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Figure 1: An MAV equipped with odometry- and active depth sensors autonomously explores a complex synthetic area from
FLYBO (a) while gradually mapping the scene throughout different exploration stages and planning trajectories online (b–d).
Simultaneously, the perceived surfaces are also reconstructed online (close-up views). FLYBO provides datasets, references
and a framework to benchmark such systems w.r.t their volumetric exploration and online surface reconstruction capabilities.

Abstract
The use of Micro-Aerial Vehicles (MAVs) equipped with

odometry- and depth sensors has become predominant for a
wide variety of challenging industrial applications such as
the autonomous exploration (i.e., digital mapping), and in-
spection (i.e., online surface reconstruction) of unknown fa-
cilities. However, despite the ongoing attention these topics
receive, autonomous exploration systems still lack common
evaluation grounds to assess their relative performance in
terms of data and experimental tools. We address this
deficit by introducing FLYBO, the first unified benchmark
environment that focuses on the performance of such flying
robots in terms of autonomous exploration and online sur-
face reconstruction. It includes (i) 11 challenging realistic
indoor- and outdoor datasets of increasing complexity and
size, with ground-truth, (ii) a comprehensive benchmark of
7 of the top-performing autonomous exploration algorithms
including methods without publicly available code. (iii) A
unified experimental system factorizes the routines shared
by autonomous planners in order to fairly and accurately
assess their exploration performance in a controlled envi-
ronment.

1. Introduction

Over the past decade, Micro-Aerial Vehicles (MAVs)
have considerably gained in popularity and commercial ma-
turity, giving birth to even consumer-grade products at an
affordable price. In particular, MAVs equipped with depth-
and odometry sensors have become a staple equipment to
help map, digitize, locate and reconstruct relatively intri-
cate facilities, even in absence of prior knowledge about
their structure, or comprising objects [1]. As a result, the
ability of such autonomous flying robots to efficiently ex-
plore unknown environments [8, 6, 65] while accurately re-
constructing surfaces [63] that are perceived therein has be-
come critical to help minimize risks and operational costs.

Autonomous exploration planning has been a long-
standing problem for over two decades [78, 79] and has
received an ongoing attention within the scientific commu-
nities of Computer Vision [33], Robotics [6, 14] and Com-
puter Graphics [23, 77]. Despite this activity, state-of-the-
art autonomous planning systems (commonly refered-to as
“planners”) are evaluated on disparate data, in sometimes
drastically diverse experimental conditions [65, 19], and
overall, lack a unifying public benchmark.
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Figure 2: Overview of the 11 areas we consider in FLYBO, through a few selected views and levels.

In terms of datasets, the evaluation of autonomous ex-
ploration and their online surface reconstruction capabil-
ities requires 3D models that are (i) watertight (to avoid
aberrant flight behaviors, especially indoors) and (ii) re-
alistic in terms of their structural complexity, size and
geometry. CAD-derived data in particular are a gold-
standard w.r.t these criteria and are favored when available
as a benchmarking reference in a controlled, simulated-
environment for autonomous exploration [8, 19], and sur-
face reconstruction [47, 43].
We address the aforementioned challenges by making
the following main contributions:

• System: We present FLYBO, the first unified benchmark
environment specifically tailored for the evaluation of au-
tonomous flying MAVs for the tasks of volumetric explo-
ration and online surface reconstruction.

• Datasets: The package includes 11 challenging CAD-
derived datasets with ground-truth, that represent realis-
tic indoor- and outdoor areas of varying nature, size and
structural complexity.

• Benchmark: We evaluate 7 of the leading state-of-the-
art autonomous exploration planners, including methods
with no public code using our own re-implementations.

• Tools: In order to fairly and accurately assess the pure
exploration planning part of existing systems, we provide
an experimental framework that factorizes the common
routines that are shared by all planners. Our system also
allows to generate the quantitative and qualitative results
seemlessly and on the fly.

• A project website with a leaderboard will be pub-
lished upon acceptance along the datasets, our re-
implementations, and unified evaluation system.

2. Related Work
Autonomous Exploration Planning. Autonomous ex-
ploration planning algorithms are commonly categorized
into frontier-based, sampling-based or hybrid strategies.
Frontier-based methods rely on the concept of frontier vox-
els that separate empty and unknown spaces in the explored

environment. The first method to introduce this paradigm
was Classic [78] and has originally done so in 2D explo-
ration planning. The method proceeds by visiting the near-
est available frontier at each algorithm iteration, until all
achievable frontiers are visited. Despite its appearant sim-
plicity, the method also performs very well in 3D and is
still considered revelant as a baseline system in terms of
3D exploration efficiency [8, 82]. The seminal work of Ya-
mauchi et al. [78] has led to numerous extensions including
multi-agent exploration [79], and more sophisticated strate-
gies to extract frontiers using stochastic differential equa-
tions [67], information theory and a multi-objective util-
ity function [21], or more generally, in a Next-Best View
(NBV) fashion, i.e., by maximizing a given utility function
greedilly [24]. Another trend in frontier-based planning is
to enhance its main original drawbacks of speed and effi-
ciency. Rapid [14] addresses these shortcomings by alter-
nating between the original behavior of Classic [78] and
minimizing the deviation angle between the current trajec-
tory of the MAV and its incidence with frontier candidates.
This simple heuristic has led to impressive gains in terms
of volumetric efficiency and is still considered a strong-
performing planner w.r.t current state-of-the-art [82, 14].
The current main difficulty to assess the performance of
Classic [78] and Rapid [14] outside the scope of their origi-
nally documented performances lies in the absence of their
public implementations. We address this by providing com-
mon, efficient implementations of their systems.

Sampling-based solutions are the second dominant trend
in autonomous exploration. They are based on sampling
sparse viewpoint candidates to visit in order to limit the
size of the search space, and ultimately, the volumetric ef-
ficiency of the process altogether. Such approaches often
rely on tree data structures that connect the sampled po-
sitions and allow to produce feasible trajectories through
queries [42, 49]. The top-performing sampling strategies
are based on Rapidly-exploring Random Trees (RRT*) [49]
and develop one [63] or multiple tree structures [6, 65] from
randomly sampled seed positions. The motivating theoreti-
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Area (m2) 400 470 120 534 115 323 478 800 384 480 1000
Volume (m3) 1000 1410 1443 1602 690 1450 2868 9600 3456 12000 26598
Bounding volume (m) 20× 20× 2.5 22× 28× 3.4 8× 20× 12 30× 16× 7.4 12× 14× 6 19× 17× 4.6 38× 22× 6 40× 20× 12 16× 24× 9 24× 20× 25 33× 31× 26
#Rooms - 2 4 23 1 2 5 1 - - -
#Levels 1 1 4 2 1 1 2 2 3 3 1
#CAD mesh faces 130 6910 227k 857k 373k 1120k 1072k 793k 149k 470k 2000
Structural complexity Low Low Intermediate High High High High High Intermediate High Low
Scale Small Intermediate Intermediate Large Intermediate Small Large Large Large Large Large
Indoor / outdoor Indoor Indoor Indoor Indoor Indoor Indoor Indoor Indoor Outdoor Outdoor Outdoor

Table 1: Statistics of the 11 Areas that comprise the dataset part of FLYBO.

cal purpose behind this paradigm lies in the scalability and
ease of convergence although the early strong-performing
methods of the kind such as NBVP [6] tend to get stuck
in local exploration. In contrast, AEP [65] combines the
NBVP [6] strategy with the storage of previously-explored
node positions and re-assessing their information gain as
well as considering frontiers, leading to a hybrid strategy
that has a sparing effect regarding globally-exploring views.
More recently, SplatPlanner [8] proposed a hybrid scheme
that combines the flexibility of RRT* with frontiers that are
sampled based on their spatial density using highly-efficient
bilateral filtering operations, leading to impressive perfor-
mance in terms of volumetric efficiency and coverage.

The task of autonomous exploration is inherently tied
to the one of autonomous inspection, or online surface re-
construction in assessing the accuracy of the geometry that
is produced by autonomous planners [37]. Several works
jointly consider criteria for online surface reconstruction
in a mono-agent scenario [37, 77, 63] or even as multi-
agent solutions [23]. Despite the existence of a rich but
much more specialized litterature on reconstruction in gen-
eral [5, 43] and online surface reconstruction in particu-
lar [68, 37], our proposed benchmark strictly focuses on the
online surface reconstruction of general autonomous explo-
ration systems in order to provide new insights regarding
their performance beyond the traditional volumetric crite-
ria, as a trade-off between their volumetric efficiency and
the accuracy of their reconstructed surfaces in a controlled
environment. This is made possible thanks to the unified
nature of our FLYBO benchmarking framework.
Datasets and Benchmarks for Autonomous Flying
Robots. Current state-of-the-art autonomous planners com-
monly evaluate their performance either on a handfull of
disparate, non-public CAD datasets [8, 82], or by resort-
ing to borrowing datasets from other tasks [23, 69]. Such
datasets are RGBD-derived [9, 17, 3, 69, 76], which can
suffice to evaluate autonomous planners embedded on non-
flying robots [77, 23], but are however impractical for sim-
ulating flying robots that can fly through unscanned regions
and are also far from ideal to evaluate surface reconstruc-
tion in presence of sometimes severe structural artifacts and
missing parts, that can also bias frontier-based explorations.

In contrast, FLYBO proposes watertight and highly-
structured CAD-derived environments, comprising the first
public dataset and benchmark focusing on MAV-based au-
tonomous exploration systems.

3. Flying through FLYBO
3.1. Dataset and Acquisition

Our proposed benchmark is comprised of 11 areas, as
detailed in Table 1 and illustrated in Figure 2. They con-
sist of CAD models that were manually designed by human
experts and directly serve our experimental framework to
evaluate state-of-the-art methods for the considered tasks.

• MAZE. This is the most structurally simple area of our
dataset. It allows to isolate exploration behaviors on the
simplest form of indoor scenes, i.e., consisting of one
ground level and flat walls. The performance on this
area also serves as a baseline to assess the robustness to
increasing levels of structural complexity and scene size.

• OFFICES A. Incrementally more complex than MAZE,
it depicts two interconnected furnished office areas of
moderately-sized open-spaces with few objects.

• OFFICES B. Another set of interconnected office areas
with more geometric complexity spanning multiple levels
and that contain an important number of present objects.

• OFFICES C. Similarly, area C is much more challenging
in terms of structural complexity, amount of objects and
details as well as in terms of overall scale.

• FACILITY A, B AND C. These facilities depict complex
industrial indoor environmenets, comprising piping,
ducts, complex equipments and very challenging intri-
cate spaces to move through. FACILITY A–C are of
high structural complexity and of increasing sizes and
scales. They span the plausible usecases that autonomous
exploration algorithms would typically have to deal with
in a real-life inspection scenario, ranging from moderate
difficulty to highly-challenging overall.

• WAREHOUSE is a large-scale area that contains a large
central empty space that is surrounded by many complex
equipments that span two interconnected levels.



• PLATFORM A AND B represent large industrial out-
doors with increasing amounts of cluttering objects and
complex equipments. They present numerous intricate
spaces that are difficult to maneuver through for an MAV.

• POWERPLANT was originally available as an open-
source model and used by several state-of-the-art plan-
ners to evaluate performance [8, 20, 14]. The area
represents a very large-scale powerplant for which the
exact crop considered for evaluation was undisclosed
and potentially different. We address this by providing
one fixed crop to this model with its corresponding
experimental settings.

3.2. Tasks and Metrics

The proposed benchmark is specifically tailored for au-
tonomous exploration planning systems, a.k.a planners.
However, given that the most common cause of failure in
MAV-based inspection campaigns generally is poorly re-
constructed geometry provided by the offline, a posteriori
assessment of the mapped 3D data, we consider both the
tasks of (i) pure autonomous exploration planning per se,
and (ii) online surface reconstruction to evaluate such sys-
tems. In practice, the online surface reconstruction may of-
ten constitute the deciding factor of whether an MAV explo-
ration campaign is deemed successful in a production-ready
scenario, sometimes regardless of the efficiency and speed
of the exploration process.
Autonomous Exploration Planning. Given V ⊂ R3

a voxel-grid that represents the occupency states of vox-
els initially labeled as ‘unknown’, the objective is to re-
label such entities as ‘free’ of ‘occupied’ while comput-
ing collision-free trajectories online. The standard met-
rics [23, 8, 19, 65, 14] we consider are defined as follows:
• The volumetric efficiency of the explorations in m3/s,
• The volumetric coverage that we define as a fraction of

the covered volume at a fixed exploration plateau relative
to the top score, for simplification.

Online Surface Reconstruction. We adopt the standard
metrics in the field for general-purpose surface reconstruc-
tion [23, 46, 43], namely:
• The surface coverage, expressed as the recall over time,
• The accuracy of the produced meshes as F-score and

RMSE w.r.t ground-truth references [23, 46].

All of the aforementioned metrics are averaged over multi-
ple runs (5 throughout our experiments) to account for the
inherently stochastic nature of the task. This is also a com-
mon practice in the field [8, 19, 65, 14].

3.3. Ground-truth Generation

To evalute autonomous planners according to the afore-
mentioned tasks, we consider the following data:

Figure 3: Schematic workflow and components of our pro-
posed unified experimental framework.

Autonomous Exploration Planning. For all the consid-
ered metrics, the reference data are the input CAD models.
Online Surface Reconstruction. In this particular case,
the direct use of CAD models is not adequate because the
surface-based metrics such as recall and F-score account for
the amount of geometric surfaces that can be reconstructed,
hence perceived in a scene. To avoid introducing signifi-
cant biases in our evaluation, we run an interactive explo-
ration mapping mode without simulated noise that is man-
ually controlled. This allows to recover only the exterior,
perceivable parts of the CAD scenes and to store them as
highly accurate and dense point clouds to compute the con-
sidered metrics w.r.t surface reconstruction.

3.4. Unified Simulation Framework

We propose the first unified experimental simulation
framework tailored for MAV-based autonomous exploration
planners (Figure 3). It factorizes the common simulation
routines shared by all systems, and the genration of inter-
mediate data outputs and the computation of downstream
metrics in a seamless, unified way.

The proposed simulation framework builds upon the
Robot Operating System (ROS Kinetic) library [61]. It sim-
ulates a Hummingbird quadrotors MAV model from As-
cending Technologies and its physics are modeled by the
popular Gazebo-based RotorS simulator [29]. The control
is insured by a flying robots control framework [27]. Tra-
ditional collision-checking is ensured within a sphere cen-
tered at the position of the MAV. The computed trajectories
are typically piecewise-linear and are smoothed out with
a polynomial trajectory optimization [62] to send grace-
ful paths to the control system. The rendering engine uses
the Vulkan API1, assuming perfect poses from RotorS. It
simulates a 20Hz DepthVision camera synchronized with
the odometry. We take into account depth and odometry
controlled noise, similar to ESM [63] we use a gaussian
depth error with quadratic scaling modeling recent depth

1https://www.khronos.org/vulkan/

https://www.khronos.org/vulkan/


camera [44]. The system simulates noise in positions and
depthmaps for realism. TSDF [38] and point clouds are
continuously generated as well as the final meshes.

3.5. Featured Autonomous Exploration Systems

Our benchmark experiments consider 7 methods from
state-of-the-art featuring the following systems: Clas-
sic [78], Rapid [14], NBVP [6], AEP [65], ESMIPP [63],
ESMRecon [63] and SplatPlanner [8]. We have re-
implemented Classic [78], Rapid [14] and SplatPlanner [8]
in absence of public implementations for these methods.
NBVP [6], ESMIPP [63], ESMRecon [63] and AEP [65] are
used based on their public implementations. Finally, we
integrate all of the considered systems in our evaluation
framework. NBVP [6] and AEP [65] are inhherently depen-
dent on Octomap [35] and thus, they can not benefit from
our continuous voxel mapping component (Figure 3).

4. Results
4.1. Autonomous Exploration

Figure 4 and Table 2 respectively summarize the bench-
mark results in terms of volumetric exploration efficiency
averaged over 5 runs with min-max performance and volu-
metric coverage also averaged over the 5 same runs.
Volumetric efficiency. The first general trend that emerges
from the reported data is that certain methods maintain
a steady performance throughout the dataset areas. This
is the case for SplatPlanner [8], AEP [65], NBVP [6],
ESMIPP [63] and ESMRecon [63].

In contrast, Classic [78] and Rapid [14] seem to have
sometimes severe performance drops on specific area types.
Classic [78] seems to struggle on all the larger scenes
(e.g., FACILITY C, WAREHOUSE, PLATFORM A–B, POW-
ERPLANT). This can be explained by the fact that its ex-
haustive visit of nearest frontiers is linearly correlated to
the increased input scale, hence the efficiency drops.

Rapid [14] on the other hand tends to suffer in presence
of higher levels of structural complexity, such as indoor
scenes with narrow, intricate spaces such as OFFICE C and
FACILITY B. On such scenes, the planner tends to oscillate
between the traditional Classic [78] heuristic, and its char-
acteristic maximization of the MAV velocity. In particular,
while geometric complexity increases, many frontiers are
unfavorably oriented w.r.t to the current MAV trajectory.
Volumetric coverage. ESMIPP [63] is a clear winner per
the average relative scene coverage, followed by SplatPlan-
ner [8] and ESMRecons [63]. NBVP [6] and AEP [65] per-
form the worst among the considered planners and Clas-
sic [78] shows competitive performance rank-wise, despite
its algorithmic simplicity, and performs especialy well on
smaller areas like MAZE, OFFICES A-C and FACILITY A–
C. Rapid [14] shows competitive performance throughout.

4.2. Online Surface Reconstruction

Figure 5 and Table 3 respectively summarize the results
regarding the surface coverages and accuracies of the final
produced meshes. Both of these scores are also averaged
over the same 5 runs and Figure 5 also shows the min-max
scores per planner (as colored intervals).
Coverage. Regarding this metric, Classic [78] performs
unexpectedly well throughout the areas, except for larger
ones simiarly to the reported performance drop in volumet-
ric efficiency in such environments. NBVP [6] performs
the worse overall, and Rapid [14] performs reasonably well
throughout. The top-performing systems are ESMIPP [63]
and SplatPlanner [8].
Accuracy of the produced meshes. The reported
scores for this metric are the most surprising ones.
ESMIPP [63] claims the first place in terms of RMSE while
ESMRecon [63] is the better one w.r.t F-scores, closely fol-
lowed by Rapid [14] and SplatPlanner [8] . It is also worth
mentioning that AEP [65] performs worse that the origi-
nal NBVP [6] method in terms of RMSE and is almost as
bad w.r.t F-score. This can be explained by the fact that
AEP [65] induces a trade-off between local (NBVP [6] -
like) and global (frontier-like) exploration behaviors, which
seems to disserve it, accuracy-wise.

4.3. Volumetric Exploration vs. Surface Recon-
struction

The Pareto-optimal planners on FLYBO are
ESMIPP [63], ESMRecon [63] and SplatPlanner [8] that
are the respective leaders w.r.t volumetric exploration
(coverage) and surface reconstruction (F-score), while
SplatPlanner [8] emerges as the best compromise between
the two task-representative metrics (Figure 6).

4.4. Additional Statistics

Table 4 provides indicative timings and statistics.

5. Discussion and Perspectives
The impact of the present work can potentially lead to

several avenues of extensions and future work, a few of
which are specified in the following discussion.

Given the structured, unified nature of FLYBO, the pro-
posed data and framework can be used to support the devel-
opment of Reinforcement-Learning (RL) based approaches
to autonomous exploration. Methods that build on RL typi-
cally require a moderate amount of training data [13] and an
efficient means of scaling the number of experiments which
could naturally benefit from the flexibility of our system.

An important component of autonomous planning lies in
the generation of efficient, continuous, gracefull trajecto-
ries [22, 55, 80]. Such methods as well as replanning strate-
gies [55, 81, 82] could also directly benefit from our frame-



Figure 4: Autonomous Exploration: Volumetric Efficiency – Explored volumes over time, averaged over 5 runs.

Figure 5: Online Surface Reconstruction: Coverage – Scene surface recall over exploration time, averaged over 5 runs.
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) Classic [78] 0.9992 0.9945 0.9957 0.9926 0.9868 0.9911 0.9883 0.9681 0.9933 0.8795 0.7484 0.9579 5.3
Rapid [14] 0.9988 0.994 0.9987 0.9912 0.99 0.9932 0.995 0.9861 0.9934 0.9995 0.9999 0.9945 3.7
NBVP [6] 0.9925 0.9648 0.9685 0.9258 0.9973 0.9866 0.9774 0.9834 0.9887 0.9748 0.9587 0.9744 5.8
AEP [65] 0.975 0.9911 0.9882 0.9656 0.9836 0.9863 0.9642 0.9962 0.9939 0.993 0.9945 0.9847 5.5
ESMIPP [63] 0.9997 1.0 0.9962 0.9976 0.9961 0.9925 0.9971 1.0 1.0 1.0 1.0 0.9981 2.2
ESMRecon [63] 1.0 0.9953 0.9988 1.0 1.0 0.9927 0.9974 0.9974 0.9863 0.9758 0.9001 0.9858 2.9
SplatPlanner [8] 0.9998 0.9923 1.0 0.9935 0.9959 1.0 1.0 0.9952 0.9976 0.999 0.9984 0.9974 2.6
Plateau Time (s) 700 600 750 1650 700 750 1650 900 550 1200 1800

Table 2: Autonomous Exploration: Volumetric Coverage – Scores at plateau, relative to the best value (5 run average).
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Classic [78] 0.9807 0.9792 0.9371 0.9661 0.9266 0.9459 0.9629 0.7781 0.8111 0.6738 0.6694 0.8755 3.9
Rapid [14] 0.9831 0.9905 0.9435 0.962 0.9257 0.9477 0.9574 0.8097 0.7912 0.7597 0.8673 0.9034 2.8
NBVP [6] 0.9888 0.9609 0.9086 0.916 0.9257 0.9351 0.9416 0.7289 0.778 0.7009 0.8251 0.8736 5.8
AEP [65] 0.9362 0.9687 0.9182 0.9385 0.9132 0.9353 0.9214 0.7581 0.7647 0.7616 0.8484 0.8786 5.8
ESMIPP [63] 0.9944 0.982 0.9344 0.9575 0.9338 0.9429 0.9613 0.8077 0.7028 0.768 0.8513 0.8942 3.6
ESMRecon [63] 0.9862 0.9831 0.9355 0.9603 0.9355 0.9468 0.9538 0.7927 0.7965 0.7986 0.8809 0.9064 2.7
SplatPlanner [8] 0.9848 0.9891 0.9391 0.9597 0.9201 0.9527 0.9602 0.8118 0.7576 0.7575 0.8674 0.9 3.3
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Classic [78] 0.018 ± 0.014 0.019 ± 0.025 0.021 ± 0.02 0.015 ± 0.015 0.021 ± 0.021 0.02 ± 0.019 0.02 ± 0.019 0.03 ± 0.034 0.03 ± 0.032 0.046 ± 0.046 0.032 ± 0.028 - 2.6
Rapid [14] 0.021 ± 0.014 0.018 ± 0.014 0.021 ± 0.019 0.016 ± 0.015 0.022 ± 0.021 0.02 ± 0.021 0.02 ± 0.018 0.029 ± 0.033 0.032 ± 0.034 0.043 ± 0.046 0.034 ± 0.03 - 2.7
NBVP [6] 0.018 ± 0.013 0.019 ± 0.016 0.023 ± 0.022 0.017 ± 0.016 0.021 ± 0.02 0.021 ± 0.019 0.022 ± 0.02 0.031 ± 0.032 0.037 ± 0.035 0.044 ± 0.045 0.034 ± 0.027 - 5.
AEP [65] 0.023 ± 0.015 0.021 ± 0.016 0.024 ± 0.022 0.017 ± 0.017 0.026 ± 0.026 0.021 ± 0.02 0.025 ± 0.022 0.032 ± 0.033 0.037 ± 0.037 0.043 ± 0.046 0.034 ± 0.028 - 6.1
ESMIPP [63] 0.016 ± 0.012 0.018 ± 0.015 0.021 ± 0.019 0.016 ± 0.016 0.019 ± 0.017 0.02 ± 0.019 0.02 ± 0.018 0.029 ± 0.032 0.036 ± 0.03 0.042 ± 0.045 0.036 ± 0.03 - 2.3
ESMRecon [63] 0.018 ± 0.013 0.019 ± 0.015 0.022 ± 0.019 0.016 ± 0.015 0.02 ± 0.018 0.02 ± 0.019 0.021 ± 0.019 0.029 ± 0.031 0.031 ± 0.029 0.038 ± 0.044 0.031 ± 0.027 - 2.5
SplatPlanner [8] 0.02 ± 0.014 0.018 ± 0.015 0.021 ± 0.02 0.016 ± 0.016 0.022 ± 0.022 0.018 ± 0.017 0.021 ± 0.018 0.028 ± 0.032 0.033 ± 0.03 0.043 ± 0.045 0.033 ± 0.028 - 2.7

Table 3: Online Surface Reconstruction: Mesh Accuracy – Comparative evaluation of the produced meshes by means of
F-score and RMSE, averaged over 5 runs.
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Figure 6: Summary of our benchmark results showing the
state-of-the-art, Pareto-optimal planners (circled in black)
w.r.t their joint Autonomous Exploration Coverage vs. On-
line Reconstruction Accuracy ranks on FLYBO.

work, planning implementations and data in order to im-
prove existing planners with alternatives to their commonly
supported piecewise-linear trajectories.

Future work includes the addition of state-of-the-
art planners that are not yet published or available in our
benchmark. Other exciting lines of work include the addi-
tion of data modalities such as LiDAR scans to the proposed
indoor scenes within the realm of autonomous flying robots,
to serve downstream applications such as online scene com-
pletion [20, 18], or by considering online shape recognition
to speed up explorations by using the volumetric occupancy

#Iterations Per-iter. Tot. Path length
avg time (ms) (m)

Classic [78] 147 ± 7 35 ± 19 292 ± 21
Rapid [14] 52 ± 6 85 ± 110 442 ± 15
NBVP [6] 196 ± 2 858 ± 83 554 ± 8
AEP [65] 173 ± 5 37 ± 9 500 ± 15
ESMIPP [63] 251 ± 1 N/A 673 ± 1
ESMRecon [63] 246.9 ± 1 N/A 679 ± 2
SplatPlanner [8] 61 ± 2 236 ± 69 641 ± 31

Table 4: Comparative breakdown of exploration planning
timings and statistics on the WAREHOUSE (at t = 900s).

of objects in a TSDF representation [36, 4].

6. Conclusion

We have presented FLYBO, the first unified benchmark
environment that is specifically tailored for autonomous ex-
ploration using MAVs. It provides common material in
terms of datasets, implementation of state-of-the-art meth-
ods, and a unified, exploration-centric, evaluation frame-
work. In particular, our system allows to evaluate a plan-
ner according to all of the presented criteria and datasets
in merely 17h30 of computation, which is a fraction of the
time required to produce and package our framework and
experiments. We hope that this significant speed-up will
stimulate new contributions to the field in the near future.



Figure 7: A few selected qualitative results – The top four rows show results on the WAREHOUSE area, while the bottom
three rows show the two-story OFFICES C at different exploration stages, running different methods.



References
[1] https://www.skydio.com/3d-scan. 1
[2] Benjamin Adler, Junhao Xiao, and Jianwei Zhang. Au-

tonomous exploration of urban environments using un-
manned aerial vehicles. Journal of Field Robotics,
31(6):912–939, 2014.

[3] Iro Armeni, Sasha Sax, Amir R Zamir, and Silvio Savarese.
Joint 2d-3d-semantic data for indoor scene understanding.
arXiv preprint arXiv:1702.01105, 2017. 3

[4] Reem Ashour, Tarek Taha, Jorge Manuel Miranda Dias, Lak-
mal Seneviratne, and Nawaf Almoosa. Exploration for ob-
ject mapping guided by environmental semantics using uavs.
Remote Sensing, 12(5):891, 2020. 7

[5] Matt Berger, Josh Levine, Luis Gustavo Nonato, Gabriel
Taubin, and C Silva. An end-to-end framework for evalu-
ating surface reconstruction. Sci Comput Imag Inst, 2011.
3

[6] Andreas Bircher, Mina Kamel, Kostas Alexis, Helen
Oleynikova, and Roland Siegwart. Receding horizon” next-
best-view” planner for 3d exploration. In 2016 IEEE interna-
tional conference on robotics and automation (ICRA), pages
1462–1468. IEEE, 2016. 1, 2, 3, 5, 7

[7] Fredrik Bissmarck, Martin Svensson, and Gustav Tolt. Ef-
ficient algorithms for next best view evaluation. In 2015
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 5876–5883. IEEE, 2015.

[8] Anthony Brunel, Amine Bourki, Cédric Demonceaux, and
Olivier Strauss. Splatplanner: Efficient autonomous explo-
ration via permutohedral frontier filtering. In IEEE Inter-
national Conference on Robotics and Automation (ICRA),
2021. 1, 2, 3, 4, 5, 7

[9] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-
ber, Matthias Nießner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d
data in indoor environments. In 2017 International Confer-
ence on 3D Vision (3DV), pages 667–676. IEEE Computer
Society, 2017. 3

[10] Devendra Singh Chaplot, Dhiraj Prakashchand Gandhi, Ab-
hinav Gupta, and Russ R Salakhutdinov. Object goal naviga-
tion using goal-oriented semantic exploration. Advances in
Neural Information Processing Systems, 33, 2020.

[11] Benjamin Charrow, Gregory Kahn, Sachin Patil, Sikang Liu,
Ken Goldberg, Pieter Abbeel, Nathan Michael, and Vijay
Kumar. Information-theoretic planning with trajectory op-
timization for dense 3d mapping. In Robotics: Science and
Systems, volume 11, 2015.

[12] Shengyong Chen, Youfu Li, and Ngai Ming Kwok. Ac-
tive vision in robotic systems: A survey of recent devel-
opments. The International Journal of Robotics Research,
30(11):1343–1377, 2011.

[13] Sanjiban Choudhury, Mohak Bhardwaj, Sankalp Arora,
Ashish Kapoor, Gireeja Ranade, Sebastian Scherer, and De-
badeepta Dey. Data-driven planning via imitation learn-
ing. The International Journal of Robotics Research, 37(13-
14):1632–1672, 2018. 5

[14] Titus Cieslewski, Elia Kaufmann, and Davide Scaramuzza.
Rapid exploration with multi-rotors: A frontier selection

method for high speed flight. In 2017 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
pages 2135–2142. IEEE, 2017. 1, 2, 4, 5, 7

[15] Cl Connolly. The determination of next best views. In Pro-
ceedings. 1985 IEEE international conference on robotics
and automation, volume 2, pages 432–435. IEEE, 1985.

[16] Brian Curless and Marc Levoy. A volumetric method for
building complex models from range images. In Proceedings
of the 23rd annual conference on Computer graphics and
interactive techniques, pages 303–312, 1996.

[17] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5828–5839, 2017. 3

[18] Angela Dai and Matthias Nießner. Scan2mesh: From un-
structured range scans to 3d meshes. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5574–5583, 2019. 7

[19] Anna Dai, Sotiris Papatheodorou, Nils Funk, Dimos
Tzoumanikas, and Stefan Leutenegger. Fast frontier-based
information-driven autonomous exploration with an mav. In
2020 IEEE international conference on robotics and au-
tomation (ICRA), page 50. IEEE, 2020. 1, 2, 4

[20] Angela Dai, Daniel Ritchie, Martin Bokeloh, Scott Reed,
Jürgen Sturm, and Matthias Nießner. Scancomplete: Large-
scale scene completion and semantic segmentation for 3d
scans. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4578–4587, 2018. 4,
7

[21] Di Deng, Runlin Duan, Jiahong Liu, Kuangjie Sheng, and
Kenji Shimada. Robotic exploration of unknown 2d envi-
ronment using a frontier-based automatic-differentiable in-
formation gain measure. In 2020 IEEE/ASME International
Conference on Advanced Intelligent Mechatronics (AIM),
pages 1497–1503. IEEE, 2020. 2

[22] Wenchao Ding, Wenliang Gao, Kaixuan Wang, and Shaojie
Shen. An efficient b-spline-based kinodynamic replanning
framework for quadrotors. IEEE Transactions on Robotics,
35(6):1287–1306, 2019. 5

[23] Siyan Dong, Kai Xu, Qiang Zhou, Andrea Tagliasacchi,
Shiqing Xin, Matthias Nießner, and Baoquan Chen. Multi-
robot collaborative dense scene reconstruction. ACM Trans-
actions on Graphics (TOG), 38(4):1–16, 2019. 1, 3, 4

[24] Christian Dornhege and Alexander Kleiner. A frontier-void-
based approach for autonomous exploration in 3d. In 2011
IEEE International Symposium on Safety, Security, and Res-
cue Robotics, 2011. 2

[25] Christian Dornhege and Alexander Kleiner. A frontier-void-
based approach for autonomous exploration in 3d. Advanced
Robotics, 27(6):459–468, 2013.

[26] Tom Duckett and Ulrich Nehmzow. Exploration of unknown
environments using a compass, topological map and neu-
ral network. In Proceedings 1999 IEEE International Sym-
posium on Computational Intelligence in Robotics and Au-
tomation. CIRA’99, pages 312–317. IEEE, 1999.

[27] Matthias Faessler, Antonio Franchi, and Davide Scaramuzza.
Differential flatness of quadrotor dynamics subject to rotor

https://www.skydio.com/3d-scan


drag for accurate tracking of high-speed trajectories. IEEE
Robot. Autom. Lett., 3(2):620–626, Apr. 2018. 4

[28] Pedro F Felzenszwalb and Daniel P Huttenlocher. Dis-
tance transforms of sampled functions. Theory of computing,
8(1):415–428, 2012.

[29] Fadri Furrer, Michael Burri, Markus Achtelik, and Roland
Siegwart. Robot Operating System (ROS): The Complete
Reference (Volume 1), chapter RotorS—A Modular Gazebo
MAV Simulator Framework, pages 595–625. Springer Inter-
national Publishing, Cham, 2016. 4

[30] Wei Gao and Russ Tedrake. Filterreg: Robust and efficient
probabilistic point-set registration using gaussian filter and
twist parameterization. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
11095–11104, 2019.
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