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Abstract

With the objective of studying fluid-structure interaction (FSI) applications with complex structural be-
havior, this work studies an approach that makes room for the use of complex structural models without
penalizing the global computational time. The proposed approach is based on an algorithm that, simulta-
neously solving two subdomains, allows an asynchronous update of the boundary conditions at the interface
according to the computational time spent by each of the solvers.

The implementation of this algorithm reveals the appearance of numerical instabilities related to the
parallel operation, and the independent evolution of the local solution in each subdomain. To overcome
these stability problems, this work proposes a two-part stabilization strategy, both based on the use of a
modal approach, as well as in the adjustment of the formulation of the Jacobian of the fluid at the interface.
The first part consists of a predictor-corrector method for the parallel operation and the second in an
auxiliary coupling to assist the solution of the fluid domain. The impact of parameters such as the amount
of correction, the number of modes and under-relaxation are studied.

The use of the proposed asynchronous algorithm shows a positive impact when used for the solution of
weakly coupled FSI applications (mass ratio mF /mS = 0.001). However, for applications with a larger or
equivalent mass ratio, mF /mS = 0.1 or mF /mS = 1, greater difficulty in stabilizing remain.

Even though it is found that the proposed approach requires to be improved to ensure a robust solution,
the encountered results represent an advance towards the use of an innovative algorithm in the FSI domain,
one that could naturally offer an intermediary algorithm between the implicit external algorithm and the
implicit internal algorithm.

Keywords: FSI, asynchronous algorithm, numerical stabilization, strong couplings, RANS CFD,
non-linear FEM, complex structures, Schwarz methods, implicit internal algorithm, Jacobian of the
interface.

1. INTRODUCTION

When studying fluid-structure interaction (FSI), numerical instabilities are associated with the use of
a partitioned approach [18]. In order to guarantee robustness and accuracy, numerical methods that ad-
dress applications dealing with incompressible viscous flows primarily use implicit algorithms; these being
predominantly sequential with exchanges between domains synchronized.

Given the high computational cost associated with accurate Computational Fluid Dynamics (CFD)
models, the existing procedures seek to reduce the global computational time, mainly by reducing the
computational time devoted to the resolution of the structure. This is why it is common to simplify 3D
structures with reduced-dimension models, such as beams, membranes, or multi-body systems, as is the

1Corresponding author: RAMIREZ V. Catherine

Preprint submitted to Computers & Mathematics with Applications March 14, 2021

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S089812212100122X
Manuscript_976d3c63f125625a7e3dce7953af94da

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S089812212100122X
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S089812212100122X


case in [3], [6], [7] and [23]. However, to address applications that exhibit complex geometries or complex
structural behavior, these simplifications are no applicable. To avoid facing prohibitive computational times,
new algorithms must be developed.

Motivated by this fact, the present work explores a strategy that allows space for complex structural
models without penalizing global computational time. The proposed methodology seeks to go beyond
standard exchanges governed by classical coupling schemes and to study an asynchronous approach in the
FSI domain.

2. STATE OF THE ART

When carrying out a partitioned solution of a coupled problem, Lions [16] and Farhat [8] show that an
appropriate distribution of computational resources has to be defined for it to be efficient. However, it is
not an obvious task to predict in advance the computational load of each domain. Even using techniques to
dynamically balance the distribution in run-time, the difference presented in the computational loads is the
reason why, unfortunately, idle times are often introduced when solving the coupled subdomains in parallel.
Taking advantage of this issue has prompted investigation of an asynchronous approach in some domains.

For example, the work of Magoules et al. [17] reports the achievement of a significant reduction in com-
putational time when asynchronicity is introduced in the domain of acoustics. In this work applications
described by the Helmholtz equation and the Laplacian operator are solved using an asynchronous version
of the optimized Schwarz’s methods, with and without overlap, and considering Robin and mixed boundary
conditions at the interface. Evidence of convergence for the methods is provided, and the gain in computa-
tional time found when using an asynchronous algorithm instead of the synchronous version is in the range
of 30− 50%.

Other references of successful studies using asynchronous approaches in the frame of Schwarz (classic)
methods are the works of [10], [13] and [2]. The work of Frommer et al. [10] solves a non-singular, linear,
second order elliptic, boundary value problem of the form Ax = f . To do this, it uses an asynchronous
version of Schwarz’s methods, with and without overlapping between domains. With ten million variables
in 256 processors, the results obtained in this work show improvements in the computational cost of up
to 50%. Similarly, the convergence properties of the method are studied, and convergence is shown to be
ensured when the coefficient matrix A is monotone and when A is an H-matrix.

On the other hand, the work of Laitinen et al. [13] studies the non-linearities of casting modeling using
finite difference methods to solve the convection-diffusion equation describing the model. Convergence of the
proposed asynchronous method is studied, and an associated geometric criterion of convergence is stated.
The work of Chau et al. [2] studies the stationary obstacle problem, using a multivalued problem type
formulation. It studies the rate of convergence of the methods used in the context of convex optimization,
and states that the properties obtained from discrete problems ensure the convergence of the synchronous
and asynchronous algorithms studied.

Showing that asynchronous algorithms can be robust and advantageous to compensate for the disad-
vantages of the aforementioned load imbalance present in parallel calculations, the results observed in these
works motivate the present study of a similar strategy in the field of FSI. Nonetheless, it is emphasized here
that all the reviewed cases consider applications where all subdomains solve the same system of equations.
Therefore, the application of an asynchronous approach in a coupled solution has not yet been validated.
In addition, emphasis is placed on the fact that no reference was found in the literature to a criterion for an
appropriate load balance, or a particular subdomain distribution that guarantees that asynchronous versions
are always faster.

3. MATERIALS AND METHODS

Collectively solving all the unknown variables that characterize the fluid and structure domains and
implicitly treating the interface conditions, the monolithic approach, presented by Eq. (1), guarantees the
stability and convergence of an FSI solution.
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In this equation, F and S refer to the linearized fluid and structure operators, C−→
fs

relates the loading

of the structure given the fluid efforts and C−→
sf

considers the deformation of the fluid domain due to the

structural response. The external sources are represented by the blocks Sf and Ss, and the unknowns of
each domain by xf and xs.

Exploiting the maturity of specific solvers to solve the subdomains that naturally lie in the original domain
is the partitioned method’s strategy. To ensure robustness and accuracy when addressing applications that
deal with incompressible viscous flows, the numerical methods used in this approach primarily use implicit
algorithms.

Two implicit algorithms are distinguished in this work. In the implicit external algorithm, Fig. 2, the
fluid domain and structure convergence loops are independent and full convergence of each of the domain is
required at each FSI iteration. The internal implicit algorithm, Fig. 1, integrates the complete resolution of
the structure into the non-linear loop of the fluid’s solution. This makes the convergence loop of the fluid
domain solution coincide with that of the FSI solution, and the convergence of the fluid domain takes place
simultaneously with the FSI convergence [14]. This algorithm is used within the coupling tool K-FSI to
sequentially solve FSI problems.

non-linear loop (S)

n
o
n
-l
in
ea

r 
lo
o
p
 (
F
S
I-
F
lu
id
)

start simulation

conv ?

end simulation

te
m
p
o
ra
l 
lo
o
p

conv ?

non-linear loop (L)

conv ?

Figure 1. Implicit external algorithm.
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Figure 2. Implicit internal algorithm.

The main drawback of partitioned schemes is an inherent instability caused by the so-called added-mass
effect, as shown in [9], [19] and [1]. To provide robust and faster convergence, the implicit external algorithm
is often solved using a Quasi-Newton approach, in which a numerical Jacobian expressing the sensitivity of
domains to changes in boundary conditions is evaluated. Some examples can be found in [5], [15] and [11].

In a different way, the robustness of the implicit internal algorithm is obtained by using the Jacobian
of the fluid that corrects fluid efforts taking into account the response of the structure, as shown in the
works of Yvin [23] and Durand [6]. Regardless of the application coupling level, the number of iterations
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required for the convergence of the FSI problem is the same as for solving the fluid domain. Furthermore,
the overall computational time can be estimated as being proportional to the fluid iterations, if the time of
the structural solver is limited [7].

To address problems where complex structural models are required and that, therefore, would signifi-
cantly impact global computational time, this paper explores a parallel iterative procedure in which each
process continuously performs the resolution of a subdomain without waiting for the neighbor solution to
be completed. Stability issues are investigated and methods to improve the stability are provided. This
work is carried out in the context of the implicit internal algorithm, and therefore, asynchronicity is posed
within the non-linear loop. Nonetheless, it would be enriching to study asynchronicity with implicit external
algorithms, or even explicit algorithms.

Most likely, the asynchronous approach involves context-specific numerical instabilities, but anyhow, the
analysis presented in this work may represent an advance in the general understanding of parallel coupling
techniques with synchronous and asynchronous behavior, which could be useful for future studies.

3.1. The K-FSI coupling tool

The present work has been implemented in K-FSI, a commercial tool coupling the structural code K-
Struct and the fluid solver ISIS-CFD; The latter being part of the FINETM/Marine suite. K-FSI resolves
the Neumann-Dirichlet boundary conditions at the wet surface. The coupling between the two solvers is
carried out using a block-LU decomposition of the monolithic system [6]. This approach, along with the
approximation of the first Jacobian of the interface, allows K-FSI to predict the behavior of applications
ranging from weakly to strongly coupled.

Writing the lower decomposition of the system given by Eq. (1) the system of equations reads{
(S − C ~fsF

−1C ~sf )xs = Ss − C ~fsF
−1 Sf

F xf = Sf − C ~sf xs

(2a)

(2b)

where the operators are defined in a similar way as for the Eq. (1).
Using the iteration written for the second term given by Eq. (3), and manipulating Eq. (2b), as

summarized by Eq. (4), the system of equations solved by K-FSI can be written as in Eq. (5).

C ~fsF
−1C ~sf x

i+1
s = C ~fsF

−1C ~sf x
i
s + J(C ~fsF

−1C ~sf )(xi+1
s − xis) (3)

C ~fsF
−1Sf = C ~fs xf + C ~fsF

−1C ~sf xs (4) (S − J(C ~fsF
−1C ~sf ))xi+1

s = Si
s − J(C ~fsF

−1C ~sf )xis − C ~fs x
i
f

F xi+1
f = Si

f − C ~sf x
i+1
s

(5a)

(5b)

where the operator JFS = J(C ~fsF
−1C ~sf ), stands for the Jacobian matrix of the fluid efforts with respect

to the structure variables, or first Jacobian of the interface, which is mainly characterized by inertial effects.
Meanwhile, for a non-linear FSI resolution, a fixed-point iteration of the solved structural system is given

by the balance of the forces related to the structure and fluid, Fs and Ff respectively, and can be expressed
as presented by Eq. (6)

S xi+1
s − Si

s︸ ︷︷ ︸ + C ~fs x
i
f − J(C ~fsF

−1C ~sf )(xi+1
s − xis)︸ ︷︷ ︸ = 0 (6)

Fs(x
i+1,j
s ) Ff (xi+1,j

s )

or as shown by Eq. (7), if the internal loop of the structure is considered.

Fs(x
i+1,j+1
s ) + Ff (xi+1,j+1

s ) = (7)

Fs(x
i+1,j
s ) + Ff (xi+1,j

s ) + (J(Fs) + J(Ff ))(δuj)

where J(Fs) and J(Ff ) represent the Jacobian of the structural and fluid systems, and δuj = xi+1,j+1
s − xi+1,j

s .
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4. PROPOSED NUMERICAL METHOD

The implementation of the asynchronous algorithm is carried out using the ZeroMQ embeddable net-
working library [12]. With this library, instead of passing arguments on function calls, the boundary data
is shared via the sockets that are available through the library.

In a first stage, a parallel algorithm was implemented. For both solvers to advance simultaneously in
time, a prediction of the structural response was implemented within the fluid solver. The prediction, which
takes place at each new time step, is first order during the second time step, and second order from the
third time step onwards. Requiring to store some good values to be accurate and robust, this prediction
was found to be not strong enough to guarantee convergence of solution.

Therefore, in order to improve the prediction a second approach was carried out. It consists in executing
in a sequential way the two first FSI iterations at each time step, all along the computation. By doing this,
equivalent accuracy as for the sequential algorithm is observed for all considered cases when advancing to a
new time step.

Table 1. Internal implicit algorithms implemented within K-FSI.

Serial Parallel Asynchronous

100 → S-SYN-PF 200 → P-SYN-PF-PS 210 → P-ASY-PF-PS

201 → P-SYN-PF-NPS (2itSeq) 211 → P-ASY-PF-NPS (2itSeq)

Blocking

ISIS-CFDK-Struct

it
  

fs
i

it
  

fs
i

it
  

fs
i

Non-blocking

Non-blocking

Non-blocking

Non-blocking

Non-blocking

Non-blocking

Blocking

Non-blocking

Non-blocking

it_fsi (k), FSI iteration itnl (i), Non-linear iteration

Synchronized transfer of data

New information found

No new information available

Non-blocking transfer of data

Figure 3. Illustration of the asynchronous operation of the
parallel algorithm. Faster operation of the fluid solver is con-
sidered.

Tab. 1 presents the nomenclature of the al-
gorithms used for the evaluation of this work.
Three parameters are considered to define the
pattern of information exchange between the two
solvers: the architecture pattern: S/P → Se-
rial/Parallel, the exchange protocol: SYN/ASY
→ Synchronous/Asynchronous, and the strategy
to advance in time: PF/NPF→ Advance in time
with fluid prediction or not, and PS/NPS→ Ad-
vance in time with structure prediction or not.
The notation 2itSeq stands for two iteratios that
are carried using a sequential scheme.

4.1. Asynchronous method

The objective of the asynchronous algorithm,
depicted in Fig. 3, is to solve each of the domains
using the latest available information, either lo-
cal or updated by its counterpart. Considering
that the number of exchanges within the non-
linear loop will depend on the computational
load of each simulation, the resulting algorithm
can be thought of as naturally lying between the
implicit external algorithm and the implicit in-
ternal algorithm.

In order to set this type of interaction, a
channel of communication is established using
sockets, and blocking and non-blocking messages
are used according to the stage in the loop. All
along the simulation, the sockets remain open for
both depositing and retrieving information. Al-
though the exchange between the solvers is syn-
chronized at the beginning of each new time step,
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all along the non-linear loop, each solver is free to send the results obtained after solving its own domain
and free to retrieve the information from its counterpart in case it is already available. In the case that no
new information has been placed, the solver that has finished one computation will begin a new solution
using the last information received from its counterpart and its own updated information.

*10-05

*10-05

*10-04

*10-04

*10-03

*10-02

11120 11140

new BC

Fluid convergenceFSI criterion evaluation

Figure 4. Convergence criteria for
the asynchronous approach.

To better understand the operation of the asynchronous algorithm,
the Fig. 3 highlights the ’FSI iterations’. An ’FSI iteration’ is the
equivalent of an execution of the two solvers, each one using updated
boundary conditions. Therefore, it will only be complete after both
solvers have computed one solution using a set of information from
the neighboring domain that has evolved.

In the case of synchronized operations, given that information is
updated at each non-linear iteration, an FSI iteration coincides with
a non-linear iteration. However, in the asynchronous algorithm the
number of non-linear iterations is increased every time one solution is
computed, while the number of FSI iterations will only be increased
when a solution is carried out with new information from the neigh-
boring domain.

This work added two new criteria to be used with the proposed
method. The first one consists in considering simultaneously the con-
vergence of the structure and the convergence of the fluid. The second
one, depicted in Fig. 4, it consists of evaluating the criterion when
the solutions are carried out using new boundary conditions, as is the
case of synchronized algorithms.

4.2. Numerical instabilities

Two new sources of numerical instabilities were identified. The first consists of the additional delay
introduced by the parallel operation, and the second is related to the impact of the local convergence of the
fluid domain on the global convergence. Both sources are described below.

4.2.1. Additional delay when operating in parallel

To explain the instability caused by the parallel operation, the following analysis is performed. When
an FSI solution is computed using a monolithic approach, it can be thought as if both systems were solved
simultaneously for the same non-linear iteration i, as depicted in Fig. 5a. By considering the action and the
reaction of both domains together, the solution is reached in a single iteration. However, when the solution
is split, the same non-linear iteration i is divided in two stages, a lag in the response of the neighboring
domain is introduced, and a loop of convergence becomes necessary.

it i (itnl i)

it i+1 (itnl i)

(a). Monolithic approach.

itnl i

itnl i+1

(b). Serial algorithm.

itnl i

itnl i+1

(c). Parallel algorithm.

itnl (i), Non-linear iterationSynchronized transfer of data it (i), Time step

Figure 5. Delay of information introduced by the partitioned approach.

On one hand, as shown in Fig. 5b, for the non-linear iteration i of the sequential algorithm the structure
is solved to find the unknowns xi using, as boundary conditions, the fluid efforts σi−1 from the previous
non-linear iteration. However, the fluid solver solves for the unknowns σi using the structural variables of
the current iteration xi. On the other hand, for the parallel algorithm, the structure solves for xi using
the fluid efforts from the previous non-linear iteration σi−1, and, likewise, the fluid solves for σi using the
structural variables from the previous non-linear iteration xi−1, as well. See Fig. 5c.
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Figure 6. Effect of the pressure-velocity under-
relaxation factor on the convergence of the FSI coupling
of the test FSI2. 100 (S-SYN-PF), 210 (P-ASY-PF-PS).

If the use of the Jacobian of the fluid is considered
as the way in which the structural system recovers
from the delay in the boundary conditions imposed
by the fluid solution, it can be said that, for the par-
allel algorithm, the delay in the boundary conditions
imposed by the structure has yet to be overcome.

4.2.2. Impact of the local convergence

Contrary to what was highlighted for other do-
mains in section 2, the present work found that when
an asynchronous approach is used in the FSI do-
main, local convergence increases numerical instabili-
ties. One of the reasons is that during the instances
that local convergence cycles take place, the non-
linearities of the coupling describing the FSI context
are not resolved. The other is that, the behavior of
the fluid solution within local convergence cycles is
marked by the use of an under-relaxation factor used
to stabilize the coupling between pressure and velocity
within the non-linear loop.

To illustrate impact of the local convergence, Fig.
6 presents the convergence of the asynchronous algorithm 210 (P-ASY-PF-PS), within a time step, when
solving a test case with a medium coupling level (mF /mS = 0.1). Gray circles along with numbers indicate
the instances in which new boundary conditions are imposed to the fluid domain. In any of the intermediate
instances between these circles the fluid domain is solved using only local updated information.

Figure 6 shows that the cycles of local convergence carried out within the fluid domain increase the
amplitude of the oscillations in the fluid response. For stronger couplings there is a larger impact of the
cycles of local convergence performed by the fluid solver.

4.3. Proposed stabilization method

To overcome possible sources of instability within an asynchronous approach, a three-step stabilization
strategy is proposed. To begin, an adjustment is made to the formulation of the operator that corrects the
structural system. Secondly, the use of an additional operator is proposed to simultaneously correct the fluid
system. And finally, to accompany the isolated fluid convergence cycles, the use of a simplified auxiliary
model is proposed and studied.

4.3.1. Fluid jacobian formulation adjusted for parallel operation

To correct the structural system, and thus stabilize the FSI solution, for a given FSI iteration the Jacobian
of the fluid, or first jacobian of the interface, must be computed considering the kinematics of the structure
that produced the fluid efforts that are being used, as a boundary condition, on the specific FSI iteration.

This implies that for the case of the parallel algorithm the correction should be computed with a kine-
matics that is one iteration further behind than in the sequential case. For the parallel operation case, the
explicit term of the correction becomes J(C ~fsF

−1C ~sf )xi−1
s , and equations 5a and 5b becomes 8a and 8b,

respectively.  (S − J(C ~fsF
−1C ~sf ))xi+1

s = Si
s − J(C ~fsF

−1C ~sf )xi−1
s − C ~fs x

i
f

F xi+1
f = Si

f − C ~sf x
i
s

(8a)

(8b)
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4.3.2. Second or structural Jacobian of the interface

The work of Durand et al. [7] presents and uses an expression for the fluid Jacobian interface operator
JFS , that is internally computed within the structural solver. To overcome the instabilities arising from the
additional delay introduced by the parallel operation, the present work proposes to simultaneously account
for the impact of the fluid response on the structural variables through the use of the structural Jacobian
interface JSF , or second Jacobian operator defined at the interface.

To do so, the ’upper decomposition’, of the LU decomposition of the monolithic system is used to obtain
a new formulation of the Eq. (8b), as presented by Eq. (9), that should be used to solve the fluid domain
if a parallel operation takes place.

(F − C ~sfS
−1C ~fs)xf = Sf − C ~sf S

−1 Ss (9)

Similarly, as was done in the work of Veldman et al. [21] and Veldman et al. [22], the second Jacobian
JSF = −C ~sfS

−1C ~fs, corresponding to the variations in the velocity and position of the nodes of the mesh
at the interface with respect to the fluid variables, is here approximated using the modal analysis approach
that is described in section 4.3.3. This modal approach is used both to correct the fluid system and as an
auxiliary model to accompany the isolated convergence of the fluid in case of asynchronous communication
within the solvers.

4.3.3. Modal based correction

To avoid carrying two FSI couplings when operating in parallel, the present work formulates a corrective
model for the structure δx, that uses the difference in the fluid efforts between the last two nonlinear
iterations δf , projected onto the modal shape φi, for the held modes n.

The use of the 2nd order Backward Difference time scheme and the manipulation of the equations defining
the existing modal model within ISIS-CFD2, lead to an approximation of the change in the structural
behavior given certain change in the fluid efforts, or the second Jacobian of the interface, as it is presented
by Eq. (10).

δqi
k+1 =

φTi δf
k

e2
c + ω2

i

1

1 + C̄a
where δx =

n∑
i=1

δqi
k+1φi(x) (10)

In this equation, ω stands for the natural frequencies and e2
c corresponds to a coefficient linked to the

time scheme. Similar to what is done in the work of Yvin et al. [24], the coefficient 1/1+C̄a is used to stabilize
the pseudo-coupling taking place between the fluid solver and the modal based model. Here C̄a = M̃add/M,

and M̃add corresponds to the added-mass coefficient related to the modal shape φi which can be computed
internally within the ISIS-CFD solver.

itnl i+1
ISIS-CFDK-Struct

itnl (i), Non-linear iteration

Synchronized transfer Modal solution

CFD solution

Figure 7. Algorithm predicting the deforma-
tion of the elastic body through a modal based
correction. Resolution internal to the fluid code.

As shown in Fig. 7, this approximation of the second
Jacobian of the interface does not modify the system of equa-
tions of the fluid domain. Instead, it produces a correction to
the boundary conditions calculated by the structural solver,
and can be seen as a sequential coupling between the fluid
solver and a modal based model of the structure. The imple-
mented correction can be used both to correct the additional
delay present in parallel operation and to work as an auxiliary
solver during instances of local fluid convergence.

In Fig. 7, δxi+1 stands for the structural response found
by means of the modal approach, and the hat accent ˆ iden-
tifies the modified procedures in both, structural and fluid
solutions, to stabilize the FSI computation.

2 The modal based correction used in this work consists of a modification of a modal approach that was available within
the ISIS-CFD fluid solver. For a deeper insight the reader can refer to the work of Debrabandere et al. [4].
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4.3.4. Local convergence with auxiliary coupling

Non-linear iterations

170 180 190160 200

211 with m=1, a=1.0, r=0.5, it fsi=19(f=12.7), or=4

100

95

F
y
[N

]

90

105

Figure 8. Impact of the auxiliary coupling within the
local convergence of the fluid. In this figure m stands for
the number of modes used for the modal based correction.
211 (P-ASY-PF-NPS, 2itSeq).

Fig. 8 illustrates the effect of coupling the fluid so-
lution to the proposed modal based correction during
the instances when there is no communication with
the main solver. The figure presents the evolution
of the convergence within the non-linear loop for the
case that performs exchanges with the main structural
solver every 12 non-linear iterations, approximately.

In this figure it is possible to recognize a shape
of convergence similar to that obtained when using
the main solvers and the sequential algorithm. When
comparing with the main solver, it can be seen that
the auxiliary coupling has much less impact on the
evolution of the solution. Given that the proposed
modal formulation does not have a history of the de-
formations over time, but instead is based on the dif-
ference of two non-linear iterations, the resulting con-
vergence finds a state of equilibrium different from
that of the reference solution.

5. SIMULATION SETUP

The test case used for validation is a benchmark
defined in the work of Turek and Hron [20]. It con-
sists of a two-dimensional geometry composed of a fix
cylinder and an elastic cantilever behind it, where an
incompressible laminar flow around the geometry in-
duces oscillations in the structure.

Figure 9. Comparison of the tip displacement for the
three different FSI studied cases.

In this work three different FSI configurations whose
solution difficulty evolves incrementally are defined.
Among the three presented scenarios for FSI, the so-
called FSI2 and FSI3 test cases are selected here for the
assessment.

A third case FSI2x100 is introduced here. It con-
sists of a modification of the FSI2 test case, where the
density of the structure is increased by a factor of 100.
In this way by the modification of a single parameter,
the physical coupling between the domains is reduced
and the numerical solution is simpler. To illustrate the
numerical complexity of each case, Fig. 9 compares the
displacement of the tip of the structure for the three cases studied.

When using the implicit internal sequential algorithm, the test cases FSI2x100 and FSI2 do not require
a strong numerical stabilization, carried out in this work through the Jacobian of the fluid. However, the
solution of the FSI2 test case requires the use of an under-relaxation factor to achieve convergence.

In all cases, the fluid domain is discretized using an unstructured hexahedral mesh. While for the
FSI2x100 test case it consists of 11206 cells, for the FSI2 and FSI3 test cases it is composed of 107672 cells.
The flexible flap is discretized using 21 Euler-Bernoulli beam elements for the two initial cases, and 34 for
the FSI3 test case. For all cases, the node connecting the beam and the cylinder is fully constrained. A
no-slip boundary condition is used along the entire surface, and the input flow velocity is prescribed using
parabolic velocity profile. A time step of 0.005s is used to solve the case FSI2x100, and the cases FSI2 and
FSI3 use a time step of 0.001s. The Tab. 2 presents the structural and fluid parameters used to set up the
three test cases.
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Table 2. Fluid and structural parameters

Test case
ρS νS

µS ρF νF U
mF /mS Stabilization ∗

[ 103 kg
m3 ] [ 106 kg

m s2
] [103 kg

m3 ] [10−3 m2

s
] [ m

s
]

FSI2x100 1000 0.4 0.5 1 1 1 0.001 no

FSI2 10 0.4 0.5 1 1 1 0.1 ω = 0.5

FSI3 1 0.4 2.0 1 1 2 1 M̃pos
add

* Stabilization method used to solve the case using the implicit internal sequential algorithm

Given the simplicity of the structure, the computational time of the fluid is much more important than
that of the structure. To simulate the hypothetical case of an application in which the solution of the
structure will take longer than that of the fluid, a dummy matrix operation is introduced in the structural
solution. To study the impact of additional solutions, with and without the proposed stabilization method,
different computational times are defined for the structure using a dummy matrix operation. A frequency
of exchanges, FSI frequency, is defined by changing the size of the matrix The FSI iterations are the criteria
used to compare the results among these hypothetical scenarios.

6. NUMERICAL RESULTS

6.1. 2D cylinder flap: FSI2x100

The test cases established through the fictitious operation are presented in Tab. 3. The frequency of FSI
iterations, or FSI frequency is defined as the average number of fluid solutions for each FSI solution, within
a non-linear loop.

Table 3. Frequency and number of FSI iterations per time step (FSI2x100).

Algorithm 100 210 211

Matrix size - 0 2000 3000 4000 0 2000 3000 4000 6000

FSI frequency 1 1 1.2 2 4 1 1.2 1.9 2.7 8

It FSI 46 45 40 14 12 46 39 26 18 6
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210 with m=NA, r=0.5, it fsi=40(f=1.2), or=4
210 with m=NA, r=0.5, it fsi=14(f=2), or=4
210 with m=NA, r=0.5, it fsi=12(f=4), or=4

dt i

Figure 10. FSI2x100 test case convergence. The cir-
cles indicate some cases in which local convergence take
place. 100 (S-SYN-PF), 210 (P-ASY-PF-PS).

Figure 10 shows that even for a weakly coupled ap-
plication the behavior caused by the use of the pressure-
velocity under-relaxation factor has a negative impact
on the local convergence. It is also observed that the
accumulation of small errors leads to the difference in
the converged values.

Figure 11 compares the fluid effort obtained with the
implicit, synchronous and asynchronous, algorithms. In
general, regardless of the FSI frequency, a global agree-
ment is found for all the asynchronous tests both the
fluid efforts and the structural displacements. The re-
sult obtained with an explicit algorithm is included in
Fig. 11a to make clear that, although it is a weakly
coupled application, it requires a minimum of interac-
tions between the domains within the non-linear loop to
obtain correct results.

Figure 11b allows noticing that slight oscillations are
introduced for some of the asynchronous cases. Two
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(b). Detailed view.

Figure 11. Comparison of the global effort obtained for the FSI2x100 test case while using the asynchronous algorithm. 100
(S-SYN-PF), 210 (P-ASY-PF-PS), 211 (P-ASY-PF-NPS, 2itSeq).

reasons explain this, the first is that FSI iterations are
reduced, and the second is the impact of local convergence.

6.2. 2D cylinder flap: FSI2

The test cases established through the fictitious operation are presented in Tab. 4. In all the results
presented, the modal based correction is used to anticipate the structural position. For an initial time step,
Fig. 12 shows the convergence of the fluid efforts of the different cases, obtained without using the modal
correction as an auxiliary solver.

Table 4. Frequency and number of FSI iterations per time step (FSI2).

Algorithm 211

Matrix size 4000 6000 8000 10000 11000 12000 15000

FSI frequency 1 1.1 2.4 3.3 7.7 5.9 7.1

It FSI 50 46 20 15 6.5 8.5 7

From Figure 12, it can be seen that the magnitude of the efforts increases mainly during the initial
iterations. After this the amplitude of the oscillations remains of the same order. In none of the cases the
local convergence of the fluid contributes to the global convergence.

6.2.1. Modal-based auxiliary coupling for stabilization

Using the modal based correction during the periods of the local convergence of the fluid domain has an
impact on the computational time of the fluid domain. Table 5 presents the average of the FSI frequency and
of the FSI iterations reached at each time step for each of the studied cases. Knowing that good results could
be obtained for this case using 20 nonlinear iterations with the 201 parallel algorithm, the FSI iterations for
these tests were kept close to a value of 20 so that the results in this section are comparable.

The impact of the numerical parameters of the correction when using the synchronous parallel algorithms
is presented below.
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Figure 12. Influence of the local convergence of the fluid domain on the global convergence within a non linear loop, FSI2
test case. 100 (S-SYN-PF), 211 (P-ASY-PF-NPS, 2itSeq).

Table 5. Frequency and number of FSI iterations per time step (FSI2). Modal correction using the 1st mode.

Algorithm 211

Matrix size 20000 30000 40000 80000

FSI iteration frequency 1.7 2.5 2.7 12.7

It FSI 28 20 18 19

6.2.1.1. Amount of the correction through the pre-
diction coefficient a.
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200 with m=1, a=0.7, r=0.5, it=30, or=4

Figure 13. Influence of the a factor on the FSI2 test case.
100 (S-SYN-PF), 200 (P-SYN-PF-PS).

According to what was presented in section 4.3.3,
the corrected fluid effort σ̂ can be defined as the
linear combination between the boundary conditions
given by the structural solver xi and those obtained
with the modal analysis approach δx. Therefore, the
amount of correction considered can be controlled
by means of a coefficient a, as σ̂i+1(xi + a · δxi+1),
where the coefficient a defines the amount of com-
puted modal correction that is applied.

Figure 13 presents the results obtained with the
parallel algorithm 200, using a coefficient a of 0.5, 0.7
and 1.0. Only the first natural mode of the structure
is used to compute the prediction. For different in-
stances of the computation it is seen that the larger
the parameter a the lower is the amplitude of the
oscillations in the response.

6.2.1.2. Number of modes.
To study the influence of the number of modes computations using 1, 2, 3 and 5 natural modes were run.

To isolate the effect of the modes, the under-relaxation of forces is not used and the coefficient a is set to 1.
With this setup, it was found that none of the parallel algorithms was able to converge using only

one mode. Nevertheless, they converged when two or more modes were used. Figure 14 compares the
convergence, in a middle instance, for all three synchronous algorithms. It is observed that the more modes
are considered the lower the amplitudes of the oscillations. However, the contribution after two modes, at
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Figure 14. Influence of the number of modes in the modal correction. Only the sequential algorithm uses under-relaxation.
Results of the three algorithms are fitted to begin at the same time step. The number of indicated nonlinear iterations is used
only as a reference of number of nonlinear iterations performed by each algorithm. 100 (S-SYN-PF), 200 (P-SYN-PF-PS), 201
(P-SYN-PF-NPS, 2itSeq).

least for this case, is not significant. Although the same convergence criterion is used for all algorithms,
the sequential algorithm is twice as fast. For this reason, for the same number of non-linear iterations, a
difference in the values is observed.

6.2.1.3. Under-relaxation of forces combined with the modal correction.
Although it was seen that the problem FSI2 can be solved without using the relaxation of forces when using

more than 1 mode for the modal correction, it is also possible to achieve convergence by combining a single
mode and under-relaxation of forces.
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Figure 15. Convergence for the 201 parallel algorithm. Relaxation combined with the modal correction. 201 (P-SYN-PF-NPS,
2itSeq).
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Nonetheless, comparing Fig. 15a and Fig. 15b, it can be noticed that if more than 1 mode is used,
the relaxation of the forces generates an inverse effect decreasing the quality of the response. This is to
be expected if it is considered that the relaxation of forces is carried out within the structure code, which
means that the effort used to calculate the modal correction would be different from that used to calculate
the structure.

6.2.1.4. Results on the asynchronous approach.

For an early instance, the Figure 16 summarizes the convergence obtained with the asynchronous algo-
rithm 211 when using the auxiliary coupling, for the different scenarios presented in the Tab. 5.

Figure 16a shows that the use of a complementary structural model during the local convergence of the
fluid improves the convergence of the asynchronous algorithm. However, the amplitude of oscillations is still
too large and therefore none of the cases achieve a proper convergence. Curiously, similar as it was seen
in the case FSI2X100, the scenario with the lower FSI frequency, and therefore performing exchanges more
frequently, does not present the best performance.
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(b). Synchronous and asynchronous algorithms, with and
without modal correction.

Figure 16. Convergence comparison for the FSI2 test case. In this figure m stands for the number of modes used for the
modal based correction. 100 (S-SYN-PF), 201 (P-SYN-PF-NPS, 2itSeq), 211 (P-ASY-PF-NPS, 2itSeq).

If the results are also compared with those of the parallel synchronous algorithm 201, which uses the
modal correction to predict the structural response as shown in Fig. 16b, it can be observed that even the
best results obtained with the asynchronous algorithm that uses the auxiliary coupling, do not present a
better convergence than the synchronous one.

Figure 17 shows that although the global efforts oscillate, throughout the calculation these oscillations
occur around the reference value. The response of the structure, Fig. 17b, on the other hand, presents a
very good agreement.

6.3. 2D cylinder flap: FSI3

This test case is particularly interesting since the three axes of the stabilization strategy for the asyn-
chronous approach, 4.3.1, 4.3.3 and 4.3.2, can take place.

Regarding the correction of the dynamics, it was observed that if the added mass operator is not calcu-
lated with the adequate structural dynamics, large oscillations appear that lead to the divergence, even in
the synchronous case.
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Figure 17. Global results for the FSI2 case when using the proposed modal based auxiliary coupling. In this figure m
stands for the number of modes used for the modal based correction. 100 (S-SYN-PF), 201 (P-SYN-PF-NPS, 2itSeq), 211
(P-ASY-PF-NPS, 2itSeq).

With respect to the correction used to overcome the additional delay, it was observed that the configu-
rations that showed the best performance for the FSI2 case, when using the parallel synchronous algorithm,
do not obtain good results for a strongly coupled application, such as the FSI3 case. Similar to what was
done for the FSI2 case, the coefficient a and number of modes were studied to see their influence on the
convergence for this case.

While an equivalent influence to that found for the FSI2 case was observed for the number of modes
and the under-relaxation of forces, for the amount of correction used, a much more important impact on
the response was observed for this case. When setting the parameter a = 1, which means fully applying the
correction, without under-relaxation, the solution always led to divergence.
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Figure 18. Global results for the FSI3 case when using the proposed modal based auxiliary coupling. 201 (P-SYN-PF-NPS,
2itSeq), 211 (P-ASY-PF-NPS, 2itSeq).
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In order to improve the convergence for the asynchronous algorithm the test are carried using a relaxation
factor ω = 0.5 3. Both the displacement correction and the auxiliary coupling are restricted to use only 1
mode.
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Figure 19. Influence of the amount of correction a in the
convergence of fluid efforts. In this figure m stands for the
number of modes, r for the relaxation coefficient, and a for the
amount of correction used. 201 (P-SYN-PF-NPS, 2itSeq), 211
(P-ASY-PF-NPS, 2itSeq).

First, it is observed that the larger
the amount of correction a, the greater
the oscillations in the local convergence,
both in the local convergence and in the
global fluid efforts, figures 19 and 18a.
Second, since the amount of correction has an
impact on the stability, for a given number of
iterations a better accuracy of the global results
is observed. According to Fig. 18 the larger
the amount of correction, the larger the displace-
ment of the tip.

Still, a positive observation can be made. Ac-
cording to Fig. 20, the fluid efforts obtained with
the asynchronous algorithm, and a prediction co-
efficient a = 0.5, with an average of 13 FSI it-
erations and an FSI frequency of 7 iterations,
present smaller oscillations than those obtained
with the synchronous parallel algorithm, with 30
FSI iterations.

7. DISCUSSION

The present work contributed to the general
understanding of the impact of an asynchronous
approach in the solution of coupled problems,
and in particular for the solution of FSI applica-
tions.
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Figure 20. Global fluid force Fy. 201 (P-SYN-PF-NPS, 2it-
Seq), 211 (P-ASY-PF-NPS, 2itSeq).

Being an issue common to the solution of any
coupled problem, this work highlighted the fact
of a double lag in boundary conditions when us-
ing a parallel approach. In fact, knowing that
the stronger the influence between the domains
the greater the impact of this delay, the need to
predict the response in each of the domains can
be generalized.

Likewise, particular problems link to the cur-
rent FSI approach and the models used within
this work are pointed out. This is, for example,
about the correction in the formulation opera-
tor given by the Jacobians at the interface and
the impact of the relaxation factors used in the
convergence of the non-linearities of the fluid. In
all cases, a solution to overcome the issue was
proposed, and positive effects were found out of
these proposals.

3With the under-relaxation being defined as f̂ i+1 = (1− ω)f i + ω f i+1, where f refers to the fluid effort computed by the

fluid solver and f̂ to the relaxed fluid effort. The previous and current iteration are represented by i and i+ 1, respectively
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It was sought to make a generalized and qualitative formulation of the problems found so that they could
be addressed using the proposed numerical methods or could be improved by different numerical approaches.

With the objective of achieving greater accuracy, greater stability in the solution, and therefore a re-
duction in the number of non-linear iterations, the challenge of a formulation and a model to calculate the
second Jacobian of the interface is raised.

8. CONCLUSIONS AND FUTURE WORK

It is confirmed that, to stabilize the coupling algorithm by means of the Jacobian of the fluid at the
interface, it is necessary to calculate this operator using the structural dynamics that generated the fluid
efforts that are being corrected.

A positive impact is observed in the use of an additional predictor/corrector model in order to account
for the additional delay presented when using a parallel algorithm. In this particular case, a model within
the fluid solver predicts the structural response in advance in order to correct the fluid efforts.

If no modification of the current coupling is carried out, intermediate states of local fluid convergence
do not contribute to global convergence. However, using a structural model as an auxiliary coupling model
improves the global convergence of the asynchronous algorithm for an FSI problem.

The implemented asynchronous approach was shown to achieve results equivalent to those of the parallel
algorithm while reducing the number of FSI iterations required for convergence. Using a different amount
of correction, this was observed in particular for the weakly coupled and the strongly coupled test cases.

The findings in this work represent the possibility of hosting more complex structural models within
the FSI coupling. They also represent an advance towards the use of an algorithm that is naturally found
between the implicit external and the implicit internal algorithm in the FSI domain. However, there are
still several subjects that need to be deepened and others that need to be addressed.

To cope with strong coupling applications, the need for a more precise formulation of the operator second
Jacobian of the interface, or Jacobian of the structure, is evident. One way to improve the precision of both
proposed stabilization methods, and offer greater robustness, could be to transfer a complete or simplified
expression of the Jacobian of the structure, from the fluid solver to the structural solver. The use of this
operator can be either externally, as is the case in this work, or internally, if the system of equations of
the fluid domain is modified. In either case, a criterion must be established to establish the frequency of
exchanges of this operator, so that a trade-off is found between precision and computational cost.

The evaluation of the asynchronous methodology and the stabilization methods proposed in this work
was carried out within a fictitious context in which computational times were artificially manipulated. To
complete the understanding of the proposed methodology, an evaluation process in light of FSI applications
for which the inclusion of complex structural models is required should be carried out.
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commande d’actionneur et systèmes souples dans le domaine maritime. PhD thesis, Ecole Centrale de Nantes, 2014.

[24] C. Yvin et al. Added mass evaluation with a finite-volume solver for applications in fluid–structure interaction problems
solved with co-simulation. Journal of Fluids and Structures, 81:528–546, 2018.

18




