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FLYBO: A Unified Benchmark Environment for Autonomous Flying Robots

Figure 1: An MAV equipped with odometry-and active depth sensors autonomously explores a complex synthetic area from FLYBO (a) while gradually mapping the scene throughout different exploration stages and planning trajectories online (b-d).

Simultaneously, the perceived surfaces are also reconstructed online (close-up views). FLYBO provides datasets, references and a framework to benchmark such systems w.r.t their volumetric exploration and online surface reconstruction capabilities.

Introduction

Over the past decade, Micro-Aerial Vehicles (MAVs) have considerably gained in popularity and commercial maturity, giving birth to even consumer-grade products at an affordable price. In particular, MAVs equipped with depthand odometry sensors have become a staple equipment to help map, digitize, locate and reconstruct relatively intricate facilities, even in absence of prior knowledge about their structure, or comprising objects [1]. As a result, the ability of such autonomous flying robots to efficiently explore unknown environments [START_REF] Brunel | Splatplanner: Efficient autonomous exploration via permutohedral frontier filtering[END_REF]6,[START_REF] Selin | Efficient autonomous exploration planning of large-scale 3-d environments[END_REF] while accurately reconstructing surfaces [START_REF] Schmid | An efficient samplingbased method for online informative path planning in unknown environments[END_REF] that are perceived therein has become critical to help minimize risks and operational costs.

Autonomous exploration planning has been a longstanding problem for over two decades [START_REF] Yamauchi | A frontier-based approach for autonomous exploration[END_REF][START_REF] Yamauchi | Frontier-based exploration using multiple robots[END_REF] and has received an ongoing attention within the scientific communities of Computer Vision [START_REF] Hepp | Learn-to-score: Efficient 3d scene exploration by predicting view utility[END_REF], Robotics [6, 14] and Computer Graphics [23,[START_REF] Xu | Autonomous reconstruction of unknown indoor scenes guided by time-varying tensor fields[END_REF]. Despite this activity, state-of-theart autonomous planning systems (commonly refered-to as "planners") are evaluated on disparate data, in sometimes drastically diverse experimental conditions [START_REF] Selin | Efficient autonomous exploration planning of large-scale 3-d environments[END_REF]19], and overall, lack a unifying public benchmark. In terms of datasets, the evaluation of autonomous exploration and their online surface reconstruction capabilities requires 3D models that are (i) watertight (to avoid aberrant flight behaviors, especially indoors) and (ii) realistic in terms of their structural complexity, size and geometry. CAD-derived data in particular are a goldstandard w.r.t these criteria and are favored when available as a benchmarking reference in a controlled, simulatedenvironment for autonomous exploration [START_REF] Brunel | Splatplanner: Efficient autonomous exploration via permutohedral frontier filtering[END_REF]19], and surface reconstruction [47,43]. We address the aforementioned challenges by making the following main contributions:

• System: We present FLYBO, the first unified benchmark environment specifically tailored for the evaluation of autonomous flying MAVs for the tasks of volumetric exploration and online surface reconstruction. • Datasets: The package includes 11 challenging CADderived datasets with ground-truth, that represent realistic indoor-and outdoor areas of varying nature, size and structural complexity. • Benchmark: We evaluate 7 of the leading state-of-theart autonomous exploration planners, including methods with no public code using our own re-implementations. • Tools: In order to fairly and accurately assess the pure exploration planning part of existing systems, we provide an experimental framework that factorizes the common routines that are shared by all planners. Our system also allows to generate the quantitative and qualitative results seemlessly and on the fly. • A project website with a leaderboard will be published upon acceptance along the datasets, our reimplementations, and unified evaluation system.

Related Work

Autonomous Exploration Planning. Autonomous exploration planning algorithms are commonly categorized into frontier-based, sampling-based or hybrid strategies.

Frontier-based methods rely on the concept of frontier voxels that separate empty and unknown spaces in the explored environment. The first method to introduce this paradigm was Classic [START_REF] Yamauchi | A frontier-based approach for autonomous exploration[END_REF] and has originally done so in 2D exploration planning. The method proceeds by visiting the nearest available frontier at each algorithm iteration, until all achievable frontiers are visited. Despite its appearant simplicity, the method also performs very well in 3D and is still considered revelant as a baseline system in terms of 3D exploration efficiency [START_REF] Brunel | Splatplanner: Efficient autonomous exploration via permutohedral frontier filtering[END_REF][START_REF] Zhou | Fuel: Fast uav exploration using incremental frontier structure and hierarchical planning[END_REF]. The seminal work of Yamauchi et al. [START_REF] Yamauchi | A frontier-based approach for autonomous exploration[END_REF] has led to numerous extensions including multi-agent exploration [START_REF] Yamauchi | Frontier-based exploration using multiple robots[END_REF], and more sophisticated strategies to extract frontiers using stochastic differential equations [START_REF] Shen | Stochastic differential equation-based exploration algorithm for autonomous indoor 3d exploration with a micro-aerial vehicle[END_REF], information theory and a multi-objective utility function [START_REF] Deng | Robotic exploration of unknown 2d environment using a frontier-based automatic-differentiable information gain measure[END_REF], or more generally, in a Next-Best View (NBV) fashion, i.e., by maximizing a given utility function greedilly [START_REF] Dornhege | A frontier-voidbased approach for autonomous exploration in 3d[END_REF]. Another trend in frontier-based planning is to enhance its main original drawbacks of speed and efficiency. Rapid [14] addresses these shortcomings by alternating between the original behavior of Classic [START_REF] Yamauchi | A frontier-based approach for autonomous exploration[END_REF] and minimizing the deviation angle between the current trajectory of the MAV and its incidence with frontier candidates.

This simple heuristic has led to impressive gains in terms of volumetric efficiency and is still considered a strongperforming planner w.r.t current state-of-the-art [START_REF] Zhou | Fuel: Fast uav exploration using incremental frontier structure and hierarchical planning[END_REF]14]. The current main difficulty to assess the performance of Classic [START_REF] Yamauchi | A frontier-based approach for autonomous exploration[END_REF] and Rapid [14] outside the scope of their originally documented performances lies in the absence of their public implementations. We address this by providing common, efficient implementations of their systems.

Sampling-based solutions are the second dominant trend in autonomous exploration. They are based on sampling sparse viewpoint candidates to visit in order to limit the size of the search space, and ultimately, the volumetric efficiency of the process altogether. Such approaches often rely on tree data structures that connect the sampled positions and allow to produce feasible trajectories through queries [START_REF] Kavraki | Probabilistic roadmaps for path planning in highdimensional configuration spaces[END_REF][START_REF] James | Rrt-connect: An efficient approach to single-query path planning[END_REF]. The top-performing sampling strategies are based on Rapidly-exploring Random Trees (RRT*) [START_REF] James | Rrt-connect: An efficient approach to single-query path planning[END_REF] and develop one [START_REF] Schmid | An efficient samplingbased method for online informative path planning in unknown environments[END_REF] or multiple tree structures [6, 65] from randomly sampled seed positions. The motivating theoreti- cal purpose behind this paradigm lies in the scalability and ease of convergence although the early strong-performing methods of the kind such as NBVP [6] tend to get stuck in local exploration. In contrast, AEP [START_REF] Selin | Efficient autonomous exploration planning of large-scale 3-d environments[END_REF] combines the NBVP [6] strategy with the storage of previously-explored node positions and re-assessing their information gain as well as considering frontiers, leading to a hybrid strategy that has a sparing effect regarding globally-exploring views.
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More recently, SplatPlanner [START_REF] Brunel | Splatplanner: Efficient autonomous exploration via permutohedral frontier filtering[END_REF] proposed a hybrid scheme that combines the flexibility of RRT* with frontiers that are sampled based on their spatial density using highly-efficient bilateral filtering operations, leading to impressive performance in terms of volumetric efficiency and coverage. The task of autonomous exploration is inherently tied to the one of autonomous inspection, or online surface reconstruction in assessing the accuracy of the geometry that is produced by autonomous planners [37]. Several works jointly consider criteria for online surface reconstruction in a mono-agent scenario [37, [START_REF] Xu | Autonomous reconstruction of unknown indoor scenes guided by time-varying tensor fields[END_REF][START_REF] Schmid | An efficient samplingbased method for online informative path planning in unknown environments[END_REF] or even as multiagent solutions [23]. Despite the existence of a rich but much more specialized litterature on reconstruction in general [5, 43] and online surface reconstruction in particular [68, 37], our proposed benchmark strictly focuses on the online surface reconstruction of general autonomous exploration systems in order to provide new insights regarding their performance beyond the traditional volumetric criteria, as a trade-off between their volumetric efficiency and the accuracy of their reconstructed surfaces in a controlled environment. This is made possible thanks to the unified nature of our FLYBO benchmarking framework. Datasets and Benchmarks for Autonomous Flying Robots. Current state-of-the-art autonomous planners commonly evaluate their performance either on a handfull of disparate, non-public CAD datasets [START_REF] Brunel | Splatplanner: Efficient autonomous exploration via permutohedral frontier filtering[END_REF][START_REF] Zhou | Fuel: Fast uav exploration using incremental frontier structure and hierarchical planning[END_REF], or by resorting to borrowing datasets from other tasks [23,[START_REF] Song | Semantic scene completion from a single depth image[END_REF]. Such datasets are RGBD-derived [START_REF] Chang | Matterport3d: Learning from rgb-d data in indoor environments[END_REF][START_REF] Dai | Scannet: Richly-annotated 3d reconstructions of indoor scenes[END_REF][START_REF] Armeni | Joint 2d-3d-semantic data for indoor scene understanding[END_REF][START_REF] Song | Semantic scene completion from a single depth image[END_REF][START_REF] Xia | Gibson env: real-world perception for embodied agents[END_REF], which can suffice to evaluate autonomous planners embedded on nonflying robots [START_REF] Xu | Autonomous reconstruction of unknown indoor scenes guided by time-varying tensor fields[END_REF]23], but are however impractical for simulating flying robots that can fly through unscanned regions and are also far from ideal to evaluate surface reconstruction in presence of sometimes severe structural artifacts and missing parts, that can also bias frontier-based explorations.

In contrast, FLYBO proposes watertight and highlystructured CAD-derived environments, comprising the first public dataset and benchmark focusing on MAV-based autonomous exploration systems.

Flying through FLYBO

Dataset and Acquisition

Our proposed benchmark is comprised of 11 areas, as detailed in Table 1 and illustrated in Figure 2. They consist of CAD models that were manually designed by human experts and directly serve our experimental framework to evaluate state-of-the-art methods for the considered tasks.

• MAZE. This is the most structurally simple area of our dataset. It allows to isolate exploration behaviors on the simplest form of indoor scenes, i.e., consisting of one ground level and flat walls. The performance on this area also serves as a baseline to assess the robustness to increasing levels of structural complexity and scene size. [START_REF] Brunel | Splatplanner: Efficient autonomous exploration via permutohedral frontier filtering[END_REF][START_REF] Dai | Scancomplete: Largescale scene completion and semantic segmentation for 3d scans[END_REF]14]. The area represents a very large-scale powerplant for which the exact crop considered for evaluation was undisclosed and potentially different. We address this by providing one fixed crop to this model with its corresponding experimental settings.

Tasks and Metrics

The proposed benchmark is specifically tailored for autonomous exploration planning systems, a.k.a planners. However, given that the most common cause of failure in MAV-based inspection campaigns generally is poorly reconstructed geometry provided by the offline, a posteriori assessment of the mapped 3D data, we consider both the tasks of (i) pure autonomous exploration planning per se, and (ii) online surface reconstruction to evaluate such systems. In practice, the online surface reconstruction may often constitute the deciding factor of whether an MAV exploration campaign is deemed successful in a production-ready scenario, sometimes regardless of the efficiency and speed of the exploration process. Autonomous Exploration Planning. Given V ⊂ R 3 a voxel-grid that represents the occupency states of voxels initially labeled as 'unknown', the objective is to relabel such entities as 'free' of 'occupied' while computing collision-free trajectories online. The standard metrics [23, 8, 19, 65, 14] we consider are defined as follows:

• The volumetric efficiency of the explorations in m 3 /s, • The volumetric coverage that we define as a fraction of the covered volume at a fixed exploration plateau relative to the top score, for simplification.

Online Surface Reconstruction. We adopt the standard metrics in the field for general-purpose surface reconstruction [23, [START_REF] Knapitsch | Tanks and temples: Benchmarking large-scale scene reconstruction[END_REF]43], namely:

• The surface coverage, expressed as the recall over time,

• The accuracy of the produced meshes as F-score and RMSE w.r.t ground-truth references [23,[START_REF] Knapitsch | Tanks and temples: Benchmarking large-scale scene reconstruction[END_REF].

All of the aforementioned metrics are averaged over multiple runs (5 throughout our experiments) to account for the inherently stochastic nature of the task. This is also a common practice in the field [START_REF] Brunel | Splatplanner: Efficient autonomous exploration via permutohedral frontier filtering[END_REF]19,[START_REF] Selin | Efficient autonomous exploration planning of large-scale 3-d environments[END_REF]14].

Ground-truth Generation

To evalute autonomous planners according to the aforementioned tasks, we consider the following data: Autonomous Exploration Planning. For all the considered metrics, the reference data are the input CAD models. Online Surface Reconstruction. In this particular case, the direct use of CAD models is not adequate because the surface-based metrics such as recall and F-score account for the amount of geometric surfaces that can be reconstructed, hence perceived in a scene. To avoid introducing significant biases in our evaluation, we run an interactive exploration mapping mode without simulated noise that is manually controlled. This allows to recover only the exterior, perceivable parts of the CAD scenes and to store them as highly accurate and dense point clouds to compute the considered metrics w.r.t surface reconstruction.

Unified Simulation Framework

We propose the first unified experimental simulation framework tailored for MAV-based autonomous exploration planners (Figure 3). It factorizes the common simulation routines shared by all systems, and the genration of intermediate data outputs and the computation of downstream metrics in a seamless, unified way.

The proposed simulation framework builds upon the Robot Operating System (ROS Kinetic) library [START_REF] Quigley | Ros: an open-source robot operating system[END_REF]. It simulates a Hummingbird quadrotors MAV model from Ascending Technologies and its physics are modeled by the popular Gazebo-based RotorS simulator [START_REF] Furrer | Robot Operating System (ROS): The Complete Reference (Volume 1), chapter RotorS-A Modular Gazebo MAV Simulator Framework[END_REF]. The control is insured by a flying robots control framework [START_REF] Faessler | Differential flatness of quadrotor dynamics subject to rotor drag for accurate tracking of high-speed trajectories[END_REF]. Traditional collision-checking is ensured within a sphere centered at the position of the MAV. The computed trajectories are typically piecewise-linear and are smoothed out with a polynomial trajectory optimization [START_REF] Richter | Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments[END_REF] to send graceful paths to the control system. The rendering engine uses the Vulkan API1 , assuming perfect poses from RotorS. It simulates a 20Hz DepthVision camera synchronized with the odometry. We take into account depth and odometry controlled noise, similar to ESM [START_REF] Schmid | An efficient samplingbased method for online informative path planning in unknown environments[END_REF] we use a gaussian depth error with quadratic scaling modeling recent depth camera [START_REF] Keselman | Intel realsense stereoscopic depth cameras[END_REF]. The system simulates noise in positions and depthmaps for realism. TSDF [38] and point clouds are continuously generated as well as the final meshes.

Featured Autonomous Exploration Systems

Our benchmark experiments consider 7 methods from state-of-the-art featuring the following systems: Classic [START_REF] Yamauchi | A frontier-based approach for autonomous exploration[END_REF], Rapid [14], NBVP [6], AEP [START_REF] Selin | Efficient autonomous exploration planning of large-scale 3-d environments[END_REF], ESM IPP [START_REF] Schmid | An efficient samplingbased method for online informative path planning in unknown environments[END_REF], ESM Recon [START_REF] Schmid | An efficient samplingbased method for online informative path planning in unknown environments[END_REF] and SplatPlanner [START_REF] Brunel | Splatplanner: Efficient autonomous exploration via permutohedral frontier filtering[END_REF].

We have reimplemented Classic [START_REF] Yamauchi | A frontier-based approach for autonomous exploration[END_REF], Rapid [14] and SplatPlanner [START_REF] Brunel | Splatplanner: Efficient autonomous exploration via permutohedral frontier filtering[END_REF] in absence of public implementations for these methods. NBVP [6], ESM IPP [START_REF] Schmid | An efficient samplingbased method for online informative path planning in unknown environments[END_REF], ESM Recon [START_REF] Schmid | An efficient samplingbased method for online informative path planning in unknown environments[END_REF] and AEP [START_REF] Selin | Efficient autonomous exploration planning of large-scale 3-d environments[END_REF] are used based on their public implementations. Finally, we integrate all of the considered systems in our evaluation framework. NBVP [6] and AEP [START_REF] Selin | Efficient autonomous exploration planning of large-scale 3-d environments[END_REF] are inhherently dependent on Octomap [START_REF] Hornung | Octomap: An efficient probabilistic 3d mapping framework based on octrees[END_REF] and thus, they can not benefit from our continuous voxel mapping component (Figure 3). 2 respectively summarize the benchmark results in terms of volumetric exploration efficiency averaged over 5 runs with min-max performance and volumetric coverage also averaged over the 5 same runs. Volumetric efficiency. The first general trend that emerges from the reported data is that certain methods maintain a steady performance throughout the dataset areas. This is the case for SplatPlanner [START_REF] Brunel | Splatplanner: Efficient autonomous exploration via permutohedral frontier filtering[END_REF], AEP [START_REF] Selin | Efficient autonomous exploration planning of large-scale 3-d environments[END_REF], NBVP [6], ESM IPP [START_REF] Schmid | An efficient samplingbased method for online informative path planning in unknown environments[END_REF] and ESM Recon [START_REF] Schmid | An efficient samplingbased method for online informative path planning in unknown environments[END_REF].

Results

Autonomous Exploration

In contrast, Classic [START_REF] Yamauchi | A frontier-based approach for autonomous exploration[END_REF] and Rapid [14] seem to have sometimes severe performance drops on specific area types. Classic [START_REF] Yamauchi | A frontier-based approach for autonomous exploration[END_REF] seems to struggle on all the larger scenes (e.g., FACILITY C, WAREHOUSE, PLATFORM A-B, POW-ERPLANT). This can be explained by the fact that its exhaustive visit of nearest frontiers is linearly correlated to the increased input scale, hence the efficiency drops.

Rapid [14] on the other hand tends to suffer in presence of higher levels of structural complexity, such as indoor scenes with narrow, intricate spaces such as OFFICE C and FACILITY B. On such scenes, the planner tends to oscillate between the traditional Classic [START_REF] Yamauchi | A frontier-based approach for autonomous exploration[END_REF] heuristic, and its characteristic maximization of the MAV velocity. In particular, while geometric complexity increases, many frontiers are unfavorably oriented w.r.t to the current MAV trajectory. Volumetric coverage. ESM IPP [START_REF] Schmid | An efficient samplingbased method for online informative path planning in unknown environments[END_REF] is a clear winner per the average relative scene coverage, followed by SplatPlanner [START_REF] Brunel | Splatplanner: Efficient autonomous exploration via permutohedral frontier filtering[END_REF] and ESM Recons [START_REF] Schmid | An efficient samplingbased method for online informative path planning in unknown environments[END_REF]. NBVP [6] and AEP [START_REF] Selin | Efficient autonomous exploration planning of large-scale 3-d environments[END_REF] perform the worst among the considered planners and Classic [START_REF] Yamauchi | A frontier-based approach for autonomous exploration[END_REF] shows competitive performance rank-wise, despite its algorithmic simplicity, and performs especialy well on smaller areas like MAZE, OFFICES A-C and FACILITY A-C. Rapid [14] shows competitive performance throughout.

Online Surface Reconstruction

Figure 5 and Table 3 respectively summarize the results regarding the surface coverages and accuracies of the final produced meshes. Both of these scores are also averaged over the same 5 runs and Figure 5 also shows the min-max scores per planner (as colored intervals). Coverage. Regarding this metric, Classic [START_REF] Yamauchi | A frontier-based approach for autonomous exploration[END_REF] performs unexpectedly well throughout the areas, except for larger ones simiarly to the reported performance drop in volumetric efficiency in such environments. NBVP [6] performs the worse overall, and Rapid [14] performs reasonably well throughout. The top-performing systems are ESM IPP [START_REF] Schmid | An efficient samplingbased method for online informative path planning in unknown environments[END_REF] and SplatPlanner [START_REF] Brunel | Splatplanner: Efficient autonomous exploration via permutohedral frontier filtering[END_REF]. Accuracy of the produced meshes.

The reported scores for this metric are the most surprising ones. ESM IPP [START_REF] Schmid | An efficient samplingbased method for online informative path planning in unknown environments[END_REF] claims the first place in terms of RMSE while ESM Recon [START_REF] Schmid | An efficient samplingbased method for online informative path planning in unknown environments[END_REF] is the better one w.r.t F-scores, closely followed by Rapid [14] and SplatPlanner [START_REF] Brunel | Splatplanner: Efficient autonomous exploration via permutohedral frontier filtering[END_REF] . It is also worth mentioning that AEP [START_REF] Selin | Efficient autonomous exploration planning of large-scale 3-d environments[END_REF] performs worse that the original NBVP [6] method in terms of RMSE and is almost as bad w.r.t F-score. This can be explained by the fact that AEP [START_REF] Selin | Efficient autonomous exploration planning of large-scale 3-d environments[END_REF] induces a trade-off between local (NBVP [6]like) and global (frontier-like) exploration behaviors, which seems to disserve it, accuracy-wise.

Volumetric Exploration vs. Surface Reconstruction

The Pareto-optimal planners on FLYBO are ESM IPP [START_REF] Schmid | An efficient samplingbased method for online informative path planning in unknown environments[END_REF], ESM Recon [START_REF] Schmid | An efficient samplingbased method for online informative path planning in unknown environments[END_REF] and SplatPlanner [START_REF] Brunel | Splatplanner: Efficient autonomous exploration via permutohedral frontier filtering[END_REF] that are the respective leaders w.r.t volumetric exploration (coverage) and surface reconstruction (F-score), while SplatPlanner [START_REF] Brunel | Splatplanner: Efficient autonomous exploration via permutohedral frontier filtering[END_REF] emerges as the best compromise between the two task-representative metrics (Figure 6).

Additional Statistics

Table 4 provides indicative timings and statistics.

Discussion and Perspectives

The impact of the present work can potentially lead to several avenues of extensions and future work, a few of which are specified in the following discussion.

Given the structured, unified nature of FLYBO, the proposed data and framework can be used to support the development of Reinforcement-Learning (RL) based approaches to autonomous exploration. Methods that build on RL typically require a moderate amount of training data [START_REF] Choudhury | Data-driven planning via imitation learning[END_REF] and an efficient means of scaling the number of experiments which could naturally benefit from the flexibility of our system.

An important component of autonomous planning lies in the generation of efficient, continuous, gracefull trajectories [START_REF] Ding | An efficient b-spline-based kinodynamic replanning framework for quadrotors[END_REF][START_REF] Oleynikova | Continuous-time trajectory optimization for online uav replanning[END_REF][START_REF] Zhou | Robust and efficient quadrotor trajectory generation for fast autonomous flight[END_REF]. Such methods as well as replanning strategies [START_REF] Oleynikova | Continuous-time trajectory optimization for online uav replanning[END_REF]81,[START_REF] Zhou | Fuel: Fast uav exploration using incremental frontier structure and hierarchical planning[END_REF] could also directly benefit from our frame- work, planning implementations and data in order to improve existing planners with alternatives to their commonly supported piecewise-linear trajectories.

Future work includes the addition of state-of-theart planners that are not yet published or available in our benchmark. Other exciting lines of work include the addition of data modalities such as LiDAR scans to the proposed indoor scenes within the realm of autonomous flying robots, to serve downstream applications such as online scene completion [START_REF] Dai | Scancomplete: Largescale scene completion and semantic segmentation for 3d scans[END_REF]18], or by considering online shape recognition to speed up explorations by using the volumetric occupancy [START_REF] Selin | Efficient autonomous exploration planning of large-scale 3-d environments[END_REF] 173 ± 5 37 ± 9 500 ± 15 ESM IPP [START_REF] Schmid | An efficient samplingbased method for online informative path planning in unknown environments[END_REF] 251 ± 1 N/A 673 ± 1 ESM Recon [START_REF] Schmid | An efficient samplingbased method for online informative path planning in unknown environments[END_REF] 246.9 ± 1 N/A 679 ± 2 SplatPlanner [START_REF] Brunel | Splatplanner: Efficient autonomous exploration via permutohedral frontier filtering[END_REF] of objects in a TSDF representation [START_REF] Bircher | Receding horizon" nextbest-view" planner for 3d exploration[END_REF]4].

Conclusion

We have presented FLYBO, the first unified benchmark environment that is specifically tailored for autonomous exploration using MAVs. It provides common material in terms of datasets, implementation of state-of-the-art methods, and a unified, exploration-centric, evaluation framework. In particular, our system allows to evaluate a planner according to all of the presented criteria and datasets in merely 17h30 of computation, which is a fraction of the time required to produce and package our framework and experiments. We hope that this significant speed-up will stimulate new contributions to the field in the near future. 
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 2 Figure 2: Overview of the 11 areas we consider in FLYBO, through a few selected views and levels.
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 3 Figure 3: Schematic workflow and components of our proposed unified experimental framework.
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  Figure4and Table2respectively summarize the benchmark results in terms of volumetric exploration efficiency averaged over 5 runs with min-max performance and volumetric coverage also averaged over the 5 same runs. Volumetric efficiency. The first general trend that emerges from the reported data is that certain methods maintain a steady performance throughout the dataset areas. This is the case for SplatPlanner[START_REF] Brunel | Splatplanner: Efficient autonomous exploration via permutohedral frontier filtering[END_REF], AEP[START_REF] Selin | Efficient autonomous exploration planning of large-scale 3-d environments[END_REF], NBVP [6], ESM IPP[START_REF] Schmid | An efficient samplingbased method for online informative path planning in unknown environments[END_REF] and ESM Recon[START_REF] Schmid | An efficient samplingbased method for online informative path planning in unknown environments[END_REF].In contrast, Classic[START_REF] Yamauchi | A frontier-based approach for autonomous exploration[END_REF] and Rapid [14] seem to have sometimes severe performance drops on specific area types. Classic[START_REF] Yamauchi | A frontier-based approach for autonomous exploration[END_REF] seems to struggle on all the larger scenes (e.g., FACILITY C, WAREHOUSE, PLATFORM A-B, POW-ERPLANT). This can be explained by the fact that its exhaustive visit of nearest frontiers is linearly correlated to the increased input scale, hence the efficiency drops.Rapid[14] on the other hand tends to suffer in presence of higher levels of structural complexity, such as indoor scenes with narrow, intricate spaces such as OFFICE C and FACILITY B. On such scenes, the planner tends to oscillate between the traditional Classic[START_REF] Yamauchi | A frontier-based approach for autonomous exploration[END_REF] heuristic, and its characteristic maximization of the MAV velocity. In particular, while geometric complexity increases, many frontiers are unfavorably oriented w.r.t to the current MAV trajectory. Volumetric coverage. ESM IPP[START_REF] Schmid | An efficient samplingbased method for online informative path planning in unknown environments[END_REF] is a clear winner per the average relative scene coverage, followed by SplatPlanner[START_REF] Brunel | Splatplanner: Efficient autonomous exploration via permutohedral frontier filtering[END_REF] and ESM Recons[START_REF] Schmid | An efficient samplingbased method for online informative path planning in unknown environments[END_REF]. NBVP [6] and AEP[START_REF] Selin | Efficient autonomous exploration planning of large-scale 3-d environments[END_REF] perform the worst among the considered planners and Classic[START_REF] Yamauchi | A frontier-based approach for autonomous exploration[END_REF] shows competitive performance rank-wise, despite its algorithmic simplicity, and performs especialy well on smaller areas like MAZE, OFFICES A-C and FACILITY A-C. Rapid[14] shows competitive performance throughout.

Figure 4 :

 4 Figure 4: Autonomous Exploration: Volumetric Efficiency -Explored volumes over time, averaged over 5 runs.

Figure 5 :

 5 Figure 5: Online Surface Reconstruction: Coverage -Scene surface recall over exploration time, averaged over 5 runs.

Figure 6 :

 6 Figure 6: Summary of our benchmark results showing the state-of-the-art, Pareto-optimal planners (circled in black) w.r.t their joint Autonomous Exploration Coverage vs. Online Reconstruction Accuracy ranks on FLYBO.

Figure 7 :

 7 Figure 7: A few selected qualitative results -The top four rows show results on the WAREHOUSE area, while the bottom three rows show the two-story OFFICES C at different exploration stages, running different methods.

  

Table 1 :

 1 20 × 20 × 2.5 22 × 28 × 3.4 8 × 20 × 12 30 × 16 × 7.4 12 × 14 × 6 19 × 17 × 4.6 38 × 22 × 6 40 × 20 × 12 16 × 24 × 9 24 × 20 × 25 33 × 31 × 26 Statistics of the 11 Areas that comprise the dataset part of FLYBO.

	m 2 )	400	470	120	534	115	323	478	800	384	480	1000
	Volume (m 3 )	1000	1410	1443	1602	690	1450	2868	9600	3456	12000	26598
	Bounding volume (m) #Rooms	-	2	4	23	1	2	5	1	-	-	-
	#Levels	1	1	4	2	1	1	2	2	3	3	1
	#CAD mesh faces	130	6910	227k	857k	373k	1120k	1072k	793k	149k	470k	2000
	Structural complexity	Low	Low	Intermediate	High	High	High	High	High	Intermediate	High	Low
	Scale	Small	Intermediate	Intermediate	Large	Intermediate	Small	Large	Large	Large	Large	Large
	Indoor / outdoor	Indoor	Indoor	Indoor	Indoor	Indoor	Indoor	Indoor	Indoor	Outdoor	Outdoor	Outdoor

  PLATFORM A AND B represent large industrial outdoors with increasing amounts of cluttering objects and complex equipments. They present numerous intricate spaces that are difficult to maneuver through for an MAV.• POWERPLANT was originally available as an opensource model and used by several state-of-the-art planners to evaluate performance

	• OFFICES A. Incrementally more complex than MAZE,
	it depicts two interconnected furnished office areas of
	moderately-sized open-spaces with few objects.
	• OFFICES B. Another set of interconnected office areas
	with more geometric complexity spanning multiple levels
	and that contain an important number of present objects.
	• OFFICES C. Similarly, area C is much more challenging
	in terms of structural complexity, amount of objects and
	details as well as in terms of overall scale.
	• FACILITY A, B AND C. These facilities depict complex
	industrial indoor environmenets, comprising piping,
	ducts, complex equipments and very challenging intri-
	cate spaces to move through. FACILITY A-C are of
	high structural complexity and of increasing sizes and
	scales. They span the plausible usecases that autonomous
	exploration algorithms would typically have to deal with
	in a real-life inspection scenario, ranging from moderate
	difficulty to highly-challenging overall.

• WAREHOUSE is a large-scale area that contains a large central empty space that is surrounded by many complex equipments that span two interconnected levels.

•

Table 2 :

 2 Autonomous Exploration: Volumetric Coverage -Scores at plateau, relative to the best value (5 run average).

	Vol. Coverage (%)	Classic [78] Rapid [14] NBVP [6] AEP [65] ESM IPP [63] ESM Recon [63] SplatPlanner [8] 0.9998 0.9992 0.9988 0.9925 0.975 0.9997 1.0	0.9945 0.994 0.9648 0.9911 1.0 0.9953 0.9923	0.9957 0.9987 0.9685 0.9882 0.9962 0.9988 1.0	0.9926 0.9912 0.9258 0.9656 0.9976 1.0 0.9935	0.9868 0.99 0.9973 0.9836 0.9961 1.0 0.9959	0.9911 0.9932 0.9866 0.9863 0.9925 0.9927 1.0	0.9883 0.995 0.9774 0.9642 0.9971 0.9974 1.0	0.9681 0.9861 0.9834 0.9962 1.0 0.9974 0.9952	0.9933 0.9934 0.9887 0.9939 1.0 0.9863 0.9976	0.8795 0.9995 0.9748 0.993 1.0 0.9758 0.999	0.7484 0.9999 0.9587 0.9945 1.0 0.9001 0.9984	0.9579 0.9945 0.9744 0.9847 0.9981 0.9858 0.9974	5.3 3.7 5.8 5.5 2.2 2.9 2.6
		Plateau Time (s)	700	600	750	1650	700	750	1650	900	550	1200	1800	

  ] 0.02 ± 0.014 0.018 ± 0.015 0.021 ± 0.02 0.016 ± 0.016 0.022 ± 0.022 0.018 ± 0.017 0.021 ± 0.018 0.028 ± 0.032 0.033 ± 0.03 0.043 ± 0.045 0.033 ± 0.028 -2.7

		Classic [78]	0.9807	0.9792	0.9371	0.9661	0.9266	0.9459	0.9629	0.7781	0.8111	0.6738	0.6694	0.8755	3.9
		Rapid [14]	0.9831	0.9905	0.9435	0.962	0.9257	0.9477	0.9574	0.8097	0.7912	0.7597	0.8673	0.9034	2.8
	F-Score	NBVP [6] AEP [65] ESMIPP [63]	0.9888 0.9362 0.9944	0.9609 0.9687 0.982	0.9086 0.9182 0.9344	0.916 0.9385 0.9575	0.9257 0.9132 0.9338	0.9351 0.9353 0.9429	0.9416 0.9214 0.9613	0.7289 0.7581 0.8077	0.778 0.7647 0.7028	0.7009 0.7616 0.768	0.8251 0.8484 0.8513	0.8736 0.8786 0.8942	5.8 5.8 3.6
		ESMRecon [63]	0.9862	0.9831	0.9355	0.9603	0.9355	0.9468	0.9538	0.7927	0.7965	0.7986	0.8809	0.9064	2.7
		SplatPlanner [8]	0.9848	0.9891	0.9391	0.9597	0.9201	0.9527	0.9602	0.8118	0.7576	0.7575	0.8674	0.9	3.3
		Classic [78]	0.018 ± 0.014 0.019 ± 0.025 0.021 ± 0.02 0.015 ± 0.015 0.021 ± 0.021 0.02 ± 0.019	0.02 ± 0.019	0.03 ± 0.034	0.03 ± 0.032 0.046 ± 0.046 0.032 ± 0.028	-	2.6
	std	Rapid [14]	0.021 ± 0.014 0.018 ± 0.014 0.021 ± 0.019 0.016 ± 0.015 0.022 ± 0.021 0.02 ± 0.021	0.02 ± 0.018 0.029 ± 0.033 0.032 ± 0.034 0.043 ± 0.046 0.034 ± 0.03	-	2.7
	RMSE ±	NBVP [6] AEP [65] ESMIPP [63]	0.018 ± 0.013 0.019 ± 0.016 0.023 ± 0.022 0.017 ± 0.016 0.021 ± 0.02 0.021 ± 0.019 0.022 ± 0.02 0.031 ± 0.032 0.037 ± 0.035 0.044 ± 0.045 0.034 ± 0.027 0.023 ± 0.015 0.021 ± 0.016 0.024 ± 0.022 0.017 ± 0.017 0.026 ± 0.026 0.021 ± 0.02 0.025 ± 0.022 0.032 ± 0.033 0.037 ± 0.037 0.043 ± 0.046 0.034 ± 0.028 0.016 ± 0.012 0.018 ± 0.015 0.021 ± 0.019 0.016 ± 0.016 0.019 ± 0.017 0.02 ± 0.019 0.02 ± 0.018 0.029 ± 0.032 0.036 ± 0.03 0.042 ± 0.045 0.036 ± 0.03	---	5. 6.1 2.3
		ESMRecon [63]	0.018 ± 0.013 0.019 ± 0.015 0.022 ± 0.019 0.016 ± 0.015 0.02 ± 0.018	0.02 ± 0.019 0.021 ± 0.019 0.029 ± 0.031 0.031 ± 0.029 0.038 ± 0.044 0.031 ± 0.027	-	2.5
		SplatPlanner [8													

Table 3 :

 3 Online Surface Reconstruction: Mesh Accuracy -Comparative evaluation of the produced meshes by means of F-score and RMSE, averaged over 5 runs.

		7					
	Surface Reconstruction Accuracy (rank)	1 2 3 4 5 6	1	2	3 Volumetric Coverage (rank) 4 5	6 Classic Rapid NBVP AEP ESM IPP ESM Recon Splat	7

Table 4 :

 4 Comparative breakdown of exploration planning timings and statistics on the WAREHOUSE (at t = 900s).

	61 ± 2	236 ± 69	641 ± 31
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