, . . . ,bs−1)

Lemma 3.3 ([59, Lem. 10(iii)]). Algorithm SimultaneousBivariateModularComposition com-

putes (д0(x,a) rem f , . . . ,дs−1(x,a) rem f). Assuming s ∈ Õ(r), it uses Õ(c(n,m, r 2)) = Õ((m +
n/r 2)rω2) operations in K, with c(·) from Eq. (2).

Proof. Steps 1 and 2 use Õ(rn) operations. Similarly, for each i = 0, . . . , s − 1, Step 6 uses ⌈n/m⌉
additions in O(m) operations each and one reduction in Õ(m + n) operations. The total cost of
Step 6 is thus Õ(s(n +m)).

Steps 3 and 4 do not use any arithmetic operation. The most expensive step is Step 5, the product

of an s × r matrix by an r × ⌈n/m⌉ matrix, both with entries in K[x]<m . Using the same kind of

block decomposition as in Proposition 3.1, this is done using ⌈⌈n/m⌉/r 2⌉ ∈ n/(mr 2)+O(1) products
in sizes s × r and r × r 2

. With the assumption s ∈ Õ(r), each of them uses Õ(mrω2) operations in K,

for a total of Õ(c(n,m, r 2)) = Õ((m + n/r 2)rω2) operations in K.

The other steps, in Õ((r +s)(n+m)) = Õ(rm+rn), are at most of the same order, sinceω2 ≥ 3. □

Algorithm SimultaneousBivariateModularComposition is the central step in bivariate com-

position as showed in Algorithm BivariateModularComposition, leading to the complexity

stated in Proposition 3.4.

18 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

Algorithm 3.5 BivariateModularComposition(f ,a,д) (Nüsken-Ziegler algorithm [59])

Input: f of degree n in K[x], a in K[x]<n , д in K[x,y]<(m,d)
Output: д(x,a) rem f
1: r ← ⌈d1/2⌉, s ← ⌈d/r⌉
2: Write д(x,y) = д0(x,y) + д1(x,y)y

r + · · · + дs−1(x,y)y
r (s−1)

with degy (дi) < r for 0 ≤ i < s
3: (b0, . . . ,bs−1) ← SimultaneousBivariateModularComposition(f ,a,д0, . . . ,дs−1,m, r)
▷ bi = дi (x,a) rem f

4: â ← ar rem f ▷ is computed in the previous step

5: return b0 + b1â + · · · + bs−1â
s−1 ▷ Horner evaluation

Proposition 3.4 ([59, Thm. 9]). Given f ∈ K[x] of degree n, a ∈ K[x]<n , д in K[x,y]<(m,d),

Algorithm BivariateModularComposition computes д(x,a) rem f using Õ(c(n,m,d)) = Õ((m +
n/d)dω2/2) operations in K, with c(·) from Eq. (2).

Proof. The correctness of the algorithm is straightforward. For the complexity analysis, we

first note that s ∼ r ∼ d1/2
. Lemma 3.3 then shows that the complexity of Step 3 is Õ(c(n,m, r 2)) =

Õ(c(n,m,d)). The other task involving arithmetic operations is the final Horner evaluation which

costs Õ(rn). As in the proof of Lemma 3.3, this is smaller than the other part, since ω2 ≥ 3. □

3.3 Sequence of truncated modular powers
Another key ingredient in our composition algorithm also relies on polynomial matrixmultiplication.

To our knowledge this is a new algorithm, whose properties are summarized in the next lemma.

Lemma 3.5. Given f of degree n in K[x], (p0, . . . ,pr−1) in K[x]
r
<n , (q0, . . . ,qs−1) in K[x]

s
<n and

m ∈ N>0, Algorithm SimultaneousTruncatedModularMultiplication computes the simultaneous

truncated modular multiplications

{[piqj rem f]m−1

0
| 0 ≤ i < r , 0 ≤ j < s}.

If s ∈ Õ(r), it uses Õ(c(n,m, r 2)) = Õ((m + n/r 2)rω2) operations in K, with c(·) from Eq. (2).

The basic approach to this problem is to first compute all the products piqj modulo f and then

truncate the computed polynomials. However, this produces an intermediate result of size nrs ,
which is Θ(nr 2) when s is in Θ(r), and is larger than our target complexity.

Hereafter, we use the reversal of a polynomial p ∈ K[x] with respect to m ∈ N defined by

rev(p,m) = xmp(1/x); whenm = deg(p) this is the classical reciprocal of the polynomial p.

Proof. For all i < r and j < s , let piqj = hi , j f + ri , j , with deg(ri , j) < n, be the Euclidean division

of the product piqj by the polynomial f . The main task of the algorithm is to compute the truncated

quotients [hi , j]
m−1

0
(Steps 1 to 5); from there, the truncated remainders [ri , j]

m−1

0
are easily obtained

(Step 6) at a total cost of Õ(mrs) operations.
For the efficient computation of the quotientshi , j , we rely on the classical approach via reciprocals

and power series operations. More specifically we use the identity

rev(hi , j ,n − 2) =
rev(pi ,n − 1) rev(qj ,n − 1)

rev(f ,n)
rem xn−1 = p̄iq̄j rem xn−1,

obtained by evaluating piqj = hi , j f + ri , j at 1/x and multiplying by xn−2/f (1/x) = x2n−2/rev(f ,n);
here we have p̄i = rev(pi ,n − 1) and q̄j = rev(qj ,n − 1)/rev(f ,n) rem xn−1

, as in the pseudo-code.

The idea of our algorithm is to compute only the lastm coefficients of this expansion by means of

two polynomial matrix multiplications.

Faster Modular Composition 19

Algorithm 3.6 SimultaneousTruncatedModularMultiplication(f , (pi)i<r , (qj)j<s ,m)

Input: f of degree n in K[x], (p0, . . . ,pr−1) in K[x]
r
<n , (q0, . . . ,qs−1) in K[x]

s
<n ,m ∈ N>0

Output: ([piqj rem f]m−1

0
)0≤i<r
0≤j<s

1: (ℓ, t) ← (quotient,remainder) in the Euclidean division n −m − 1 = ℓm + t with ℓ = 0 ifm ≥ n
2: for i = 0, . . . , r − 1 do p̄i ← rev(pi ,n − 1)

3: for j = 0, . . . , s − 1 do q̄j ← power series expansion rev(qj ,n − 1)/rev(f ,n) rem xn−1

4: Form the matrices

P1 ← ([p̄i]
m−1

jm+t)0≤i<r
0≤j≤ℓ

∈ K[x]r×(ℓ+1)
m P2 ← ([p̄i]

m−1

jm+t)0≤i<r
0≤j<ℓ

∈ K[x]r×ℓm

and

Q1 ← ([q̄j]
m−1

(ℓ−i)m)0≤i≤ℓ
0≤j<s

∈ K[x](ℓ+1)×s
m Q2 ← ([q̄j]

m−1

(ℓ−1−i)m)0≤i<ℓ
0≤j<s

∈ K[x]ℓ×sm

5: H ← [P1Q1]
m−1

0
+ [P2Q2]

m−1

m +
([
[p̄i]

t−1

0
[q̄j]

m−1+t−1

ℓm+1

]m−1

t−1

)
0≤i<r
0≤j<s

▷ H = (¯hi , j)i , j is in K[x]r×sm

6: for i = 0, . . . , r − 1 and j = 0, . . . , s − 1 do ri , j ← (piqj − rev(¯hi , j ,m − 1)f) rem xm

7: return (ri , j)0≤i<r
0≤j<s

For any t ∈ {0, . . . ,m − 1}, for any polynomials a,b written as

a = [a]t−1

0
+ x t

∑
i≥0

aix
im

with deg(ai) < m, b =
∑
j≥0

bjx
jm

with deg(bj) < m,

and for any positive integer ℓ, one has

[ab]m−1

ℓm+t =


∑
i+j=ℓ

aibj


m−1

0

+


∑

i+j=ℓ−1

aibj


m−1

m

+
[
[a]t−1

0
[b]m−1+t−1

ℓm+1

]m−1

0
. (10)

(The last summand is a product of small degree polynomials that is 0 when t = 0.) We use this

formula with ℓ and t as defined in Step 1, so that the left-hand side is [ab]m−1

n−m−1
; applying this to

a = p̄i and b = q̄j gives ¯hi , j = [rev(hi , j ,n − 2)]m−1

n−m−1
, and thus [hi , j]

m−1

0
by reversal.

Since ℓ ∼ n/m, using this formula for a single pair i, j requires Õ(n) operations in K and thus

is as costly as computing p̄iq̄j rem xn . In our algorithm the gain comes from using this formula

simultaneously for several products, in which case matrix multiplication helps.

The first multiplication in Step 5 is the matrix product

©­­«
[p̄0]

m−1

t · · · [p̄0]
m−1

n−m−1

...
...

[p̄r−1]
m−1

t · · · [p̄r−1]
m−1

n−m−1

ª®®¬
©­­«
[q̄0]

m−1

ℓm · · · [q̄s−1]
m−1

ℓm
...

...
[q̄0]

m−1

0
· · · [q̄s−1]

m−1

0

ª®®¬ .
Its entries are the first summand in Eq. (10) for a = p̄i and b = q̄j , for 0 ≤ i < r and 0 ≤ j < s .
Similarly, the second summand in Eq. (10) is obtained from the matrix product

©­­­«
[p̄0]

m−1

t · · · [p̄0]
m−1

n−2(m−1)

...
...

[p̄r−1]
m−1

t · · · [p̄r−1]
m−1

n−2(m−1)

ª®®®¬
©­­«
[q̄0]

m−1

(ℓ−1)m · · · [q̄s−1]
m−1

(ℓ−1)m
...

...
[q̄0]

m−1

0
· · · [q̄s−1]

m−1

0

ª®®¬ .
In terms of complexity, the multiplication P1Q1 involves r × (ℓ + 1) and (ℓ + 1) × s matrices, while

P2Q2 involves r × ℓ and ℓ × s matrices; all four operands have degree less thanm.

20 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

Since ℓ = ⌊(n − 1)/m⌋ − 1, we have ℓ + 1 ≤ n/m, so each matrix product can be done using at

most ⌈n/(mr 2)⌉ ≤ n/(mr 2) + 1 products in sizes r × r 2
and r 2 × s . Since s ∈ Õ(r), each of these take

Õ(mrω2), for a total cost of c(n,m, r 2) = Õ((m + n/r 2)rω2).

The other operations performed by the algorithm areO(r) power series expansions at precisionn−
1 in Õ(n) operations each (precisely, one inverse and t multiplications, see Step 3), andO(r 2) power

series expansions at precisionm in Õ(m) operations each (precisely, at most 3rs multiplications

and rs subtractions, see Steps 5 and 6). This amounts to a total of Õ(nr +mr 2) operations, and can

thus be neglected, since ω2 ≥ 3. □

Using simultaneous truncated modular multiplication combined with a baby steps/giant steps

strategy leads to Algorithm TruncatedPowers, with the following properties.

Proposition 3.6. Given f in K[x] of degree n, a and b in K[x]<n ,m and d in N>0, Algorithm

TruncatedPowers computes the truncations

[akb rem f]m−1

0
, 0 ≤ k < d

using Õ(c(n,m,d)) = Õ((m + n/d)dω2/2) operations in K, with c(·) from Eq. (2).

Proof. The algorithm computes 1,a, . . . ,ar−1
rem f and b,bar , . . . ,ba(s−1)r

rem f , which costs

Õ(nr) operations in K since r ∼ s . From these two sets of polynomials, Algorithm Simultaneous-

TruncatedModularMultiplication is then used to compute [bak rem f]m−1

0
for 0 ≤ k ≤ rs − 1

using Õ((m+n/r 2)rω2) operations, by Lemma 3.5; sinceω2 ≥ 3, this is larger than Õ(nr). The choice
of s makes (s − 1)r < d ≤ rs , so the output consists of the terms k = i + r j for j < s − 1 and i < r ,
and for j = s − 1 and i < d − (s − 1)r ∈ {1, . . . , r }. □

Algorithm 3.7 TruncatedPowers(f ,a,b,m,d)

Input: f of degree n in K[x], a and b in K[x]<n ,m and d in N>0

Output: the truncated powers [bak rem f]m−1

0
for 0 ≤ k < d

1: r ← ⌈d1/2⌉; s ← ⌈d/r⌉
2: â0 ← 1; for i = 1, . . . , r do âi ← a · âi−1 rem f ▷ âi = ai rem f

3: ā0 ← b; for j = 1, . . . , s − 1 do āj ← âr · āj−1 rem f ▷ āj = bajr rem f

4: (ci , j)0≤i<r
0≤j<s

←

SimultaneousTruncatedModularMultiplication(f , â0, . . . , âr−1, ā0, . . . , ās−1,m)
5: for i = 0, . . . , r − 1 and j = 0, . . . , s − 2 do ri+r j ← ci , j

for i = 0, . . . ,d − 1 − (s − 1)r do ri+r (s−1) ← ci ,s−1

6: return (rk)0≤k<d

Finally, Algorithm BlockTruncatedPowers computes truncations of products of the form

x iak rem f , which are needed in our composition algorithm; here, we assume that f (0) is nonzero
(see Remark 3.8).

Proposition 3.7. Given f in K[x] of degree n with f (0) , 0, a in K[x]<n , m and d in N>0,

Algorithm BlockTruncatedPowers computes

[x iak rem f]m−1

0
, 0 ≤ i < m, 0 ≤ k < d

using Õ(c(n,m,d)) +O(m2d) = Õ((m + n/d)dω2/2) +O(m2d) operations in K, with c(·) from Eq. (2).

Faster Modular Composition 21

Algorithm 3.8 BlockTruncatedPowers(f ,a,m,d)

Input: f of degree n in K[x], with f0 = f (0) , 0, a in K[x]<n ,m and d in N>0

Output: the truncated powers [x iak rem f]m−1

0
, for 0 ≤ i < m and 0 ≤ k < d

1: (rk)0≤k<d ← TruncatedPowers(f ,a, xm−1, 2m − 1,d) ▷ rk = [x
m−1ak]2m−2

0

2: fn ← coeff(f ,n) ▷ leading coefficient

3: for k = 0, . . . ,d − 1 do
4: am−1,k ← rk
5: for i =m − 1, . . . , 2, 1 do
6: c ← ai ,k (0)fn/f0
7: ai−1,k ← (ai ,k + c[f]

m+i−1

0
)/x ▷ ai−1,k = [x

i−1ak rem f]m+i−2

0

8: return ([ai ,k]m−1

0
)0≤i<m
0≤k<d

Proof. Proposition 3.6 shows that the first step computes the sequence [xm−1ak]2m−2

0
for k =

0, . . . ,d − 1 in the announced complexity. The remaining truncations are obtained from the identity

[xp rem f]j
0
= x[p rem f]j−1

0
−
pn−1

fn
[f]j

0
,

for any integer j and polynomial p, where pn−1 is the coefficient of degree n − 1 of p rem f and

fn is the coefficient of degree n in f . If we know [xp rem f]j
0
, we get pn−1 f0/fn as its constant

coefficient, whence pn−1 since f0 , 0 and from there [p rem f]j−1

0
is easily obtained. At iteration k

of the loop at Step 3, the truncation [xm−1ak rem f]2m−2

0
computed previously is used to deduce

all [xm−1−iak rem f]2m−2−i
0

for 1 ≤ i < m in O(m2) operations. Thus this loop has a total cost of

O(m2d) operations. □

Remark 3.8. The assumption f (0) , 0 is harmless in the context of modular composition: in the

computation of д(a) rem f , one can rather evaluate д(y) at a(x + c) modulo f (x + c) for a randomly

chosen c ∈ K, and unshift the result. See Steps 3 and 12 in Algorithm ModularCompositionBaseCase.

3.4 Notes
3.4.1 Linear algebra interpretation. Representing polynomials by their vector of coefficients leads to

viewing the operations performed by Algorithms BivariateModularComposition and Truncat-

edPowers as computing the product of special matrices by column vectors. Recall the notationMa
for the n × n matrix of multiplication by a mod f in the basis (1, x, . . . , xn−1), and X for the ma-

trix (Im 0)T ∈ Kn×m withm ∈ {1, . . . ,n}. Then Algorithms BivariateModularComposition and

TruncatedPowers correspond respectively to multiplication by

K
(a,f)
m,d =

(
X · · · Md−1

a X
)
∈ Kn×(md)

and L
(a,f)
m,d =

©­­«
X T

...

X TMd−1

a

ª®®¬ ∈ K(md)×n . (11)

Indeed, K
(a,f)
m,d is the matrix of the mapping κ

(a,f)
m,d of bivariate modular composition with bounded

degrees, as computed by Algorithm BivariateModularComposition:

κ
(a,f)
m,d : K[x,y]<(m,d) → K[x]<n

д(x,y) 7→ д(x,a) rem f .

22 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

On the other hand, L
(a,f)
m,d represents the mapping λ

(a,f)
m,d that extracts the low-degree part of multi-

plications by powers of a, as computed by Algorithm TruncatedPowers:

λ
(a,f)
m,d : K[x]<n → K[x]

d
<m

b 7→ ([b rem f]m−1

0
, . . . , [bad−1

rem f]m−1

0
).

These maps and matrices play an important role in the study of the generic behaviour of our

algorithm starting from Section 7.

3.4.2 Complexity equivalence. Proposition 3.4 (Algorithm BivariateModularComposition) and

Proposition 3.6 (Algorithm TruncatedPowers) give similar complexity bounds for the evaluation

of κ
(a,f)
m,d and λ

(a,f)
m,d , but the computational equivalence of these problems, possibly up to some

conditions, is is still unclear to us in general.

However, for m = 1, when f (0) , 0, these two problems are indeed equivalent. This is a

consequence of the transposition principle in an indirect way, starting from the equality

L
(a,f)
1,n vb = (MbK

(a,f)
1,n)

T1,

wherevb is the vector associated tob,Mb is the matrix of multiplication byb mod f , and 1 is the first
canonical vector. First, this equality gives a way to evaluate λ

(a,f)
1,n for the cost of one multiplication

byMT
b (i.e., Õ(n) by the transposition principle), plus one multiplication by the transpose of K

(a,f)
1,n ,

which has the same asymptotic cost as that of K
(a,f)
1,n itself, by the same principle. Conversely, if

v = MT
b1, the equality reads (K

(a,f)
1,n)

Tv = L
(a,f)
1,n vb , so that, again by the transposition principle, the

evaluation of κ
(a,f)
1,n reduces to that of λ

(a,f)
1,n provided vb can be computed from v in low complexity.

When f (0) , 0, this can be done in Õ(n) by solving a linear system of Hankel type [67, Sec. 3].

If f (0) = 0, it is unclear whether such a reduction holds: in the special case f = xn , the map

λ
(a,f)
1,n becomes much simpler, as it simply computes the sequence ai

0
b0 for 0 ≤ i < d , where a0 and

b0 are the constant coefficients of a and b. This only requires a linear number O(d) of operations.
On the other hand, κ1,d is the composition of a univariate polynomial д(y) of degree less than d
with the power series a(x) and no quasi-linear complexity result is known for this operation.

3.4.3 Transposition of the Nüsken-Ziegler algorithm. Finally, we discuss a different approach to

Algorithm BlockTruncatedPowers, that actually bypasses Algorithm TruncatedPowers alto-

gether, and uses the transpose of Algorithm BivariateModularComposition instead.

Algorithm BlockTruncatedPowers computes the m × m projections Hk = X TMakX , for
k = 0, . . . ,d − 1, using the fact that for k < d , Hk can be deduced in O(m2) operations (for-loop at

Step 5) from the column vector X̄ TMaku of size 2m − 1, where X̄ = (I2m−1 0)T ∈ K(2m−1)×n
and u is

themth column of X , i.e. themth canonical vector (Step 1). (Here we have takenm ≤ (n + 1)/2.)

Algorithm TruncatedPowers computes the vectors X̄ TMk
au for 0 ≤ k < d using Õ(c(n,m,d))

operations.

Alternatively, we can consider a recursion similar to the one in the proof of Proposition 3.7, but

now for learning a new coefficient of a polynomial rather than a coefficient of a new polynomial.

Assuming f (0) , 0, for a polynomial p one has

[xp rem f]0i+1
= [p rem f]0i + (c/f0)[f]

0

i+1
,

where c is the coefficient of degree 0 of xp rem f : we see that from the row vector 1TMx−m+1ak X̄ ,
one can also deduce Hk = X TMakX using O(m2) operations.

Faster Modular Composition 23

Now, if we set v = MT
x−m+1

1, computing vTK
(a,f)
d ,2m−1

precisely gives all vectors 1TMx−m+1ak X̄ , for

0 ≤ k < d . Since v can be computed in quasi-linear time, the application of the transposition

principle to Algorithm BivariateModularComposition shows that these vectors can be computed

using Õ(c(n,m,d)) operations. Altogether, this gives an alternative to Algorithm BlockTruncat-

edPowers with the same asymptotic complexity.

4 MATRICES OF RELATIONS FOR COMPOSITION
The heart of our algorithm for finding д(a) rem f is the computation of a matrix of relations, which

gives a collection of polynomials of small degree in the ideal I generated by y − a and f in K[x,y].

For a given positive integerm, these polynomials are in theK[y]-moduleM
(a,f)
m obtained by degree

restriction as I ∩ K[x,y]<(m, ·).

In Section 4.1 we show that the invariant factors of M
(a,f)
m are the m invariant factors of

highest degree of the characteristic matrix yIn −Ma , whereMa is the matrix of multiplication by

a mod f . Once a matrix of relations has been obtained, it can be used to perform composition by

reducing univariate composition to a small bivariate composition problem; this is described in

Section 4.2. Finally, in Section 4.3, the results of this section are applied to the efficient computation

of annihilating polynomials for a modulo f .

In all of Section 4, notation such asM
(a,f)
m and ν

(a,f)
m is shortened intoMm and νm , except for

the main definitions and statements, as there is no ambiguity as to the dependency on a or f .

4.1 Structure of the module of relations
This section introduces the module of relationsM

(a,f)
m and relates it to the characteristic matrix.

4.1.1 Definitions.

Relations. We call relations the polynomials of the ideal I = ⟨y − a(x), f (x)⟩ of K[x,y]; these
are the bivariate polynomials r (x,y) such that r (x,a) ≡ 0 mod f , i.e., they are algebraic relations

satisfied by a mod f . We are interested in those relations whose x-degree is bounded from above

by a given positive integerm. They form the K[y]-module

M
(a,f)
m =

{
r (x,y) ∈ K[x,y]<(m, ·) | r (x,a(x)) ≡ 0 mod f

}
= I ∩ K[x,y]<(m, ·),

which is denotedMm when a and f are clear from the context.

This is a K[y]-submodule of K[x,y]<(m, ·), itself a free K[y]-module with basis (1, x, . . . , xm−1).

As stated in Section 2, we often identify a polynomial r0(y) + · · · + rm−1(y)x
m−1

in K[x,y]<(m, ·)

with the column vector (r0 · · · rm−1)
T
in K[y]m of its coefficients on that basis. Since K[y] is a

principal ideal domain,Mm is free as well, and it has rankm since it contains µaK[y]
m
, where µa

is the minimal polynomial of a mod f .
In terms of ideals, there is a chain of inclusions {0} = ⟨M0⟩ ⊆ · · · ⊆ ⟨Mn+1⟩ = I; the latter

identity follows from the fact that y −a and f have x-degree less than n+ 1. FurthermoreM1 , {0}
since µa belongs to I ∩ K[y]. For smallm, the moduleMm may not contain all the information

in I: the inclusion ⟨Mm⟩ ⊂ I can be strict.

Matrix and basis of relations, determinantal degree. Amatrix of relations ofMm is any nonsingular

matrix inK[y]m×m whose columns are elements of the moduleMm (represented as column vectors).

Such a matrix is further called a basis of relations if its columns generateMm ; all bases of relations

ofMm can be obtained from any single one of them via right multiplication by a unimodular matrix

in K[y]m×m , i.e., a matrix whose determinant is in K \ {0}. It follows that any matrix of relations of

Mm is a square, nonsingular right multiple of any basis of relations ofMm , and therefore bases of

24 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

relations are exactly the matrices of relations whose determinant has minimal degree. This degree

is called the determinantal degree of the moduleMm .

4.1.2 Relation to invariant factors. As a finitely generated module over a principal ideal domain,

Mm has an invariant factor decomposition. The next result shows that these invariant factors can

be found in any triangular basis ofMm , and that the largest of these factors is precisely µa , the

minimal polynomial of a modulo f . It also relates the degrees of these factors to the quantity ν
(a,f)
m

(written more simply as νm when context is clear), already highlighted in Eq. (7), and which plays

an important role in the analysis of our approach.

Proposition 4.1. Let B be an upper triangular basis ofM
(a,f)
m for somem ≥ 1. Then its diagonal

entries are the invariant factors ofM
(a,f)
m , up to multiplication by nonzero elements of K. A number

k ≤ min(m,n) of these invariant factors are nontrivial, and these nontrivial ones are the k invariant

factors of highest degree of the characteristic matrix yIn −Ma , which is a basis of relations ofM
(a,f)
n .

The determinantal degree ofM
(a,f)
m is the sum ν

(a,f)
m of the degrees of these invariant factors, hence it

satisfies min(m,n) ≤ ν
(a,f)
m ≤ n.

4.1.3 Proof of Proposition 4.1. Our proof relies on Lazard’s structure theorem [50] on lexicographic

Gröbner bases in K[x,y]. Here, the degree of a zero-dimensional ideal I ⊂ K[x,y] is the dimension

of the K-vector space K[x,y]/I.

Lemma 4.2 (Lazard’s structure theorem for bivariate ideals). Let I be a zero-dimensional

ideal of degree n in K[x,y]. Any minimal Gröbner basis of I for the (y ≺ x)-lexicographic order has
the form {r0(y)hk (x,y), r1(y)hk−1(x,y), . . . , rk (y)h0(x,y)} for some k ≥ 1, where

rk = hk = 1

n ≥ deg(r0) > · · · > deg(rk) = 0

n ≥ degx (h0) > · · · > degx (hk) = 0

for 0 ≤ i < k, ri ∈ K[y] is divisible by ri+1

for 0 ≤ i ≤ k, hi ∈ K[x,y] has leading monomial a power of x .

Proof. The form of a minimal Gröbner basis of I is given by Lazard’s result [50, Thm. 1].

The additional assumption that I is zero-dimensional ensures that this Gröbner basis contains

a polynomial whose leading term is a power of y, hence hk = 1, and one whose leading term

is a power of x , hence rk = 1. Since I has degree n, there are precisely n monomials which are

not multiples of the leading monomials of {rihk−i | 0 ≤ i ≤ k}. These leading monomials are

{xdegx (hk−i)ydeg(ri) | 0 ≤ i ≤ k}, whence the bounds deg(r0) ≤ n and degx (h0) ≤ n. □

Corollary 4.3. With the same notation, when I = ⟨f ,y − a⟩ andm ≥ 1, a basis ofM
(a,f)
m =

I ∩ K[x,y]<(m, ·) is given by the firstm polynomials in the sequence

(x jr0hk)0≤j<δk , . . . , (x
jrk−1h1)0≤j<δ1

, (x jh0)j≥0, (12)

where δi = degx (hi−1) − degx (hi). If s = degx (h0) = δ1 + · · · + δk , the nontrivial invariant factors of

M
(a,f)
m are the first min(m, s) polynomials in(

r0, . . . , r0︸ ︷︷ ︸
δk

, . . . , rk−1, . . . , rk−1︸ ︷︷ ︸
δ1

)
. (13)

Proof. The polynomials in the sequence in Eq. (12) form a (non-finite) Gröbner basis of I, made

of polynomials of x-degree 0, 1, 2, . . . respectively [50, Prop. 1]. By design, the firstm elements in

Faster Modular Composition 25

this sequence belong toMm , and considering their x-degrees shows that they are K[y]-linearly
independent.

Any polynomial p(x,y) ∈ Mm is a K[y]-linear combination of the firstm of these polynomials.

Indeed, it can be divided by the Gröbner basis with a remainder equal to 0; in view of its degree

in x , only thesem polynomials are involved in the division. This proves the claim on the basis

ofMm described in Eq. (12).

The matrix T (y) ∈ K[y]m×m representing this basis (with basis elements written in columns)

is upper triangular, with its first min(m, s) diagonal entries being the first min(m, s) polynomials

in Eq. (13) in this order, and with its remaining diagonal entries being nonzero elements of K.
Furthermore each of these diagonal entries divides all other entries in the same column, hence the

Smith normal form of T (y) has the same diagonal entries as T (y), which proves the claim on the

invariant factors ofMm . □

Proof of Proposition 4.1. Corollary 4.3 implies that the determinantal degree νm ofMm is

the sum of the degrees of the elements of the first min(m, s) elements of Eq. (13). It follows that

νm ≤ δk deg(r0) + · · · + δ1 deg(rk−1) = n,

where the last identity comes from considering theK-vector space dimension ofK[x,y]/I. If s ≤ m,

all the nontrivial invariant factors appear and the bound is reached, while otherwisem < s and
deg det(B), being the sum of the degrees ofm nonconstant polynomials, is at leastm.

IfB is a basis ofMm , then there exists a unimodularmatrixU ∈ K[y]m×m such thatUB = T withT
as in the previous proof. If moreover B is upper triangular, then so isU and since det(U) ∈ K \ {0},
the diagonal entries ofU belong to K \ {0}. It follows that B has the same diagonal entries as T up

to multiplication by nonzero elements of K.
The columns of the characteristic matrixyIn−Ma represent the polynomialsxk (y−a(x)) rem f for

0 ≤ k < n, making this matrix a matrix of relations ofMn . It has determinantal degree deg(χa) = n,
which coincides with the determinantal degree ofMn , by the previous inequalities. Thus yIn −Ma
is actually a basis ofMn and its invariant factors are given by the previous paragraph. □

4.1.4 Note. For m ∈ {1, . . . ,n}, the module of relations Mm is isomorphic to the module of

vector generators for the matrix sequence {Mk
aX }k≥0, where X = (Im 0)T ∈ Kn×m as above (this

elementary fact is established within the proof of Lemma 5.2, for instance); the bases of relations

are the minimal generating polynomials for that sequence [46, 70].

The relation between Coppersmith’s block Wiedemann algorithm and invariant factors of a

characteristic matrix was described by Kaltofen and Villard: they show that for generic projectionsV
andW in Kn×ℓ and Kn×m , with ℓ ≥ m, the invariant factors of minimal generating polynomial of

the sequence (V TAkW)k≥0 are them invariant factors of largest degree of the characteristic matrix

yIn −A [46, Thm. 2.12]. In our more specific setting, Proposition 4.1 shows that this relation holds

when the right projection is the structured matrix X (see also Section 5.1.4).

4.2 Composition using matrices of relations
Matrices of relations are used to reduce the univariate problem д(a) rem f with д ∈ K[y], to a

bivariate one with better degree properties, thanks to a matrix division.

4.2.1 Division for polynomial matrices. If R is a nonsingular matrix in K[y]m×m and vд is a vector

in K[y]m , then there exist quotient and remainder vectorsw and vд̃ such that

vд = Rw +vд̃, (14)

and each entry of vд̃ has degree less than that of the corresponding row of R [39, Thm. 6.3-15,

p. 389]. The latter reference actually states a stronger condition on vд̃ , namely that the matrix

26 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

fraction R−1vд̃ is strictly proper (see Section 5.1.1); this implies the above degree condition [39,

Lem. 6.3-10, p. 383], which is sufficient for our needs.

For computing this division, it is customary to use K[y]-linear system solving. For this, we rely

on a kernel basis algorithm [75]: this returns v in K[y]m and r in K[y] such that R−1vд = v/r ,
with r of minimal degree. From this the remainder is obtained as vд̃ = R (v rem r)/r , and here we

do not need the quotient vectorw .

4.2.2 Composition Algorithm. In the case where vд = (д 0 · · · 0)T and R is a matrix of relations

ofMm of degree at most d , the remainder in the above division is a vector vд̃ of degree less than

d whose entries yield д̃ ∈ K[x,y]<(m,d) such that д − д̃ ∈ Mm . Thus, analogously to a reduction

modulo a Gröbner basis of the ideal I = ⟨y − a, f ⟩, this provides a bivariate polynomial д̃ with

smaller degree in y and controlled degree in x , and such that д̃−д ∈ I, that is, д̃(x,a) ≡ д(a) mod f .
Algorithm BivariateModularCompositionWithRelationMatrix is given a matrix of rela-

tions R ofMm as a parameter and performs this division; then it completes the composition by

evaluating д̃(x,a) rem f using Algorithm BivariateModularComposition. Algorithm Bivari-

ateModularCompositionWithRelationMatrix actually accepts a slightly more general input:

д can be a bivariate polynomial with x-degree less thanm (however, the rest of the article focuses

on the case of д in K[y] highlighted above). The algorithm accepts д of arbitrary degree in y, but
the cost analysis is done under the assumption degy (д) ∈ O(n).

Algorithm 4.1 BivariateModularCompositionWithRelationMatrix(f ,a,д,R)

Input: f of degree n in K[x], a in K[x]<n , д in K[x,y]<(m, .),

R ∈ K[y]m×m
≤d a matrix of relations ofM

(a,f)
m

Output: д(x,a) rem f
1: Write д(x,y) = д0(y) + д1(y)x + · · · + дm−1(y)x

m−1
and set vд ← (д0 · · ·дm−1)

T ∈ K[y]m

2: ▷ Compute v ∈ K[y]m and r ∈ K[y] using [75, Algo. 1](
v
r

)
∈ K[y]m+1 ← MinimalNullspaceBasis((R −vд), (d, . . . ,d, degy (д)))

3: vд̃ ← R (v rem r)/r ∈ K[y]m
<d ▷ v rem r is the vector of entry-wise remainders

4: д̃(x,y) ← the polynomial in K[x,y]<(m,d) corresponding to vд̃
5: return BivariateModularComposition(f ,a, д̃) ▷ д̃(x,a) rem f , Algorithm 3.5

Proposition 4.4. Given f inK[x] of degree n, a inK[x]<n , д inK[x,y]<(m, .) with degy (д) = O(n)

and a matrix of relations R in K[y]m×m
≤d ofM

(a,f)
m , Algorithm BivariateModularCompositionWith-

RelationMatrix computes д(x,a) rem f using Õ(mω (d +n/m)+c(n,m,d)) operations inK, with c(·)
from Eq. (2).

Proof. First, Step 2 computes r ∈ K[y] and v = rR−1vд ∈ K[y]
m

with r of minimal degree.

Indeed, since R is nonsingular, the right kernel of (R −vд) ∈ K[y]
m×(m+1)

has rank 1. We use [75,

Algo. 1] to compute a basis (vT r)T of this kernel. Thus by construction Rv = rvд holds, and the

fact that (vT r)T generates the kernel ensures that the greatest common divisor of r and all the

entries of v is 1, hence the minimality of deg(v) and deg(r).
At Step 3 one considers the vector v̄ = v rem r ∈ K[y]m such that deg(v̄) < deg(r) andv = rw+v̄

for somew ∈ K[y]m . It follows thatvд = Rv/r = Rw +vд̃ , wherevд̃ = Rv̄/r is the vector computed

at Step 3; by construction the ith entry of vд̃ has degree less than that of the ith row of R. In
short, Steps 2 and 3 compute a vector vд̃ ∈ K[y]

m
which has degree less than d and is a remainder

of vд modulo R. Since R is a matrix of relations, the polynomial д̃(x,y) at Step 4 is such that

Faster Modular Composition 27

д̃(x,a) ≡ д(x,a) mod f . The correctness follows, since д̃(x,a) rem f is the polynomial returned by

BivariateModularComposition(f ,a, д̃) (see Proposition 3.4).

As required by Algorithm 1 of [75], the tuple of integers (d, . . . ,d, degy (д)) ∈ Z
m+1

bounds the

column degrees of (R −vд). Then, since the sum of this tuple ismd +degy (д), with degy (д) = O(n),

Step 2 costs Õ(mω (d + n/m)) operations [75, Thm. 4.1]. The minimality of deg(r) implies deg(r) ≤
deg det(R) ≤ md , and then v has degree at most deg det(R)R−1vд ≤ (m − 1)d + n since det(R)R−1

is the transpose of the cofactor matrix of R. Thus the computation of v̄ = v rem r in Step 3 uses

Õ(m(md + n)) operations, which is smaller than the cost of Step 2. Next, the matrix-vector product

Rv̄ can be performed in Õ(mωd) operations: write the column v̄ of degree < md asm columns

of degree < d via yd -adic expansion; use a matrix-matrix product to left-multiply these columns

by R; finally recombine the resulting columns into a single column which gives Rv̄ . To obtain

vд̃ it remains to divide each entry of Rv̄ by r , which costs Õ(m2d) since deg(Rv̄) < (m + 1)d . By
Proposition 3.4, the call at Step 5 uses c(n,m,d) operations. The cost bound in the Proposition

follows. □

Note. Comparing Proposition 4.4 with Proposition 3.4, note that whenm ∼ nη and d ∼ n1−η
with η

from Eq. (3), then the complexity bound of Proposition 4.4 is the same as the one given by the

Nüsken-Ziegler algorithm, however the y-degree of д can now go up to the order of n.

4.3 Annihilating polynomials using matrices of relations
Our main algorithm requires an annihilating polynomial for a, that is, a polynomial h in K[y] such
that h(a) ≡ 0 mod f . It can readily be obtained from a matrix of relations.

Proposition 4.5. Let R ∈ K[y]m×m
≤d be a matrix of relations ofM

(a,f)
m . Its determinant is a nonzero

annihilating polynomial for a modulo f . It has degree at mostmd in K[y] and can be computed from R
using Õ(mωd) operations in K.

Proof. As a polynomial combination of relations inMm , the entry (1, 1) of the (upper triangular)
Hermite normal form of a matrix of relations is a relation in ⟨f ,y − a⟩ ∩ K[y], so it is a nonzero

multiple of the minimal polynomial of a. This implies the same property for the determinant, since

it is a multiple of that entry. The bound on the degree of the determinant is straightforward, and

the cost bound is from [49, Thm. 1.1]. □

Note. For the computations of the minimal polynomial and of the characteristic polynomial of a
modulo f , see Section 10.1.

5 COMPUTING MATRICES OF RELATIONS
In this section, we give an algorithm computing a matrix of relations. This study may be viewed

as a specialization of the formalism developed by Kaltofen and Villard for the block Wiedemann

approach (see Sections 1.1.3 and 1.1.4) in terms of manipulations of bivariate polynomials in the

ideal generated by y − a and f .

As already done in Section 4, notation such asM
(a,f)
m and ν

(a,f)
m is shortened intoMm and νm in

this section, except in the main statements.

In Section 5.1, we show that form ∈ {1, . . . ,n}, denominators of irreducible right matrix fraction

descriptions of (yIn − Ma)
−1X with X = (Im 0)T ∈ Kn×m yield bases ofM

(a,f)
m . For efficiency

reasons, a further truncation is required: this leads us to introduce modulesM
(a,f)
ℓ,m whose bases

are the denominators of irreducible right matrix fraction descriptions of Y T(yIn −Ma)
−1X , where

Y T = (Iℓ 0) ∈ Kℓ×n
, with ℓ ∈ {1, . . . ,n}; thus we use structured left and right block projections. If

28 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

ℓ = n, Y is the identity matrix of size n, and we recoverM
(a,f)
m , but this value is too large for our

cost objectives. Instead, we focus on ℓ =m, and thus Y = X .

Section 5.2 describes how a basis ofM
(a,f)
ℓ,m can be reconstructed using so-called minimal ap-

proximant bases [4, 69], from sufficiently many terms of the power series expansion of the matrix

H = X T(yIn −Ma)
−1X .

This strategy is turned into an algorithm for computing matrices of relations in Section 5.3: the

expansion of H is obtained via Algorithm BlockTruncatedPowers, while approximant bases are

computed using a matrix Padé version of the Berlekamp-Massey algorithm [4, 27]. The correctness

and efficiency of this approach depends on a fundamental condition on Ma , i.e., on f and a
(Proposition 5.6, first item). First, it expresses that the left projection does not prevent us from

getting the right denominators of (yIn −Ma)
−1X from those of H . It also ensures the existence of

matrices of relations of “small” degree , and in this way appropriately limits the number of terms

of the expansion of H that are required for the reconstruction. We prove in Section 7 that these

properties are satisfied for generic inputs; in Section 8, we further study cases where randomization

can ensure such a condition.

Verifying the condition on Ma , or verifying that a certain matrix is a matrix of relations, are

expensive tasks: except for some restricted cases, the algorithm of Section 5.3 does not certify that

its output is indeed a matrix of relations. As such, this would lead to a Monte Carlo composition

algorithm. To achieve Las Vegas composition instead, in Section 5.4 we propose an algorithm which

either detects that the above-mentioned output is not a matrix of relations, or uses this output to

build a certified matrix of relations of slightly larger dimensions.

5.1 Matrices of relations as denominators of matrix fractions
This section relates denominators of some matrix fractions to bases of the module of relationsMm
and of a truncated versionMℓ,m of it.

5.1.1 Definitions.

Matrix Fractions. We first recall several notions on matrix fractions that can be found in Kailath’s

book [39, Chap. 6]. Let N be in K[y]ℓ×m , and let D ∈ K[y]m×m be nonsingular. The right fraction

ND−1
is said to be irreducible if N and D are right coprime, i.e. any right divisor common to N

and D is unimodular, or equivalently UN + VD = Im for some U ∈ K[y]m×ℓ and V ∈ K[y]m×m

[39, Lem. 6.3.5 p. 379]. It is said to be strictly proper if for each nonzero entry of F , the degree of
the numerator is less than the degree of the denominator. It is called a right fraction description of

F = ND−1 ∈ K(y)ℓ×m . Similarly, F = D̂−1N̂ is called a left fraction description of F . A matrix F ∈
K(y)ℓ×m is said to be describable in degree d if it admits both a left and a right fraction description

with denominators of degree at most d .

Truncated Module of Relations. For efficiency reasons, we consider a K[y]-module similar toMm ,

but where only the first ℓ coefficients of the polynomials are required to be 0, for some positive

integer ℓ, where n = deg(f). Explicitly, for ℓ,m ∈ N>0 we define the K[y]-modules

M
(a,f)
ℓ,m =

{
r (x,y) ∈ K[x,y]<(m, ·) |

[
a(x)kr (x,a(x)) rem f

] ℓ−1

0
= 0 for all k ≥ 0

}
,

together with the usual simplified notationMℓ,m . They satisfy the inclusionsM1,m ⊇ M2,m ⊇

· · · ⊇ Mn,m =Mm . The determinantal degree ofMℓ,m is denoted νℓ,m . Of particular interest is
the case whenMm,m =Mm .

Faster Modular Composition 29

5.1.2 Relation between bases of relations and denominators of matrix fractions.

Proposition 5.1. For ℓ,m ∈ {1, . . . ,n}, the columns of a matrix D ∈ K[y]m×m form a basis

ofM
(a,f)
ℓ,m if and only if D is the denominator of an irreducible right fraction description ND−1

of

(Iℓ 0)(yIn −Ma)
−1X ∈ K[y]ℓ×m ;

the denominator of any right fraction description of this matrix is a right multiple of any such basis D.

5.1.3 Proof of Proposition 5.1. For a matrix of rational functions F ∈ K(y)ℓ×m , we let

D(F) = {v ∈ K[y]m | Fv ∈ K[y]ℓ}, (15)

which is a K[y]-submodule of K[y]m of rankm. Then, we can establish the relation between the

moduleMℓ,m and the matrix in Proposition 5.1.

Lemma 5.2. For ℓ,m in {1, . . . ,n}, one hasMℓ,m = D
(
(Iℓ 0)(yIn −Ma)

−1X
)
.

Proof. Taking Y T = (Iℓ 0), define H (y) = Y T(yIn −Ma)
−1X and Hk = Y

TMk
aX ∈ K

ℓ×m
, so that,

by power series expansion in y−1
,

H (y) =
∑
k≥0

Hky
−k−1 =

∑
k≥0

Y TMk
aXy

−k−1.

Let r (x,y) =
∑

0≤i≤d ri (x)y
i ∈ K[x,y]<(m, ·) be of y-degree d , and let vi ∈ K

m
be the coefficient

vector of ri for i = 0, . . . ,d . Then, for k ≥ 0,[
akr (x,a) rem f

] ℓ−1

0

=

[∑
0≤i≤d

ak+iri rem f

] ℓ−1

0

=
∑

0≤i≤d

[
ak+iri rem f

] ℓ−1

0

and [ak+iri rem f]ℓ−1

0
has coefficient vector Y TMk+i

a Xvi = Hk+ivi . Hence,
[
akr (x,a) rem f

] ℓ−1

0

has coefficient vector Hkv0 + · · · + Hk+dvd . Therefore r (x,y) is inMℓ,m if and only if

Hkv0 + · · · + Hk+dvd = 0 for all k ≥ 0. (16)

On the other hand, defining Hk = 0 for k < 0, the expansion of Hv at infinity reads

Hv =
∑
k≥0

Hky
−k−1

∑
0≤i≤d

viy
i =

∑
k≥−d

(Hkv0 + · · · + Hk+dvd)y
−k−1, (17)

which implies that Eq. (16) holds if and only if Hv has polynomial entries. □

Proposition 5.1 is then a direct consequence of the following general result on matrix fractions,

which is a reformulation of [39, Thm. 6.5-4 and Lem. 6.5-5, p. 441].

Lemma 5.3. Let F ∈ K(y)ℓ×m be a matrix of rational fractions. The columns of D ∈ K[y]m×m form

a basis of D(F) if and only if D is the denominator of an irreducible right fraction description ND−1

of F . Besides, the denominator of any right fraction description of F is a right multiple of such a D.

5.1.4 Notes. The role of the truncated modulesMℓ,m is to reduce the cost of computations: we

decrease the dimension of the relevant matrices using a structured left projection. The more usual

approach [46] uses generic projections matrices; our choice here is similar to the one used for the

efficient computation of generic resultants [71].

Although not used in this work, genericity on the left is sufficient: if V ∈ Kn×ℓ is generic

with ℓ ∈ {m, . . . ,n}, then one hasMm = D((yIn −Ma)
−1X) = D(V T(yIn −Ma)

−1X). The latter
occurs if and only if rank(V TP,V TPA,V TPA2, . . .) = νm for awell chosen full rankmatrix P ∈ Kn×νm ,
and a restriction A ∈ Kνm×νm ofMa to the invariant subspace generated by X [70, Lem. 4.2]. The

rank condition is satisfied for a generic projection [70, Cor. 6.4 and its proof].

30 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

In terms of generators ofmatrix sequences, Eq. (16) shows that the denominators of Proposition 5.1

are bases of modules of vector generators for the matrix sequence {(Iℓ 0)Mk
aX }k≥0 [46, Lem. 2.8].

5.2 Reconstructing denominators of matrix fractions via approximant bases
Algorithm BlockTruncatedPowers from Section 3.3 allows one to compute a truncated power

series expansion of H (y) = X T(yIn −Ma)
−1X . When the precision of this expansion is sufficient, a

basis ofMm,m can be reconstructed.

5.2.1 Definitions.

Weak Popov matrices. Let P ∈ K[y]m×m be a matrix whose column j has degree dj ≥ 0. The

(column) leading matrix of P is the matrix in Km×m whose entry (i, j) is the coefficient of degree dj
of the entry (i, j) of P . Then P is said to be (column) reduced if its leading matrix is invertible. This

is the case if and only if [39, Eq. (24), p. 384]

deg det(P) = d1 + · · · + dm . (18)

A (column) reducedmatrix is in (column) weak Popov form if its leadingmatrix is invertible and upper

triangular. Any submodule of K[y]m has at least one basis which is in weak Popov form [5, 39].

Approximant bases. Let F ∈ K[[y]]m×k be a matrix of power series and σ ∈ N be a nonnegative

integer. A matrix P ∈ K[y]k×k is an approximant basis of F at order σ if its columns form a basis of

the K[y]-module {v ∈ K[y]k | Fv ≡ 0 mod yσ }, which is free of rank k . This approximant basis is

said to be minimal if it is reduced. Minimal approximant bases are also called σ -bases, or order
bases [4, 69].

5.2.2 Denominators from approximant bases. We are going to use approximant bases for solving

equations of the type of Eq. (6). As pointed out in Section 1.2, we use expansions at y = 0 rather

than infinity (see Remark 5.7).

Proposition 5.4. Let H ∈ K(y)m×m be strictly proper, and δ be the determinantal degree of D(H)
(notation from Eq. (15)). Suppose that H has a power series expansion H =

∑
k≥0

Sky
k
at y = 0, with

Sk ∈ K
m×m

. Let

F =

(
2d−1∑
k=0

Sky
k − Im

)
∈ K[y]m×(2m),

and let

P =

(
D P1

N P2

)
∈ K[y](2m)×(2m)

be an approximant basis at order 2d of F in weak Popov form, with each submatrix of sizem ×m.

Then the following properties hold:

(i) D is weak Popov; deg(N) < deg(D); the sum of the degrees of the diagonal entries of D is

deg det(D) and satisfies deg det(D) ≤ δ .
(ii) If deg det(D) = δ and each of them rightmost columns of P has degree at least deg(D), thenND−1

is an irreducible description of H .

(iii) IfH is describable in degree d , then ND−1
is an irreducible description ofH such that deg(D) ≤ d

and each of them rightmost columns of P has degree at least deg(D).

The first item gives general properties of the approximant basis in weak Popov form, whereas

Items (ii) and (iii) give sufficient conditions to guarantee it recovers an irreducible fraction descrip-

tion of H .

Faster Modular Composition 31

5.2.3 Proof of Proposition 5.4.

Lemma 5.5. Let P ∈ K[y]m×m . If P is reduced and B ∈ K[y]m×m is a right-multiple B = PU withU
nonsingular, then deg(P) ≤ deg(B). If P ∈ K[y]m×m is weak Popov, with diagonal entries of respective

degrees d1, . . . ,dm ∈ N, and v ∈ K[y]
m
is a nonzero right-multiple of P whose bottommost entry of

largest degree is in row i and has degree d , then di ≤ d .

Proof. The first claim follows from the predictable degree property [39, Thm. 6.3-13, p. 387].

The second one is from [56, Lem. 1.17]. □

We now prove Proposition 5.4. Consider an irreducible fraction description QR−1 = H for

some Q ∈ K[y]m×m and some weak Popov R ∈ K[y]m×m . Since H is strictly proper we have

deg(Q) < deg(R), and thus the ith column of (RQ) has its bottommost entry of largest degree in row

i; let di be this degree.
In Item (i), the first two claims follow from the definition of P being weak Popov. In particular D

is column reduced, hence Eq. (18) shows that deg det(D) is the sum of column degrees of D, which
is also the sum of diagonal degrees of D since D is weak Popov. The identity F (RQ) = 0 implies the

same identity modulo y2d
, and therefore (RQ) is a right-multiple of P . Hence, by Lemma 5.5, di is at

least the degree of the ith column of P , which is the degree of the ith column of D; it follows that
deg det(D) ≤ d1+ · · ·+dm . On the other hand, since R is reduced we have d1+ · · ·+dm = deg det(R),
proving the last claim of Item (i).

Concerning Item (ii), the assumption deg det(D) = δ = deg det(R) implies that the sum of column

degrees of D is d1 + · · · + dm , while as showed above the ith column of D has degree at most di .
Thus D has the same column degrees (d1, . . . ,dm) as R. In particular deg(D) = deg(R) > deg(Q).
Then, since by assumption the m rightmost columns of P have bottommost entries of largest

degree in rows at leastm + 1 and of degree at least deg(D), it follows from Lemma 5.5 that (RQ)

is a right-multiple of the leftmostm columns of P . This means (RQ) = (
D
N)U = (

DU
NU) for some

U ∈ K[y]m×m , and U is unimodular since R and D are nonsingular with deg det(R) = deg det(D).
Hence H = QR−1 = ND−1

and the fraction ND−1
is irreducible.

The following proof of Item (iii) reflects that of [27, Lem. 3.7]. The assumption implies first the

existence of a left fraction H = R̂−1Q̂ with deg(Q̂) < deg(R̂) ≤ d , and second the degree bound

deg(R) ≤ d thanks to the degree minimality of reduced bases (see Lemma 5.5). The above paragraph

shows in particular deg(D) ≤ maxi (di) = deg(R) ≤ d .
Now, since R̂(

∑
0≤k<2d Sky

k) ≡ Q̂ mod y2d
, left-multiplying by R̂ both sides of F (DN) ≡ 0 mod y2d

shows that Q̂D − R̂N is a right-multiple of y2d R̂. On the other hand, Q̂D − R̂N has degree less

than 2d . Hence it is zero, and H = R̂−1Q̂ = ND−1
. To prove that the latter fraction is irreducible,

assume by contradiction thatD and N have a nonsingular common right divisor B ∈ K[y]m×m , with

deg det(B) > 0. Then H = (NB−1)(DB−1)−1
yields F (DB

−1

NB−1
) ≡ 0 mod y2d

, and P diag(B−1, Im) is a

right-multiple of P (since P is a basis): this is impossible since deg det(P diag(B−1, Im)) < deg det(P).
It remains to prove the last degree assertion. By contradiction, assume that P has a column (

v0

v1
)

of index larger than m with v0 and v1 in K[y]m both of degree less than d . Then an argument

similar to the one above shows that Q̂v0 − R̂v1 = 0. Altogether we obtain a matrix (
D v0

N v1

) of rank

m + 1 which is in the right kernel of (Q̂ R̂) ∈ K[y]m×(2m) whose rank ism: this is not possible.

5.2.4 Notes. The existence of appropriate left and right descriptions of H was used before for the

reconstruction of matrix fractions within the approximant framework [27, Sec. 3.2]. Our proof is

similar to that of [27, Lem. 3.7], with the additional use of the weak Popov form.

Reduced forms were introduced [73] as a way to get a better control over the degrees when

computing with polynomial matrices and matrix fractions, see e.g. [39, Lem. 6.3-11, p. 385] for

32 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

Algorithm 5.1 CandidateBasis(f ,a,m,d)

Input: f ∈ K[x] of degree n, with f (0) , 0, a ∈ K[x]<n with gcd(a, f) = 1,m ≤ n and d in N>0

Output: a weak Popov matrix R ∈ K[y]m×m
≤2d and a flag in {Cert,NoCert}; R is a basis ofMm in

either of the following cases:

• νm,m = νm and H = X T(yIn −Ma)
−1X is describable in degree d , in which case deg(R) ≤ d

• the flag is Cert, which implies νm,m = νm = n
1: ▷ Truncated expansion of H : compute Sk = −X

TM−k−1

a X for k < 2d using Algorithm 3.8

(A∗i ,k) 0≤i<m
0≤k<2d+2

← BlockTruncatedPowers(f ,a−1
mod f ,m, 2(d + 1))

Si ,k ∈ K
m ← vector of coefficients of −A∗i ,k+1

∈ K[x]<m , for 0 ≤ i < m and 0 ≤ k < 2d
2: ▷ Fraction reconstruction: compute approximant basis using algorithm from [27, 38]

F ∈ K[y]m×2m
<2d ← (

∑
0≤k<2d Sky

k − Im) where Sk = (S0,k · · · Sm−1,k) ∈ K
m×m

P ∈ K[y]2m×2m
≤2d ← PM-Basis(F T, 2d, 0)T, with P in weak Popov form

3: ▷ Return candidate matrix and result of basic certification

R ← P1..m,1..m
if the sum of diagonal degrees of R is equal to n ▷ Item (ii) of Proposition 5.4

and each of them rightmost columns of P has degree ≥ deg(R)
then return (R,Cert) else return (R,NoCert)

proper fractions, [39, Thm. 6.3-13, p. 387] for a predictable degree property, and [39, Thm. 6.5-10,

p. 458] concerning the minimality of the column degrees. Weak Popov forms were introduced later

[5, 55] (under the name quasi-Popov and up to column permutation) and provide a refined degree

control as illustrated by Lemma 5.5.

5.3 Candidate basis of relations
Algorithm CandidateBasis takes as input a polynomial f ∈ K[x] of degree n with f (0) , 0, a

polynomial a ∈ K[x]<n such that gcd(a, f) = 1, and two positive integersm ≤ n and d . With this

input, it computes anm ×m matrix of degree at most 2d .
The algorithm starts by computing a truncated expansion at order 2d of H = X T(yIn −Ma)

−1X
at y = 0 using Algorithm BlockTruncatedPowers. Then, it computes a 2m × 2m minimal

approximant basis as in Proposition 5.4 using the algorithm PM-Basis of [27], and extracts a

potential basis of relations. In some cases we can certify that it is a indeed basis ofMm , but it is

not always possible to do so; a flag is returned to indicate this. This certification is actually an

optimization, rather than strictly necessary; Section 5.4 discusses this question in more detail.

Proposition 5.6. Given f ∈ K[x] of degree n with f (0) , 0, a ∈ K[x]<n such that gcd(a, f) = 1,

and two positive integersm ≤ n and d , Algorithm CandidateBasis uses Õ(mωd+c(n,m,d)) operations
in K, with c(·) from Eq. (2), and computes a weak Popov matrix R ∈ K[y]m×m

≤2d . The matrix R is a basis

ofM
(a,f)
m in either of the following cases:

• The determinantal degree ν
(a,f)
m,m is equal to ν

(a,f)
m and the fraction H (y) = X T(yIn −Ma)

−1X is

describable in degree d ; in that case we further have deg(R) ≤ d ; if in addition ν
(a,f)
m = n then

the flag is Cert.

• The flag is Cert, which implies ν
(a,f)
m,m = ν

(a,f)
m = n.

Proof. Proposition 3.7 shows that Step 1 uses Õ(m2d + c(n,m,d)) operations to compute the

vectors Si ,k ∈ K
m
. These vectors are such that the matrices Sk built in Step 2 are Sk = −X

TM−k−1

a X ;

as a result, the matrix S =
∑

0≤k<2d Sky
k
considered at Step 2 is the power series expansion of H

Faster Modular Composition 33

truncated at order 2d . Then Step 2 correctly computes a weak Popov approximant basis P for

F = (S − Im) at order 2d with deg(P) ≤ 2d using Õ(mωd) operations [27, Thm. 2.4] [38, Prop. 3.2].

(Note that transposes are used at Step 2 because in [27, 38] approximant bases are considered

row-wise, rather than column-wise here.) The claimed cost bound for Algorithm CandidateBasis

is proved.

For the first item, assume that H is describable in degree d . Then Item (iii) of Proposition 5.4

ensures that R is the denominator of an irreducible right fraction description of H , that deg(R) ≤ d ,
and that each of them rightmost columns of P has degree at least deg(R). From Proposition 5.1 we

obtain that R is a basis ofMm,m , hence a basis ofMm when νm,m = νm . This also proves the last

claim of the item: if νm,m = νm = n, then deg det(R) = n and this is the sum of diagonal degrees of

R since this matrix is in weak Popov form; hence the flag Cert is returned.

For the second item, assume that the output flag is Cert. Then the sum of diagonal degrees

of R is n; according to Item (i) of Proposition 5.4, this sum is also deg det(R) and is at most δ , the
determinantal degree of bases of D(H). On the other hand Proposition 5.1 implies that δ is the

determinantal degree νm,m ofMm,m . Hence n = deg det(R) ≤ δ = νm,m , from which we deduce

deg det(R) = δ = νm,m = νm = n, since νm,m ≤ νm ≤ n always holds. Since the output flag is

Cert we know in addition that each of them rightmost columns of P has degree at least deg(R).
Thus Item (ii) of Proposition 5.4 applies, and R is the denominator of an irreducible right fraction

description of H . We conclude as done for the first item that R is a basis ofMm . □

Remark 5.7. The assumption that f and a are coprime is used here to ensure thatMa is invertible,

so that the expansion H =
∑

k≥0
Sky

k =
∑

k≥0
(−X TM−k−1

a X)yk at y = 0 can be used for fraction

reconstruction. This is different from what happened in the proof of Proposition 5.1, where we used the

expansion at infinity H =
∑

k≥0
Hky

−k−1
.

This assumption on gcd(f ,a) is harmless in our context: in the computation of д(a) rem f , one can
instead evaluate д(y − c) at y = a + c for a randomly chosen c ∈ K, ensuring gcd(a + c, f) = 1 with

good probability. See Step 2 in Algorithm ModularCompositionBaseCase.

Notes. For some families of approximation instances, PM-Basis has been used to design faster

minimal approximant basis algorithms [38, 74]. Yet, the instances considered here are ones where

PM-Basis is the fastest known algorithm.

A candidate matrix of relations in K[y]m×m
≤2d corresponds to m polynomials in K[x,y]≤(m,2d).

Using Algorithm SimultaneousBivariateModularComposition to verify that the evaluations of

these polynomials at a mod f are zero uses Õ(c(n,m,d2)) operations in K, by Lemma 3.3. For the

values ofm and d used to obtain the exponent κ < 1.43 in our main algorithm, this is O(n2.55), and

thus too costly.

5.4 Certified matrix of relations
In general, when Algorithm CandidateBasis does not certify its result, we do not know methods

to verify that the matrix it returns is a matrix of relations within our complexity bound.

Instead, from a matrix R computed by Algorithm CandidateBasis, Algorithm MatrixOfRe-

lations either detects that it is not a matrix of relations ofMm , or constructs from R a matrix

of relations ofMm′ of degree at most 2d , for somem′ < 2m. This is the key towards making our

modular composition algorithm Las Vegas, rather than Monte Carlo.

To achieve this, instead of evaluating all columns of R at a mod f , Algorithm MatrixOfRela-

tions evaluates only two polynomials built randomly from these columns (and only one polynomial

in the special casem = 1), which is within our target complexity using the Nüsken-Ziegler al-

gorithm. If these evaluations are not both zero, then R was not a matrix of relations. Otherwise

the algorithm constructs a Sylvester matrix from these two vectors (see e.g., [22, Sec. 6.3] for the

34 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

definition and properties of the Sylvester matrix). When this matrix is nonsingular, it is a matrix of

relations of a moduleMm′ form
′ ≤ max(1, 2(m − 1)); sincem′ cannot be much larger thanm, this

matrix can be used for efficient composition.

Algorithm 5.2MatrixOfRelations(f ,a,m,d, (ri)3≤i≤m)

Input: f ∈ K[x] of degree n, with f (0) , 0, a ∈ K[x]<n with gcd(a, f) = 1,

m ≤ n and d in N>0, (ri)3≤i≤m ∈ K
m−2

Output: either Fail or a matrix R′ ∈ K[y]m
′×m′
≤2d of relations ofMm′ withm

′ ≤ max(1, 2(m − 1))

1: ▷ Use Algorithm 5.1 to find a candidate basis of relations

(R, Flag) ∈ K[y]m×m
≤2d × {Cert,NoCert} ← CandidateBasis(f ,a,m,d)

if Flag = Cert then return R
2: ▷ Casem = 1, check that R1,1 ∈ K[y]<2d+1

annihilates a mod f
if m = 1 then

if ModularComposition-BrentKung(f ,a,R1,1) , 0 then return Fail

else return R
3: ▷ Build candidate relations and verify them

r (x,y) ← R∗,1; s(x,y) ← R∗,2 + r3R∗,3 + . . . + rmR∗,m ▷ both in K[x,y]<(m,2d+1)

if BivariateModularComposition(f ,a, r) , 0

or BivariateModularComposition(f ,a, s) , 0

then return Fail ▷ Algorithm 3.5

if m = 2 then return R
4: ▷ Construct and return the Sylvester matrix of f and s , if it is nonsingular

if gcdx (r , s) , 1 then return Fail ▷ r and s not coprime as elements of K(y)[x]

return the Sylvester matrix of (r , s) as in [22, Sec. 6.3, Eq. (5)], with rows in reversed order,

viewing r and s as polynomials in x over K[y]

Proposition 5.8. Given f ∈ K[x] of degree n with f (0) , 0, a ∈ K[x]<n with gcd(a, f) = 1,

two positive integers m(≤ n) and d , and (ri)3≤i≤m ∈ K
m−2

, Algorithm MatrixOfRelations uses

Õ(mωd + c(n,m,d)) operations in K, with c(·) from Eq. (2), and returns either Fail or a matrix of

relations R′ ∈ K[y]m
′×m′
≤2d ofM

(a,f)
m′ wherem′ ≤ max(1, 2(m − 1)).

If ν
(a,f)
m,m = ν

(a,f)
m , the fraction H = X T(yIn −Ma)

−1X is describable in degree d , and (r3, . . . , rm) are
chosen uniformly and independently at random from a finite subset S of K, then failure happens with

probability at most (m − 1)/card(S) and in case of success, deg(R′) ≤ d .

Proof. If Flag = Cert at Step 1, then from the second item of Proposition 5.6 an appropriate

matrix of relations is returned. Now assume that Flag = NoCert and Algorithm MatrixOfRela-

tions does not return Fail. Ifm = 1 then the relation has been checked at Step 2, proving the result.

Otherwise, let R′ ∈ K[y]m
′×m′

be the output matrix, which is constructed from the polynomials

r , s of x-degree less thanm; in particular,m′ = degx (r) + degx (s) ≤ 2(m − 1) [22, Sec. 6.3]. The fact

that the test at Step 4 has not failed ensures that r and s are coprime as univariate polynomials in

K(y)[x], and therefore R′ is nonsingular [22, Cor. 6.15]. Furthermore, since the tests at Step 3 have

not failed, r and s are relations ofMm . It follows that the columns of R′, which are by construction

multiples of r and s in K[x,y] represented as vectors in K[y]m
′

, are relations ofMm′ . Besides, the

construction of the Sylvester matrix does not increase the y-degree, hence deg(R′) ≤ deg(R) ≤ 2d .
We have proved the fact that if the output is not Fail, then it is a matrix of relations ofMm′ .

For the complexity bound, the cost for finding R is given in Proposition 5.6, while the ones for

checking that R1,1, r and s are relations are given in Propositions 3.1 and 3.4. As for the gcd test

Faster Modular Composition 35

at Step 4, it can be done via the resultant of r and s with respect to x , computed using Õ(m2d)
operations [63].

It remains to prove the third assertion and the probability bound. Since when Flag = Cert a basis

is returned with no randomization, assume Flag = NoCert. The assumptions here and the first

item of Proposition 5.6 ensure that R is a basis ofMm with deg(R) ≤ d , hence deg(R′) ≤ d . In that

case failure never occurs at Step 2 form = 1. It never occurs either at Step 3 form ≥ 2, and r and s are
relations ofMm . The columns ofR represent bivariate polynomialsb1, . . . ,bm ∈ K[x,y]<(m,d+1) and

we claim that gcdx (b1, . . . ,bm) = 1, meaning that there is a K[y]-linear combination of b1, . . . ,bm
which is in K[y] \ {0}. Since R is nonsingular, the first column of a transformation for the (upper

triangular) Hermite normal form of R provides such a combination. It follows that Fail is returned

with probability at most (m − 1)/card(S) at Step 4 [22, Thm. 6.46]. □

Note. The computation of Cert by Algorithm CandidateBasis is only an optimization. Algorithm

MatrixOfRelations works as it is, even if Cert is never returned. When the candidate matrix R
at Step 1 is not a matrix of relations, this is often detected at Step 3, but not always. Even if it is not

detected, it suffices to find two coprime polynomials r (x,y) and s(x,y) that are relations to ensure

that Algorithm MatrixOfRelations returns a matrix of relations. For example, it may happen

that R is not a matrix of relations but some columns of it still give low-degree relations ofMm .

6 CHANGE OF BASIS
In this section we present an algorithm for performing a change of basis in A = K[x]/⟨f ⟩. This
algorithm is used in a randomized manner in Section 8, in order to handle arbitrary inputs with

good complexity bounds. Our approach is based on an extension of the approximant bases used in

Section 5; we start with necessary definitions.

6.1 Definitions
We use an extension of the forms of polynomial matrices introduced in Section 5.2.1, called shifted

forms [5, 69]. For a given tuple t = (t1, . . . , tm) ∈ Z
m
and a column vector v ∈ K[y]m , the t-shifted

degree of v is max1≤i≤m(deg(vi) + ti). Then, for a matrix P ∈ K[y]m×m whose jth column has

t-shifted degree dj ∈ Z, the (column) t-shifted leading matrix of P is the matrix in Km×m whose

entry (i, j) is the coefficient of degree dj − ti of the entry (i, j) of P . Then P is said to be t-shifted
weak Popov if this t-shifted leading matrix is invertible and upper triangular.

We also need the corresponding normal form: P is said to be t-shifted Popov if it is t-shifted weak
Popov and its row leading matrix is the identity of Km×m [5, 39]. For a given t , any submodule of

rankm of K[y]m admits a unique basis in t-shifted Popov normal form [5, Thm. 3.7]. By definition,

t-shifted Popov matrices are also (non-shifted) row reduced; in particular, Hermite normal forms

are t-shifted Popov for an appropriate choice of t , hence are row reduced.

Row reduced matrices allow for a division with remainder with stronger properties than the one

for general nonsingular matrices presented in Section 4.2.1; namely they ensure uniqueness of the

remainder. Precisely, if a matrix P ∈ K[y]m×m is row reduced, for any vectorv ∈ K[y]m there exists

a unique vector ṽ ∈ K[y]m such that v − ṽ is a right multiple of P and the ith entry of ṽ has degree

less than the ith row of P [39, Thm. 6.3-15, p. 389].

We also use the fact that, by definition, for any block decomposition P = (P11 P12

P21 P22

) of a matrix P ,
if P is in Hermite (resp. t-shifted Popov) normal form, then:

• P11 and P22 are in Hermite normal form (resp. in shifted Popov normal form with respect to

the corresponding subtuple of t);
• each column of P12 (resp. P21) is its own remainder in the division by P11 (resp. P22).

36 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

Finally, t-shifted forms induce the notion of t-shifted approximant bases [5, 38, 74], which are

approximant bases (see Section 5.2.1) in t-shifted Popov normal form.

6.2 Inverse modular composition and change of basis via approximant bases
Let f be in K[x] of degree n. A core ingredient for the randomization in our composition algorithm

is an instance of inverse modular composition, which is used to change the basis of A = K[x]/⟨f ⟩
from (1, x, . . . , xn−1) to (1,γ , . . . ,γn−1) mod f , for some γ ∈ K[x] whose minimal polynomial µγ
modulo f has degree n. This change of basis induces the K-algebra isomorphism

ϕγ : A→ K[y]/⟨µγ ⟩, (19)

which maps any u ∈ A to v such that v(γ) ≡ u mod f . Given a in K[x]<n , this section explains

how to compute the unique polynomial representative α ∈ K[y]<n of ϕγ (a mod f), i.e., the unique
α ∈ K[y]<n such that α(γ) rem f = a.

Reversing the path followed in our modular composition approach, we first find a bivariate

α̃ ∈ K[x,y] such that α̃ − α ∈ M
(γ ,f)
m , hence α̃(x,γ) ≡ α(γ) mod f . Then the univariate solution α

is recovered from α̃ and a basis of relations R ofM
(γ ,f)
m by reversing the division from Eq. (14); this

corresponds to a division by the Hermite normal form of R.
Our algorithm for computing α̃ can be seen as a generalization tom ≥ 1 of Shoup’s algorithm for

computing α , mentioned in Section 1.1.2. The latter algorithm deals with the casem = 1: from the

power projections (ℓ(1), ℓ(γ), . . . , ℓ(γ 2n−1)) and (ℓ(a), ℓ(γa), . . . , ℓ(γn−1a)), it obtains both α and µγ
by solving two Padé approximation problems. In the matrix casem ≥ 1, Algorithm ChangeOfBasis

computes solutions to equations similar to Eqs. (6) and (8) given in the introduction. These are

matrix generalizations of the Padé approximation problems; their solutions provide respectively a

basis of relations R ofM
(γ ,f)
m and α̃ .

In more details, Steps 2 and 3 first compute the power series expansions involved in Eqs. (6)

and (8), which amounts to a type of generalized power projections. Then both approximation

problems are solved at once using shifted approximant bases:

• The choice of the first 2m columns of F = (S − Im s) at Step 4, which are the same as in Step 2

of Algorithm CandidateBasis, and the use of a corresponding “zero shift” (first 2m entries

of the tuple t at Step 4), make this equivalent to the computation in Section 5.3 (compare

Steps 3 to 5 of Algorithm ChangeOfBasis to Steps 1 to 3 of Algorithm CandidateBasis).

This yields a basis R ofM
(γ ,f)
m .

• Equation (8) is solved thanks to an additional series expansion in F (its last column), and

the use of a sufficiently large shift (the last entry 2d of the tuple t). This yields a bivariate
polynomial α̃ which is the remainder of the requested α in the division by R.

Finally, this sought α can be obtained by reversing this division, using a Hermite normal form

computation which also provides the minimal polynomial µγ (Steps 6 and 7).

The assumptions in Algorithm ChangeOfBasis yield a slightly stronger statement in Proposi-

tion 6.1 than in Proposition 5.6 for Algorithm CandidateBasis. Indeed, we suppose that γ is such

that deg(µγ) = n, whereas we make no such assumption in Algorithm CandidateBasis. From the

module properties in Proposition 4.1, we deduce that deg(µγ) = n implies ν
(γ ,f)
m = n, which allows

us to certify the basis of relations R when Fail is not returned.

Algorithm ChangeOfBasis may still return Fail; Section 8 shows that when it is called with a

random γ , then with high probability, it does not fail, at least under some assumptions on f .

Proposition 6.1. Given f ∈ K[x] of degree n with f (0) , 0, γ and a in K[x]<n ,m ≤ n and d
in N>0, Algorithm ChangeOfBasis uses Õ(mωd + c(n,m,d)) operations in K, with c(·) from Eq. (2),

Faster Modular Composition 37

Algorithm 6.1 ChangeOfBasis(f ,γ ,a,m,d)

Input: f of degree n in K[x], with f (0) , 0, γ ∈ K[x]<n , a ∈ K[x]<n ,m ≤ n and d in N>0

Output: either Fail or (R, µ,α) where R ∈ K[y]m×m
≤2d is the Popov basis ofM

(γ ,f)
m , µ is the minimal

polynomial of γ in K[x]/⟨f ⟩ and has degree n, and α ∈ K[y]<n with α(γ) ≡ a mod f
1: if gcd(γ , f) , 1 then return Fail

2: ▷ Truncated expansion of −XT(yIn −Mγ)
−1va using Algorithm 3.7, va ∈ K

n
is the coefficient vector of a

(rk)0≤k<2d ← TruncatedPowers(f ,γ−1
mod f ,γ−1a mod f ,m, 2d)

s ∈ K[y]m ←
∑

0≤k<2d sky
k
where sk ∈ K

m
is the coefficient vector of rk

3: ▷ Truncated expansion of XT(yIn −Mγ)
−1X using Algorithm 3.8 (analogous to Step 1 of Algorithm 5.1)

(Γi ,k) 0≤i<m
0≤k<2d+2

← BlockTruncatedPowers(f ,γ−1
mod f ,m, 2(d + 1))

Si ,k ∈ K
m ← vector of coefficients of −Γi ,k+1 ∈ K[x]<m , for 0 ≤ i < m and 0 ≤ k < 2d

S ∈ K[y]m×m
<2d ←

∑
0≤k<2d Sky

k
where Sk = (S0,k · · · Sm−1,k) ∈ K

m×m

4: ▷ Fraction reconstruction using [27, 38] (analogous to Step 2 of Algorithm 5.1)

F ∈ K[y]m×(2m+1)

<2d ← (S(y) − Im s(y))

t ∈ N2m+1 ← (0, . . . , 0, 2d)

P̄ ∈ K[y](2m+1)×(2m+1)

≤2d ← Popov-PM-Basis(F T, 2d, t)T, with P̄ in t-shifted Popov normal form

P ← P̄1..2m,1..2m
vᾱ ∈ K[y]

m
<deg(R) ← P̄1..m,2m+1 ▷ represents ᾱ(x,y), expected to satisfy ᾱ(x,γ) ≡ a mod f

5: ▷ Ensure R is a basis ofM
(γ ,f)
m , from Item (ii) of Proposition 5.4 (analogous to Step 3 of Algorithm 5.1)

R ← P1..m,1..m
if the sum of diagonal degrees of R is less than n
or among them rightmost columns of P , one has degree < deg(R) then return Fail

6: ▷ Compute µγ , and ensure it has degree n

T ∈ K[y]m×m ← Hermite normal form of R ▷ using [49, Algo. 1 and 3]
µ ∈ K[y] ← T1,1; if deg(µ) < n then return Fail

7: ▷ Deduce α and return

α ∈ K[y]<n ← ᾱ1 − (T1,2ᾱ2 + · · · +T1,mᾱm) rem µ , where vᾱ = (ᾱ1 · · · ᾱm)
return (R, µ,α)

to return either Fail or (R, µ,α) where R ∈ K[y]m×m
≤2d is the Popov basis ofM

(γ ,f)
m , µ is the minimal

polynomial µγ of γ mod f and has degree n, and α is the unique polynomial in K[y]<n such that

α(γ) ≡ a mod f .

If gcd(γ , f) = 1, ν
(γ ,f)
m,m = ν

(γ ,f)
m , deg(µγ) = n and the fraction H = X T(yIn −Mγ)

−1X is describable

in degree d , then the output is not Fail; in that case we further have deg(R) ≤ d .

Proof. We start by showing that if the algorithm does not fail, then the truncated moduleM
(γ ,f)
m,m

and the module of relationsM
(γ ,f)
m are equal, and R is a basis of this module.

Steps 1 to 4: the approximant basis P̄ . If the test at Step 1 does not fail then the specifications for

Steps 2 and 3 are met. At Step 2, Algorithm TruncatedPowers returns rk = [aγ
−k−1

rem f]m−1

0
for

0 ≤ k < 2d using Õ(c(n,m,d)) operations, according to Proposition 3.6. Thus the coefficient vector

sk ∈ K
m
of rk is X TM−k−1

γ va , where va ∈ K
n
is the coefficient vector of a, so that the polynomial

vector s(y) computed at Step 2 is the power series expansion of −X T(yIn −Mγ)
−1va truncated at

order 2d . From Proposition 3.7, the computation of S(y) at Step 3 uses Õ(m2d+c(n,m,d)) operations;
S is the power series expansion of X T(yIn −Mγ)

−1X truncated at order 2d .

38 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

Step 4 computes the t-shifted Popov approximant basis P̄ for F = (S − Im s) at order 2d , which
uses Õ(mωd) operations [27, Thm. 2.4; 38, Sec. 3]. Writing

P̄ =

(
P u
z λ

)
for some P ∈ K[y](2m)×(2m)

≤2d , λ ∈ K[y]≤2d ,u ∈ K[y]
2m
≤2d , and z ∈ K[y]

1×(2m)
≤2d ,

the fact that P̄ is t-shifted Popov and the choice t = (0, . . . , 0, 2d) ensure that P is (non-shifted)

Popov, that λ , 0, and that deg(z) + 2d < deg(P) ≤ 2d . The latter degree bound yields z = 0, hence

P is the Popov approximant basis of (S − Im) at order 2d . The fact that P̄ is t-shifted Popov also

ensures that the (unique) remainder in the division of u by P is u itself, and that the ith entry of u
has degree less than the ith diagonal degree of P .

After Step 5, R is a basis ofM
(γ ,f)
m,m =M

(γ ,f)
m . Let R be them ×m leading principal submatrix of

P (and of P̄), and let vᾱ ∈ K[y]
m
be the length-m top sub-vector of u. Similarly to the above, R is

(non-shifted) Popov, and the ith entry of vᾱ has degree less than the ith diagonal degree of R; in
particular, deg(vᾱ) < deg(R). Considering H (y) = X T(yIn −Mγ)

−1X , recall from Proposition 5.1

that D(H) =M
(γ ,f)
m,m , and recall thatM

(γ ,f)
m,m ⊇ M

(γ ,f)
m with equality if and only if ν

(γ ,f)
m,m = ν

(γ ,f)
m .

In particular, bases of D(H) have determinantal degree ν
(γ ,f)
m,m ≤ ν

(γ ,f)
m ≤ n. Applying Item (i) of

Proposition 5.4 to H and the approximant basis P shows that the sum of diagonal degrees of R is

deg det(R), and is at most ν
(γ ,f)
m,m .

As a result, if Step 5 does not return Fail, then n ≤ deg det(R) ≤ ν
(γ ,f)
m,m , hence ν

(γ ,f)
m,m = ν

(γ ,f)
m = n

and D(H) = M
(γ ,f)
m,m = M

(γ ,f)
m . Furthermore, Item (ii) of Proposition 5.4 shows that R is a basis

ofM
(γ ,f)
m .

After Step 6, µ is µγ and has degree n. Using Õ(mωd) operations [49], Step 6 finds the Hermite

normal formT of R. SinceT is a basis ofM
(γ ,f)
m in upper triangular form, Proposition 4.1 states that

its first diagonal entry is the minimal polynomial of γ in K[x]/⟨f ⟩. Hence µ computed at Step 6 is

this minimal polynomial. It has degree at most n, and the algorithm returns Fail at this step if and

only if deg(µ) < n.

After Step 6, vᾱ represents ᾱ(x,y) such that ᾱ(x,γ) ≡ a mod f . Let ᾱ ∈ K[x,y]<(m,deg(R)) be the

polynomial whose coefficient vector is vᾱ , that is, ᾱ = ᾱ1(y) + xᾱ2(y) + · · · + x
m−1ᾱm(y) using

notation from Step 7.

The fact that µ = µγ has degree n also ensures that there exists a unique α ∈ K[y]<n such

that α(γ) ≡ a mod f . Then let vα = (α 0 · · · 0)T ∈ K[y]m , and let vα̃ ∈ K[y]
m
be the unique

remainder in the division of vα by R. The entries of vα̃ have degree strictly less than that of the

corresponding row of R: the degree of the ith entry of vα̃ is less than the ith diagonal degree of R.
We also define α̃ ∈ K[x,y]<(m,deg(R)) as the polynomial whose coefficient vector is vα̃ ; in particular

α̃(x,γ) = α(γ) ≡ a mod f .
We now show that ᾱ = α̃ , which yields ᾱ(x,γ) = a mod f . By construction, α̃(x,y) − a(x) is in

M
(γ ,f)
n , and since yIn −Mγ is a basis ofM

(γ ,f)
n (see Proposition 4.1) there is a vector v ∈ K[y]n

such that (yIn − Mγ)v = Xvα̃ − va . Applying the predictable degree property [39, Thm. 6.3-13,

p. 387] to the column reduced matrix yIn −Mγ , all of whose columns have degree 1, we obtain that

deg(v) + 1 = deg(Xvα̃ −va) = deg(vα̃). Furthermore from (yIn −Mγ)v = Xvα̃ −va we get

X T(yIn −Mγ)
−1Xvα̃ − X

Tv − X T(yIn −Mγ)
−1va = 0,

Faster Modular Composition 39

and considering truncated power series it follows that Fq = (S − Im s)q ≡ 0 mod y2d
, where

q =

(
ũ
1

)
∈ K[y]2m+1

and ũ =

(
vα̃
X Tv

)
∈ K[y]2m .

Therefore q is a right multiple of the approximant basis P̄ = (P u
0 λ), which shows that λ is a nonzero

element of K, and that ũ − u is a right multiple of P . We check finally that the remainder of ũ in

the division by P—which is u by construction—is ũ itself. Indeed the degree of the ith entry of

vα̃ is less than the ith diagonal degree of R, which is the ith diagonal degree of P ; and as seen

above all entries of X Tv have degree at most deg(vα̃) − 1 < deg(R) − 1, with deg(R) being itself

at most the ith diagonal degree of P form + 1 ≤ i ≤ 2m. In particular vᾱ = vα̃ , hence ᾱ = α̃ and

ᾱ(x,γ) = a mod f .

Step 7 computes α ∈ K[x]<n such that α(γ) = a mod f . Since deg(µ) = n, the Hermite normal

form of R has the shape T = (µ T1,∗

0 Im−1

), with T1,∗ = (T1,2 · · · T1,m) and deg(T1, j) < deg(µ) = n
for2 ≤ j ≤ m. Then, the polynomial α = ᾱ1 − (T1,2ᾱ2 + · · · +T1,mᾱm) rem µ constructed at Step 7

has degree less than n and, by construction as well, the vector vα = (α 0 · · · 0)T ∈ K[y]m is such

that vᾱ −vα is a right multiple of T . (In fact, vα is the unique remainder in the division of vᾱ by

T .) In particular, vᾱ −vα is a right multiple of R, meaning that vα is equal to vᾱ modulo relations

ofM
(γ ,f)
m , which implies α(γ) = ᾱ(x,γ) ≡ a mod f . The computation of α costs Õ(nm) operations

in K.
This concludes the proof of the properties of (R, µ,α) in the case where the algorithm does not

return Fail. Furthermore, adding the above costs yields the cost bound claimed in the lemma, which

therefore holds in general since the cost can only be smaller when the algorithm returns Fail.

Proof of the last claim. The assumption gcd(γ , f) = 1 ensures that Step 1 does not return Fail, in

which case we have seen that P is a weak Popov approximant basis of (S − Im) at order 2d .

From deg(µγ) = n and Proposition 4.1 we know that ν
(γ ,f)
m = n, hence with the assumption

ν
(γ ,f)
m,m = ν

(γ ,f)
m we have ν

(γ ,f)
m,m = ν

(γ ,f)
m = n. Using D(H) = M

(γ ,f)
m,m = M

(γ ,f)
m , and Item (iii) of

Proposition 5.4 thanks to the assumption on H (y) = X T(yIn − Mγ)
−1X , we deduce that the m

rightmost columns of P have degree at least deg(R) and that R is a basis ofM
(γ ,f)
m with deg(R) ≤ d .

In particular deg det(R) = n, and it follows that Step 5 does not return Fail.

Then, the assumption on the degree of the minimal polynomial also ensures, using Proposition 4.1

as above, that the first diagonal entry of the Hermite normal formT of R is µγ , and is the polynomial

µ computed at Step 6. Therefore Step 6 does not return Fail either: we have proved that, under the

assumptions gcd(γ , f) = 1, ν
(γ ,f)
m,m = ν

(γ ,f)
m , deg(µγ) = n, and H = X T(yIn −Mγ)

−1X is describable

in degree d , then the output is not Fail and deg(R) ≤ d . □

Notes. Shoup’s algorithm for computing α in the casem = 1 uses only n terms of the sequence

(ℓ(γ ka))k , or more generally d terms, where d is a known bound on deg(µa). Here as well, if one
knows that the sought basis of relations satisfies deg(R) ≤ d , for example under the conditions

of Proposition 6.1 ensuring success, then the algorithm may be modified so as to require only d
terms of the expansion of −X T(yIn −Mγ)

−1va instead of 2d . The vector vα̃ would appear in the

approximant basis at order d , and from there one would consider a residual approximant problem

focusing on obtaining the missing part of R. This is not detailed here, as this would complicate the

presentation without bringing an improvement to the asymptotic complexity.

Modular composition and inverse composition are very similar. They both involve the computa-

tion of a matrix of relations and use symmetric steps with similar complexities. Indeed, the division

40 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

with remainder of Section 4.2.1 is used in both algorithms to change between univariate and bivari-

ate representations efficiently. Also, the application of Algorithm BivariateModularComposition

at the last step of composition in Algorithm BivariateModularCompositionWithRelation-

Matrix is reflected by TruncatedPowers as starting step of inverse composition in Algorithm

ChangeOfBasis. Both these steps have cost Õ(c(n,m,d)) from Propositions 3.4 and 3.6, respectively

(see also Section 3.4.3).

7 THE BLOCK HANKEL MATRIX Hk
(a,f)
m,d AND ITS GENERIC PROPERTIES

Matrices of relations are obtained either by Algorithm MatrixOfRelations directly, or by Algo-

rithm ChangeOfBasis after a change of basis. In both cases, for the correctness of the computation

to be granted via Propositions 5.8 and 6.1, we need ν
(a,f)
m,m and ν

(a,f)
m to be equal (and, equivalently,

M
(a,f)
m,m =M

(a,f)
m) and the fraction H (y) = X T(yIn −Ma)

−1X to be describable in degree d , or the
same statement with γ in place of a. It is thus important to understand when these properties hold.

Recall from Section 3.4.1 the matrices K
(a,f)
m,d and L

(a,f)
m,d , that are defined form ∈ {1, . . . ,n} by

K
(a,f)
m,d =

(
X · · · Md−1

a X
)
∈ Kn×(md)

and L
(a,f)
m,d =

©­­«
X T

...

X TMd−1

a

ª®®¬ ∈ K(md)×n,

and that correspond to Algorithms BivariateModularComposition and TruncatedPowers

respectively, and also to the maps κ
(a,f)
m,d and λ

(a,f)
m,d . Their product forms the block Hankel matrix

Hk
(a,f)
m,d = L

(a,f)
m,d K

(a,f)
m,d =

©­­­­­«
H0 H1 . . . Hd−1

H1
. .
.
. .
.

Hd
... . .

.
. .
. ...

Hd−1 Hd . . . H2d−2

ª®®®®®¬
∈ K(md)×(md), (20)

with Hk = X TMk
aX for k in N. This matrix, and in particular its rank, is strongly related to the two

properties mentioned above [70; 46, p. 97].

The outcomes of this section are the following. For any positive parametersm ≤ n and d , as

soon as rank(Hk
(a,f)
m,d) = ν

(a,f)
m , then ν

(a,f)
m,m = ν

(a,f)
m and H is describable in degree d (Section 7.1).

This happens in particular when f (0) , 0, d ≥ ⌈n/m⌉ and either deg(a) =m (Section 7.2) or for a

generic choice of a (Section 7.3). Also, for generic choices of the roots of f and of the values of a at

these roots, rank(Hk
(a,f)
m,d) = ν

(a,f)
m as soon as d ≥ ⌈ν

(a,f)
m /m⌉ (Section 7.4). As in previous sections,

notation such as ν
(a,f)
m ,Hk

(a,f)
m,d , λ

(a,f)
m,d , etc. is often shortened into νm,Hkm,d , λm,d , etc.

These results will be used in Section 8 for the analysis of the randomized composition algorithm

when f is separable (Section 8.3), or when f is purely inseparable, which includes the case of power

series composition (Sections 8.4 and 8.5).

7.1 Relation between block Hankel matrix rank and fraction description degree
The key condition to control the degrees of fraction descriptions of H (y) and obtain matrices of

relations is the equality

rank(Hkm,d) = νm .

The special case when rank(Hkm,d) = n is common, and appears naturally later on. The proof of

the following result relies in an essential manner on Lemma 7.2, which we give next (the references

we cite only give a sketch of proof).

Faster Modular Composition 41

Proposition 7.1. Given f ∈ K[x] of degree n, a ∈ K[x]<n , and positive integers m ≤ n and

d , the rank of Hk
(a,f)
m,d is at most ν

(a,f)
m . In case of equality, we have ν

(a,f)
m,m = ν

(a,f)
m and H (y) =

X T(yIn −Ma)
−1X is describable in degree d .

In particular, if Hk
(a,f)
m,d has rank n, then ν

(a,f)
m,m = ν

(a,f)
m = n and H (y) is describable in degree d .

Proof. Using Proposition 4.1 the inclusionMm ⊆ Mm,m implies νm,m ≤ νm ≤ n, so that by

Lemma 7.2 below we have rank(Hkm,d) ≤ νm,m ≤ νm ≤ n. If Hkm,d has rank νm , then νm = νm,m ,

and the claim onH follows again from Lemma 7.2. The case where the rank isn follows similarly. □

Lemma 7.2 ([46, Sec. 2.1] and [71, Lem. 2.4]). For positive integersm ≤ n and d , the rank of Hk
(a,f)
m,d

is at most ν
(a,f)
m,m , with equality if and only if H (y) = X T(yIn −Ma)

−1X is describable in degree d .

Proof. We denote by Hk = X TMk
aX ∈ K

m×m
the coefficient in the expansion of H at infinity:

H (y) = X T(yIn −Ma)
−1X =

∑
k≥0

Hky
−k−1 =

∑
k≥0

X TMk
aXy

−k−1.

To show that the rank is at most νm,m we first note that Hkm,d is a submatrix of Hkm,d+1 for

d ≥ 0, the sequence (rank(Hkm,d))d≥0 is thus nondecreasing. SinceMm,m is the module of vector

generators for the sequence {Hk }k≥0 (Section 5.1), the minimal generating polynomial F ∈ K[y]m×m

in Popov form for that sequence is a basis ofMm,m ([70, Def. 2.5] and [46, Def. 2.3]). It follows that

deg det(F) = νm,m , and [46, Eq. (2.6)] shows that for d ≥ n, the rank of Hkm,d is νm,m . So the first

claim is proved.

If the rank of Hkm,d is equal toνm,m , then this rank is also that of the infinitematrix corresponding

to the system (see also Eq. (16))

Hkv0 + · · · + Hk+dvd = 0 for k ≥ 0, (21)

thus a solution to

Hkv0 + · · · + Hk+dvd = 0 for 0 ≤ k ≤ d − 1 (22)

is also a solution to Eq. (21). Since the rank of Hkm,d is maximal we also know that the last block

column of Hkm,d+1 is a linear combination of the previous ones. This provides withm linearly

independent R1, . . . ,Rm ∈ K[y]
m
, of degreed , whose coefficient vectors iny are solutions to Eq. (22),

hence to Eq. (21). Let R be the matrix in K[y]m×m whose jth column is R j . Using Eq. (21) we deduce
thatHR = Q withQ ∈ K[y]m×m (see also Eq. (17)). This gives a right fraction descriptionH = QR−1

(which may not be irreducible) with denominator of degree d . The same reasoning on the left side

gives a left matrix description of degree d , hence H is describable in degree d .
Conversely, a right matrix description H = QR−1

with R of degree at most d gives R j ’s whose
coefficient vectors are solutions to Eq. (21). Since F is a basis of the module of vector generators

for {Hk }k≥0, R must be a multiple of F . By minimality F has degree at most d [39, Thm. 6.5-

10, p. 458], and using [46, Eq. (2.6)] the rank of the infinite block Hankel matrix restricted to its

first d block columns is maximal. Starting from a left description, in an analogous way we obtain

that the rank restricted to the first d block rows is maximal, which yields that Hkm,d has rank

deg det(F) = νm,m . □

7.2 Families with Hk
(a,f)
m,d of rank n

A simple condition implies the equality rank(Hkm,d) = n of Proposition 7.1.

Proposition 7.3. Let f ∈ K[x] have degree n, let a ∈ K[x]<n , and letm be a positive integer. If

f (0) , 0 and deg(a) =m (hence 1 ≤ m < n), then the block Hankel matrix Hk
(a,f)
m,d ∈ K

(md)×(md)
has

rank n for all d ≥ ⌈n/m⌉.

42 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

The rest of this subsection is devoted to the proof of this result. It is a basis for the genericity

result in the next subsection.

Proof. Given c in K, any minor of Hk
(ca,f)
m,d is equal to the corresponding minor of Hkm,d =

Hk
(a,f)
m,d times a power of c . It follows that rank(Hk

(ca,f)
m,d) = rank(Hkm,d) for any c , 0, and therefore

in the rest of the proof we can assume that a is monic of degreem.

By Eq. (20), it is sufficient to show that the mappings κm,d and λm,d associated to Km,d and Lm,d
are surjective and injective, respectively.

The mapping κm,d is surjective. By assumption, n ≤ md so that surjectivity of κm,d is equivalent

to the matrix Km,d ∈ K
n×(md)

from Eq. (11) having full row rank n. Indeed, the first n columns of

Km,d are the coefficients of the family of polynomials x iaj rem f , for 0 ≤ i < m and 0 ≤ j < d ,
with 0 ≤ i + jm < n. Since deg(a) =m, these columns form an upper triangular matrix, with 1’s on

the diagonal; this proves the claim.

The mapping λm,d is injective. Equivalently, we have to show that Lm,d has full column rank n.
This follows from the structure of this matrix, seen at the level of polynomials.

Lemma 7.4. With the notation and hypotheses of Proposition 7.3, let

pi = [ax
n−m+i

rem f]m−1

0
, i = 0, . . . ,m − 1.

Then,

(i) ifm ≤ n/2, them polynomials p0, . . . ,pm−1 are linearly independent;

(ii) if n/2 < m, the n −m polynomials p2m−n, . . . ,pm−1 are linearly independent.

Proof. The two cases require different proofs, sharing common ingredients. For i ≥ 0, let

ri = xn+i rem f . For b in K[x]<n , we then have

x ib rem f = [x ib]n−1

0
+ δb ,i , (23)

for some δb ,i in Span(r0, . . . , ri−1), in particular δb ,0 = 0. Applying this to b = r0 = xn rem f yields

ri = [x
ir0]

n−1

0
+ δr0,i . Taking this relation modulo xm gives [ri]

m−1

0
= [x ir0]

m−1

0
+ µi , with µi in

Span([r0]
m−1

0
, . . . , [ri−1]

m−1

0
). As a result, for i ≥ 0, we get

Span([r0]
m−1

0
, . . . , [ri]

m−1

0
) = Span([r0]

m−1

0
, . . . , [x ir0]

m−1

0
).

Writing f = f0 + · · · + fn−1x
n−1 + xn , we get r0 = −f0 − f1x − · · · − fn−1x

n−1
. Since f0 , 0 by

assumption, [x ir0]
m−1

0
has valuation i for 0 ≤ i < m; this implies that Span([r0]

m−1

0
, . . . , [ri]

m−1

0
)

has dimension i + 1 for 0 ≤ i < m.

Proof of Item (i). Let b = axn−m rem f in Eq. (23). Upon reduction modulo xm , for 0 ≤ i < m, we

obtain the relation pi = [x
ib]m−1

0
+ µ ′i , with µ

′
i in Span([r0]

m−1

0
, . . . , [ri−1]

m−1

0
).

Since axn−m is monic of degree n (a has degreem), with valuation at least n −m ≥ m (here,

m ≤ n/2), we get [b]m−1

0
= [r0]

m−1

0
, and thus [x ib]m−1

0
= [x ir0]

m−1

0
for 0 ≤ i < m. This gives

pi = [ri]
m−1

0
+ µ ′i − µi , with µ

′
i − µi in Span([r0]

m−1

0
, . . . , [ri−1]

m−1

0
). In particular, taking all i up to

m − 1, we get the equality Span(p0, . . . ,pm−1) = Span([r0]
m−1

0
, . . . , [rm−1]

m−1

0
), and we saw that the

latter has dimensionm. Item (i) is proved.

Proof of Item (ii). Assume that q = cmx
m + · · · + cn−1x

n−1
is such that [aq rem f]m−1

0
= 0. We

prove that all ci ’s vanish.
We can rewrite aq rem f as xmb rem f , with b = a(q/xm); since a has degreem, b is in K[x]<n .

Applying Eq. (23) to b and i =m, our assumption that [xmb rem f]m−1

0
= 0 implies that [δb ,m]

m−1

0
=

Faster Modular Composition 43

0. The linear independence of [r0]
m−1

0
, . . . , [rm−1]

m−1

0
then shows that δb ,m itself is zero, so that

xmb rem f = [xmb]n−1

0
.

This shows that the remainder [xmb]m−1

n rem f vanishes. Because x is invertible modulo f (since

f0 , 0), it follows that [b]m−1

n−m vanishes modulo f , or equivalently that [b]m−1

n−m = 0. Since a is monic

of degreem, and since n −m < m, the definition of b then implies that all coefficients ci ’s vanish.
Hence, Item (ii) is proved. □

Let now v ∈ K[x]<n be such that

[v]m−1

0
= [av rem f]m−1

0
= · · · = [ad−1v rem f]m−1

0
= 0.

We prove that deg(v) < n −mi for i = 0, . . . ,d − 1. For d = ⌈n/m⌉, this gives deg(v) < m; together

with the assumption [v]m−1

0
= 0, this proves that v = 0.

The proof is by induction. For i = 0, there is nothing to prove. If the claim holds for some index

i < d − 1, since a has degreem, for anyw in K[x]<n , the polynomial [aw rem f]m−1

0
splits into two

parts:

[aw rem f]m−1

0
= [a[w]n−m−1

0
]m−1

0
+ [a[w]m−1

n−m rem f]m−1

0
.

Apply this identity with w = aiv rem f . Then, both the left-hand side and the first summand

vanish: the former because [ai+1v rem f]m−1

0
= 0, the latter because [aiv rem f]m−1

0
= 0, i.e.,w =

aiv rem f has valuation at leastm. We deduce that [a[w]m−1

n−m rem f]m−1

0
= 0, withw = aiv rem f .

• If m ≤ n/2, the linear independence of the polynomials pj = [ax
n−m+j

rem f]m−1

0
, for

j = 0, . . . ,m − 1, then shows that [w]n−1

n−m = [a
iv rem f]n−1

n−m vanishes.

• If m > n/2, then the assumption that w has valuation at least m, with thus m > n −m,

shows that [w]n−1

n−m = [w]
n−1

m . In this case, the linear independence of the polynomials pj for
j = 2m − n, . . . ,m − 1 shows that [w]n−1

n−m = [w]
n−1

m = 0.

In other words, in both cases, we have proved thatw = aiv rem f has degree less than n −m.

On the other hand, the induction assumption that deg(v) < n −mi implies that aiv rem f = aiv ,
so the latter has degree less than n−m. Since ai has degreemi , this shows that deg(v) < n−m(i+1),

as claimed. □

7.3 Generic regularity in a and f

In all this document, genericity is understood in the Zariski sense:

Definition 7.5. A property P of certain parameters (u1, . . . ,us) holds for a generic choice of

(u1, . . . ,us) in K
s
if there exists a nonzero polynomial ∆ in K[ū1, . . . , ūs] (where the ūi ’s are new

indeterminates) such that ∆(u1, . . . ,us) , 0 implies that P(u1, . . . ,us) holds.

Note that if K is finite, there may be no choice of the ui ’s in K for which ∆ does not vanish, but

such points exist in a finite extension of K of sufficiently large degree (such as O(log(n)) when the

degree of ∆ is polynomial in n, as is the case below).

Proposition 7.6. Let f in K[x] be of degree n and such that f (0) , 0. For anym ∈ {1, . . . ,n}
there exists a nonzero polynomial ∆f ,m in K[ā0, . . . , ān−1] of degree at most 2n2/m such that for

a = a0 + · · · + an−1x
n−1

in K[x]<n , if ∆f ,m(a0, . . . ,an−1) , 0 then Hk
(a,f)
m,d ∈ K

(md)×(md)
has rank n

for any d ≥ ⌈n/m⌉.

7.3.1 Proof of Proposition 7.6.

Lemma 7.7. Letm, n be positive integers, withm ∈ {1, . . . ,n}, and let ¯f = ¯f0 + · · ·+ ¯fn−1x
n−1 +xn

and ā = ā0 + · · · + ān−1x
n−1

be polynomials in Z[ā0, . . . , ān−1, ¯f0, . . . , ¯fn−1][x]. Then any n-minor of

Hk
(ā, ¯f)
m, ⌈n/m ⌉ has degree at most 2n2/m in ā0, . . . , ān−1 and 2n2(n − 1)/m in

¯f0, . . . , ¯fn−1.

44 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

Proof. The entries of the multiplication matrix Mā are the coefficients of xk ā rem
¯f for k =

0, . . . ,n−1, and are therefore polynomials of degree 1 in the coefficients ā0, . . . , ān−1 and at mostn−1

in the coefficients
¯f0, . . . , ¯fn−1. In turn, the coefficients ofM j

ā have degree at most j in ā0, . . . , ān−1

and j(n − 1) in ¯f0, . . . , ¯fn−1. For 0 ≤ i, j < ⌈n/m⌉, them ×m block of coordinates (i, j) in Hk
(ā, ¯f)
m, ⌈n/m ⌉

is a submatrix ofM i+j
ā ; it has degree at most i + j in ā0, . . . , ān−1 and (i + j)(n − 1) in ¯f0, . . . , ¯fn−1. As

a result, any n-minor of this matrix has degree at mostm⌈n/m⌉(⌈n/m⌉ − 1) ≤ 2n2/m in ā0, . . . , ān−1

andm⌈n/m⌉(⌈n/m⌉ − 1)(n − 1) ≤ 2n2(n − 1)/m in
¯f0, . . . , ¯fn−1. □

Take f of degree n with f (0) , 0. Proposition 7.3 with a = xm shows that at least one n-minor

of Hk
(xm ,f)
m, ⌈n/m ⌉ is nonzero, so the corresponding n-minor of Hk

(ā,f)
m, ⌈n/m ⌉ is not identically zero. We

take this minor for ∆f ,m , and its degree is then bounded by Lemma 7.7.

7.3.2 Note: basis of relations for a generic a. For any f in K[x] with f (0) , 0, and for a generic

a in K[x]<n , Proposition 7.6 shows that the rank of Hk
(a,f)
m,d is n, with d = ⌈n/m⌉. From Proposi-

tion 7.1 we then obtain ν
(a,f)
m = ν

(a,f)
m,m = n and the describability of H in degree d . Therefore, by

Proposition 5.6, Algorithm CandidateBasis returns a basis ofM
(a,f)
m and the flag Cert.

7.4 Generic rank for a separable f

We now study the rank of Hkm,d , for a generic choice of the roots of f , and for a generic choice of

the values of a at these roots, subject to certain combinatorial conditions.

7.4.1 Definitions. Consider pairwise distinct ξ1, . . . , ξn in an algebraic closure K of K. To such

points, we associate the polynomial f = (x − ξ1) · · · (x − ξn). We also consider a ∈ K[x]<n , and we

say that a takes values λ1, . . . , λr at ξ1, . . . , ξn with multiplicities ℓ1, . . . , ℓr if the following holds:

- λ1, . . . , λr are pairwise distinct elements in K;
- ℓ1 + · · · + ℓr = n, with all ℓi positive integers;
- for i = 1, . . . , r , a(ξσi+1) = · · · = a(ξσi+ℓi) = λi , where we write σi = ℓ1 + · · · + ℓi−1 (the

empty sum for i = 1 is zero).

In view of our application, we also assume that the ξi ’s are such that f is in K[x].

7.4.2 Generic rank.

Proposition 7.8. Fix positive integersm ∈ {1, . . . ,n} and ℓ = (ℓ1, . . . , ℓr) such that ℓ1+· · ·+ℓr = n.
Then, there exists a nonzero polynomial Γℓ,m ∈ Z[¯ξ1, . . . , ¯ξn, ¯λ1, . . . , ¯λr] such that the following holds.

For pairwise distinct nonzero ξ1, . . . , ξn in K such that f = c(x − ξ1) · · · (x − ξn) with c ∈ K \ {0} is
in K[x] and for a ∈ K[x] that takes values λ1, . . . , λr at ξ1, . . . , ξn with multiplicities ℓ1, . . . , ℓr , if
Γℓ,m(ξ1, . . . , ξn, λ1, . . . , λr) is nonzero, then

rank(Hk
(a,f)
m,d) = ν

(a,f)
m for any d ≥ ⌈ν

(a,f)
m /m⌉,

with in addition the equality

ν
(a,f)
m =

r∑
i=1

min(ℓi ,m).

Finally, for any pairwise distinct λ1, . . . , λr , the polynomial Γℓ,m(¯ξ1, . . . , ¯ξn, λ1, . . . , λr) is nonzero and
has degree at most 2n2

.

Faster Modular Composition 45

7.4.3 Proof of Proposition 7.8. The rather long proof is decomposed as follows. First, the expression

for the determinantal degree νm is established. For the proof of the rest of the proposition we

exploit the factorization Hkm,d = Lm,dKm,d , that is analyzed through a series of lemmas.

The ranks of the matricesKm,d and Lm,d are related to that of a simple matrix Pℓ,m,d (see Eq. (30)).

This leads to the proof that for d = ⌈νm/m⌉, the rank of Km,d and Lm,d is νm generically. Then we

prove that generically, taking any d0 ≥ ⌈νm/m⌉ is sufficient for studying the rank of Hkm,d . The

proof is concluded by establishing that the rank is νm when d0 is r , the number of distinct values

a(ξk)’s: for this value of d0, we establish that the intersection of the image of Km,d with the kernel

of Lm,d is reduced to 0. The polynomial Γℓ,m and the degree bounds are derived from the proof.

Determinantal degree ν
(a,f)
m . As in the proposition, let ξ1, . . . , ξn be pairwise distinct in K and let

f = c(x − ξ1) · · · (x − ξn). The Lagrange interpolation polynomials

Lk (x) =
1

f ′(ξk)

f (x)

x − ξk
=

∏
ℓ,k

x − ξℓ
ξk − ξℓ

, k = 1, . . . ,n. (24)

form a basis of A := K[x]/⟨f ⟩. For any a ∈ A, the matrix of multiplication by a is diagonalizable,

its eigenvalues are the values of a at the ξ j ’s, and the Lagrange polynomials are eigenvectors. The

characteristic polynomial χa of a modulo f is therefore given by

χa =
n∏

k=1

(y − a(ξk)) ∈ K[y].

For 1 ≤ i ≤ r , we define Si = {k ∈ {1, . . . ,n} | a(ξk) = λi } and use that

Si = {σi + 1, . . . ,σi + ℓi }. (25)

With these conventions we have the factorization

χa =
r∏
i=1

(y − λi)
ℓi ,

where the factors (y − λi) are pairwise coprime. The Smith normal form of yIn −Ma is then known

and an explicit expression for the determinantal degree νm can be given: yIn − Ma has max(ℓi)
nontrivial invariant factors; for 1 ≤ k ≤ max(ℓi), the kth one is

∏
1≤i≤r (y − λi)

εi ,k
, where εi ,k = 1

if k ≤ ℓi and 0 otherwise. From there, recalling from Eq. (7) that form in {1, . . . ,n}, νm is the sum

of the degrees of the firstm such invariant factors, we have:

νm =

min(m,max(ℓi))∑
k=1

card({i | ℓi ≤ k}) =
r∑
i=1

min(ℓi ,m). (26)

This proves the claim regarding νm in the proposition (this claim thus holds without further

assumption on the ξi ’s and λi ’s).

Maximal rank of Hk
(a,f)
m,d .

Lemma 7.9. Let A ∈ Kn×n and m ∈ N>0, and let ν be the sum of the degrees of the min(m,n)
highest degree invariant factors of yIn −A. Then for any collection ofm vectors v1, . . . ,vm ∈ K

n
, one

has dim(Span(Aivj , 0 ≤ i, 1 ≤ j ≤ m)) ≤ ν .

Proof. We let ν̃ = dim(Span(Aivj , 0 ≤ i, 1 ≤ j ≤ m)). For 1 ≤ j ≤ m, let dj ≥ 0 be the first index

such that Adjvj ∈ Span(vj ,Avj , . . . ,A
dj−1vj , {A

ivk | 0 ≤ i, 0 ≤ k < j}); if l ≥ dj then Alvj also

46 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

belongs to the latter subspace of Kn , which is therefore stable under left-multiplication by A. This
holds for any 1 ≤ j ≤ m, hence d1 + . . . + dm = ν̃ , and the matrix

P1 =
(
v1 Av1 · · · Avd1−1

1
· · · vm Avm · · · Avdm−1

m

)
∈ Kn×ν̃

has rank ν̃ and can be completed into a nonsingular matrix P = (P1 P2) ∈ K
n×n

. By applying the

change of basis P−1AP we obtain

P−1(yIn −A)P =

(
yIν̃ −C B1

0 yIn−ν̃ − B2

)
∈ K[y]n×n, (27)

where C ∈ Kν̃×ν̃ , B1 ∈ K
ν̃×(n−ν̃)

, B2 ∈ K
(n−ν̃)×(n−ν̃)

. Thanks to the form of P1, the matrix C ∈
Kν̃×ν̃ is block upper triangular with at most m companion blocks Cj of dimensions dj on the

diagonal (there is no block for dj = 0, and at most n of the dj ’s are nonzero). By a unimodular

row transformation Uj ∈ K[y]
dj×dj

, a matrix yIdj − Cj can be brought into an upper triangular

form Tj (y) = Uj (y)(yIdj −Cj), which has diagonal entries 1 except for the last entry which is the

characteristic polynomial χ (j) = ydj − χ (j)dj−1
ydj−1 − . . . − χ (j)

0
of Cj :

©­­­­«
−1

. . .

−1

1 y . . . ydj−1

ª®®®®¬
©­­­­­«
yIdj −

©­­­­­«
χ (j)

0

1 χ (j)
1

. . .
...

1 χ (j)dj−1

ª®®®®®¬
ª®®®®®¬
=

©­­­­«
1 · · ·

. . . · ·

1 ·

χ (j)(y)

ª®®®®¬
∈ K[y]dj×dj ,

Therefore Eq. (27) can be rewritten as

U (y)P−1(yIn −A)P =

(
T (y) B̄1(y)

0 yIn−ν̃ − B2

)
=

(
Iν̃ B̄1(y)
0 yIñ−ν − B2

) (
T (y) 0

0 In−ν̃

)
, (28)

where U = diag(U1, . . .Um, In−ν̃) is unimodular (with no Uj if dj = 0), and T ∈ K[y]ν̃×ν̃ is block

upper triangular with diagonal blocks the Tj ’s. The matrix T is triangular with 1’s on the diagonal

except for at mostm entries. We deduce that the gcd of the minors of dimension k of T is a unit

for 1 ≤ k ≤ ν̃ −m, and that T has at mostm nontrivial invariant factors [58, Ch. II, Eq. (13)]. The

product of these invariant factors is det(T) =
∏

j χ
(j)
, whose degree is d1 + · · · + dm = ν̃ . From the

matrix product on the right-hand side of Eq. (28), these latter invariant factors divide them highest

degree invariant factors of yIn −A [58, Thm. II.14]. From the definition of ν we obtain ν̃ ≤ ν . □

With A = Ma orMT
a , and Km,d , Lm,d from Eq. (11), for any positive integer d , Lemma 7.9 gives

rank(Km,d) ≤ νm, rank(Lm,d) ≤ νm and rank(Hkm,d) ≤ νm . (29)

Next, we show that the ranks of both Km, ⌈νm/m ⌉ and Lm, ⌈νm/m ⌉ are νm generically.

The relation of K
(a,f)
m,d and L

(a,f)
m,d to the matrix Pℓ,m,d . For ℓ = (ℓ1, . . . , ℓr),m in {1, . . . ,n}, and a

positive integer d , we define the matrix

Pℓ,m,d =
©­­«
1

¯ξ1 . . . ¯ξm−1

1

¯λ1
¯ξ1

¯λ1 . . . ¯ξm−1

1

¯λd−1

1

...
...

1
¯ξn . . . ¯ξm−1

n
¯λr ¯ξn ¯λr . . . ¯ξm−1

n
¯λd−1

r

ª®®¬ ∈ Z[¯ξ1, . . . , ¯ξn, ¯λ1, . . . , ¯λr]
n×md , (30)

where the rows are indexed by the variables
¯ξ1, . . . , ¯ξn , and where each

¯λi occurs ℓi consecutive
times, for i = 1, . . . , r . The following lemma summarizes the key properties of this matrix in relation

with the rank of Km,d and Lm,d .

Faster Modular Composition 47

Lemma 7.10. Let ℓ, ξ1, . . . , ξn , λ1, . . . , λr , f , a andm be as in Proposition 7.8, and let d be a positive

integer. The following holds:

• the rank of Km,d is equal to the rank of Pℓ,m,d (ξ1, . . . , ξn, λ1, . . . , λr);
• if all ξi ’s are nonzero, the rank of Lm,d is equal to the rank of Pℓ,m,d (1/ξ1, . . . , 1/ξn, λ1, . . . , λr).

Proof. We use the same notation

κm,d : K[x,y]<(m,d) → K[x]/⟨f ⟩ and λm,d : K[x]<n → K[x]
d
<m

for the mappings induced by scalar extension from κm,d and λm,d from Section 3.4.1.

Taking (x iy j)0≤i<m,0≤j<d for basis ofK[x,y]<(m,d) and the Lagrange basisL1, . . . ,Ln forK[x]<n ,
the matrix of κm,d is Pℓ,m,d (ξ1, . . . , ξn, λ1, . . . , λr). This proves the first point.
To prove the second point, take k in {1, . . . ,n}, and let i in {1, . . . , r } be such that a(ξk) = λi .

The image of the Lagrange polynomial Lk by λm,d is the polynomial vector

λm,d (Lk) =
(
[Lk]

m−1

0
, [aLk rem f]m−1

0
, . . . , [ad−1Lk rem f]m−1

0

)
∈ K[x]d<m,

and since the Lagrange polynomials are eigenvectors of multiplication by a, we get

λm,d (Lk) =
(
[Lk]

m−1

0
, [λiLk]

m−1

0
, . . . , [λd−1

i Lk]
m−1

0

)
=

(
[Lk]

m−1

0
, λi [Lk]

m−1

0
, . . . , λd−1

i [Lk]
m−1

0

)
.

Let L′ ∈ K
(md)×n

be the matrix whose k-th column (for k = 1, . . . ,n) contains the md coeffi-

cients of the entries of λm,d (Lk). This is the matrix of λm,d , if we take the Lagrange basis for the

domain K[x]<n .
Since all ξi ’s are nonzero, we get f (0) , 0, so that f is invertible as a power series. Because the

K-linear transformation b ∈ K[x]<m 7→ [b/f]
m−1

0
is invertible, L′ has the same rank as the matrix

whose columns are the coefficients of the vectors(
[[Lk]

m−1

0
/f]m−1

0
, λi [[Lk]

m−1

0
/f]m−1

0
, . . . , λd−1

i [[Lk]
m−1

0
/f]m−1

0

)
,

for i and k as above. On the other hand, we have [[Lk]
m−1

0
/f]m−1

0
= [Lk/f]

m−1

0
and

Lk

f
=

1

f ′(ξk)

1

x − ξk
.

This shows that to determine the rank of L′, we may as well consider the vectors([
1

x − ξk

]m−1

0

, λi

[
1

x − ξk

]m−1

0

, . . . , λd−1

i

[
1

x − ξk

]m−1

0

)
.

Now, note that [
1

x − ξk

]m−1

0

= −ξk

(
1 +

1

ξk
x + · · · +

1

ξm−1

k

xm−1

)
.

Thus, up to the factors −ξk , taking themd coefficients of these vectors and putting them in columns

gives us the transpose of Pℓ,m,d (1/ξ1, . . . , 1/ξn, λ1, . . . , λr). This proves the rank equality claimed

in the second item. □

48 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

The rank of K
(a,f)
m,d and L

(a,f)
m,d for d = ⌈ν

(a,f)
m /m⌉. Together with Lemma 7.10, the next lemma

establishes that the generic rank of Km, ⌈νm/m ⌉ and Lm, ⌈νm/m ⌉ is νm . Let Rℓ,m be the νm × νm
submatrix of Pℓ,m, ⌈νm/m ⌉ obtained by extracting the first min(ℓi ,m) rows containing ¯λi , for i =
1, . . . , r (see Eq. (26)), and the first νm columns (note that Pℓ,m, ⌈νm/m ⌉ hasm⌈νm/m⌉ ≥ νm columns).

Lemma 7.11. For ℓ = (ℓ1, . . . , ℓr), n = ℓ1 + · · · + ℓr and m in {1, . . . ,n}, and for any pairwise

distinct λ1, . . . , λr in K
r
, the determinantwℓ,m(¯ξ1, . . . , ¯ξn, λ1, . . . , λr) of the νm × νm matrix Rℓ,m at

λ1, . . . , λr is nonzero.

Proof. We prove the non-vanishing property by exhibiting a vector (ξ1, . . . , ξn) ∈ K
n
for which

the evaluationwℓ,m(ξ1, . . . , ξn, λ1, . . . , λr) is not zero. In what follows, for i = 1, . . . , r , recall that we
write σi = ℓ1+ · · ·+ℓi−1, so that the rows involving

¯λi in Pℓ,m, ⌈νm/m ⌉ have indices σi +1, . . . ,σi +ℓi
(see Eq. (25)).

Assume first thatm is invertible in K, and choose δ in K such that δ + λi , 0 for i = 1, . . . , r .
Then, for all i , the polynomial xm −(δ +λi) is separable, since its discriminant ismm(δ +λi)

m−1
, and

we choose ξσi+1, . . . , ξσi+min(ℓi ,m) to be pairwise distinct roots of this polynomial in K. Ifm < ℓi , we

further take ξσi+m+1, . . . , ξσi+ℓi arbitrary in K (note thatwℓ,m does not depend on these quantities).

Now, for any ξ , λ such that ξm = δ+λ, and for j ≥ 1, we have λj = ξ jm+
∑j−1

k=0

(j
k

)
(−δ)jξ (j−k)m . Up to

invertible linear combinations of its columns, Rℓ,m(ξ1, . . . , ξn, λ1, . . . , λr) is thus the Vandermonde

matrix at the roots ξσi+1, . . . , ξσi+min(ℓi ,m), i = 1, . . . , r . Since the λi ’s are pairwise distinct, all these
roots are pairwise distinct too, so the determinantwℓ,m(ξ1, . . . , ξn, λ1, . . . , λr) is nonzero.
Ifm is 0 in K, then for all i , xm + x − λi is separable, since its discriminant is (m − 1)m−1 , 0.

Again, choosing distinct roots of these polynomials and performing linear combinations of the

columns of Rℓ,m leads to a nonzero Vandermonde determinant. □

If the rank of Hk
(a,f)
m,d is ν

(a,f)
m for some d ≥ 0, then it is ν

(a,f)
m for all d ≥ ⌈ν

(a,f)
m /m⌉.

Lemma 7.12. Let ℓ, ξ1, . . . , ξn , λ1, . . . , λr , a, f andm be as in Proposition 7.8. If Hkm,d0
has rank νm

for some d0 ≥ ⌈νm/m⌉, and ifwℓ,m(ξ1, . . . , ξn, λ1, . . . , λr) andwℓ,m(1/ξ1, . . . , 1/ξn, λ1, . . . , λr) from
Lemma 7.11 are nonzero, then Hkm,d has rank νm for all d ≥ ⌈νm/m⌉.

Proof. Sincewℓ,m(ξ1, . . . , ξn, λ1, . . . , λr) is nonzero,Pℓ,m, ⌈νm/m ⌉(ξ1, . . . , ξn, λ1, . . . , λr) has rank
at least νm , and so does Km, ⌈νm/m ⌉ (Lemma 7.10).

As a result, for d ≥ ⌈νm/m⌉, Km,d still has rank exactly νm (recall that this rank cannot ex-

ceed νm , by Eq. (29)). Thus, for such d , there exists a nonsingular P ∈ K(md)×(md)
such that

Km,dP = [Km, ⌈νm/m ⌉ 0], where the zero matrix is n × (m(d − ⌈νm/m⌉)). In the same way, since

wℓ,m(1/ξ1, . . . , 1/ξn, λ1, . . . , λr) is nonzero, Lemma 7.10 also implies that Lm, ⌈νm/m ⌉ has rank νm ,

therefore there exists a nonsingular Q ∈ K(md)×(md)
such that QLm,d = [(Lm, ⌈νm/m ⌉)

T
0]T. We

obtain

Q Hkm,d P = QLm,dKm,dP

(
Hkm, ⌈νm/m ⌉ 0

0 0

)
∈ K(md)×(md),

which shows that for d ≥ ⌈νm/m⌉ we have rank(Hkm,d) = rank(Hkm, ⌈νm/m ⌉). □

The rank of Hk
(a,f)
m,r is ν

(a,f)
m generically. To establish that the rank of Hkm,r is νm for generic

choices of ξ1, . . . , ξn , we introduce a decomposition into vector spaces associated to the λi ’s. We

then study these spaces separately; their dimensions are min(ℓi ,m), respectively, leading as expected
to a total dimension

∑r
i=1

min(ℓi ,m) = νm .

Faster Modular Composition 49

This is achieved through a description of the images of the mappings κm,d and λm,d in terms of

polynomials. Given positive integers ℓ = (ℓ1, . . . , ℓr) and ξ1, . . . , ξn in K
n
, define

Pi , j =
∑
k ∈Si

ξ jkLk ∈ K[x], i = 1, . . . , r , j ≥ 0, (31)

with the Lagrange polynomials L1, . . . ,Ln and the sets S1, . . . , Sr from Eq. (25).

Lemma 7.13. Let ℓ, ξ1, . . . , ξn , λ1, . . . , λr , a, f andm be as in Proposition 7.8 and let d be a positive

integer. The image of κm,d lies in the linear span of the νm linearly independent polynomials Pi , j from
Eq. (31), for 1 ≤ i ≤ r and 0 ≤ j < min(ℓi ,m).

Proof. Let V (x,y) =
∑m−1

j=0
c j (y)x

j
belong to K[x,y]<(m,d). Lagrange interpolation gives

κm,d (V) = V (x,a) rem f =
n∑

k=1

V (ξk ,a(ξk))Lk .

Since V (ξk ,a(ξk)) =
∑m−1

j=0
c j (a(ξk))ξ

j
k , we deduce

κm,d (V) =
r∑
i=1

m−1∑
j=0

c j (λi)Pi , j .

For i = 1, . . . , r , at most ℓi of the polynomials Pi , j , j = 0, . . . ,m − 1, can be linearly independent,

since they are all linear combinations of ℓi linearly independent Lk . On the other hand, the

polynomials Pi , j for j = 0, . . . , ℓi − 1 are linearly independent, due to the linear independence of

the polynomials Lk , and the invertibility of the Vandermonde matrix [ξ jk]0≤j<ℓi ∈ K
ℓi×ℓi

. This

proves that the image of κm,d is included in the span of the polynomials Pi , j , for i = 1, . . . , r and
j = 0, . . . ,min(ℓi ,m) − 1, as claimed. □

This polynomial-based interpretation then allows us to use the following decomposition.

Lemma 7.14. Let ℓ, ξ1, . . . , ξn , λ1, . . . , λr , a, f andm be as in Proposition 7.8. The rank of Hkm,r is

the sum of the dimensions of the vector spaces

Vi = Span

(
[Pi , j]

m−1

0
, j = 0, . . . ,min(ℓi ,m) − 1

)
(32)

with the polynomials Pi , j from Eq. (31) for i = 1, . . . , r .

Proof. We first claim that for d = r , Km,r has rank νm , or equivalently (Lemma 7.10) that Pℓ,m,r
has rank νm at (ξ1, . . . , ξn, λ1, . . . , λr). Indeed, we can extract from Pℓ,m,r a νm × νm submatrix

by keeping the first min(ℓi ,m) rows indexed by
¯λi , for i = 1, . . . , r , and the columns containing

the monomials
¯λj−1, . . . , ¯λj−1ξmin(ℓj ,m)−1

, for j = 1, . . . , r . That this submatrix is nonsingular at

(ξ1, . . . , ξn, λ1, . . . , λr) follows from an explicit factorization of its determinant [16], [21, Eq. (2.18)];

therefore Km,r has rank at least νm . Using Eq. (29) we deduce that Km,r has rank exactly νm as

announced, and from Lemma 7.13, we know that the image of κm,r is the span of the polynomials

Pi , j defined in that lemma.

It follows that the rank of Hkm,r is the dimension of the span of the image λm,r (Pi , j). For
i = 1, . . . , r , and j = 0, . . . ,min(ℓi ,m) − 1,

λm,r (Pi , j) =
(
[Pi , j rem f]m−1

0
, [aPi , j rem f]m−1

0
, . . . , [ar−1Pi , j rem f]m−1

0

)
,

and since the Lagrange polynomials are eigenvectors of multiplication by a, we get

λm,r (Pi , j) =
(
[Pi , j]

m−1

0
, [λiPi , j]

m−1

0
, . . . , [λr−1

i Pi , j]
m−1

0

)
=

(
[Pi , j]

m−1

0
, λi [Pi , j]

m−1

0
, . . . , λr−1

i [Pi , j]
m−1

0

)
.

50 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

The span of these vectors is unchanged if, seeing them as row vectors, one multiplies them all on the

right by the inverse of the Vandermonde matrix associated to the λi ’s. This yields a block-diagonal
matrix, with blocks that span the spaces Vi of the lemma. The result on the rank follows. □

The dimensions of the vector spaces from Eq. (32) can now be analyzed separately.

Lemma 7.15. Fix positive integers ℓ = (ℓ1, . . . , ℓr) such that ℓ1 + · · · + ℓr = n, andm in {1, . . . ,n}.
There exists a nonzero polynomial zℓ,m ∈ Z[¯ξ1, . . . , ¯ξn] of degree at most (n − 1)(n − νm) such that if

pairwise distinct nonzero ξ1, . . . , ξn do not form a zero of zℓ,m , then Vi from Eq. (32) has dimension

min(ℓi ,m) for all i .

Proof. Take i in {1, . . . , r }, consider the set of indices Si = {ℓ1 + · · ·+ ℓi−1 + 1, . . . , ℓ1 + · · ·+ ℓi }
from Eq. (25). Let then Ai =

∏
k ∈Si (x − ξk), Bi =

∏
k<Si (x − ξk) and Ci = 1/Bi mod Ai . Note that

Ai and Bi have respective degrees ℓi and n − ℓi , and that Ci is well-defined, since Bi and Ai have

no common root.

For k in Si , by construction, Bi divides the Lagrange polynomial Lk , with a quotient of degree

n − 1 − deg(Bi) = ℓi − 1. In view of Eq. (31), Bi divides Pi , j =
∑

k ∈Si ξ
j
kLk , for all j ≥ 0, and

the quotient has degree less than ℓi . We now prove that it is actually equal to x jCi rem Ai . Since

f = AiBi , for k in Si , the Lagrange polynomial Lk = f /(f ′(ξk)(x − ξk)) satisfies

Lk

Bi
=

1

f ′(ξk)

f

Bi (x − ξk)
=

1

f ′(ξk)

Ai

x − ξk
=

Ci (ξk)

A′i (ξk)

Ai

x − ξk
.

In particular, for j ≥ 0, ξ jkLk/Bi takes the value ξ jkCi (ξk) at ξk , and 0 at all other roots of Ai .

Taking the sum over all k in Si then proves our claim that Pi , j/Bi = x jCi rem Ai . Since ξ1, . . . , ξn
are nonzero, Bi (0) as well is nonzero, so Bi is invertible as a power series and [Pi , j/Bi]

m−1

0
=

[[Pi , j]
m−1

0
/Bi]

m−1

0
. Thus the truncated polynomials [Pi , j]

m−1

0
, for 0 ≤ j < min(ℓi ,m), are linearly

independent if and only if the truncated polynomials [x jCi rem Ai]
m−1

0
are.

When ℓi ≤ m, the polynomialsx jCi rem Ai have degree less thanm and their linear independence

follows from that of the polynomials x j , j = 0, . . . , ℓi − 1, since Ci is invertible modulo Ai . Thus in

this case, we always have dim(Vi) = ℓi = min(ℓi ,m).
When ℓi > m, we are going to prove that the polynomials x jCi rem Ai , j = 0, . . . ,m − 1, are

linearly independent for a generic choice of ξ1, . . . , ξn . To achieve this, define the matrixMCi whose

entry (j, ℓ) is the coefficient of x ℓ−1
in x j−1Ci rem Ai for j = 1, . . . , ℓi and ℓ = 1, . . . , ℓi ; this is the

multiplication matrix by Ci modulo Ai . We also consider its inverse, the multiplication matrixMBi
by Bi modulo Ai .

For our claim to hold, it is enough to guarantee that them ×m leading principal minor Ki of

MCi be nonzero. We view this minor as a rational function in
¯ξ1, . . . , ¯ξn : this is done by introducing

the polynomials Āi =
∏

k ∈Si (x −
¯ξk), B̄i =

∏
k<Si (x −

¯ξk) and C̄i = 1/B̄i mod Āi , all of which are

in Q(¯ξ1, . . . , ¯ξn)[x]. We can then define the matricesMC̄i andMB̄i of multiplication by respectively

C̄i and B̄i modulo Āi , and them ×m leading principal minor K̄i ofMC̄i . This is a rational function

of
¯ξ1, . . . , ¯ξn , whose evaluation at ξr , . . . , ξn gives the scalar Ki ∈ K.
Note first that K̄i is not identically zero: if we evaluate all

¯ξд at 0, for д in Si , Āi becomes x ℓi ,
and the matrix MC̄i becomes upper triangular, with 1/Bi (0) , 0. It then remains to estimate the

degree of a numerator of K̄i . The Schur complement formula gives K̄i = det(MC̄i)L̄i , where L̄i is
the (ℓi −m) × (ℓi −m) lower right minor of the inverse MB̄i of MC̄i . The determinant of MC̄i is

the resultant of C̄i and Āi , that is, 1/
∏

д∈Si ,h<Si (
¯ξд − ¯ξh). On the other hand, L̄i is a polynomial in

Z[¯ξ1, . . . , ¯ξn] (since B̄i and Āi have coefficients in Z[¯ξ1, . . . , ¯ξn], and Āi is monic in x).
For s ≥ 0, write xs rem Āi = cs ,0 + · · · + cs ,ℓi−1x

ℓi−1
, for cs ,t ∈ Z[¯ξ1, . . . , ¯ξn]. By induction on s ,

we obtain the bound deg(cs ,t) ≤ s − t . From this, it follows that all entries ofMB̄i have degree at

Faster Modular Composition 51

most n − 1, and that L̄i has degree at most (n − 1)(ℓi −m) ≤ nℓi . To conclude the proof, we let

zℓ,m be the product of the polynomials L̄i , for i such that ℓi > m. The degree bound follows from

remarking that

∑
ℓi>m(ℓi −m) = n − νm . □

Genericity polynomials and degree bounds. Until here, the conditions we have seen are the

non-vanishing ofwℓ,m(ξ1, . . . , ξn, λ1, . . . , λr),wℓ,m(1/ξ1, . . . , 1/ξn, λ1, . . . , λr), and zℓ,m(ξ1, . . . , ξn).
When nonzero, the first two quantities allow us to apply Lemma 7.12 and obtain the rank of

Hkm, ⌈n/m ⌉ from any Hkm,d0
with d0 ≥ ⌈νm/m⌉; the third condition zℓ,m(ξ1, . . . , ξn) , 0 allows us

to take d0 = r thanks to Lemmas 7.14 and 7.15

The bound on the degree ofwℓ,m in
¯ξ1, . . . , ¯ξn follows from summing the degrees of the columns

in Pℓ,m, ⌈νm/m ⌉ . Each block ofm columns involves degrees 1 + · · · + (m − 1) = m(m − 1)/2, and

we consider ⌈νm/m⌉ such blocks (the last one may not be complete), for a total of at most (νm +
m)(m − 1)/2. Next, consider the termwℓ,m(1/ ¯ξ1, . . . , 1/ ¯ξn, ¯λ1, . . . , ¯λr), which is not a polynomial in

the
¯ξi ’s. To estimate the degree of its numerator, observe that it is a νm × νm-minor of the matrix

©­­­­«
1

1

¯ξ1

. . . 1

¯ξm−1

1

¯λ1

1

¯ξ1

¯λ1 . . . 1

¯ξm−1

1

¯λ ⌈νm/m ⌉−1

1

...
...

1
1

¯ξn
. . . 1

¯ξm−1

n

¯λr
1

¯ξn
¯λr . . . 1

¯ξm−1

n

¯λ ⌈νm/m ⌉−1

r

ª®®®®¬
Factoring out (on the right) the diagonal matrix with diagonal (1/ ¯ξm−1

i)1≤i≤n , we see that the

non-vanishing ofwℓ,m(1/ξ1, . . . , 1/ξn, λ1, . . . , λr) is equivalent to the non-vanishing of the corre-

sponding νm × νm-minor w̃ℓ,m in

©­­­«
¯ξm−1

1

¯ξm−2

1
. . . 1

¯ξm−1

1

¯λ1
¯ξm−2

1

¯λ1 . . . ¯λ ⌈νm/m ⌉−1

1

...
...

¯ξm−1

n
¯ξm−2

n . . . 1
¯ξm−1

n
¯λr ¯ξm−2

n
¯λr . . . ¯λ ⌈νm/m ⌉−1

r

ª®®®¬ .
The degree upper bound for w̃ℓ,m is (νm +m)(m − 1)/2, as forwℓ,m .

We then take Γℓ,m = wℓ,mw̃ℓ,mzℓ,m to prove Proposition 7.8. For the degree estimate, note that

(νm +m)(m − 1) + (n − 1)(n − νm) ≤ 2n2
. For correctness, take pairwise distinct nonzero ξ1, . . . , ξn

in K and let a ∈ K[x] take distinct values λ1, . . . , λr at ξ1, . . . , ξn , with multiplicities ℓ1, . . . , ℓr . As
before, we write f = (x − ξ1) · · · (x − ξn), and we assume that f is in K[x]. Finally, we suppose
that Γℓ,m(ξ1, . . . , ξn, λ1, . . . , λr) is nonzero. Lemmas 7.14 and 7.15 show that for d0 = r , we have

rank(Hk
(a,f)
m,r) = νm . Since r ≥ ⌈νm/m⌉, by Lemma 7.12, it is then also the case for Hk

(a,f)
m,d for all

d ≥ ⌈νm/m⌉, as claimed.

The only remaining claim is that for any pairwise distinct λ1, . . . , λr , Γℓ,m(¯ξ1, . . . , ¯ξn, λ1, . . . , λr)
is a nonzero polynomial in

¯ξ1, . . . , ¯ξn . That zℓ,m is nonzero is in Lemma 7.15 (this polynomial does

not depend on λ1, . . . , λr); Lemma 7.11 proves that wℓ,m(¯ξ1, . . . , ¯ξn, λ1, . . . , λr) is nonzero. That
lemma also implies thatwℓ,m(1/ ¯ξ1, . . . , 1/ ¯ξn, λ1, . . . , λr) is nonzero (as a rational function), and as a
consequence, this is also the case for w̃ℓ,m(¯ξ1, . . . , ¯ξn, λ1, . . . , λr). The claim for Γℓ,m is thus proved.

8 A RANDOMIZED COMPOSITION ALGORITHM THROUGH CHANGE OF BASIS
In this section we give the base case of our modular composition algorithm that is used when f
is either separable or purely inseparable (which includes the case of power series). The core

AlgorithmModularCompositionBaseCase is studied in Section 8.1, and a variation for computing

annihilating polynomials is given in Section 8.2.

The algorithm of Section 4.2 performs bivariate modular composition within our target complex-

ity bound, assuming the knowledge of a matrix of relations with appropriate dimension and degree.

52 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

Since such a matrix of relations ofM
(a,f)
m may not exist for general a and f , Algorithm Modu-

larCompositionBaseCase transports the computation of д(a) in A = K[x]/⟨f ⟩ to an isomorphic

algebra which is expected to be more favorable to the computation.

More precisely, we pick a random γ ∈ K[x]<n ; generically, its minimal polynomial µγ ∈ K[y] has
degreen and is also its characteristic polynomial χγ , so that the powers ofγ generateA. This induces
the K-algebra isomorphism ϕγ of Eq. (19); Step 5 of Algorithm ModularCompositionBaseCase

then computes a polynomial representative α of ϕγ (a mod f) using the change of basis algorithm of

Section 6. Note that a matrix of relations R
(γ ,f)
m is also obtained at Step 5 in preparation for the final

stage. Then, with good probability, the conditions for the efficient computation of a certified matrix

of relations R
(α ,µγ)
m ofM

(α ,µγ)
m via the approach of Section 5.4 are fulfilled. Step 8 of Algorithm

ModularCompositionBaseCase computes this matrix of relations, which then allows us to obtain

the polynomial β = д(α) rem µγ at Step 9 as seen in Section 4.2. The solution b = д(a) rem f to

the initial problem is finally recovered by applying ϕ−1

γ to β mod µγ , which amounts to computing

b = β(γ) rem f . Since we already have R
(γ ,f)
m at our disposal, b is obtained with the algorithm of

Section 4.2 as well.

Proposition 8.1 in Section 8.1 shows the correctness of this strategy and bounds its complexity.

We then study the probability of success for f separable and f purely inseparable. The main point is

to ensure that appropriate matrices of relations R
(γ ,f)
m and R

(α ,µγ)
m are actually available. For Steps 5

and 11 where a random γ is involved, we directly rely on the generic properties of the associated

block Hankel matrix Hk
(γ ,f)
m, ⌈n/m ⌉ (Proposition 7.6). For the computation of R

(α ,µγ)
m we use the fact

that α and µγ are sufficiently generic, hence also give access to good properties for the associated

block Hankel matrix after the change of basis.

The probability of failure for a general separable f is bounded in Section 8.3. The power series

case and, more generally, the case of purely inseparable f are treated in Sections 8.4 and 8.5. For

such f , the success of Algorithm ModularCompositionBaseCase is proven in Section 8.4 under

some assumptions on the valuation of the input polynomial a and the characteristic of K. Still
in the case of f purely inseparable, a complete algorithm is then given in Section 8.5: when the

valuation is large (with respect to the target valuem ∼ nη with η from Eq. (3)), then the minimal

polynomial of a modulo f has small degree and we use the extension of Shoup’s algorithm seen in

Section 3.1.3. For fields K of small characteristic, we adapt Bernstein’s composition algorithm for

power series [6] to our general context.

8.1 Randomized composition
The procedure is detailed in Algorithm ModularCompositionBaseCase. It uses n +m parameters

fromK that are available as a sequence r of lengthn+m. The coefficients of the random polynomialγ
are given as part of the input as ri , for 3 ≤ i ≤ n + 2; we require further parameters in order to

reduce to the case where f (0) , 0 and gcd(a, f) = 1 (Remarks 3.8 and 5.7), and for the random

column combination performed by Algorithm MatrixOfRelations.

The parameter m could be taken arbitrarily in {1, . . . ,n}, but we choose the specific value

m = ⌈nη⌉, with η from Eq. (3), as this choice minimizes the overall cost. The following proposition

describes the output of the procedure; the probability of failure is bounded in Sections 8.3 and 8.4.

Proposition 8.1. Given f ∈ K[x] of degree n, a ∈ K[x]<n , д ∈ K[y] with deg(д) = O(n) and
r ∈ Kn+m withm = ⌈nη⌉ and η from Eq. (3), Algorithm ModularCompositionBaseCase returns

either д(a) rem f or Fail; it uses Õ(nκ) operations in K, with κ < 1.43 as in Eq. (1).

Proof. If n = 1 then as a has degree 0, the result is д(a) ∈ K and the algorithm is correct. The

rest of the proof assumes n > 1.

Faster Modular Composition 53

Algorithm 8.1ModularCompositionBaseCase(f ,a,д, r)

Input: f of degree n in K[x], a ∈ K[x]<n , д ∈ K[y], r ∈ K
n+ ⌈nη ⌉

Output: b = д(a) rem f or Fail

1: if n = 1 then return д(a) ▷ a ∈ K
2: д← д(y − r1), a ← a(x) + r1; if gcd(a, f) , 1 then return Fail

3: f ← f (x + r2); a ← a(x + r2); if f (0) = 0 then return Fail

4: m ← ⌈nη⌉ ▷ With η from Eq. (3)

5: ▷ Change of basis: compute a polynomial α such that α ≡ ϕγ (a mod f) mod µγ
▷ Getting a basis of relations R(γ ,f) and the minimal polynomial µγ of γ mod f

γ ← r3 + r4x + · · · + rn+2x
n−1

(R(γ ,f), µγ ,α) ← ChangeOfBasis(f ,γ ,a,m, ⌈n/m⌉) ▷ Algorithm 6.1

if this call returned Fail then return Fail

6: if µγ (0) = 0 then return Fail

7: substitute “y” by “x” in µγ and α , which are then in K[x]
8: ▷ Compute a matrix of relations for (α, µγ)

R(α ,µγ) ← MatrixOfRelations(µγ ,α,m, ⌈n/m⌉, (rn+i)3≤i≤m) ▷ Algorithm 5.2

if this call returned Fail then return Fail

9: ▷ Bivariate modular composition in the new basis: β ≡ д(α) mod µγ ▷ Algorithm 4.1

β← BivariateModularCompositionWithRelationMatrix(µγ ,α,д,R
(α ,µγ))

10: substitute “x” by “y” in β , which is then in K[y]
11: ▷ Inverse change of basis: b ≡ ϕ−1(β mod µγ) mod f

b ← BivariateModularCompositionWithRelationMatrix(f ,γ , β,R(γ ,f)) ▷ Algorithm 4.1

12: return b(x − r2)

The first two steps ensure that gcd(a, f) = 1 and f (0) , 0. This does not impact the complexity,

as shifting a polynomial of degree O(n) can be achieved in Õ(n) arithmetic operations [7, Chap. 1,

Pb. 3.5]. The same observation applies to the last step.

At Step 5, if Algorithm ChangeOfBasis does not return Fail then by Proposition 6.1 the matrix

R(γ ,f) is a basis of relations ofM
(γ ,f)
m , µγ = χγ , and α(γ) ≡ a mod f . It follows that µα = µa since

the quotient algebras are isomorphic, and µα (0) = µa(0) implies gcd(α, µγ) = gcd(a, f) = 1. If the

test at Step 6 does not fail then the specifications for the call to Algorithm MatrixOfRelations

are met; from Proposition 5.8, if Step 8 does not return Fail then the matrix R(α ,µγ) is a matrix

of relations in ⟨µγ ,y − α⟩. Both these matrices of relations have dimension at most 2(m − 1), and

degree at most 2⌈n/m⌉; they are obtained in Õ(mωd + c(n,m,d)) = Õ(mωd +mdω2/2) operations,

with d = ⌈n/m⌉. This is Õ(nκ) arithmetic operations, according to Eqs. (1) and (3) and the choice

ofm at Step 4.

The variable substitutions at Steps 7 and 10 are harmless; they make notation match with that in

Algorithms MatrixOfRelations and BivariateModularCompositionWithRelationMatrix.

At Step 9, within the same complexity bound as above by Proposition 4.4, β is computed such

that β ≡ д(α) mod µγ (these polynomials are temporarily in x). After the substitution of Step 10

the latter relation implies the existence of a polynomial h ∈ K[y] such that

β(y) = д(α(y)) + h(y)µγ (y).

Since µγ (γ) ≡ 0 mod f , evaluating this identity at y = γ results in b = β(γ) = д(a) rem f at

Step 11. □

54 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

8.2 Randomized annihilating polynomial
If the choice of γ ensures that the isomorphism ϕγ is well defined (the powers of γ generate A),
then a univariate polynomial µ over K is such that µ(a) ≡ 0 mod f if and only µ(α) ≡ 0 mod µγ .
Since Algorithm ModularCompositionBaseCase computes a matrix of relations in ⟨µγ ,y − α⟩ at
Step 8, an algorithm for computing such a µ follows from the results of Section 4.3.

Algorithm 8.2 AnnihilatingPolynomial(f ,a, r)

Input: f of degree n in K[x], a ∈ K[x]<n , r ∈ K
n+ ⌈nη ⌉

Output: µ nonzero in K[y]≤4n such that µ(a) ≡ 0 mod f or Fail

1: if n = 1 then return y − a ▷ a ∈ K
2: ▷ Compute a matrix of relations R(α ,µγ) for (α, µγ) with α = ϕγ (a)

execute Steps 3 to 8 of Algorithm 8.1

if Fail has been returned by one of these steps then return Fail

3: µ ← det(R(α ,µγ)) ▷ [49, Algo. 2]
4: return µ

Corollary 8.2. Given f ∈ K[x] of degree n, a ∈ K[x]<n and r ∈ Kn+m withm = ⌈nη⌉ and η from
Eq. (3), Algorithm AnnihilatingPolynomial returns either Fail or a nonzero µ ∈ K[y]≤4n such that

µ(a) ≡ 0 mod f ; it uses Õ(nκ) operations in K, with κ < 1.43 as in Eq. (1).

Proof. If n = 1 then as a ∈ K, µ = y − a is such that µ(a) = 0 and the algorithm is correct.

Now assume that n > 1. The annihilating polynomials are left unchanged by the substitution

x ← x + r2. As in the proof of Proposition 8.1, if failure does not occur then Step 8 computes a

matrix of relations ofM
(α ,µγ)
m′ , for somem′ ≤ 2(m − 1), within the claimed complexity bound; this

matrix has degree at most 2⌈n/m⌉. Then Proposition 4.5 shows that µ annihilates α mod µγ and

thus a mod f , and that it has degree deg(µ) ≤ 4(m − 1)⌈n/m⌉. This is at most 4n whenm ≤
√
n,

which is the case whenm = ⌈nη⌉ with η as in Eq. (3). The complexity then follows from the proof

of Proposition 8.1 and Proposition 4.5 again. □

8.3 Success of randomization for separable f

The probabilistic properties of the previous algorithms in the separable case are summarized in the

following.

Proposition 8.3. Let a, f be polynomials in K[x] and д be in K[y], with f separable of degree n
and deg(a) < n. If r1, . . . , rn+ ⌈nη ⌉ ∈ K are chosen uniformly and independently from a finite subset S
of K, then Algorithms ModularCompositionBaseCase and AnnihilatingPolynomial return Fail

with probability at most 6n2/card(S).

Proof. The success of modular composition in Algorithm ModularCompositionBaseCase

and of the computation of an annihilating polynomial in Algorithm AnnihilatingPolynomial

relies on: finding good shifts r1 and r2 in the first two steps; a choice of γ such that µγ (0) , 0 and

µγ has degree n; the availability of matrices of relations R(γ ,f) and R(α ,µγ). The probability estimate

is obtained by showing the existence of polynomials whose zero sets contain the values of the

parameters ri where these properties do not hold. The probability of avoiding these zero sets is then
handled by the Schwartz-Zippel lemma. In what follows, as in the algorithm, we writem = ⌈nη⌉.

(1) A value of r1 such that gcd(a + r1, f) , 1. The resultant of a(x) + r1 and f (x) is nonzero of

degree n in r1. Bad choices thus occur with probability at most n/card(S).

Faster Modular Composition 55

(2) A value of r2 such that f (0) , 0 after the shift “x ← x + r2”. The same reasoning as above

applies to the coefficient of degree zero of f (x + r2).

The next properties all concern the same parameters (r3, . . . , rn+m), so their failures are not

independent events, and their joint probability is bounded using a product of polynomials encoding

each of them. Below, we write γ̄ = γ̄0 + · · · + γ̄n−1x
n−1

, with the γ̄i ’s new indeterminates, and

consider polynomials in K[γ̄0, . . . , γ̄n−1] to quantify probabilities of failure.

(3) The constant coefficient µγ (0) is not 0. Write f = c(x −φ1) · · · (x −φn), for pairwise distinct φi
in K and c ∈ K \ {0}. The roots of µγ are the values γ̄ (φi), so µγ (0) being nonzero is equivalent

to gcd(γ , f) being trivial. Thus, we let ∆0 ∈ K[γ̄0, . . . , γ̄n−1] be the resultant of γ̄ and f . This
polynomial has degree n, and choosing γ = 1 shows that it is not identically zero.

(4) The minimal polynomial µγ has degree n. For any γ = γ0 + · · · + γn−1x
n−1

in K[x]<n , the

characteristic polynomial χγ ∈ K[y] of γ mod f factors over K[y] as χγ =
∏n

i=1
(y − ξi), where ξi =

γ (φi) for all i . We can thus let ∆1 ∈ K[γ̄0, . . . , γ̄n−1] be the product
∏

1≤i<j≤n(γ̄ (φi)−γ̄ (φ j)). This is a
polynomial of degreen(n−1)/2, and the previous discussion shows that ∆1(γ0, . . . ,γn−1) , 0 implies

that χγ is separable. In that case, χγ = µγ by degree considerations. Finally, the polynomial ∆1

itself is nonzero since its value at (0, 1, 0, . . . , 0), i.e. at γ = x , is not zero.

(5) The computation ofR(γ ,f) does not fail. Since f (0) , 0, Proposition 7.6 shows that the associated

block Hankel matrix Hk
(γ ,f)
m, ⌈n/m ⌉ has rank n as soon as the coefficients of γ avoid the zero set of a

polynomial ∆f ,m of degree at most 2n2/m.

When this condition holds, Proposition 7.1 shows that the matrix fraction X T(yIn −Mγ)
−1X is

describable in degree ⌈n/m⌉, and that ν
(γ ,f)
m = ν

(γ ,f)
m,m . Since we also have gcd(γ , f) = 1 by the item

above, and since the minimal polynomial µγ of γ mod f has degree n, Proposition 6.1 concludes

that the computation of R(γ ,f) is successful.

(6) The rank of Hk

(α ,µγ)
m,d is equal to ν

(α ,µγ)
m for d ≥ ⌈ν

(α ,µγ)
m /m⌉. When the previous properties are

all satisfied, there exists a K-algebra isomorphism ϕγ : K[x]/⟨f ⟩ → K[y]/⟨µγ ⟩ which maps a to α
such that α(γ) ≡ a mod f . Up to changing the indices of the roots φi , we can assume that a takes

values λ1, . . . , λr at φ1, . . . ,φn with multiplicities ℓ1, . . . , ℓr , for some positive integers ℓ1, . . . , ℓr ,

and pairwise distinct λ1, . . . , λr in K (as in Section 7.4, the φi ’s are assumed to be ordered such that

a(φ1) = · · · = a(φℓ1
) = λ1, etc). Then, since ξi = γ (φi) for all i , the relation α(γ) ≡ a mod f implies

that α(ξi) = a(φi) for all i , so that α takes the values λ1, . . . , λr at ξ1, . . . , ξn with multiplicities

ℓ1, . . . , ℓr .
The assumptions of Proposition 7.8 are satisfied. If Γℓ,m ∈ Z[¯ξ1, . . . , ¯ξn, ¯λ1, . . . , ¯λr] is the poly-

nomial defined in that proposition, then when Γℓ,m(ξ1, . . . , ξn, λ1, . . . , λr) is nonzero, the rank of

Hk

(α ,µγ)
m,d is ν

(α ,µγ)
m for d ≥ ⌈ν

(α ,µγ)
m /m⌉.

The relevant polynomial is thus ∆3 = Γℓ,m(γ̄ (φ1), . . . , γ̄ (φn), λ1, . . . , λr) ∈ K[γ̄0, . . . , γ̄n−1]. Propo-

sition 7.8 states that Γℓ,m(γ̄0, . . . , γ̄n−1, λ1, . . . , λr) is nonzero of degree at most 2n2
; this is thus also

the case for ∆3, since the transformation (γ̄0, . . . , γ̄n−1) 7→ (γ̄ (φ1), . . . , γ̄ (φn)) is linear and invertible
(its matrix is the Vandermonde matrix at φ1, . . . ,φn).

(7) The computation of R(α ,µγ) does not fail. When the previous properties are all satisfied, Propo-

sition 7.1 applies with a = α and f = µγ and shows that ν
(α ,µγ)
m,m = ν

(α ,µγ)
m and X T(yIn −Mα)

−1X is

describable in degree ⌈ν
(α ,µγ)
m /m⌉, where Mα is the multiplication matrix of α modulo µγ . Since

µγ (0) , 0 and gcd(α, µγ) = gcd(a, f) = 1, the assumptions of Proposition 5.8 are satisfied for the

56 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

successful computation of R(α ,µγ) (Algorithm MatrixOfRelations) with a probability of failure

depending on the choices of (rn+3, . . . , rn+m) and bounded by (m − 1)/card(S).

Case n = 1. In that situation steps, (5)–(7) above simplify. Since its top left corner is the identity

matrix, the rank of the block-Hankel matrix is at least 1, which is equal to n, and thus (5)–(7)

succeed with probability 1 in that case.

Probability bounds. The polynomial ∆0∆1∆f ,m∆3 ∈ K[γ̄0, . . . , γ̄n−1] is nonzero and has degree at

most

dn,m =
n(n − 1)

2

+ n +
2n2

m
+ 2n2.

A choice of (r3, . . . , rn+2) that avoids its zero set ensures that the properties (3)–(6) hold. The other

probabilities have been discussed in steps (1), (2) and (7) above. In summary, the probability of

success is at least
(
1 − 1

card(S)

)
3

≥ 1 − 3

card(S) if n = 1,(
1 − n

card(S)

)
2
(
1 −

dn,m
card(S)

) (
1 − m−1

card(S)

)
≥ 1 −

2n+dn,m+m−1

card(S) otherwise.

In the second expression, dividing the numerator of the fraction for n ≥ 2 by n2
gives

5

2

+
5

2n
+

2

m
+
m − 1

n2
,

which decreases as a function of n for n ≥ 0 and, for fixed n, decreases as a function ofm form ≤ n.
Thus it reaches its maximum atm = 1,n = 2, where its value is 23/4 < 6, proving the probability

bound for n ≥ 2, while 3 < 6 deals with the case n = 1.

The assertion for Algorithm AnnihilatingPolynomial follows: Step 2 apart, it fails in the same

cases as Algorithm ModularCompositionBaseCase. □

8.4 Success of randomization for f purely inseparable: small valuation
Definition 8.4. A degree n polynomial f in K[x] is purely inseparable if it has only one root in an

algebraic closure K, so that it factors as f = (x − ξ)n in K[x]; if n is a unit in K, ξ itself is in K.

In this section, we study the probabilistic aspects of Algorithm ModularCompositionBaseCase

for such polynomials, under two additional assumptions on the valuation v = valξ (a − a(ξ)): it is
not 0 in K, and it is at most the value chosen form (which is ⌈nη⌉ in the algorithm, for the target

complexity bound). The other cases are discussed in the next section.

Proposition 8.5. Let a, f be polynomials in K[x] and д be in K[y], with f = (x − ξ)n ∈ K[x]

where ξ ∈ K, and deg(a) < n. Let p be the characteristic of K. Suppose thatv = valξ (a−a(ξ)) satisfies
the following inequalities, with η as in Eq. (3):

v ≤ ⌈nη⌉, p = 0 or v < p.

Take r1 = 0 if gcd(a, f) = 1 and r1 = 1 otherwise, r2 = 0 if f , xn and r2 = 1 otherwise. If

r3, . . . , rn+ ⌈nη ⌉ are chosen uniformly and independently from a finite subset S of K, then Algorithms

ModularCompositionBaseCase and AnnihilatingPolynomial return Fail with probability at

most 2n4/card(S)

Proof. The proof follows the same steps as in Section 8.3. As before, we writem = ⌈nη⌉.

(1), (2) Values of r1 and r2. The choice of r1 gives gcd(a + r1, f) = 1, and r2 modifies the constant

coefficient of f if necessary. The first two steps of Algorithm ModularCompositionBaseCase

therefore provide polynomials that satisfy gcd(a, f) = 1, f (0) , 0, and v = valξ (a − a(ξ)) ≤ m.

Faster Modular Composition 57

(3) The constant coefficient µγ (0) is not 0. For any γ = γ0 + · · · + γn−1x
n−1

, the roots of the

characteristic polynomial χγ of γ modulo f are the values taken by γ at the roots of f , counted

with multiplicities. Since f = (x − ξ)n over K[x], this implies that χγ =
∏
(y −γ (ξ))n . The minimal

polynomial µγ then admits a similar factorization as

∏
(y − γ (ξ))c , for some positive c .

Set ∆0(γ̄0, . . . , γ̄n) =
∑n−1

i=0
γ̄iξ

i
; this is a (nonzero) polynomial of degree 1 which is such that

∆0(γ0, . . . ,γn−1) = γ (ξ), so the non-vanishing of this quantity gives the same property for µγ (0).

(4) The minimal polynomial µγ has degree n. Consider now ∆1(γ̄0, . . . , γ̄n−1) =
∑n−1

i=1
iγ̄iξ

i−1
,

which is also a nonzero polynomial of degree 1. It is such that ∆1(γ0, . . . ,γn−1) = γ
′(ξ), so the

non-vanishing of this quantity implies that valξ (γ − γ (ξ)) = 1. This implies that the powers

1,γ − γ (ξ), (γ − γ (ξ))2, . . . , (γ − γ (ξ))n−1
rem (x − ξ)n have respective valuations 0, 1, . . . ,n − 1 at

ξ , and thus are linearly independent. It follows that the minimal polynomial of γ − γ (ξ) has degree
n, and the same then holds for γ itself.

(5) The computation of R(γ ,f) does not fail. Here the argument of the previous section applies

verbatim and relies on a polynomial ∆f ,m of degree at most 2n2/m.

(6) The rank of Hk

(α ,µγ)
m,d is equal to n for d ≥ ⌈n/m⌉. This step is the difficult one in the proof;

note that the statement slightly deviates from the one in the separable case in the definition of the

threshold degree ⌈n/m⌉.
The result is obtained by bounding the degree of the numerator of a nonzero n × n minor

of Hk

(α ,µγ)
m, ⌈n/m ⌉ , seen as a polynomial in γ0, . . . ,γn−1. We first show the existence of γ ∈ K[x]<n and

α ∈ K[y]<n such that the block Hankel matrix Hk

(α ,µγ)
m, ⌈n/m ⌉ has rank n. This implies the existence of

a nonzero n × n minor of this matrix; the degree of this minor as a polynomial in the coefficients

of α and µγ is controlled by Lemma 7.7. These in turn are related to the coefficients of γ , using its

explicit form for µγ and a linear system for the coefficients of α .

(6a) Generic behaviour. We start by proving the existence of α of degree m in K[y] and γ in

K[x]<n such that we have α(γ) ≡ a mod f , γ (ξ) , 0 and γ ′(ξ) , 0.

Write a = a0 + av (x − ξ)
v + · · · + an−1(x − ξ)

n−1
, with a0 = a(ξ) and, by definition of v =

valξ (a − a(ξ)), av , 0 and v > 0. Since we also assume that the characteristic p of K is either zero,

or greater than v , this means in particular that v is a unit in K. Let

ã(x) =
a − a0

av (x − ξ)v
= 1 +

∑
1≤i<n−v

ãi (x − ξ)
i ,

with coefficients ãi = ai+v/av .

– If v = m, we define α̃(y) = yv = ym . Since v , 0 in K, α̃ ′(1) , 0 and Newton iteration

guarantees the existence of a unique γ̃ = 1 +
∑

1≤i<n γ̃i (x − ξ)
i
such that γ̃v ≡ ã mod f .

– If v < m, we define α̃(y) = yv +ym . This time, we let γ̃ be the unique polynomial of the form

γ̃ = 1 +
∑

1≤i<n γ̃i (x − ξ)
i
such that γ̃v + (x − ξ)m−vγ̃m ≡ ã mod f . As previously, existence

follows from Newton iteration, using the assumption v , 0 in K.

In both cases, we set γ = 1 + (x − ξ)γ̃ rem f ∈ K[x] and α = a0 + av α̃(y − 1) ∈ K[y]. We can then

verify that all requirements α(γ) ≡ a mod f , γ (ξ) , 0 and γ ′(ξ) , 0 are satisfied.

Since µγ then has degree n, and since µγ (0) = (−γ (ξ))
n
is nonzero, Proposition 7.3 shows that

Hk

(α ,µγ)
m,d has rank n for d ≥ ⌈n/m⌉.

(6b) A polynomial in K[ā0, . . . , ān−1, ¯f0, . . . , ¯fn−1]. The existence of γ and α implies that of a

nonzeron×nminor δ of Hk

(α ,χγ)
m, ⌈n/m ⌉ . Let then ∆ ∈ K[ā0, . . . , ān−1, ¯f0, . . . , ¯fn−1] be the corresponding

58 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

minor of Hk
(ā, ¯f)
m, ⌈n/m ⌉ , where ā = ā0+ · · ·+ ān−1x

n−1
and

¯f = ¯f0+ · · ·+ ¯fn−1x
n−1+xn are polynomials

whose coefficients are indeterminates. Lemma 7.7 shows that this is a polynomial of degree at most

2n2/m in ā0, . . . , ān−1 and 2n2(n − 1)/m in
¯f0, . . . , ¯fn−1.

(6c) The rational functions ᾱ0, . . . , ᾱn−1. Next, with γ̄ = γ̄0 + · · · + γ̄n−1x
n−1

a polynomial whose

coefficients are indeterminates, we consider ᾱ such that ᾱ(γ̄) ≡ a mod f . The coefficients of ᾱ are

given as solutions of the linear system ᾱ(γ̄) ≡ a mod f , thus they are rational functions ᾱ0, . . . , ᾱn−1

in K(γ̄0, . . . , γ̄n−1). In this paragraph, we bound the degrees of their numerators and denominators

in K[γ̄0, . . . , γ̄n−1], using power series inversion and composition.

We first consider the solution u to u(γ̄) ≡ x − ξ mod (x − ξ)n , or equivalently u(φ̄) ≡ x mod xn ,
with φ̄ = γ̄ (x + ξ). We write φ̄ = φ̄0 + φ̄1x + · · · + φ̄n−1x

n−1
, where the coefficients φ̄0, . . . , φ̄n−1 are

linear in γ̄0, . . . , γ̄n−1, with in particular φ̄0 = ∆0 and φ̄1 = ∆1.We can thenwriteu =
∑n−1

j=1
uj (y−∆0)

j
,

where for j ≥ 1, the coefficientuj is a rational function in γ̄1, . . . , γ̄n−1, with numerator of degree j−1

in γ̄1, . . . , γ̄n−1 and denominator ∆2j−1

1
. More generally, for i ≥ 1, the power ui has valuation i , and

for j ≥ i , the coefficient of (y − ∆0)
j
in it is a rational function with numerator of degree j − i in

γ̄1, . . . , γ̄n−1 and denominator ∆2j−i
1

.

It follows that if we write a = a0 + av (x − ξ)
v + · · · + an−1(x − ξ)

n−1
, then the solution ᾱ to

the equation ᾱ(γ̄) ≡ a mod f is given by ᾱ = a0 + avu
v + · · · + an−1u

n−1
rem (y − ∆0)

n
. Once we

rewrite ᾱ as ᾱ0 + · · · + ᾱn−1y
n−1

, we see that the coefficients ᾱ0, . . . , ᾱn−1 are rational functions

with numerator of degree at most 2n − 3 in γ̄0, . . . , γ̄n−1, and denominator ∆2n−3

1
.

(6d) The polynomial ∆2. We now evaluate the indeterminates āi and ¯fi in the minor ∆ of (6b) at

the coefficients of ᾱ and χγ̄ = (y − ∆0)
n
, respectively. Write (y − ∆0)

n
as q̄0 + · · · + q̄n−1y

n−1 + yn ,
so that q̄i =

(n
i

)
(−∆0)

n−i
for all i . It follows that ∆(ᾱ0, . . . , ᾱn−1, q̄0, . . . , q̄n−1) is a rational function

in the indeterminates γ̄0, . . . , γ̄n−1, which can be written as

∆(ᾱ0, . . . , ᾱn−1, q̄0, . . . , q̄n−1) =
∆2(γ̄0, . . . , γ̄n−1)

∆1(γ̄0, . . . , γ̄n−1)
ϵ , (33)

for some polynomial ∆2 of degree at most

2n2

m
(2n − 3) +

2n2(n − 1)

m
(n − 1) =

2n2(n2 − 2)

m
,

and for some integer exponent ϵ ≤ 2n2(2n − 3)/m.

Consider again the polynomialsγ andα in (6a), and their coefficientsγ0, . . . ,γn−1 andα0, . . . ,αn−1

(with actually αm+1 = · · · = αn−1 = 0). We saw that γ satisfies ∆1(γ0, . . . ,γn−1) = γ
′(ξ) , 0, which

implies that the rational functions ᾱ0, . . . , ᾱn−1 are well-defined atγ0, . . . ,γn−1 and take α0, . . . ,αn−1

for values there. This implies that the nonzero minor δ is δ = ∆2(γ0, . . . ,γn−1)/∆1(γ0, . . . ,γn−1)
ϵ
,

and in particular that ∆2 is a nonzero polynomial.

Probability bounds. The end of the proof is as in the previous section. The polynomial∆0∆1∆f ,m∆2

in K[γ̄0, . . . , γ̄n−1] has degree at most

1 + 1 +
2n2

m
+

2n2(n2 − 2)

m
=

2(n4 − n2 +m)

m
;

we can now readily verify that a choice of (r3, . . . , rn+2) that avoids its zeros ensures that properties

(3)-(6) hold. For (3)-(5), this follows immediately from the definitions.

To see that (6) holds, that is, that Hk

(α ,µγ)
m,d has rank n for d ≥ ⌈n/m⌉, recall that the algorithm

constructs γ = r3 + r4x + · · · + rn+2x
n+1

. Properties (3)-(4) show that µγ has degree n, and that its

constant coefficient is nonzero. Since in particular ∆1(r3, . . . , rn+2) , 0, we deduce that the rational

Faster Modular Composition 59

functions ᾱ0, . . . , ᾱn−1 of (6c) are well-defined at (r3, . . . , rn+2), and that they give the coefficients

of the unique polynomial α such that α(γ) ≡ a mod f . Since ∆2(r3, . . . , rn+2) , 0, it follows from

Eq. (33) that Hk

(α ,µγ)
m, ⌈n/m ⌉ has rank n (and thus similarly for Hk

(α ,µγ)
m,d , for d ≥ ⌈n/m⌉).

The other probabilities have been discussed in step (1)-(2) above and in step (7) of the previous

section. Altogether, this gives a probability of success at least(
1 −

2(n4 − n2 +m)/m

card(S)

) (
1 −

m − 1

card(S)

)
≥ 1 −

2(n4 − n2 +m)/m +m − 1

card(S)
.

Dividing the numerator of the last fraction by n4/m gives

2 −
2n2 −m2 −m

n4
≤ 2,

where the last inequality comes fromm ≤ n. □

8.4.1 Note. In Proposition 8.5, the role of the condition on the valuation being nonzero in K is

shown by the following example. Take a field K of characteristic 2, n = 6,m = 3, f = (x − 1)6

and a = (x − 1)2. Then for any γ ∈ K[x]<6, the four polynomials (1,a,γ 2,aγ 2) rem f belong to the

vector space generated by (1, x2, x4) and are therefore linearly dependent. Using the expression of

Mα from Eq. (9), we see that this implies that the block Krylov matrix K
(α ,µγ)
m,n/m of Eq. (11) is singular,

and thus so is Hk

(α ,µγ)
m,n/m regardless of the choice of γ .

A more general version of this counterexample when K has characteristic p > 0 is obtained with

m = p + 1, d = p, n =md , and valξ (a) = p.

8.5 Complete algorithm for f purely inseparable
Wenow extend Proposition 8.5 in order to cover all cases of compositionmodulo a purely inseparable

polynomial f .
If p is the characteristic of K, any purely inseparable f can be written as f (x) = (xp

e
− c)ℓ with

c in K and e, ℓ in N such that p does not divide ℓ, and e = 0 if p = 0 [25]; in particular the degree n
of f is equal to peℓ. We assume that the parameters e , ℓ and c are known, since this is the case when
our algorithms have to handle this situation; indeed in the next section we introduce separable

factorization techniques which allow us to compute them.

8.5.1 Large valuation. If v = valξ (a(x) − a(ξ)) satisfies v > ⌈n
η⌉, the minimal polynomial of a

in K[x]/⟨f ⟩ factors over K as µa(y) = (y − a(ξ))δ , with δ = ⌈n/v⌉ ≤ ⌈n1−η⌉. Since the latter

degree is small compared to n, this case is handled efficiently by Algorithm ModularComposition-

SmallMinimalPolynomial from Section 3.1.

8.5.2 Small characteristic. In the case 0 < p ≤ ⌈nη⌉, our algorithm is based on Bernstein’s

composition algorithm for power series [6], which we adapt to work modulo f (x) = (xp
e
− c)ℓ . See

also [30, Algorithm 3.1] for another extension of Bernstein’s result, which is however not sufficient

to reach our target cost for the specific kind of modulus we work with.

If e = 0, pe = 1 and we are working modulo f = (x − c)ℓ , with ℓ = n. In this case, to compute

b = д(a) rem f , we write ã(x) = a(x +c), we compute
˜b = д(ã) rem x ℓ , then we obtain b as

˜b(x −c).
The bottleneck is the computation of д(ã) rem x ℓ , which can be done in Õ(pℓ) operations in K
using Bernstein’s algorithm (in Algorithm ModularComposition-SmallCharacteristic, that

algorithm is called PowerSeriesComposition-SmallCharacteristic).

60 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

Suppose now that e ≥ 1. Write д =
∑p−1

i=0
дi (y

p)yi , with дi ∈ K[y] of degree less than p
e−1ℓ. Write

also a(x) =
∑n−1

i=0
aix

i
, and let ā(x) =

∑n−1

i=0
a
p
i x

i
, so that ap (x) = ā(xp). It follows that

д(a) rem (xp
e
− c)ℓ =

p−1∑
i=0

д̄ia
i

rem (xp
e
− c)ℓ

where, for all 0 ≤ i ≤ p − 1,

д̄i (x) = дi (a
p (x)) rem (xp

e
− c)ℓ = дi (ā(x

p)) rem (xp
e
− c)ℓ .

If we define hi = дi (ā) rem (xp
e−1

− c)ℓ , it follows that д̄i = hi (x
p), so that

д(a) rem (xp
e
− c)ℓ =

p−1∑
i=0

hi (x
p)ai rem (xp

e
− c)ℓ .

The following lemma summarizes the cost of this procedure.

Algorithm 8.3ModularComposition-SmallCharacteristic(c, e, ℓ,a,д)

Input: K has characteristic p > 0,

c in K, e in N and ℓ in N>0 such that f = (xp
e
− c)ℓ has degree n = ℓpe ,

a in K[x]<n , д in K[y]<n
Output: д(a) rem f
1: if e = 0 then
2: a ← a(x + c)
3: b ← PowerSeriesComposition-SmallCharacteristic(xn,a,д) ▷ [6, Sec. 2]
4: return b(x − c)
5: else
6: Write д = д0(y

p) + · · · + дp−1(y
p)yp−1

7: Write a = a0 + · · · + an−1x
n−1

8: ā ← a
p
0
+ · · · + a

p
n−1

xn−1

9: for i = 0, . . . ,p − 1 do
10: hi ← ModularComposition-SmallCharacteristic(c, e − 1, ℓ, ā,дi)

11: return h0(x
p) + · · · + hp−1(x

p)ap−1
rem f

Lemma 8.6. For a field K of characteristic p > 0, given a purely inseparable polynomial f =
(xp

e
− c)ℓ of degree n = ℓpe , a ∈ K[x]<n and д ∈ K[y]<n , Algorithm ModularComposition-

SmallCharacteristic returns д(a) rem f and uses Õ(pn) operations in K.

Proof. Correctness follows from the previous description. For the runtime analysis when e = 0,

the result is Bernstein’s. For e > 0, apart from the p recursive calls, Step 8 takes Õ(n) operations
(we raise all coefficients of a to the power p ≤ n) and Step 11 takes Õ(pn) operations, using
Horner’s rule. Remembering that n = ℓpe , we deduce that the runtimeT (e,p, ℓ) satisfiesT (e,p, ℓ) =
pT (e − 1,p, ℓ) + Õ(pe+1ℓ) and T (0,p, ℓ) ∈ Õ(pℓ). This resolves to T (e,p, ℓ) ∈ Õ(pe+1ℓ), which

is Õ(pn). □

8.5.3 Main algorithm. Combining the previous results gives Algorithm CompositionModu-

loInseparable. It first tests whether the characteristic of K is small enough for Algorithm

Faster Modular Composition 61

ModularComposition-SmallCharacteristic to run within our prescribed runtime. Other-

wise, rather than computing the valuation v , it simply calls Algorithm ModularComposition-

SmallMinimalPolynomial; in case of failure, it falls back on Algorithm ModularComposition-

BaseCase. As previously, the algorithm takes as input a vector r that plays the role of random
parameters.

Algorithm 8.4 CompositionModuloInseparable(c, e, ℓ,a,д, r)

Input: c in K, e in N and ℓ in N>0 such that f = (xp
e
− c)ℓ has degree n = ℓpe , where p is the

characteristic of K,
a in K[x]<n , д in K[y]<n , r ∈ K

n+ ⌈nη ⌉
with η from Eq. (3)

Output: b = д(a) rem f or Fail

1: n ← ℓpe

2: if 0 < p ≤ ⌈nη⌉ then return ModularComposition-SmallCharacteristic(c, e, ℓ,a,д)

3: f ← (xp
e
− c)ℓ

4: b ← ModularComposition-SmallMinimalPolynomial(f ,a,д, ⌈n1−η⌉, (ri)0≤i<n)
if b , Fail then return b

5: if gcd(a, f) = 1 then r1 = 0 else r1 = 1; if c , 0 then r2 = 0 else r2 = 1

6: return ModularCompositionBaseCase(f ,a,д, r) ▷ Proposition 8.5

Proposition 8.7. For a field K of characteristic p, given c, e, ℓ such that f = (xp
e
− c)ℓ is purely

inseparable of degree n = ℓpe (e = 0 if p = 0), a ∈ K[x]<n , д ∈ K[y]<n and r ∈ Kn+m withm = ⌈nη⌉
and η from Eq. (3), Algorithm CompositionModuloInseparable uses Õ(nκ) operations in K, with
κ < 1.43 as in Eq. (1), and returns either д(a) rem f , or Fail.

If the entries of r are chosen uniformly and independently from a finite subset S of K, then the

algorithm returns д(a) rem f with probability at least 1 − 2n4/card(S).

Proof. We first analyze the runtime. If 0 < p ≤ ⌈nη⌉, then Algorithm ModularComposition-

SmallCharacteristic has cost Õ(pn) by Lemma 8.6, which is thus Õ(n1+η) ∈ Õ(n1+(ω−1)η) = Õ(nκ)
from Eq. (3). Computing f takes time Õ(n) by repeated squaring. By Lemma 3.2, the call to Algorithm

ModularComposition-SmallMinimalPolynomial uses

Õ
(
n1+(1−η)(ω2/2−1)

)
= Õ

(
nη+(1−η)(ω2/2)

)
= Õ (nκ)

operations in K, and by Proposition 8.1, it is also the case for Algorithm ModularComposition-

BaseCase. The specifications of the subroutines imply that the output can be either д(a) rem f or

Fail, so only the probability analysis remains.

If 0 < p ≤ ⌈nη⌉, Lemma 8.6 shows that the output is д(a) rem f ; hence, we may now assume that

p > ⌈nη⌉, or p = 0. Let ξ = c1/pe ∈ K, so that f = (x − ξ)n in K[x]; let further v be the valuation of

a − a(ξ) at ξ . The minimal polynomial of a modulo f has degree δ = ⌈n/v⌉.
Suppose first that v ≤ ⌈nη⌉, so that δ ≥ ⌈n1/⌈nη⌉⌉. The value b computed at Step 4 is either

д(a) rem f , or Fail; let π be the probability of the former (for instance, by Lemma 3.2, π = 0 if

δ > ⌈n1−η⌉). If Fail is returned at Step 4, then we enter Step 6. At this stage, we have inequalities

v ≤ ⌈nη⌉ < p, or v ≤ ⌈nη⌉ and p = 0, so by Proposition 8.5 the call to Algorithm Modular-

CompositionBaseCase returns д(a) rem f with probability at least 1 − 2n4/card(S). Overall, the
probability of returning д(a) rem f in this case is at least π + (1 − π)(1 − 2n4/card(S)), which is at

least 1 − 2n4/card(S).
Suppose on the other hand that v > ⌈nη⌉, so that we have in particular v ≥ nη , and thus

δ = ⌈n/v⌉ ≤ ⌈n1−η⌉. By Lemma 3.2, b computed at Step 4 is д(a) rem f with probability at least

62 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

1−n/card(S). If it is not the case, the algorithm enters Algorithm ModularCompositionBaseCase,

which computes д(a) rem f with a certain probability π ′ ≥ 0. Overall, we return д(a) rem f with

probability at least 1 − n/card(S) + π ′ ≥ 1 − n/card(S). □

9 ALGORITHM FOR GENERAL f

We now present our Las Vegas Algorithm ModularComposition that computes д(a) rem f for

arbitrary input д,a, f . The analysis of this algorithm in Section 9.5 proves Theorem 1.1.

The starting point is the separable decomposition of f (Section 9.1), a generalization of square-

free decomposition from fields of characteristic zero to arbitrary base fields. This yields a partial

factorization f = f1 · · · fs into pairwise coprime factors. The algorithm then proceeds by computing

д(a) modulo each of these factors and the final result is obtained by Chinese remaindering in quasi-

linear complexity [22, §10.3].

If p is the characteristic of K then the factors fi of the separable decomposition of f are the

form hi (x
pei)ℓi (or more simply hi (x)

ℓi
when p = 0), with integers ei , ℓi and separable hi ∈ K[x].

Composition modulo such an fi is achieved via a K-algebra isomorphism

Ψi : Ai = K[x]/⟨fi (x)⟩ → Bi = K[θ , z]/⟨hi (θ), (z
pei − θ)ℓi ⟩

that maps x to z (Proposition 9.6). If Li denotes K[θ]/⟨hi (θ)⟩, then, as a K-vector space, Bi ≃
Li [z]/⟨(z

pei − ¯θi)
ℓi ⟩ with ¯θi the class of θ in Li . The computation of д(a) rem fi over K is thus

mapped to the composition

д(Ai) mod (zp
ei
− ¯θi)

ℓi

over Li , with Ai = Ψi (a mod fi) and modulo the purely inseparable (zp
ei
− ¯θi)

ℓi
. In order to

perform this last composition efficiently, it is also necessary to decrease the degree of д by first

reducing д modulo the characteristic polynomial of Ai in Li [z]/⟨(z
pei − ¯θi)

ℓi ⟩. We call reduction

of д that step of the process (Proposition 9.8). It produces a representative of Gi ∈ Li [y] such
that Bi = д(Ai) ∈ Bi is obtained through the univariate modular composition

Gi (Ai) mod (zp
ei
− ¯θi)

ℓi ,

which is computed with coefficients in Li . Finally, the class д(a) mod fi ∈ A is recovered as

Ψ−1

i (Bi). In practice, the algorithms working with elements of Li use polynomial representatives in

K[θ]<deg(fi), that are the canonical lifts of their class.

The idea of using these homomorphisms was introduced by van der Hoeven and Lecerf in the

case ei = 0 [30]; it is extended to the general case in Sections 9.3 and 9.4. We keep their terminology,

calling untangling an algorithm that computes the map Ψi and tangling, one which computes the

reverse map. Both these operations can be performed efficiently (Section 9.3).

The univariate modular composition in Li [z] modulo the purely inseparable polynomial (zp
ei
−

¯θ)ℓi can be achieved by Algorithm CompositionModuloInseparable of Section 8.5 when Li is
a field. In general however, Li is a product of fields. In Section 9.2, the extension of the scope of

our algorithms to this setting is obtained using a paradigm also due to van der Hoeven and Lecerf

called directed evaluation [33].

Conventions. For h of degree d in K[θ] and f in K[θ, z], monic of degree n in z, and for any P
in K[θ , z], we denote by P rem ⟨h, f ⟩ ∈ K[θ, z]<(d ,n) the polynomial obtained by reducing P first

by f , then by h (this is the normal form of P modulo (h, f), if we see the latter as a Gröbner basis
for the lexicographic order induced by θ ≺ z). Thus P rem ⟨h, f ⟩ is a canonical lift of the class of P
in K[θ , z]/⟨h, f ⟩.

If P ∈ K[θ , z], we use the notation P̄(z) to denote the class (projection) of P in L[z], where L will
be clear from the context.

Faster Modular Composition 63

9.1 Separable decomposition
Let p be the characteristic of the fieldK and let f inK[x] be of degree n. The separable decomposition

of f is the set

S = {(h1, e1, ℓ1), . . . , (hs , es , ℓs)}, with hi ∈ K[x] and ei , ℓi ∈ N for all i,

that satisfies the following properties, where we write fi = hi
(
xp

ei)ℓi
:

(1) f = c f1 · · · fs with c ∈ K \ {0} ;
(2) for all i , j in {1, . . . , s}, fi and fj are coprime;

(3) for all i in {1, . . . , s}, hi ∈ K[x] is separable, monic and of positive degree di ;
(4) for all i in {1, . . . , s}, ei = 0 (if p = 0) or ei is in N (if p > 0);

(5) for all i in {1, . . . , s}, ℓi is not divisible by p;
(6) for all i , j in {1, . . . , s}, (ei , ℓi) , (ej , ℓj).

The separable decomposition of f can be computed in Õ(n) operations in K using an algorithm due

to Lecerf [53]. The special case when p = 0 recovers the more classical square-free factorization.

9.2 Composition over products of fields, modulo purely inseparable f

Let h be separable of degree d in K[θ], and consider f of the form f = (zp
e
− c(θ))ℓ ∈ K[θ, z], for

integers e ∈ N and ℓ ∈ N>0, where p is the characteristic of K. Given A in K[θ , z]<(d ,n) and G in

K[θ ,y]<(d ,n), with n = degz (f) = ℓp
e
, we consider here the computation of B = G(θ,A) rem ⟨h, f ⟩.

This question is mapped to a univariate composition problem with coefficients in L = K[θ]/⟨h⟩: if
we let Ā, Ḡ, B̄ and c̄ be the projections of respectively A, G, B and c in L[z], L[y], L[z] and L (the
degree constraints show that Ā, Ḡ, B̄ can be obtained without any calculation from A,G,B, and
conversely), then B̄ = Ḡ(Ā) rem (zp

e
− c̄)ℓ as an equality in L[z].

When h is irreducible, so that L is a field, the algorithm of Section 8.5 applies over L; as reported

in Proposition 8.7, if n = deg(f) = ℓpe , the runtime is Õ(dnκ) operations in K, coming from

Õ((ℓpe)κ) = Õ(nκ) times a factor in Õ(d) for the cost of arithmetic operations in L. However, we
only assume h separable, so that L is a product of fields. The key difference is the presence of

zero-divisors in L: a nonzero element of L is not necessarily invertible. Since the procedures in

Section 8.5 use zero-tests and divisions, their direct application is not possible.

9.2.1 Directed evaluation. The technique of directed evaluation, due to van der Hoeven and

Lecerf [33], is an efficient version of the classical dynamic evaluation process [19].

In dynamic evaluation, prior to each zero-test or inversion, say by a quantity q ∈ L, the compu-

tation of h1 = gcd(q,h) gives the factorization h = h1h2. Since h is separable, h1 and h2 are coprime,

and L can be decomposed as the product L1 × L2, with q = 0 in L1 = K[θ]/⟨h1⟩ and q invertible

in L2 = K[θ]/⟨h2⟩. Under the dynamic evaluation paradigm, the calculation can then be continued

in two branches, working modulo h1 and h2 separately.

In directed evaluation, the idea is rather to run the entire program in a unique branch, then

to apply the process recursively in residual branches after reduction of input data modulo the

corresponding polynomial. We do not detail the underlying techniques, for which we refer to

Sections 3 and 4 of [33], and simply apply their panoramic evaluation procedure [33, Algo. 2]. It

takes as input a computation tree T over K (see Section 2), a defining separable polynomial h of

degree d for L, and λ = (λ1, . . . , λs) in K[θ]
s
<d (representing an input to T in Ls); it then returns a

panoramic value, defined as follows.

Definition 9.1 ([33, Def. 1 and Lem. 2]). Given an input (h, λ,T) as above, a panoramic value of T

at λ is a set of pairs {(h1, ε1), . . . , (ht , εt)}, where

64 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

• h1, . . . ,ht are polynomials in K[θ] that satisfy h = h1 · · ·ht (thus L ≃ L1 × · · · × Lt , with
Li = K[θ]/⟨hi ⟩);

• for all i , εi is a vector in K[θ]
ℓi
<di

(representing an output in Lℓii), with di = deg(hi) and ℓi
in N;
• for all 1 ≤ i ≤ t , let hi ,1, . . . ,hi ,ki be the factorization of hi into irreducibles. For 1 ≤ j ≤ ki ,
let Li , j be the the field K[θ]/⟨hi , j ⟩, and denote by πi , j : K[θ] → Li , j the canonical projection
a 7→ a mod hi , j (the notation carries over to vectors over K[θ]). Then T is supposed to be

evaluable at πi , j (λ) ∈ L
s
i , j for all i, j, and πi , j (εi) ∈ L

ℓi
i , j is the result of evaluating T (seen as

a computation tree over Li , j) at πi , j (λ), using the same branch of T for all j.

The application of this method requires that one uses computation trees as the underlying

computational model, which is the case here (Section 2). Crucially, the cost overhead is then Õ(d) [33,
Thm. 1], i.e. similar (up to logarithmic factors) to the one incurred if h were irreducible.

9.2.2 Algorithm. With Algorithm CompositionModuloInseparable-ProductOfFields we apply

panoramic evaluation (called Panoramic in our pseudo-code) to Algorithm CompositionModu-

loInseparable for modular composition over K. Note that in addition to field elements, the latter

algorithm also takes two integers e, ℓ as input. Panoramic evaluation can still be used in this context,

since each choice of the parameters e, ℓ corresponds to a computation tree, to which the techniques

described above apply. This yields a factorization of h, and performs the compositions modulo the

corresponding factors; the final result is then reconstructed using Chinese remaindering.

Algorithm 9.1 CompositionModuloInseparable-ProductOfFields(h, c, e, ℓ,A,G, r)

Input: h separable of degree d in K[θ],
c in K[θ]<d , e in N and ℓ in N>0 such that f = (zp

e
− c)ℓ has degree n = ℓpe ,

A ∈ K[θ, z]<(d ,n), G ∈ K[θ,y]<(d ,n), r ∈ K
n+ ⌈nη ⌉

Output: B = G(θ,A) rem ⟨h, f ⟩, or Fail
1: ▷ Splitting L ≃ K[θ]/⟨h1⟩ × · · · × K[θ]/⟨ht ⟩ and reductions of B, accordingly, using [33, Algo. 2]

{(h1,B1), . . . ,(ht ,Bt)} ← Panoramic(CompositionModuloInseparable, h, c, e, ℓ,A,G, r)
2: if any of the Bi ’s equals Fail then return Fail

3: return ChineseRemaindering((B1, . . . ,Bt), (h1, . . . ,ht))

Proposition 9.2. For a fieldK of characteristic p, given h ∈ K[θ] separable of degree d , c inK[θ]<d ,
integers e inN and ℓ inN>0,A inK[θ, z]<(d ,n),G inK[θ ,y]<(d ,n), r inK

n+ ⌈nη ⌉
withn = ℓpe andη from

Eq. (3), Algorithm CompositionModuloInseparable-ProductOfFields uses Õ(d(ℓpe)κ) = Õ(dnκ)
operations in K, with κ < 1.43 as in Eq. (1).

It returns either G(θ ,A) rem ⟨h, f ⟩ ∈ K[θ, z]<(d ,n) or Fail, with f = (zp
e
− c)ℓ . If the entries

of r are chosen uniformly and independently from a finite subset S of K, then the algorithm returns

G(θ,A) rem ⟨h, f ⟩ with probability at least 1 − 2dn4/card(S).

The complexity bound Õ(dnκ) indicates that the overhead coming from operations modulo h(θ)
is Õ(d), as pointed out above.

9.2.3 Proof of Proposition 9.2. Combined with our Proposition 8.7, Theorem 1 in [33] gives

the runtime estimate. In the pseudo-code, the output of the panoramic evaluation is written

as {(h1,B1), . . . , (ht ,Bt)}, where h1 · · ·ht is a factorization of h (not necessarily into irreducibles),

and for all i , either Bi ∈ K[θ , z]<(di ,n) with di = deg(hi), or Bi = Fail. At the level of computation

trees, a flag such as Fail is obtained by setting a dedicated output value to 1 (and 0 otherwise); call

Faster Modular Composition 65

flagi this value, for 1 ≤ i ≤ t . If flagi = 1 (failure), we set Bi = 0 by convention, so in the rest of

this proof, Bi is an element of K[θ, z] for all i .
We use the following notation: for 1 ≤ i ≤ t , the irreducible factors ofhi are writtenhi ,1, . . . ,hi ,ki .

For 1 ≤ j ≤ ki , we then define c̄i , j , Āi , j , Ḡi , j by taking c,A,G modulo hi , j and seeing them over

the field Li , j = K[θ]/⟨hi , j ⟩, so c̄i , j is in Li , j , Āi , j in Li , j [z] and Ḡi , j in Li , j [y]. The elements in the

vector r are already in K, and thus in Li , j .
Finally, we let B̄i , j be the polynomial obtained by taking Bi ∈ K[θ, z] and projecting it to Li , j [z]

through reduction modulo hi , j , and we set flagi , j = flagi (recall that flagi ∈ K is either 0 or 1).

Then, from Definition 9.1, the key property of the output of the first step is that for all indices

i, j, flagi , j and B̄i , j are the result of calling Algorithm CompositionModuloInseparable on input

c̄i , j , e, ℓ, Āi , j , Ḡi , j , r over the field Li , j . This implies in particular that our algorithm returns Fail if

and only if the computation fails over one of the fields Li , j .
To quantify the probability of this event, we apply Proposition 8.7 over all fields Li , j . For any

given i, j, Proposition 8.7 shows that flagi , j = 1 occurs with probability at most 2n4/card(S). Since
there are at most d such indices i, j , the probability that this happens for at least one pair of indices

is at most 2dn4/card(S).
Assume none of the flagi , j ’s is 1, so that the algorithm does not return Fail. Then, for all i, j,

B̄i , j ∈ Li , j [z]<n is equal to Ḡi , j (Āi , j) rem (zp
e
−c̄i , j)

ℓ
. In terms of bivariate polynomials, the Chinese

Remainder Theorem then implies that for all i , Bi itself is equal to G(θ,A) rem ⟨hi , (z
pe − c)ℓ⟩ ∈

K[θ , z]<(di ,n). In the last step of the algorithm, we further apply the Chinese Remainder Theorem

coefficient-wise to the Bi ’s with respect to z; this gives usG(θ,A) rem ⟨h, (zp
e
−c)ℓ⟩ as a polynomial

in K[θ , z]<(d ,n). The cost of this last step is in Õ(dℓpe), so the proof is complete.

9.3 Untangling and tangling
In this subsection, we give the main tools (tangling, untangling and bivariate reduction) that are

needed for reducing composition modulo powers of separable polynomials to the situation of the

previous subsection. The central results are due to van der Hoeven and Lecerf [30] with f = h(x)ℓ

and h separable (Sections 9.3.1 and 9.3.2). We slightly generalize them to the case f = h(xp
e
)ℓ

with e > 0 (Sections 9.3.3 and 9.3.4).

9.3.1 Tangling and untangling. The starting point is the following observation.

Lemma 9.3 ([30, §4.2]). For h of degree d inK[x] and for a positive integer ℓ, there exists aK-algebra
homomorphism

ψh,ℓ : K[x]/⟨h(x)ℓ⟩ → K[θ , z]/⟨h(θ), (z − θ)ℓ⟩

x 7→ z.

If moreover h is separable thenψh,ℓ is an isomorphism.

This homomorphism is a variant of the homomorphism πh,ℓ considered by van der Hoeven and

Lecerf, that maps u ∈ K[x]/⟨h(x)ℓ⟩ to u(z + θ) ∈ K[θ, z]/⟨h(θ), zℓ⟩. The morphismψh,ℓ is obtained
by composing πh,ℓ with a translation z 7→ z − θ . It turns out thatψh,ℓ is more convenient than πh,ℓ
for our generalization in Section 9.3.3. van der Hoeven and Lecerf call Untangling(h, ℓ,u) the
algorithmwhich implements πh,ℓ ; we use that terminology for the algorithmwhich implementsψh,ℓ :
given u in K[x]<dℓ , it computesU ∈ K[θ, z]<(d ,ℓ) such that U = u(z) rem ⟨h(θ), (z − θ)ℓ⟩. When h
is separable, the inverse operation is called Tangling(h, ℓ,U). Again, we use their terminology for

the inverse ofψh,ℓ .

Lemma 9.4. Untangling and Tangling (when defined) take Õ(dℓ) operations in K.

66 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

Proof. This is mostly in [30]. First, it is easy to check that the algorithms 4.3 and 4.5 and

the proofs of Prop. 4.6 and 4.10 of that reference do not make use of the separability of h. Next,
translation can be performed in quasi-linear complexity over an arbitrary ring [24, Thm. 4.5], so

that the complexity estimate is unchanged for our variant of these algorithms. □

9.3.2 Bivariate reduction. The computation of the composition д(a) rem h(x)ℓ for a separable h
reduces to computingψ−1

h,ℓ(д(ψh,ℓ(a mod h(x)ℓ))), where the inner composition is performed as a

univariate composition in L[z] modulo (z − ¯θ)ℓ , with L = K[θ]/⟨h⟩.
In order to make use of the algorithms of the previous sections to perform this composition, it

is necessary to first reduce the degree of д. Denote by A the canonical lift of ψh,ℓ(a mod h(x)ℓ),
and by Ā its projection in L[z]. The idea is to reduce д modulo the characteristic polynomial

(y − Ā(¯θ))ℓ ∈ L[y] of Ā(z) modulo (z − ¯θ)ℓ .
This is achieved in two steps. Forh of degreed , we let α ∈ K[θ]<d be the canonical lift of Ā(¯θ) ∈ L.

First, one computes the canonical lift of ψµ ,ℓ(д mod µℓ), where µ is an annihilating polynomial

of α mod h. This produces G̃(z,y) ∈ K[z,y]<(deg µ ,ℓ) such that

G̃(z,y) =
ℓ−1∑
i=0

G̃i (z)y
i = д(y) + Ũ (z,y)µ(z) + Ṽ (z,y)(y − z)ℓ

for some polynomials Ũ , Ṽ in K[z,y].
Next, in view of µ(α) ≡ 0 mod h, a modular composition of each of the ℓ coefficients of this

polynomial G̃ in y with α(θ) modulo h(θ) gives G(θ ,y) ∈ K[z,y]<(deg µ ,ℓ) such that

G(θ ,y) = д(y) +U (θ ,y)h(θ) +V (θ ,y)(y − α(θ))ℓ, (34)

for some polynomialsU ,V in K[θ ,y]. Eq. (34) may also be read as Ḡ(Ā) = д(Ā) rem (z − ¯θ)ℓ over L.
These two steps are detailed in Algorithm BivariateReduction below and correspond to

Steps (2)-(4) of [30, Algo. 4.2]. The runtime and probability analyses are new; they are based on the

results of the previous sections.

Algorithm 9.2 BivariateReduction(h, ℓ,α,д, r)

Input: h separable, monic, of degree d in K[θ], ℓ in N>0, α in K[θ]<d , д in K[y], r in Kd+ ⌈d
η ⌉

Output: G(θ ,y) = д(y) rem ⟨h(θ), (y − α(θ))ℓ⟩ ∈ K[θ ,y]<(d ,ℓ), or Fail
1: ▷ Either µ = Fail, or µ is nonzero in K[γ]≤4d and µ(α) ≡ 0 mod h

µ ← AnnihilatingPolynomial(h,α, r) ▷ Algorithm 8.2

if µ = Fail then return Fail

2: G̃ ← Untangling(µ, ℓ,д rem µℓ) ▷ G̃(γ , z) ∈ K[γ ,y]<(deg(µ),ℓ), Lemma 9.4

3: Write G̃ =
∑

0≤i<ℓ G̃i (γ)y
i ▷ G̃i ∈ K[γ]<deg(µ)

4: for i = 0, . . . , ℓ − 1 do
Gi ← ModularCompositionBaseCase(h,α, G̃i , r) ▷ Gi = G̃i (α) rem h or Fail, Algorithm 8.1

if Gi = Fail then return Fail

5: G ←
∑

0≤i<ℓGiy
i ▷ G is in K[θ ,y]<(d ,ℓ)

6: return G

Lemma 9.5. Given h in K[θ] monic, separable and of degree d , α in K[θ]<d , д in K[y], r in K
d+ ⌈dη ⌉

with η from Eq. (3), and ℓ in N>0, Algorithm BivariateReduction uses Õ(deg(д) + dκℓ) operations
in K with κ < 1.43 as in Eq. (1), and returns either д rem ⟨h(θ), (y − α(θ))ℓ⟩ or Fail. If the entries
of r are chosen uniformly and independently from a finite subset S of K, then the algorithm returns

д rem ⟨h, (y − α)ℓ⟩ with probability at least 1 − 6(ℓ + 1)d2/card(S).

Faster Modular Composition 67

Proof. The reduction of д mod µℓ is justified by the fact that µ(a)ℓ = 0 mod hℓ . The correction
of the rest of the algorithm when Step 6 is reached follows from the discussion above.

Since h is separable, Proposition 8.3 applies; it shows that the first step computes an annihilating

polynomial for α modulo h with probability at least 1 − 6d2/card(S). It also shows that each call to

AlgorithmModularCompositionBaseCase succeeds with at least the same probability. Altogether,

the probability of success of the whole algorithm is thus at least 1 − 6(ℓ + 1)d2/card(S).
By Corollary 8.2, the first step uses Õ(dκ) operations in K. Since deg(µ) is in O(d), computing

д rem µℓ takes Õ(deg(д) + dℓ) operations in K, and Lemma 9.4 shows that deducing G̃ takes a

further Õ(dℓ) cost. Finally, by Proposition 8.1, each pass in the loop at Step 4 takes Õ(dκ) operations,
so that the overall runtime is Õ(deg(д) + dκℓ). □

9.3.3 General Tangling and Untangling. In fields of positive characteristic, the isomorphism of

Lemma 9.3 and the complexity of its realization generalize as follows.

Proposition 9.6. Let f = h(xp
e
)ℓ be of degreen, withh of degreed inK[x], andK of characteristicp

(e = 0 if p = 0). There exists a K-algebra homomorphism

Ψh,ℓ : K[x]/⟨f ⟩ → K[θ, z]/⟨h(θ), (zp
e
− θ)ℓ⟩

x 7→ z.

If moreover h is separable then Ψh,ℓ is an isomorphism. Applying Ψh,ℓ or its inverse when the latter is

defined takes quasi-linear time Õ(n) = Õ(dℓpe) over K.

Proof. Write A = K[x]/⟨f ⟩ and B = K[θ, z]/⟨h(θ), (zp
e
− θ)ℓ⟩. When h is separable, we prove

that the minimal polynomial of z in the K-algebra B is f . This implies that A is K-isomorphic (as

a K-algebra) to the sub-algebra of B generated by z. Since B has K-dimension n = deg(f), this
sub-algebra is B itself, and the first claim will follow.

To determine the minimal polynomial of z, we can work inB = K[θ , z]/⟨h(θ), (zp
e
−θ)ℓ⟩, whereK

is an algebraic closure of K. If we let ξ1, . . . , ξd be the roots of h in K (which are pairwise distinct),

then B is isomorphic, as a K-algebra, to the product

K[θ , z]/⟨θ − ξ1, (z
pe − ξ1)

ℓ⟩ × · · · × K[θ , z]/⟨θ − ξd , (z
pe − ξd)

ℓ⟩.

The minimal polynomial of z in the ith factor above is µi = (x
pe − ξi)

ℓ
for 1 ≤ i ≤ d . These

polynomials are pairwise coprime: since t 7→ tp
e
is a bijection in K, µi has a unique root in K,

which is the pe -th root of ξi , and these roots are pairwise distinct, since the ξi ’s are. As a result, the

minimal polynomial of z in B, or equivalently in B, is the product µ1 · · · µd = f .
For the second claim, we takea inK[x] of degree less thann, andwrite it asa =

∑
0≤i<pe ai (x

pe)x i ,
with all ai ’s of degree less than n/pe = dℓ. Then,

Ψh,ℓ(a mod f) ≡
∑

0≤i<pe
ai (z

pe)zi mod⟨h(θ), (zp
e
− θ)ℓ⟩,

≡
∑

0≤i<pe
Ãi (θ , z

pe)zi mod⟨h(θ), (zp
e
− θ)ℓ⟩, (35)

where Ãi (θ, z) = ai (z) rem ⟨h(θ), (z − θ)ℓ⟩ is in K[θ, z]<(d ,ℓ); these degree bounds show that the

expression in Eq. (35) is indeed reduced modulo ⟨f (θ), (zp
e
− θ)ℓ⟩. Each Ãi = ψh,ℓ(ai) can be

computed in time Õ(dℓ) by Lemma 9.4, so that one application of Ψh,ℓ takes Õ(dℓpe) = Õ(n)
operations in K, as claimed.

68 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

Conversely, any element B in K[θ, z]<(d ,ℓpe) can be written as in Eq. (35), for some B̃i ’s in
K[θ , z]<(d ,ℓ). Applyingψ

−1

h,ℓ to each of them allows us to recover b = Ψ−1

h,ℓ(B), by reversing the steps

above. The cost analysis is similar to the one for Ψh,ℓ . □

We call Untangling-General(h, e, ℓ,a) the algorithm outlined in this proof that applies Ψh,ℓ to
(the class modulo f of)a ∈ K[x]<n , and returns the canonical lift ofΨh,ℓ(a mod f) toK[θ, z]<(d ,ℓpe);

equivalently, A(θ, z) = a(z) rem ⟨h(θ), (zp
e
− θ)ℓ⟩. For B in K[θ, z]<(d ,ℓpe), the inverse operation is

written Tangling-General(h, e, ℓ,B).

9.3.4 Main reduction. A more general form of bivariate reduction is needed in Section 9.4. With h
of degree d as before, given д in K[y] and now a bivariate A in K[θ , z]<(d ,ℓpe), the aim is to reduce

the degree of д before performing the composition in L[z] modulo (zp
e
− ¯θ)ℓ with L = K[θ]/⟨h⟩.

Denoting by Ā the projection of A in L[z], the idea is to compute Ḡ = д rem χĀ in L[z], where
χĀ ∈ L[y] is the characteristic polynomial of Ā ∈ L[z] in the extension L → L[z]/⟨(zp

e
− ¯θ)ℓ⟩.

Thus, Ḡ ∈ L[y] has degree less than ℓpe ; its canonical lift G ∈ K[θ ,y]<(d ,ℓpe) is the output.
The computation of д rem χĀ is made easy by an explicit formula for the characteristic polyno-

mial χĀ. In the following lemma, we let σ : L→ L be the pe th-power operator; we write the image

of Λ ∈ L as Λσ
. This notation is extended to the coefficient-wise action on polynomial rings over L.

Lemma 9.7. The characteristic polynomial of Ā relative to the extension L→ L[z]/⟨(zp
e
− ¯θ)ℓ⟩ is

χĀ = (y
pe − ᾱ)ℓ ∈ L[y], where ᾱ = Āσ (¯θ) ∈ L.

Proof. The characteristic polynomial χĀ can be computed relative to the extension L∗ →
L∗[z]/⟨(zp

e
− ¯θ)ℓ⟩, where we set L∗ = L[w]/⟨wpe − ¯θ⟩. In L∗[z], we have the factorization

(zp
e
− ¯θ)ℓ = (zp

e
−wpe)ℓ = (z −w)ℓp

e
,

so the characteristic polynomial of Ā in L∗[z]/⟨(zp
e
− ¯θ)ℓ⟩ is

(y − Ā(w))ℓp
e
= (yp

e
− Ā(w)p

e
)ℓ = (yp

e
− Āσ (¯θ))ℓ . □

The reduction of д by this characteristic polynomial is described in Algorithm MainReduction.

First, the canonical lift α ∈ K[θ]<d of ᾱ ∈ L from Lemma 9.7 is computed. Next, in Step 3, the polyno-

mialд is rewritten as a polynomial iny of degree less than pe , with coefficientsдi (y
pe). Each of these

polynomialsдi (y) can then be reducedmodulo ⟨h, (y−α)ℓ⟩ by Algorithm BivariateReduction, pro-

ducing a polynomialGi (θ ,y) (Step 4). Thus,Gi (θ,y) ≡ дi (y) mod ⟨h, (y −α)ℓ⟩, whenceGi (¯θ ,y
pe) ≡

дi (y
pe) mod χĀ. Recombining these coefficients yields G(θ,y) such that G(¯θ ,y) ≡ д(y) mod χĀ.

Finally, since χĀ(Ā) ≡ 0 in L[z]/⟨(zp
e
− ¯θ)ℓ⟩, it follows that G(θ,A) ≡ д(A) mod ⟨h(θ), (zp

e
− θ)ℓ⟩.

Proposition 9.8. Givenh separable, monic, of degreed inK[x], e inN, ℓ inN>0,A inK[θ, z]<(d ,ℓpe),

д in K[y], and r in Kd+ ⌈d
η ⌉
, Algorithm MainReduction uses Õ(deg(д) + nκ) operations in K, with

n = dℓpe and κ < 1.43 as in Eq. (1). It returns G ∈ K[θ,y]<(d ,ℓpe) such that G(θ,A) ≡ д(A) mod

⟨h(θ), (zp
e
− θ)ℓ⟩, or Fail.

If the entries of r are chosen uniformly and independently from a finite subset S of K, then the

algorithm returns G with probability at least 1 − 6(ℓ + 1)d2pe/card(S).

Proof. The correction of the algorithm when it does not return Fail follows from the discussion

above.

Working coefficient-wise, since e = O(log(pe)) the computation of α at Step 2 takes Õ(ℓpe)
operations on polynomials modulo h of degree d , so Õ(n) operations in K; reducing it modulo h has

the same complexity bound. The cost is thus governed by the loop, which uses Õ(deg(д)+dκℓpe) =
Õ(deg(д) + (n/d)dκ) operations by Lemma 9.5. The latter also allows us to quantify the probability

Faster Modular Composition 69

Algorithm 9.3MainReduction(h, e, ℓ,A,д, r)

Input: h separable, monic, of degree d in K[x], e in N, ℓ in N>0, A in K[θ , z]<(d ,ℓpe), д in K[y], r in

Kd+ ⌈d
η ⌉

Output: G ∈ K[θ ,y]<(d ,ℓpe) such that G(θ,A) ≡ д(A) mod ⟨h(θ), (zp
e
− θ)ℓ⟩, or Fail

1: Write A =
∑

0≤i<ℓpe Aiz
i ▷ Ai ∈ K[θ]<d

2: ▷ Compute α s.t. the characteristic polynomial of Ā is (yp
e
− α)ℓ (see Lemma 9.7)

α ←
∑

0≤i<ℓpe Ai
peθ i ; α ← α rem h ▷ α ∈ K[θ]<d

3: Write д =
∑

0≤i<pe дi (y
pe)yi ▷ deg(дi) ≤ deg(д)/pe

4: for i = 0, . . . ,pe − 1 do
Gi ← BivariateReduction(h, ℓ,α,дi , r) ▷ Gi ∈ K[θ ,y]<(d ,ℓ)

5: G ←
∑

0≤i<pe Gi (θ ,y
pe)yi ▷ G ∈ K[θ,y]<(d ,ℓpe)

6: return G

of success: each of the pe calls to Algorithm BivariateReduction succeeds with probability at

least 1 − 6(ℓ + 1)d2/card(S). □

9.4 Composition modulo powers
We now consider f = h(xp

e
)ℓ , with h separable of degree d and integers e, ℓ, with ℓ positive and

not divisible by p (and e = 0 if p = 0); the degree of f is n = dℓpe . Algorithm ModularComposi-

tionModuloPower computes д(a) rem f , extending to e , 0 the approach of van der Hoeven and

Lecerf [30] outlined in Section 9.3.2.

We first compute A(θ, z) = a(z) rem ⟨h(θ), (zp
e
− θ)ℓ⟩; this is done using the general untangling

operation of Section 9.3.3. The reduction of the degree of д is done by Algorithm MainReduction,

giving G in K[θ,y]<(d ,ℓpe), such that G(θ,A) ≡ д(A) mod ⟨h(θ), (zp
e
− θ)ℓ⟩; the construction of A

then impliesG(θ ,A) ≡ д(a(z)) mod ⟨h(θ), (zp
e
−θ)ℓ⟩. The quantityB = G(θ ,A) rem ⟨h(θ), (zp

e
−θ)ℓ⟩

is obtained by Algorithm CompositionModuloInseparable-ProductOfFields. We finally apply

the general tangling procedure of Section 9.3.3 to B; since tangling is a K-algebra isomorphism, the

outcome is b = д(a) rem h(xp
e
)ℓ .

Algorithm 9.4ModularCompositionModuloPower(h, e, ℓ,a,д, r)

Input: h separable, monic, of degree d in K[x], e in N, ℓ in N>0, such that f = h(xp
e
)ℓ has degree

n = dℓpe , a in K[x]<n , д in K[y], r in Kρ+ ⌈ρη ⌉
where ρ = max(d,n/d)

Output: b = д(a) rem f or Fail

1: ▷ Conversion of a ∈ K[x] to a bivariate polynomial (Proposition 9.6)

A← Untangling-General(h, e, ℓ,a) ▷ A ∈ K[θ, z]<(d ,ℓpe)
2: ▷ Reduction of д modulo the characteristic polynomial of Ā (Proposition 9.8)

G ← MainReduction(h, e, ℓ,A,д, (rk)0≤k<d+ ⌈dη ⌉) ▷ G ∈ K[θ ,y]<(d ,ℓpe)
if G = Fail then return Fail

3: ▷ Modular composition, B = G(θ,A) rem ⟨h(θ), (zp
e
− θ)ℓ⟩ ∈ K[θ, z]<(d ,ℓpe) or Fail

B ← CompositionModuloInseparable-ProductOfFields(h, θ, e, ℓ,A,G, (rk)0≤k< n
d + ⌈(

n
d)

η ⌉)

if B = Fail then return Fail

4: ▷ Recovery of b over K (Proposition 9.6)

b ← Tangling-General(h, e, ℓ,B)
5: return b

70 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

Proposition 9.9. For a field K of characteristic p, given h separable, monic and of degree d in K[x],
integers e in N and ℓ in N>0, a in K[x]<n , д in K[y], r in Kρ+ ⌈ρη ⌉

, with n = dℓpe , ρ = max(d, ℓpe)
and η from Eq. (3), Algorithm ModularCompositionModuloPower uses Õ(deg(д) + nκ) operations
in K, with κ < 1.43 as in Eq. (1), and returns д(a) rem h(xp

e
)ℓ or Fail.

If the entries of r are chosen uniformly and independently from a finite subset S of K, then the

algorithm returns д(a) rem h(xp
e
)ℓ with probability at least 1 − (2n4 + 12n2)/card(S).

Proof. That the output of the algorithm is д(a) rem h(xp
e
)ℓ or Fail follows from the previous

discussion. By Proposition 9.6, with n = dℓpe , the first and last step both take Õ(n) operations in
K. Proposition 9.8 shows that Step 2 takes Õ(deg(д) + nκ) operations in K. Finally, Proposition 9.2

shows that Step 3 takes Õ(d(ℓpe)κ) = Õ(d(n/d)κ) operations inK, so the runtime estimate is proved.

The steps that may output Fail are the computation of G at Step 2 and that of B at Step 3. By

Proposition 9.8, the former happens with probability at most 6(ℓ + 1)d2pe/card(S) ≤ 12n2/card(S);
by Proposition 9.2, the latter happens with probability at most 2d(ℓpe)4/card(S) ≤ 2n4/card(S). □

9.5 Main algorithm and its analysis
We can now give Algorithm ModularComposition performing modular composition with general

polynomials, and prove Theorem 1.1.

The separable decomposition f1 · · · fs of f allows us to reduce the problem to compositions

modulo the fi ’s, which are powers of polynomials as in Section 9.4. The polynomials a and д are
first reduced so that the compositions modulo the fi ’s are called with inputs of appropriate degrees,

then the result b = д(a) rem f is recovered using Chinese remaindering. The number of random

elements in K we use is an a priori bound that can be refined if the separable decomposition of f is

known.

Proof of Theorem 1.1. First we prove correctness. Suppose that none of the subroutines re-

turns Fail; we show that the output is д(a) mod f .
Using the same notation for pe -th powering as in Lemma 9.7, at the i-th pass in the loop at

Step 4, the polynomial µi satisfies µi (αi) ≡ 0 mod hi , with αi = aσi (that is, the coefficients of

αi are the pei -th powers of those of ai). Raising this equality to the power ℓi gives µ
ℓi
i (αi) ≡

0 mod hℓii . Evaluation at yp
ei
using the facts that αi (y

pei) = ai
pei

and χi = µi (y
pei)ℓi finally gives

χi (ai) ≡ 0 mod fi . The degree bound deg(µi) ≤ 4di follows from the specifications of Algorithm

AnnihilatingPolynomial, and the degree bound for χi follows.
In the second for-loop at Step 6, bi satisfies bi ≡ дi (ai) mod hi (x

pei)ℓi ≡ дi (ai) mod fi . Since дi =
д rem χi , and χi cancels ai modulo fi , bi is also equal to д(ai) rem fi , and thus to д(a) rem fi . It
follows that the return value, obtained by Chinese remaindering, is indeed д(a) rem f .

Next, we bound the overall cost. The call to SeparableDecomposition(f) takes Õ(n) operations
in K [53, Prop. 5]. Using repeated squaring, the polynomials f1, . . . , fs can be computed in quasi-

linear time as well, and the same holds for the remainders a1, . . . ,as .
Consider a fixed index i in the loop at Step 4, and denote diℓip

ei
by ni . Working coefficient-wise,

computing αi = aσi takes Õ(ni) operations since ei = O(log(ni)), and reducing it modulo hi has

the same complexity bound. By Proposition 8.1, Algorithm AnnihilatingPolynomial uses Õ(dκi)

operations in K. If it does not fail, χi is then deduced in Õ(ni) operations again, hence the cost of
the loop is Õ(nκ).

When Step 5 is reached, since all χi ’s have respective degrees at most 4ni , fast multiple remain-

dering gives the polynomials дi in Õ(n) operations, with deg(дi) < 4ni . Then, by Proposition 9.9,

each call to Algorithm ModularCompositionModuloPower uses Õ(nκi) operations in K, so their

Faster Modular Composition 71

Algorithm 9.5ModularComposition(f ,a,д, r)

Input: f of degree n in K[x], a in K[x]<n , д in K[y]<n , r ∈ K
n+ ⌈nη ⌉

Output: b = д(a) rem f or Fail

1: ▷ Decomposition of f [53, Algo. 3]

(h1, e1, ℓ1), . . . , (hs , es , ℓs) ← SeparableDecomposition(f) ▷ hi monic of degree di in K[x]

2: (f1, . . . , fs) ← (h1(x
pe1

)ℓ1, . . . ,hs (x
pes)ℓs) ▷ fi of degree ni = di ℓipei in K[x]

3: ▷ Degree reduction, deg(ai) < ni
(a1, . . . ,as) ← (a rem f1, . . . ,a rem fs)

4: ▷ Annihilating polynomials of the ai modulo fi
for i = 1, . . . , s do

Write ai =
∑

0≤k<ni ai ,kx
k

αi ←
∑

0≤k<ni ai ,k
pei xk ; αi ← αi rem hi

µi ← AnnihilatingPolynomial(hi ,αi , (rk)0≤k<di+ ⌈dηi ⌉
) ▷ µi (αi) ≡ 0 mod hi , deg(µi) ≤ 4di

if µi = Fail then return Fail

χi ← µi (y
pei)ℓi ▷ χi (ai) ≡ 0 mod fi , deg(χi) ≤ 4ni

5: ▷ Degree reduction, deg(дi) < 4ni
(д1, . . . ,дs) ← (д rem χ1, . . . ,д rem χs)

6: ▷ Modular compositions, either bi ≡ д(a) mod fi or Fail

for i = 1, . . . , s do
ρi ← max(di ,ni/di)
bi ← ModularCompositionModuloPower(hi , ei , ℓi ,ai ,дi , (rk)0≤k<ρi+ ⌈ρηi ⌉

)

if bi = Fail then return Fail

7: return ChineseRemaindering((b1, . . . ,bs), (f1, . . . , fs))

total cost is Õ(nκ) again. Finally, the cost of the last step (if reached) is Õ(n). Altogether, the cost is
Õ(nκ), as claimed.

It remains to discuss the probability of failure. By Proposition 8.3, the ith call to Algorithm

AnnihilatingPolynomial fails with probability at most 6d2

i /card(S); hence, the probability that

we successfully exit the first for-loop is at least 1−6n2/card(S). Then, by Proposition 9.9, the ith call to
AlgorithmModularCompositionModuloPower fails with probability atmost (2n4

i+12n2

i)/card(S),
so the probability that we successfully exit the second for-loop is at least 1 − (2n4 + 12n2)/card(S).
Altogether this gives a failure probability of at most (2n4 + 18n2)/card(S). □

10 APPLICATIONS
We now list several variants of the modular composition problem and related ones and sketch how

the algorithms presented above can improve the best known complexity.

10.1 Annihilating polynomials
10.1.1 Annihilating polynomial. A by-product of Algorithm ModularComposition is a Las Ve-

gas algorithm that takes Õ(nκ) (κ from Theorem 1.1) arithmetic operations for computing an

annihilating polynomial for a of degree at most 4n.
Indeed, with the notation of the algorithm, for all 1 ≤ i ≤ s , since χi (ai) ≡ 0 mod fi we

have χi (a) = ri fi for some ri ∈ K[x]. Hence
∏s

i=1
χi is an annihilating polynomial for a modulo

f =
∏s

i=1
fi , whose degree is at most 4

∑s
i=1

ni = 4n.

72 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

10.1.2 Minimal and characteristic polynomial. In general, our knowledge of the minimal and

characteristic polynomial depends on whether we have a certified basis of relations.

Proposition 10.1. Let R ∈ K[y]m×m
≤2d be the matrix produced by Algorithm CandidateBasis. If R

is a basis ofM
(a,f)
m , then the firstm invariant factors of yIn −Ma , hence in particular the minimal

polynomial µa ∈ K[y] of a modulo f , can be computed in Õ(mωd) operations in K. If furthermore

Cert is returned (implying that R is a basis ofM
(a,f)
m), then the product of these invariant factors

gives the characteristic polynomial χa ∈ K[y] of a modulo f .

Proof. If R is a basis ofMm , Proposition 4.1 shows that the Hermite normal form of R is a

triangular basis ofMm whose diagonal entries are the first invariant factors σ1, . . . ,σm of yIn −Ma ;

in particular µa = σ1. If Cert is returned, then R is a basis ofMm and νm = n (Proposition 5.6).

Hence deg det(R) = n and all the invariant factors are known; the characteristic polynomial is their

product. The Hermite normal form of R can be computed in Õ(mωd) operations [49, Thm. 1.2]. □

One case of certification of the minimal polynomial is when Cert is returned by Algorithm

CandidateBasis, which occurs in particular for any f in K[x] with f (0) , 0 and a generic a in

K[x]<n (see Section 7.3.2). Using Proposition 5.6 and a shift as in Remark 3.8, this establishes the

complexity bound Õ(nκ) for computing a basis of relations and the minimal polynomial in the case

of a generic a ∈ K[x]<n .

Under the assumptions of Proposition 8.3 with the additional hypothesis ν
(a,f)
m = n for m =

⌈nη⌉, a call to Algorithm CandidateBasis instead of a call to Algorithm MatrixOfRelations in

Algorithm ModularCompositionBaseCase, leads to a certified basis of relations ofM
(α ,µγ)
m with

good probability (use Proposition 5.6 instead of Proposition 5.8 in the proof of Proposition 8.3).

From Proposition 10.1, this also allows one to compute and certify the minimal and characteristic

polynomials in time Õ(nκ) when f is separable and ν
(a,f)
⌈nη ⌉ = n.

The latter can be extended to the case f irreducible and separable since then the minimal

polynomial µa must be irreducible as well, and therefore yIn −Ma has r nontrivial invariant factors
all equal to µa . If form = ⌈n

η⌉ the minimal polynomial satisfies δ = deg(µa) ≥ n/m, then r ≤ m

and ν
(a,f)
m = n, hence the above certification when f is separable leads to the minimal polynomial.

The low degree case δ < n/m can be treated directly using Lemma 3.2, allowing to compute µa in

time Õ(nδ (ω2/2)−1), which is Õ(nκ) since δ < ⌈n1−η⌉.

However, a matrix R returned by Algorithm CandidateBasis might not be a basis ofM
(α ,µγ)
m :

without an efficient certification of this property, Proposition 10.1 only gives a minimal poly-

nomial algorithm of the Monte Carlo kind. Proceeding as done above, with a call to Algorithm

CandidateBasis instead of a call to Algorithm MatrixOfRelations in Algorithm ModularCom-

positionBaseCase, a Monte Carlo minimal polynomial algorithm in Õ(nκ) can be derived under

the assumptions of Proposition 8.3.

10.2 Power series reversion and power series equations
In this subsection, the characteristic of K is 0.

For a given a ∈ K[x] with a(0) = 0 and a′(0) , 0, power series reversion (or functional inversion)

asks for a power series д ∈ K[[x]] such that

a(д) = д(a) ≡ x mod xn .

By Newton’s iteration, a composition algorithm in Õ(nc) operations for some c > 1 induces a

reversion algorithm in Õ(nc) operations as well [15]. Thus, we get a Las Vegas algorithm for power

Faster Modular Composition 73

series reversion in Õ(nκ) operations in K. Note that the converse reduction, from reversion to

composition, also holds in this situation [15].

The approach for reversion extends partially to the resolution of a class of power series equations.

The aim is to solve an equation

д(x,y) = b mod xn (36)

for y ∈ K[[x]]<n , when д ∈ K[[x]][y] satisfies д(0, 0) = b(0) and its partial derivative with respect

to y is not 0 at (0, 0).
By Proposition 8.7, AlgorithmCompositionModuloInseparable computes a compositionд(x,a)

in Õ(nκ) operations for д in K[x,y]<(m,n) withm = O(nη) and η ≈ 0.313 from Eq. (3). Together

with Newton’s iteration, this gives a Las Vegas algorithm solving Eq. (36) in Õ(nκ) operations for
д ∈ K[x,y]<(nη ,n). Reversion is the special case with b = x and degx (д) = 0.

Note. It is known that the complexity of composition of power series (in terms of nonscalar opera-

tions) is essentially that of computing the coefficient of xn−1
of д(a) [64]. By contrast, computing

the coefficient of xn−1
in the reverse of a costs only Õ(n) arithmetic operations [15].

10.3 Bivariate composition
In this subsection, the characteristic of K is 0.

Brent and Kung gave an algorithm that computes

д(a,b) rem xn

for д ∈ K[x,y]<(n,n) and truncated power series a,b ∈ K[[x]] in only Õ(n2) operations [14]. This

is quasi-optimal, since the number of coefficients of д is Θ(n2) in general. In the simple situation

where a(0) = 0 and a′(0) = 1, the algorithm is as follows:

(1) by power series reversion, compute s(x) such that a(s) = s(a) ≡ x mod xn ;
(2) by univariate composition, compute c = b(s) rem xn ;
(3) by uni-bivariate composition, compute d = д(x, c) rem xn ;
(4) by univariate composition, compute d(a) rem xn .

The complexity is dominated by the uni-bivariate composition in Step (3), which can be performed

by Horner evaluation in Õ(n2) operations.

We obtain a Las Vegas algorithm with a complexity reduced to Õ(nκ) when д ∈ K[x,y]<(nη ,n),

where the uni-bivariate composition is done in Õ(nκ) as discussed in the case of power series

equations, and all the other steps are univariate compositions that are also performed in Õ(nκ) by
our algorithm.

This method extends to the computation of

д(a,b) rem f

with f of degree n in K[x], and a,b in K[x]<n . The algorithm becomes

(1) compute an annihilating polynomial χ of a modulo f ;
(2) by inverse modular composition, compute c such that c(a) ≡ b mod f ;
(3) by uni-bivariate composition, compute d = д(x, c) rem χ ;
(4) by univariate composition, compute d(a) rem f .

At least for generica, this is again a Las Vegas algorithm in Õ(nκ) operations whenд ∈ K[x,y]<(nη ,n).

REFERENCES
[1] S. Abelard, A. Couvreur, and G. Lecerf. 2020. Sub-quadratic time for Riemann-Roch spaces: case of smooth divisors

over nodal plane projective curves. In Proc. ISSAC. ACM Press, 14–21. https://doi.org/10.1145/3373207.3404053

https://doi.org/10.1145/3373207.3404053

74 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

[2] S. Abelard, A. Couvreur, and G. Lecerf. 2021. Efficient computation of Riemann-Roch spaces for plane curves with ordinary

singularities. HAL Report hal-03110135. https://hal.archives-ouvertes.fr/hal-03110135

[3] J. Alman and V. Vassilevska Williams. 2021. A refined laser method and faster matrix multiplication. In Proc. SODA.

SIAM, 522–539. https://doi.org/10.1137/1.9781611976465.32

[4] B. Beckermann and G. Labahn. 1994. A uniform approach for the fast computation of matrix-type Padé approximants.

SIAM J. Matrix Analysis and Applications 15, 3 (1994), 804–823. https://doi.org/10.1137/S0895479892230031

[5] B. Beckermann, G. Labahn, and G. Villard. 1999. Shifted Normal Forms of Polynomial Matrices. In Proc. ISSAC. ACM

Press, 189–196. https://doi.org/10.1145/309831.309929

[6] D. J. Bernstein. 1998. Composing power series over a finite ring in essentially linear time. J. Symb. Comput. 26 (1998),

339–341. https://doi.org/10.1006/jsco.1998.0216

[7] D. Bini and V. Y. Pan. 1994. Polynomial and matrix computations. Birkhäuser. https://doi.org/10.1007/978-1-4612-0265-3

[8] A. Bostan, F. Chyzak, M. Giusti, R. Lebreton, G. Lecerf, B. Salvy, and É. Schost. 2017. Algorithmes efficaces en calcul

formel. In French. Edited by the authors. https://hal.archives-ouvertes.fr/AECF/

[9] A. Bostan, F. Chyzak, F. Ollivier, B. Salvy, É. Schost, and A. Sedoglavic. 2007. Fast computation of power series solutions

of systems of differential equations. In Proc. SODA. SIAM, 1012–1021. https://dl.acm.org/doi/10.5555/1283383.1283492

[10] A. Bostan, P. Flajolet, B. Salvy, and É. Schost. 2006. Fast computation of special resultants. J. Symb. Comput. 41, 1

(2006), 1–29. https://doi.org/10.1016/j.jsc.2005.07.001

[11] A. Bostan, G. Lecerf, and É. Schost. 2003. Tellegen’s principle into practice. In Proc. ISSAC. ACM Press, 37–44.

https://doi.org/10.1145/860854.860870

[12] A. Bostan, B. Salvy, and É Schost. 2008. Power series composition and change of basis. In Proc. ISSAC. ACM Press,

269–276. https://doi.org/10.1145/1390768.1390806

[13] R. P. Brent, F. G. Gustavson, and D. Y. Y. Yun. 1980. Fast solution of Toeplitz systems of equations and computation of

Padé approximants. J. Algorithms 1, 3 (1980), 259–295. https://doi.org/10.1016/0196-6774(80)90013-9

[14] R. P. Brent and H. T. Kung. 1977. Fast algorithms for composition and reversion of multivariate power series. In Proc.

Conference on Theoretical Computer Science (Waterloo ON, August 15–17, 1977). University of Waterloo, 149–158.

[15] R. P. Brent and H. T. Kung. 1978. Fast algorithms for manipulating formal power series. J. ACM 25, 4 (1978), 581–595.

https://doi.org/10.1145/322092.322099

[16] M. W. Buck, R. A. Coley, and D. P. Robbins. 1992. A generalized Vandermonde determinant. J. Algebraic Combin. 1, 2

(1992), 105–109. https://doi.org/10.1023/A:1022468019197

[17] M. Bürgisser, P.and Clausen and M. A. Shokrollahi. 1997. Algebraic complexity theory. Grundlehren der mathematischen

Wissenschaften, Vol. 315. Springer. https://doi.org/10.1007/978-3-662-03338-8

[18] D. Coppersmith. 1994. Solving Homogeneous Linear Equations over GF(2) via Block Wiedemann Algorithm. Math.

Comput. 62, 205 (1994), 333–350. https://doi.org/10.2307/2153413

[19] J. Della Dora, C. Discrescenzo, and D. Duval. 1985. About a new method for computing in algebraic number fields. In

EUROCAL’85 (LNCS), Vol. 204. Springer, 289–290. https://doi.org/10.1007/3-540-15984-3_279

[20] W. Eberly, M. Giesbrecht, P. Giorgi, A. Storjohann, and G. Villard. 2007. Faster inversion and other black box matrix

computation using efficient block projections. In Proc. ISSAC. ACM Press, 143–150. https://doi.org/10.1145/1277548.

1277569

[21] M. Gasca and J. J. Martínez. 1987. On the computation of multivariate confluent Vandermonde determinants and its

applications. In Proc. Mathematics of Surfaces II. Vol. 11. Oxford Univ. Press, 101–114.

[22] J. von zur Gathen and J. Gerhard. 1999. Modern computer algebra. Third edition 2013. Cambridge University Press.

https://doi.org/10.1017/CBO9781139856065

[23] J. von zur Gathen and V. Shoup. 1992. Computing Frobenius maps and factoring polynomials. Comput. Complex. 2

(1992), 187–224. https://doi.org/10.1007/BF01272074

[24] J. Gerhard. 2004. Modular algorithms in symbolic summation and symbolic integration. Springer. https://doi.org/10.

1007/b104035

[25] P. Gianni and Trager B. 1996. Square-free algorithms in positive characteristic. Appl. Algebra Eng. Commun. Comput.

7, 1 (1996), 1–14. https://doi.org/10.1007/BF01613611

[26] M. Giesbrecht, A. Jamshidpey, and É. Schost. 2021. Subquadratic-time algorithms for normal bases. Comput. Complex.

30, 5 (2021). https://doi.org/10.1007/s00037-020-00204-9

[27] P. Giorgi, C. Jeannerod, and G. Villard. 2003. On the complexity of polynomial matrix computations. In Proc. ISSAC.

ACM Press, 135–142. https://doi.org/10.1145/860854.860889

[28] J. van der Hoeven. 2002. Relax, but Don’t be Too Lazy. J. Symb. Comput. 34, 6 (2002), 479–542. https://doi.org/10.1006/

jsco.2002.0562

[29] J. van der Hoeven and R. Larrieu. 2019. Fast Gröbner basis computation and polynomial reduction for generic bivariate

ideals. Appl. Algebr. Eng. Comm. 30, 6 (2019), 509–539. https://doi.org/10.1007/s00200-019-00389-9

https://hal.archives-ouvertes.fr/hal-03110135
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1137/S0895479892230031
https://doi.org/10.1145/309831.309929
https://doi.org/10.1006/jsco.1998.0216
https://doi.org/10.1007/978-1-4612-0265-3
https://hal.archives-ouvertes.fr/AECF/
https://dl.acm.org/doi/10.5555/1283383.1283492
https://doi.org/10.1016/j.jsc.2005.07.001
https://doi.org/10.1145/860854.860870
https://doi.org/10.1145/1390768.1390806
https://doi.org/10.1016/0196-6774(80)90013-9
https://doi.org/10.1145/322092.322099
https://doi.org/10.1023/A:1022468019197
https://doi.org/10.1007/978-3-662-03338-8
https://doi.org/10.2307/2153413
https://doi.org/10.1007/3-540-15984-3_279
https://doi.org/10.1145/1277548.1277569
https://doi.org/10.1145/1277548.1277569
https://doi.org/10.1017/CBO9781139856065
https://doi.org/10.1007/BF01272074
https://doi.org/10.1007/b104035
https://doi.org/10.1007/b104035
https://doi.org/10.1007/BF01613611
https://doi.org/10.1007/s00037-020-00204-9
https://doi.org/10.1145/860854.860889
https://doi.org/10.1006/jsco.2002.0562
https://doi.org/10.1006/jsco.2002.0562
https://doi.org/10.1007/s00200-019-00389-9

Faster Modular Composition 75

[30] J. van der Hoeven and G. Lecerf. 2017. Composition modulo powers of polynomials. In Proc. ISSAC. ACM Press,

445–452. https://doi.org/10.1145/3087604.3087634

[31] J. van der Hoeven and G. Lecerf. 2018. Modular composition via factorization. J. Complexity 48, 36–68. https:

//doi.org/10.1016/j.jco.2018.05.002

[32] J. van der Hoeven and G. Lecerf. 2019. Accelerated tower arithmetic. J. Complexity 55 (2019). https://doi.org/10.1016/j.

jco.2019.03.002

[33] J. van der Hoeven and G. Lecerf. 2020. Directed evaluation. J. Complexity 60 (2020). https://doi.org/10.1016/j.jco.2020.

101498

[34] J. van der Hoeven and G. Lecerf. 2021. Amortized bivariate multi-point evaluation. In Proc. ISSAC. ACM Press, 179–185.

https://doi.org/10.1145/3452143.3465531

[35] J. van der Hoeven and G. Lecerf. 2021. Fast amortized multi-point evaluation. J. Complexity (2021), 101574. https:

//doi.org/10.1016/j.jco.2021.101574

[36] J. van der Hoeven and G. Lecerf. 2021. Fast computation of generic bivariate resultants. J. Complexity 62 (2021).

https://doi.org/10.1016/j.jco.2020.101499

[37] X. Huang and V. Y. Pan. 1998. Fast rectangular matrix multiplication and applications. J. Complexity 14 (1998), 257–299.

https://doi.org/10.1006/jcom.1998.0476

[38] C.-P. Jeannerod, V. Neiger, and G. Villard. 2020. Fast computation of approximant bases in canonical form. J. Symb.

Comput. 98 (2020), 192–224. https://doi.org/10.1016/j.jsc.2019.07.011

[39] T. Kailath. 1980. Linear Systems. Prentice-Hall.

[40] E. Kaltofen. 1992. On computing determinants without divisions. In Proc. ISSAC. ACM Press, 342–349. https:

//doi.org/10.1145/143242.143350

[41] E. Kaltofen. 2000. Challenges of symbolic computation: my favorite open problems. J. Symb. Comput. 29, 6 (2000),

891–919. https://doi.org/10.1006/jsco.2000.0370

[42] E. Kaltofen and V. Y. Pan. 1991. Processor efficient parallel solution of linear systems over an abstract field. In Proc.

SPAA. ACM, 180–191. https://doi.org/10.1145/113379.113396

[43] E. Kaltofen and D. Saunders. 1991. On Wiedemann’s method of solving sparse linear systems. In AAECC-9 (LNCS),

Vol. 539. Springer Verlag, 29–38. https://doi.org/10.1007/3-540-54522-0_93

[44] E. Kaltofen and V. Shoup. 1997. Fast polynomial factorization over high algebraic extensions of finite fields. In Proc.

ISSAC. ACM Press, 184–188. https://doi.org/10.1145/258726.258777

[45] E. Kaltofen and V. Shoup. 1998. Subquadratic-time factoring of polynomials over finite fields. Math. Comp. 67, 233

(1998), 1179–1197. https://doi.org/10.1090/S0025-5718-98-00944-2

[46] E. Kaltofen and G. Villard. 2005. On the complexity of computing determinants. Comput. Complex. 13, 3 (2005), 91–130.

https://doi.org/10.1007/s00037-004-0185-3

[47] E. Kaltofen and G. Yuhasz. 2013. On the matrix Berlekamp-Massey algorithm. ACM Trans. Algorithms 9, 4 (2013),

33:1–33:24. https://doi.org/10.1145/2500122

[48] K. S. Kedlaya and C. Umans. 2011. Fast polynomial factorization and modular composition. SIAM J. on Computing 40,

6 (2011), 1767–1802. https://doi.org/10.1137/08073408X

[49] G. Labahn, V. Neiger, and W. Zhou. 2017. Fast, deterministic computation of the Hermite normal form and determinant

of a polynomial matrix. J. Complexity 42 (2017), 44–71. https://doi.org/10.1016/j.jco.2017.03.003

[50] D. Lazard. 1985. Ideal bases and primary decomposition: case of two variables. J. Symb. Comput. 1, 3 (1985), 261–270.

https://doi.org/10.1016/S0747-7171(85)80035-3

[51] F. Le Gall. 2014. Powers of tensors and fast matrix multiplication. In Proc. ISSAC. ACM Press, 296–303. https:

//doi.org/10.1145/2608628.2608664

[52] F. Le Gall and F. Urrutia. 2018. Improved rectangular matrix multiplication using powers of the Coppersmith-Winograd

tensor. In Proc. SODA. SIAM, 1029–1046. https://doi.org/10.1137/1.9781611975031.67

[53] G. Lecerf. 2008. Fast separable factorization and applications. Appl. Algebra Eng. Commun. Comput. 19, 2 (2008),

135–160. https://doi.org/10.1007/s00200-008-0062-4

[54] J. D. Lipson. 1976. Newton’s method: a great algebraic algorithm. In Proc. SYMSAC. ACM Press, 260–270. https:

//doi.org/10.1145/800205.806344

[55] T. Mulders and A. Storjohann. 2003. On lattice reduction for polynomial matrices. J. Symb. Comput. 35 (2003), 377–401.

Issue 4. https://doi.org/10.1016/S0747-7171(02)00139-6

[56] V. Neiger. 2016. Bases of relations in one or several variables: fast algorithms and applications. Ph.D. Dissertation. École

Normale Supérieure de Lyon. https://tel.archives-ouvertes.fr/tel-01431413/

[57] V. Neiger, J. Rosenkilde, and G. Solomatov. 2020. Generic bivariate multi-point evaluation, interpolation and modular

composition with precomputation. In Proc. ISSAC. ACM Press, 388–395. https://doi.org/10.1145/3373207.3404032

[58] M. Newman. 1972. Integral Matrices. Academic Press. First edition.

https://doi.org/10.1145/3087604.3087634
https://doi.org/10.1016/j.jco.2018.05.002
https://doi.org/10.1016/j.jco.2018.05.002
https://doi.org/10.1016/j.jco.2019.03.002
https://doi.org/10.1016/j.jco.2019.03.002
https://doi.org/10.1016/j.jco.2020.101498
https://doi.org/10.1016/j.jco.2020.101498
https://doi.org/10.1145/3452143.3465531
https://doi.org/10.1016/j.jco.2021.101574
https://doi.org/10.1016/j.jco.2021.101574
https://doi.org/10.1016/j.jco.2020.101499
https://doi.org/10.1006/jcom.1998.0476
https://doi.org/10.1016/j.jsc.2019.07.011
https://doi.org/10.1145/143242.143350
https://doi.org/10.1145/143242.143350
https://doi.org/10.1006/jsco.2000.0370
https://doi.org/10.1145/113379.113396
https://doi.org/10.1007/3-540-54522-0_93
https://doi.org/10.1145/258726.258777
https://doi.org/10.1090/S0025-5718-98-00944-2
https://doi.org/10.1007/s00037-004-0185-3
https://doi.org/10.1145/2500122
https://doi.org/10.1137/08073408X
https://doi.org/10.1016/j.jco.2017.03.003
https://doi.org/10.1016/S0747-7171(85)80035-3
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1137/1.9781611975031.67
https://doi.org/10.1007/s00200-008-0062-4
https://doi.org/10.1145/800205.806344
https://doi.org/10.1145/800205.806344
https://doi.org/10.1016/S0747-7171(02)00139-6
https://tel.archives-ouvertes.fr/tel-01431413/
https://doi.org/10.1145/3373207.3404032

76 Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard

[59] M. Nüsken and M. Ziegler. 2004. Fast multipoint evaluation of bivariate polynomials. In Algorithms – ESA 2004.

Springer, Berlin, Heidelberg, 544–555. https://doi.org/10.1007/978-3-540-30140-0_49

[60] M. Paterson and L. J. Stockmeyer. 1973. On the number of nonscalar multiplications necessary to evaluate polynomials.

SIAM J. Comput. 2, 1 (1973), 60–66. https://doi.org/10.1137/0202007

[61] A. Poteaux and É. Schost. 2013. Modular composition modulo triangular sets and applications. Comput. Complex. 22, 3

(2013), 463–516. https://doi.org/10.1007/s00037-013-0063-y

[62] A. Poteaux and É. Schost. 2013. On the complexity of computing with zero-dimensional triangular sets. J. Symb.

Comput. 50 (2013), 110–138. https://doi.org/10.1016/j.jsc.2012.05.008

[63] D. Reischert. 1997. Asymptotically fast computation of subresultants. In Proc. ISSAC. ACM Press, 233–240. https:

//doi.org/10.1145/258726.258792

[64] P. Ritzmann. 1986. A fast numerical algorithm for the composition of power series with complex coefficients. Theoret.

Comput. Sci. 44, 1 (1986), 1–16. https://doi.org/10.1016/0304-3975(86)90107-6

[65] V. Shoup. 1994. Fast construction of irreducible polynomials over finite fields. J. Symb. Comput. 17, 5 (1994), 371–391.

https://doi.org/10.1006/jsco.1994.1025

[66] V. Shoup. 1995. A new polynomial factorization algorithm and its implementation. J. Symb. Comput. 20, 4 (1995),

363–397. https://doi.org/10.1006/jsco.1995.1055

[67] V. Shoup. 1999. Efficient computation of minimal polynomials in algebraic extensions of finite fields. In Proc. ISSAC.

ACM Press, 53–58. https://doi.org/10.1145/309831.309859

[68] C. Umans. 2008. Fast polynomial factorization and modular composition in small characteristic. In Proc. STOC. ACM

Press, 481–490. https://doi.org/10.1145/1374376.1374445

[69] M. Van Barel and A. Bultheel. 1992. A general module theoretic framework for vector M-Padé and matrix rational

interpolation. Numer. Algorithms 3 (1992), 451–462. https://doi.org/10.1007/BF02141952

[70] G. Villard. 1997. A study of Coppersmith’s block Wiedemann algorithm using matrix polynomials. RR 975 IM IMAG.

http://perso.ens-lyon.fr/gilles.villard/BIBLIOGRAPHIE/PDF/rr0497.pdf

[71] G. Villard. 2018. On computing the resultant of generic bivariate polynomials. In Proc. ISSAC. ACM Press, 391–398.

https://doi.org/10.1145/3208976.3209020

[72] D. Wiedemann. 1986. Solving sparse linear equations over finite fields. IEEE Trans. Information Theory 32, 1 (1986),

54–62. https://doi.org/10.1109/TIT.1986.1057137

[73] W. A. Wolovich. 1974. Linear Multivariable Systems. Applied Mathematical Sciences, Vol. 11. Springer-Verlag New-York.

https://doi.org/10.1007/978-1-4612-6392-0

[74] W. Zhou and G. Labahn. 2012. Efficient algorithms for order basis computation. J. Symb. Comput. 47, 7 (2012), 793–819.

https://doi.org/10.1016/j.jsc.2011.12.009

[75] W. Zhou, G. Labahn, and A. Storjohann. 2012. Computing minimal nullspace bases. In Proc. ISSAC. ACM Press, 366–373.

https://doi.org/10.1145/2442829.2442881

https://doi.org/10.1007/978-3-540-30140-0_49
https://doi.org/10.1137/0202007
https://doi.org/10.1007/s00037-013-0063-y
https://doi.org/10.1016/j.jsc.2012.05.008
https://doi.org/10.1145/258726.258792
https://doi.org/10.1145/258726.258792
https://doi.org/10.1016/0304-3975(86)90107-6
https://doi.org/10.1006/jsco.1994.1025
https://doi.org/10.1006/jsco.1995.1055
https://doi.org/10.1145/309831.309859
https://doi.org/10.1145/1374376.1374445
https://doi.org/10.1007/BF02141952
http://perso.ens-lyon.fr/gilles.villard/BIBLIOGRAPHIE/PDF/rr0497.pdf
https://doi.org/10.1145/3208976.3209020
https://doi.org/10.1109/TIT.1986.1057137
https://doi.org/10.1007/978-1-4612-6392-0
https://doi.org/10.1016/j.jsc.2011.12.009
https://doi.org/10.1145/2442829.2442881

	Abstract
	1 Introduction
	1.1 Algorithmic Tools
	1.2 Overview of the core algorithm
	1.3 Probabilistic algorithm for f separable or purely inseparable
	1.4 Algorithm for the general case
	1.5 Previous algorithms in special cases
	1.6 Related questions
	1.7 Outline

	2 Preliminaries
	3 Simultaneous modular operations by matrix multiplication
	3.1 Brent and Kung's algorithm
	3.2 Bivariate composition
	3.3 Sequence of truncated modular powers
	3.4 Notes

	4 Matrices of relations for composition
	4.1 Structure of the module of relations
	4.2 Composition using matrices of relations
	4.3 Annihilating polynomials using matrices of relations

	5 Computing matrices of relations
	5.1 Matrices of relations as denominators of matrix fractions
	5.2 Reconstructing denominators of matrix fractions via approximant bases
	5.3 Candidate basis of relations
	5.4 Certified matrix of relations

	6 Change of basis
	6.1 Definitions
	6.2 Inverse modular composition and change of basis via approximant bases

	7 The block Hankel matrix Hk(a,f) and its generic properties
	7.1 Relation between block Hankel matrix rank and fraction description degree
	7.2 Families with block Hankel matrix of rank n
	7.3 Generic regularity in a and f
	7.4 Generic rank for a separable f

	8 A randomized composition algorithm through change of basis
	8.1 Randomized composition
	8.2 Randomized annihilating polynomial
	8.3 Success of randomization for separable f
	8.4 Success of randomization for f purely inseparable: small valuation
	8.5 Complete algorithm for f purely inseparable

	9 Algorithm for general f
	9.1 Separable decomposition
	9.2 Composition over products of fields, modulo purely inseparable f
	9.3 Untangling and tangling
	9.4 Composition modulo powers
	9.5 Main algorithm and its analysis

	10 Applications
	10.1 Annihilating polynomials
	10.2 Power series reversion and power series equations
	10.3 Bivariate composition

	References

