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Abstract  19 

Ribosomal RNA (rRNA) production represents the most active transcription in the cell. 20 

Synthesis of the large rRNA precursors (35S/47S in yeast/human) is achieved by up to hundreds of 21 

RNA polymerase I (Pol I) enzymes simultaneously transcribing a single rRNA gene. In this review, 22 

we present recent advances in understanding the coupling between rRNA production and nascent 23 

rRNA folding. Mapping of the distribution of Pol I along ribosomal DNA at nucleotide resolution, 24 

using either native elongating transcript sequencing (NET-Seq) or crosslinking and analysis of 25 

cDNAs (CRAC), revealed frequent Pol I pausing, and CRAC results revealed a direct coupling 26 

between pausing and nascent RNA folding. High density of Pol I per gene imposes topological 27 

constraints that establish a defined pattern of polymerase distribution along the gene, with a 28 

persistent spacing between transcribing enzymes. RNA folding during transcription directly acts as 29 

an anti-pausing mechanism, implying that proper folding of the nascent rRNA favors elongation in 30 

vivo. Defects in co-transcriptional folding of rRNA are likely to induce Pol I pausing. We propose 31 

that premature termination of transcription, at defined positions, can control rRNA production in 32 

vivo. 33 

  34 
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 35 

Synthesis of the 35S primary transcript by Pol I 36 

Yeast haploid cells contain between 150 and 200 copies of tandemly repeated rRNA genes 37 

while the diploid human genome contains around 400 copies. Although present at a high copy 38 

number in the genomes, not all rRNA genes are actively transcribed. In budding yeast, only about 39 

50% of the genes on average are transcribed in exponentially growing cells. Each ribosomal gene 40 

unit spreads over 9.1 kb of DNA and contains two transcribed regions encoding the 35S pre-rRNA, 41 

transcribed by RNA Polymerase I (Pol I), and the 5S rRNA, transcribed by Pol III (Figure 1A). These 42 

transcribed regions are separated by intergenic spacers (IGSs): IGS1 starts at the transcription 43 

termination site of the 35S gene and ends at the 5S rRNA gene terminator and IGS2 corresponds to 44 

the region between the 5S rRNA gene promoter and the promoter of the next 35S gene (Nomura, 45 

2001). Pol I transcription accounts for almost 60% of total transcriptional activity in yeast cells 46 

(Warner, 1999). This process occurs in the nucleolus and results in the synthesis of the 35S pre-47 

rRNA containing the sequences of three of the four rRNAs composing the mature ribosome, the 18S, 48 

5.8S and 25S rRNAs. These sequences are flanked and separated by sequences that are not retained 49 

in the mature ribosomes: respectively the 5’ and 3’ external transcribed spacers (5’ ETS and 3’ ETS) 50 

and the internal transcribed spacers 1 and 2 (ITS1 and ITS2) (Figure 1A). This 35S precursor will be 51 

co-transcriptionally packaged into pre-ribosomal particles that will undergo a complex maturation 52 

pathway to generate the mature ribosomal subunits. 53 

Transcription initiation and termination 54 

Pol I enzyme in yeast is composed of 14 subunits (global molecular weight of 590 kDa) 55 

including two large subunits, Rpa190 and Rpa135, jointly forming the active site of the enzyme 56 

(Riva et al., 1987) (Figure 1B). Crystal structure of yeast Saccharomyces cerevisiae Pol I revealed 57 

the interactions occurring between its 14 subunits: the two large subunits Rpa190 and Rpa135 58 

organize the enzyme in two modules of similar mass (Engel et al., 2013; Fernández-Tornero et al., 59 

2013). The Pol I-specific subunits whose role during transcription has been partially characterized 60 

include Rpa43 and Rpa14 subunits in the stalk, and Rpa34, Rpa49 and Rpa12 subunits associated 61 

with the jaw/lobe module (Figure 1B). 62 

Formation of preinitiation complex (PIC) is presented in Figure 1C. Pol I promoter contains 63 

two sequences required for efficient transcription initiation: the upstream activating sequence (UAS) 64 

and the core element (CE) (Boukhgalter et al., 2002; Nomura, 2001). Recruitment of the polymerase 65 

to the promoter to form the PIC relies on four transcription factors: upstream activating factor (UAF), 66 

core factor (CF), TATA-binding protein (TBP) and the Rrn3 transcription factor (Keener et al., 67 

1998). UAF is the first complex to associate with the UAS of the rDNA promoter to initiate PIC 68 

assembly (Steffan et al., 1996). TBP was shown to bind to both CF and UAF, thus serving as a bridge 69 

to position CF downstream of the UAS. Binding of CF to the CE allows further recruitment of Pol I 70 

stably associated with Rrn3 (Aprikian et al., 2001). Rrn3 is a highly conserved transcription factor 71 

that associates with the Rpa43-Rpa14 heterodimer of Pol I and interacts with the Rrn6 subunit of the 72 

CF. It is therefore a crucial element required for transcription initiation (Peyroche et al., 2000; 73 

Aprikian et al., 2001). Transcription begins at the transcription start site (TSS) and Pol I and Rrn3 are 74 

released from the PIC upon transcription initiation. Several structural studies gave new insights into 75 

Pol I promoter recognition and melting, and more broadly into transcription initiation by yeast Pol I 76 

(Sadian et al., 2017; Tafur et al., 2019; Sadian et al., 2019; Moreno-Morcillo et al., 2014; Tafur et al., 77 
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2016; Neyer et al., 2016; Engel et al., 2016, 2013; Blattner et al., 2011; Han et al., 2017; Knutson et 78 

al., 2020; Smith et al., 2018). These studies will not be detailed here. 79 

Pol I transcription termination involves pausing induced by a terminator protein, leading to 80 

dissociation of the polymerase and release of the primary transcript. Paradoxically, termination is not 81 

required for rRNA production since nascent transcript is released through the endonucleolytic 82 

cleavage by Rnt1 (Figure 1D)(Henras et al., 2005).  In fission yeast, Reb1 protein interacts with the 83 

Rpa12 subunit of Pol I to stimulate termination (Jaiswal et al., 2016). In budding yeast, 90 % of Pol I 84 

transcription termination occurs at a well-defined primary terminator element (T1) downstream of the 85 

25S rRNA sequence (Figure 1D). Transcription termination at this site implicates the DNA-binding 86 

factor Nsi1, a Reb1 paralog, which promotes termination upstream of T1 at a T-rich element that 87 

likely operates as a polymerase release element (Lang and Reeder, 1993; Merkl et al., 2014; Reiter et 88 

al., 2012). In 10% of the cases, Pol I reads through this first terminator and stops at a downstream, 89 

“fail-safe” terminator (T2) located around position +250 from the 3’ end of the 25S rRNA sequence 90 

(Reeder et al., 1999). Transcription termination on Pol II-transcribed  genes was shown to involve the 91 

5’-3’ exoribonuclease Rat1 through a mechanism called “torpedo” (West et al., 2004; Luo et al., 92 

2006; Kim et al., 2004). According to this model, Rat1 binds and degrades the transcript emerging 93 

from the polymerase following cleavage and release of the pre-mRNA, and given its high 94 

processivity, Rat1 catches up and dissociates Pol II from the DNA template. In the context of Pol I 95 

transcription, Rat1 was shown to interact with terminator sequences T1 and T2 and to be required for 96 

efficient termination. Its catalytic activity is required for this function since expression of a 97 

catalytically inactive mutant of Rat1 (Rat1D235A) could not suppress the Pol I termination defect 98 

observed in absence of Rat1. The absence of both Rat1 and Fob1, bound to the Replication Fork 99 

Barrier (RFB) site (Figure 1D), increases polymerase read-through of T2 and the RFB site, indicating 100 

that Fob1 is also partly involved in termination (El Hage et al., 2008). 101 

Pol I subunits and trans-acting factors involved in elongation dynamics 102 

Transcription elongation properties involve in particular three Pol I subunits present on the 103 

lobe (Figure 1B): Rpa12 and the heterodimer Rpa34/Rpa49 (Gadal et al., 1997; Nogi et al., 1993; 104 

Liljelund et al., 1992). In absence of Rpa34/Rpa49, Pol I activity is altered (Huet et al., 1975; 105 

Liljelund et al., 1992). Pol I lacking the Rpa34/Rpa49 subunits does not produce RNA to the same 106 

extent as a wild-type enzyme (Kuhn et al., 2007; Beckouet et al., 2008; Albert et al., 2011). 107 

Furthermore, this heterodimer plays an important role in transcription by improving the recruitment 108 

of the Rrn3-Pol I complex to the rDNA and by triggering the release of Rrn3 from elongating Pol I. 109 

Indeed, in an rpa49 deletion strain, Rrn3 is recruited less efficiently at the promoter and fails to 110 

dissociate from elongating polymerases following transcription initiation (Beckouet et al., 2008). 111 

Interestingly, Rpa49 and Rpa34 are important for nucleolar assembly and formation of a property of 112 

actively transcribed rRNA genes called “Pol I caravans” or “ Pol I convoys”, reflecting a spatial 113 

proximity between adjacent polymerases (Albert et al., 2011; Neyer et al., 2016). Rpa12 subunit 114 

stabilizes the Rpa49/Rpa34 heterodimer on the polymerase (Van Mullem et al., 2002; Tafur et al., 115 

2019). In the absence of Rpa12, Pol I catalytic properties are affected (Scull et al., 2021; Appling et 116 

al., 2018). Furthermore, Pol I transcription through a linear mono-nucleosomal template was shown 117 

to be defective in the absence of the lobe-binding subunits (Merkl et al., 2020). Mutations affecting 118 

the Rpa135 subunit were also shown to affect transcription elongation. In particular, mutation of the 119 

amino acid at position 784 (rpa135-D784G), suspected to play a role in loading NTP substrates, 120 

caused reduced transcription compared to a wild-type Pol I. Calculation of Pol I elongation rate in 121 

vitro showed that this Rpa135 mutant is ten times slower than the wild-type polymerase (Schneider et 122 

al., 2007). 123 
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In addition to the role of Pol I subunits in transcription elongation, transcription factor Spt5 in 124 

complex with Spt4, was also shown to be required for efficient Pol I transcription (Schneider et al., 125 

2006). Immunoprecipitation and mass spectrometry experiments showed that this complex interacts 126 

directly with multiple Pol I subunits (Rpa49, Rpa34, Rpa135 and Rpa190), through the NGN and 127 

KOW domains of Spt5 (Schneider et al., 2006). Moreover, Spt5 also associates with the transcription 128 

factor Rrn3 and with the 35S rRNA gene (coding region and promoter) (Viktorovskaya et al., 2011). 129 

Depletion of Spt4 in yeast results in a temperature-sensitive slow growth phenotype associated with a 130 

decreased rRNA synthesis rate as well as a reduced Pol I elongation efficiency, also impacting pre-131 

rRNA processing and ribosome assembly (Schneider et al., 2006). Furthermore, Spt5 mutations 132 

suppress the cold-sensitive phenotype of an rpa49Δ strain. All these data support a function of the 133 

Spt4-Spt5 complex in Pol I transcription elongation, which remains to be understood at the molecular 134 

level. Another related protein, Spt6, interacts with the Spt4/Spt5 complex and was also proposed to 135 

play a role in Pol I transcription (Swanson and Winston, 1992). Spt6 interacts with Pol I subunit 136 

Rpa43 (Beckouët et al., 2011). It was shown that Spt6 associates with rDNA and is required for Pol I 137 

transcription since a strain carrying an in-frame deletion allele of SPT6 (Spt6-1004) showed reduced 138 

Pol I occupancy on the rDNA (Engel et al., 2015). Other factors including Hmo1 also modulate Pol I 139 

elongation properties, but the underlying mechanisms remain elusive (Higashino et al., 2015; Albert 140 

et al., 2013). 141 

Mapping Pol I position at nucleotide resolution to investigate Pol I elongation in vivo  142 

In addition to the implication of Pol I subunits and trans-acting factors, Pol I elongation is 143 

also regulated by mechanisms intrinsic to the transcription process. Elongation is fundamentally 144 

discontinuous, with events of pausing, backtracking and possible premature termination, which 145 

remain to be explored. Pol I elongation was studied using the native elongating transcript sequencing 146 

(NET-seq) method, based on deep sequencing of the 3’ ends of nascent transcripts associated with 147 

the polymerase (Churchman and Weissman, 2011). This study revealed hundreds of positions within 148 

rDNA that reproducibly induce pausing (Clarke et al., 2018). Unfortunately, fragments of mature 149 

rRNAs co-purifying with Pol I in the NET-seq procedure could introduce bias in the analysis. 150 

Turowski and co-workers used the crosslinking and analysis of cDNAs (CRAC) technique to map the 151 

position of Pol I on rDNA during elongation. CRAC consists in crosslinking Pol I to its associated 152 

nascent rRNAs during elongation in vivo, followed by complex purification, reverse transcription of 153 

associated rRNAs and sequencing of cDNAs (Turowski et al., 2020). Applied to a population of 154 

cells, this method provides a statistical snapshot of the position of transcribing Pol I all along the 155 

rDNA unit and allows the determination of areas of the gene in which Pol I is accumulated (Figure 156 

2A). It is noteworthy that a high polymerase occupancy reflects a low elongation rate. This CRAC 157 

analysis revealed a massive Pol I enrichment in the 5’ end of rRNA genes. Enrichment of 158 

polymerases at the 5’ end of rRNA genes was previously observed, but to a much lower extend, 159 

using the chromatin spread method developed by Oskar Miller, allowing a direct observation of Pol I 160 

in complex along rDNA (Miller and Beatty, 1969)(Osheim et al., 2009; French et al., 2003). It was 161 

speculated that the high density of polymerases in the 5’ETS region, called “Low Entrainment 162 

Region” (LER), results in polymerases moving more slowly (decreasing Pol I elongation rate <20%) 163 

and more closely positioned over the initial 2 kb. As an underlying mechanism, Turowski and 164 

collaborators proposed that in the LER, where Pol I is associated with only short nascent transcripts, 165 

Pol I molecules are able to rotate freely along DNA grooves during elongation, while they become 166 

progressively unable to do so due to viscous drag 2 Kb after initiation (Figure 2B). Accordingly, 167 

polymerase activity in the LER would not generate torsion in DNA, which allows changes in the 168 

relative positions of adjacent polymerases. This results in increased freedom for movement, likely 169 

increasing the probability of backtracking events, which would explain the accumulation of Pol I in 170 
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the 5’ region of the genes. The high density of polymerases in the 5’ETS region is also correlated 171 

with the fact that major early pre-rRNA assembly events take place on the 5’ region of nascent rRNA 172 

(Chaker-Margot et al., 2017).  173 

It is important to note that Pol I translocation is based on Brownian ratchet motion making 174 

elongation prone to frequent backtracking and potentially sensitive to quite modest forces 175 

(Dangkulwanich et al., 2013). Co-transcriptional folding of the nascent rRNA has direct 176 

consequences on elongation by preventing backtracking, thereby favoring productive elongation 177 

(Turowski et al., 2020). Any co-transcriptional association with the nascent transcript of trans-acting 178 

factors (UTPs, snoRNPs) should have the same stimulatory effect on transcription. With up to 200 179 

transcribing Pol I per rRNA gene, each enzyme is influenced by its neighbors along the template 180 

directly through steric constraints. Indirectly, away of the LER predicted to occur only in the first 2 181 

kb, torsional constraints on DNA plays a major role (torsional coupling): 182 

- When the rotation around DNA of the transcribing polymerases is prevented by viscous drag 183 

due to the size and structure of nascent rRNA, elongation can be described within the twin-184 

supercoiled domain model: DNA screws into the polymerase and experiences positive supercoiling 185 

downstream and negative supercoiling upstream (Liu and Wang, 1987). 186 

 - When all polymerases transcribe at the same rate, the negative DNA supercoiling created in 187 

the wake of one translocating polymerase is rapidly cancelled out by the positive DNA supercoiling 188 

created in front of the following one. The torsional stress between polymerases is alleviated and a fast 189 

and processive collective translocation is allowed, leading to polymerase convoys (Lesne et al., 2018; 190 

Kim et al., 2019). Therefore, all polymerases in convoys translocate at the same rate, their spacing 191 

remains constant (Figure 2C). Any change in the relative positions of transcribing polymerases 192 

generates torsional stress, which will quickly exceed the low stalling force of the polymerases 193 

(Heberling et al., 2016; Ma et al., 2013; Tantale et al., 2016). Any local modification of Pol I spacing 194 

within rDNA modifies DNA supercoiling, and the associated increase of local torsional energy 195 

generates an apparent force sufficiently strong to restore the initial distance between the polymerases 196 

and ensures the cohesion of the convoy (Lesne et al., 2018). Deletion or rapid depletion of 197 

topoisomerase I, results in defective rRNA synthesis (Albert et al., 2019; El Hage et al., 2010), 198 

highlighting the importance of resolving DNA supercoiling (downstream and upstream of each 199 

convoy) for efficient Pol I transcription elongation. 200 

However, this cooperative long-distance group behavior may also induce antagonist effects on 201 

elongation. It was observed that promoter shut-off reduces the apparent elongation rate of the 202 

engaged polymerases, which is associated with a significant increase in premature termination (Kim 203 

et al., 2019). It is rational to suppose that the same effect occurs when elongating Pol I gets stalled on 204 

rDNA, thus leading to accumulation of negative torsional stress in the wake of the downstream Pol I 205 

(i.e. the nearby Pol I farthest from the promoter). Pol I stalling is known to increase premature 206 

termination of the paused Pol I and possibly also of the downstream polymerases (Figure 2C). Such a 207 

phenomenon was previously described as premature termination of transcription (PTT) for Pol II 208 

(Kamieniarz-Gdula and Proudfoot, 2019). 209 

These premature termination events could also potentially explain the 5′ bias observed in the 210 

Pol I CRAC profile. Pol II is known to undergo a transition from initiation to elongation states that is 211 

associated with changes of the phosphorylation status of the C-terminal domain (CTD) of the largest 212 

Pol II subunit (Milligan et al., 2016). It is possible that Pol I undergoes a similar transition, the 5′ 213 

accumulation bias reflecting a region in which the polymerase has an elevated probability to 214 
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terminate prematurely. However, consideration of premature termination in the model of Turowski 215 

and collaborators, even though it recapitulated the overall profile, reduced by 30% the total number 216 

of polymerases per transcription unit, which falls below the number of Pol I molecules per rDNA 217 

observed using Miller spreads (Turowski et al., 2020). Nevertheless, premature termination of Pol I 218 

cannot be excluded and could, at least partially, play a role in establishing the 5′ bias.  219 

Working hypothesis: Pol I processivity and premature termination 220 

In order to better understand transcription regulation, Pol I mutants are of particular interest. 221 

We have recently identified in a genetic screen a super-active Pol I mutant, bearing a single 222 

substitution on the second largest subunit: Rpa135-F301S allele, hereafter named SuperPol I. This 223 

mutant induces an increase of rRNA production in yeast (Darrière et al., 2019). The mechanism 224 

leading to this increased rRNA production is not well understood. We proposed that this mutation 225 

alleviates an intrinsic repressive element of the polymerase, leading to increased processivity during 226 

elongation, i.e. the ability of Pol I to carry out continuous RNA synthesis on the DNA template 227 

without premature termination. This hypothesis is based on several experimental evidences. First, 228 

Miller spreads showed that the amounts of Pol I engaged in transcription are comparable in wild-type 229 

(WT) and mutant cells, meaning that the increased production of rRNA is not due to a major 230 

enhancement of Pol I initiation rate (Darrière et al., 2019). Moreover, in vitro promoter-dependent 231 

transcription assays confirmed that transcription initiation rate is similar between WT and SuperPol I. 232 

On the other hand, a tailed template assay, measuring elongation rate in vitro, revealed an increased 233 

rRNA production by the SuperPol I, likely due to a higher processivity (Darrière et al., 2019). Taken 234 

together, these elements suggest that the Rpa135-F301S mutation induces modifications in the 235 

elongation process, and more precisely on processivity. Premature termination directly affects 236 

processivity and likely influences Pol I distribution along the DNA template. Importantly, premature 237 

termination can not be measured by CRAC, which relies on detection of rRNA still bound to Pol I. 238 

To demonstrate the occurrence of premature termination events, defined as a dissociation of the 239 

elongation complex and release of the nascent rRNA, it will be necessary to correlate Pol I complex 240 

stalling with the production of abortive rRNAs. This could be achieved by combining Pol I CRAC 241 

data, highlighting precise pause sites, with a mapping of the corresponding abortive transcripts. 242 

Detection of rRNA species resulting from abortive transcription in differential amounts in cells 243 

expressing the SuperPol or WT polymerase should allow to better understand what features of 244 

elongating Pol I lead to premature termination. The increased processivity of the SuperPol mutant 245 

could likely be the consequence of a lower occurrence of premature termination, i.e. a lower 246 

production of abortive rRNAs.  247 

Conclusion and perspectives 248 

Methods allowing to map at nucleotide resolution Pol I pausing sites during elongation 249 

revealed a key interplay between RNA folding and elongation rate: formation of rRNA secondary 250 

structure prevents backtracking, hence enhances elongation rate. With a large amount of co-251 

transcriptional folding of rRNA, we are now able to study how processing events are affecting Pol I 252 

elongation rate. So far limited to budding yeast, there is no doubt that some Pol I regulatory 253 

mechanism are evolutionary conserved, as Pol I elongation rate is limiting for rRNA synthesis in 254 

metazoan cells (Hung et al., 2017). The understanding of the precise mechanistic of Pol I 255 

transcription and the implication of each inherent elongation feature opens wide prospects on health-256 

related areas of research, particularly to understand a large number of genetic diseases collectively 257 

called ribosomopathies. Pol I inhibition used in cancer therapy these recent years will also benefit 258 

from such mechanistic breakthroughs (Ferreira et al., 2020; Kampen et al., 2020; Sulima et al., 2019).  259 
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Figure 1: Ribosomal DNA transcription by RNA Pol I 262 

A. Ribosomal DNA. The rDNA repeats (150-200) are located on chromosome XII. A single 263 

repeated unit is transcribed by RNA polymerase I (Pol I) to synthesize the 35S primary pre-rRNA 264 

transcript, which is then processed to produce the mature 18S, 5,8S and 25S rRNAs (arrow pointing 265 

to the right). RNA Polymerase III synthesizes the 5S rRNA (arrow pointing to the left). IGS, 266 

intergenic sequences; ETS, external transcribed spacer; ITS, internal transcribed spacer. 267 

 B. RNA Polymerase I. Pol I 3D structure (Darrière et al., 2019). View of the initially 268 

transcribing complex model and its 4 different subunits - PDB 5W66 (Han et al., 2017). Catalytic 269 

amino acids are located in the center of the central cleft. The two main modules are mobile and allow 270 

cleft opening and closure, depending of the transcription step. 271 

 C. Transcription initiation. Composition of Pol I pre-initiation complex (see text for 272 

details). UAF, Upstream Activating Factor; TBP, TATA-binding protein; CF, Core Factor. 273 

 D. Transcription termination. Pol I termination mechanisms (see text for details). 274 
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Figure 2: RNA Pol I elongation dynamics 277 

A. RNA Pol I distribution along rDNA template. Rpa135-CRAC results showing strong 278 

Pol I accumulation at 5’ end of the rRNA gene (Turowski et al., 2020). 279 

B. Elongation dynamics in the Low Entrainment Region. Schematic representation of Pol 280 

I elongation dynamics in the LER (Turowski et al., 2020). Associated with short nascent transcripts, 281 

Pol I can easily rotate around rDNA in the 5’ region, leading to free translocation and a higher rate of 282 

backtracking.  Beyond LER, viscous drag  limits the rotation of the pre-RNA/Pol I complex around 283 

DNA. 284 

 C. Premature termination. Model including the propensity of the elongation complex to 285 

dissociate and release rRNA, leading to premature termination. When a Pol I is stalled, a torsional 286 

stress occurs that could be resolved by a premature transcription termination (PTT) event. 287 

  288 
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