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Abstract

X-ray Computed Tomography (XCT) techniques have evolved to a point
that high-resolution data can be acquired so fast that classic segmenta-
tion methods are prohibitively cumbersome, demanding automated data
pipelines capable of dealing with non-trivial 3D images. Deep learning
has demonstrated success in many image processing tasks, including ma-
terial science applications, showing a promising alternative for a human-
free segmentation pipeline. In this paper a modular interpretation of U-
Net (Modular U-Net) is proposed and trained to segment 3D tomography
images of a three-phased glass fiber-reinforced Polyamide 66. We com-
pare 2D and 3D versions of our model, finding that the former is slightly
better than the latter. We observe that human-comparable results can be
achievied even with only 10 annotated layers and using a shallow U-Net
yields better results than a deeper one. As a consequence, Neural Net-
work (NN) show indeed a promising venue to automate XCT data pro-
cessing pipelines needing no human, adhoc intervention.
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X-ray Computed Tomography (XCT), a characterization technique used
by material scientists for non-invasive analysis, has tremendously pro-
gressed over the last 10 years with improvements in both spatial resolution
and throughput [1, 2]. Progress with synchrotron sources, including the
recent European Synchrotron Radiation Facility (ESRF) upgrade [3], made
it possible to look inside a specimen without destroying it in a matter of
seconds [4] – sometimes even faster [5].

This results in a wealth of 3D tomography images (stack of 2D im-
ages) that need to be analyzed and, in some applications, it is desirable
to segment them (i.e. transform the gray-scaled voxels in semantic cate-
gorical values). A segmented image is crucial for quantitative analyses;
for instance, measuring the distribution of precipitate length and orienta-
tion [6], or phase characteristics, which can be useful for more downstream
applications like estimating thermo-mechanical properties [7].

XCT images typically have billions of voxels, weighting several gi-
gabytes, and remain complex to inspect manually even using dedicated
costly software (e.g.: Avizo2, VGStudioMax3). Using thresholds on the
gray level image is an easy, useful method to segment phases in tomogra-
phies, but it fails in complex cases, in particular when acquisition artifacts
(e.g.: rings, beam hardening, phantom gradients) are present. Algorithms
based on mathematical morphology like the watershed segmentation [8, 9]
help tackling more complex scenarios, but they need human parametriza-
tion, which often requires expertise in the application domain. Thus, scal-
ing quantitative analyses is expensive, creating a bottleneck to process 3D
XCT – or even 4D (3D with time steps).

Deep Learning approaches offer a viable solution to attack this issue
because Neural Networks (NNs) can generalize patterns learned from an-
notated data. A NN is a statistical model originated from perceptrons [10]
capable of approximating a generic function. Convolutional NNs (CNNs) [11],
a variation adapted to spatially-structured data (time series, images, vol-
umes), made great advances in computer vision tasks. Since the emer-
gence of popular frameworks like TensorFlow [12], more problem-specific

2thermofisher.com
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architectures have been proposed, such as Fully-convolutional NNs [13], a
convolution-only type of model used to map image pixel values to another
domain (e.g. classification or regression).

[6] trained a model to segment three phases in 3D nanotomographies
of an Al-Cu alloy, showing that even a simple CNN can reproduce pat-
terns of a human-made segmentation. [14] optimized a SegNet [15] to seg-
ment dendrites of different alloys, including a 4D XCT. [7] identified Alu-
minides and Si phases in XCT using a U-Net, an architecture that, along
with its many flavors [16–19], has shown success in a variety of appli-
cations [20–22]. Finally, [23] combined U-Nets with classic segmentation
algorithms (e.g. marker-based watershed) to segment grain boundaries in
successive XCTs of an Al-Cu specimen as it is submitted to Ostwald ripen-
ing steps.

In this paper, an annotated 3D XCT of glass fiber-reinforced Polyamide
66 is presented as an example of segmentation problem in Materials Sci-
ence that can be automated with a deep learning approach. Our NN archi-
tecture, the Modular U-Net (Fig. 2 and Fig. 3), is proposed as a generalized
representation of the U-Net, explicitly factorizing the U-like structure from
its composing blocks.

Like [23], we compare three variants on the composite material dataset
focusing on the dimensionality of the convolutions (2D or 3D), obtaining
qualitatively human-like segmentation (Fig. 1 and Fig. 4) with all of them
although 2D-convolutions yield better results (Fig. 5a). We find that (for
the considered material) the U-Net architecture can be shallow without
loss of performance, but batch normalization is necessary for the optimiza-
tion (Fig. 5b). Finally, a model’s learning curve (Fig. 6) shows that only ten
annotated 2D slices are necessary to train our NN.

Our results show that NNs can be not only a quality-wise satisfac-
tory but also a viable solution in practice for XCT segmentation as it re-
quires relatively little annotated data and shallow models (therefore faster
to train).

1. Data

The data used in this work is composed of synchrotron X-ray tomogra-
phy volumes recorded using 2 mm × 2 mm cross section composite speci-
mens of Polyamide 66 reinforced by glass fibers. A volume of 20483 voxels,
referred to as Train-Val-Test (Fig. 1 and Fig. A.7), was cropped to get rid of
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Figure 1: Segmentation on the test set. Color code: blue represents voxels correctly classified as fiber
(hatched), yellow as porosity (contours), and red represents misclassification. Supplementary video:
youtu.be/HvdWhDZJgLE.

the specimen’s borders, and its ground truth segmentation was created
semi-manually with ImageJ [24] (using Fiji [25]) and Avizo. The tomog-
raphy of another specimen of the same material was also processed and
partially annotated in order to evaluate our models (Fig. 4) – it is further
referred to as the “crack” volume because of the fracture inside it. Both
image volumes and the former’s annotations are publicly available [26].

Acquisition. X-ray tomography scans were recorded on the Psiché beam-
line at the Synchrotron SOLEIL using a parallel pink beam. The incident
beam spectrum was characterized by a peak intensity at 25 keV, defined by
the silver absorption edge, with a full width at half maximum bandwidth
of approximately 1.8 keV. The total flux at the sample position was about
2.8× 1012 photons/s/mm2. The detector placed after the sample was con-
stituted by a LuAG scintillator, a 5×magnifying optics, and a Hamamatsu
CMOS 2048 x 2048 pixels detector (effective pixel size of 1.3 µm). 1500 ra-
diographs were collected over a 180° rotation and an exposure of 50 ms
(full scan duration of 2 minutes). The sets of radiographs were then pro-
cessed using PyHST2 reconstruction software [27] with the Paganin fil-
ter [28] activated to enhance the contrast between the phases.

Phases. The three phases present in the material are visible in Fig. 1: the
polymer matrix (gray), the glass fibers (white, hatched in blue), and dam-
age in form of pores (dark gray and black, contoured in yellow) – referred
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as porosity here. One can observe that the orientation of the fibers is un-
evenly distributed; they are mostly along the axes Y (vertical) and Z (out
of the plane) in Fig. A.7.

Ground truth. The data was annotated in two steps: first, the fiber and
the porosity phases were independently segmented using Seeded Region
Growing [29]; then, ring artifacts that leaked to the porosity class were
manually corrected. A detailed description of the procedure is presented
in the Appendix A.

Data split. The ground truth layers (of the Train-Val-Test volume) were se-
quentially split – their order were preserved to train the 3D models (Sec-
tion 2.2) – into three sets: train (1300 layers), validation (128 layers), and
test (300 layers). A margin of 86 layers between these sets was adopted to
avoid information leakage. The train layers were used to train the NNs,
the validation layers were used to select the best model (during the opti-
mization), and the test layers were used to evaluate the models (Section 3).

Class imbalance. Due to the material’s nature, the classes (phases) in this
dataset are intrinsically imbalanced. The matrix, the fiber, and the porosity
represent, respectively, 82.3%, 17.2%, and 0.5% of the voxels.

2. Neural Network

Problem formulation. Let x ∈ X = [0, 1]w×h×d be a normalized gray 3D im-
age. Its segmentation y ∈ Y = JCKw×h×d , where JCK = {0, 1, . . . , C− 1} ,
contains a class value in each voxel, which may represent any categorical
information, such as the phase of the material. In this setting, a segmen-
tation algorithm is a function f : X → Y . In this section we present
our approach (that is, the f ) used to segment the data described in the
previous section.

First, a generic U-Net architecture, which we coined Modular U-Net
(Fig. 2), is proposed; then, the modules used in this work are briefly ex-
posed (detailed description and hyperparameters in the Appendix B);
finally, three variations of the Modular U-Net, based on the input, con-
volution, and output nature (2D or 3D), are presented. Our training setup
(loss function, optimizer, learning rate, data augmentation, implementa-
tion framework, and hardware) is described in Appendix C.
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Figure 2: Modular U-Net: a generalization of the U-Net architecture.

2.1. Modular U-Net
Since [16] proposed U-Net, variations of it emerged in the literature

(e.g.: [17, 18]). Here we propose a generalized version, preserving its over-
all structure. The Modular U-Net (Fig. 2) is based on three blocks: the Con-
volutional Block (ConvBlock), the Downsampling Block (DownBlock), and
the Upsampling Block (UpBlock).

The left/right side of the architecture corresponds to an encoder/de-
coder, a repetition of pairs of ConvBlock and DownBlock/UpBlock mod-
ules. They are connected by concatenations between their respective parts
at the same U-level – which corresponds to the inner tensors’ resolutions
(higher U-level means lower resolution). The U-depth, a hyperparame-
ter, is the number of U-levels in a model, corresponding to the number of
DownBlock (and equivalently UpBlock) modules.

The ConvBlock is a combination of operations that outputs a tensor
with the same spatial dimensions of its input, though the number of chan-
nels may differ – in our models it always doubles. The assumption of
equally-sized input/output is optional, but we admit it for the sake of
simplicity because it makes the model easier to be used with an arbi-
trarily shaped volume. The numbers of channels after the ConvBlocks
is 2U-level × f0 , where f0 is the number of filters in the first convolution.

The DownBlock/UpBlock divides/multiplies the input tensor’s shape
by two in every spatial dimension: width, length, and depth in the 3D
case. In other words, a tensor with shape (w, h, d, c) , where c is the num-
ber of channels, becomes, respectively, (w

2 , h
2 , d

2 , c) after a DownBlock and
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Figure 3: Examples of Modular U-Net blocks. Left: our ConvBlock. Middle/right: rigid/learnable
DownBlock and UpBlock.

(2w, 2h, 2d, c) after an UpBlock.
In [16], for instance, the ConvBlock is a sequence of two 3x3 convo-

lutions with ReLU activation, the DownBlock is a max pooling, and the
UpBlock is an up-sampling layer. In [17], the ConvBlock is a 3D convolu-
tional layer, and in [18] it is a nested U-Net.

The ConvBlock used here (Fig. 3) is a sequence of two 3x3 (x3 in the 3D
case) convolutions with ReLU activation, a residual connection with an-
other convolution, batch normalization before each activation, and dropout
at the end. The DownBlock is a 3× 3 convolution with 2× 2 stride, and
the UpBlock is a 3× 3 transposed convolution with 2× 2 stride.

2.2. Variations: 2D, 2.5D, and 3D
Since our dataset contains intrinsically 3D structures, we compared the

performances of this architecture using 2D and 3D convolutions. The for-
mer processes individual tomography z-slices (XY plane) independently,
and the latter processes several at once (i.e. a volume).

We also compared an “intermediate” version, which we coined 2.5D,
that processes one tomography z-slice at a time using 2D convolutions, but
takes five slices at the input, as if the pairs of data slices above and below
were channels of the 2D image. Table B.2 summarizes these differences.

The visual characteristics of the z-slices are mostly invariant, and we
observed a high correlation between adjacent z-slices; therefore, the 2D
and 2.5D models take 2D cuts in the XY plane, as in Fig. 1 Fig. A.7.
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3. Results

In this section we present a compilation of qualitative and quantitative
results obtained. The segmentations from the three Modular U-Net ver-
sions presented in Section 2 are quantitatively compared, then an ablation
analysis and the learning curve of the 2D model are presented. All the
quantitative analyses were made on the test split (see Section 1), which
contains 1300× 1040× 300 ≈ 406× 106 voxels. Other images and videos
are provided along with further detailed analysis as supplementary mate-
rial in the Appendix D. The trained models and the data used to produce
our results are publicly available online [26, 30].

Qualitative results. Figure 1 shows two snapshots of the segmentation gen-
erated with a 2D model. Figure 4 shows the segmentation obtained with
the 2D model from the crack volume, used evaluate its usability in terms of
processing speed and applicability of the method to other data. The seg-
mented data was then used to generate a surface of the crack inside it4 –
we refer to it as the “crack” volume in the next section. Using an NVIDIA
Quadro P20005 (5 GB), it took 32 minutes to process a 1579× 1845× 2002
(≈ 5800 Mvoxels) volume. This shows that this type of analysis could
carried out almost in real time using typical hardware available at a syn-
chrotron beamline.

Baseline. For the sake of comparison, we considered the expected perfor-
mance of two theoretical models: the Zeroth Order Classifier (ZeroOC)
and the Bin-wise ZeroOC. The ZeroOC relies only on the class imbal-
ance, while Bin-ZeroOC takes the individual gray values into consider-
ation, leveraging information from the histograms of each class (Fig. A.8)
– see Table D.4 for more details.

Quantitative results. Figure 5 presents a comparison of the three model
variations (2D, 2.5D, and 3D) and an ablation study of the 2D model in
terms of number of parameters and performance. The three variations
of the Modular U-Net are evaluated with varying sizes. The models are
scaled with the hyperparameter f0 (values inside the parentheses in Fig. 5a).

4youtu.be/rmBTZrcMrCk
5pny.com/nvidia-quadro-p2000
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(a) (b)

Figure 4: Segmentation of the volume crack. Color code: blue represents the fiber and yellow repre-
sents the porosity. Supplementary video: youtu.be/rmBTZrcMrCk. (a) Two orthogonal planes inside
the specimen; the fibers are rendered in 3D at the bottom of the volume, and the crack is rendered
as a surface. (b) A crop from the vertical plane in a slice passing through the fracture. The fiber
segmentation is hatched in blue and the porosity segmentation is contoured in yellow.

The performance is measured using the Jaccard index, also known as
Intersection over Union (IoU), on each phase (class). Our main metric
is the arithmetic mean of the three class-wise indices, and the baseline
(minimum) is 76.2% (Table D.4). This metric provides a good visibility
of the performance differences and resumes the precision-recall trade off;
other classic metrics – even the area under the ROC[31] curve – are close
to 100% (see Appendix D), so the differences are hard to compare.

Ablation study. Figure 5b is a component ablation analysis of the 2D model
with f0 = 16 . Starting with the 2D model with the default hyperparam-
eters (see Fig. 3, and Section Appendix B), we retrained other models
removing one component at a time. The learnable up/down-samplings
were replaced by “rigid” ones (see Fig. 3), the 2D convolutions were re-
placed by separable ones, and the batch normalization was replaced by
layer normalization. Finally, we varied the U-depth from 2 to 4.

Notice that the model without dropout performed better than the ref-
erence model, but we kept it in our default parameters because the same
thing did not occur with other variations and sizes.

Learning curve. Finally, we computed the learning curve of the 2D model
(Fig. 6) logarithmically reducing the size of the train dataset from 1024
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(a) (b)

Figure 5: Modular U-Net variations comparison. On the x-axis, the number of parameters; on the y-
axis the mean class-wise Jaccard indices. (a) The Modular U-Net 2D, 2.5D, and 3D versions are scaled
with f0 (in parentheses), the number of filters of the first convolution of the first ConvBlock. (b)
Components were removed individually, or replaced by alternatives. Removals: dropout, gaussian
noise, residual (skip connection), batch normalization (out of scale). Replacements: convolutions
by separable ones, learnable DownBlock/UpBlock by rigid ones (Fig. 3), and batch normalization
by layer normalization. We also compare the effect of the U-depth, i.e. number of levels in the U
structure. Notice that the data point of the batch normalization removal is out of scale in the y-axis for the
sake of visualization.

z-slices until a single layer.

4. Discussions

4.1. Overview
Our models, trained in one to three hours6, achieved, qualitatively,

very satisfactory results from a Materials Science application point of view,
with 87% of mean class-wise Jaccard index and an F1-score macro average
of 92.4% (Table D.5). We stress the fact that these results were achieved
without any strategy to compensate the (heavy) class imbalance (82.3% of
the voxels belong to the class matrix); they may be further improved us-
ing, for instance, re-sampling strategies [32, 33], class-balanced loss func-
tions [34, 35], or self-supervised pre-training [36].

The results obtained with another specimen (the crack volume), thus
with slight variations in the acquisition conditions, were of good quality

6Up to eight hours for the largest 3D model.
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Figure 6: Learning curve of the 2D model with default hyperparameters (Appendix B).

(inspection by an expert showed no visible error in the segmentation) and
way faster than the manual process. The crack was mostly, and correctly,
segmented as porosity without retraining the model, showing its capacity
to generalize – an important feature for its practical use, although some
misclassified regions can be seen as holes (missing pieces) in the fracture’s
surface (Fig. 4a).

Moreover, the processing time achieved (32 miutes) is indeed a promis-
ing prospect compared to classic approaches.

4.2. Segmentation errors
As highlighted in Fig. 1, the model’s mistakes (in red), are mostly on

the interfaces of the phases, which are fairly comparable to a human anno-
tator’s. We (informally) estimate that they are in the error margin because,
in some regions, there is no clear definition of the phases’ limits. The fibers
may show smooth, blurred phase boundaries with the matrix, while part
of the porosities are under the image resolution.

Another issue is the loss of information (all-zero regions) in some rings
(e.g.: Fig. A.7b). In such cases, even though one could deduce that there
is indeed a porosity, it is practically impossible to draw a well-defined
porosity/matrix interface.

Finally, we reiterate that the ground truth remains slightly imperfect
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despite our efforts to mitigate these issues. For instance, in Figure 1 we
see, inside the C-like shaped porosity, a blue region, meaning that it was
“correctly” segmented as a fiber – yet, there is no fiber in it.

4.3. Model variations
Figures D.9 and 6 confirm that, no matter the model variation, the

porosity is harder to detect. Although, the qualitative results are reason-
able, and we underline that the Jaccard index is more sensitive on under-
represented classes because the size of the union will always be smaller
(see Equation C.1).

Contrarily to our expectations, Figure 5a shows that the 2D model per-
formed systematically better than the 3D (albeit the difference is admit-
tedly small). We expected the 3D model to perform better because the
morphology of the objects in the image are naturally three-dimensional;
besides, other work [23] have obtained better results in binary segmenta-
tion problems. We raise two hypotheses about this result: (1) the set of
hyperparameters is not optimal, and (2) the performance metric is biased
because the annotation process uses a 2D algorithm.

4.4. Model ablation
Figure 5b contains a few interesting findings about the hyperparame-

ters of the Modular U-Net:

1. using learnable up/down-sampling operations indeed gives more
flexibility to the model, improving its performance compared to “rigid”
(not learnable) operations;

2. separable convolutions slightly hurt the performance, but it reduces
the number of parameters by 60%;

3. decreasing the U-depth, therefore shrinking the receptive field, im-
proved the performance while reducing 75% of the model size; on
the other hand, increasing the depth had the opposite effect, multi-
plying the model size by four, while degrading the performance;

4. batch normalization is essential for the training – notice that the ver-
sion without batch normalization is out of scale in Fig. 5b, and its
performance corresponds to the ZeroOC model (Table D.4);

12



Model depth (item 3). This finding gives a valuable information for our
future work because using shallower models require less memory (i.e.:
bigger crops can be processed at once), making it possible to accelerate
the processing time. We hypothesize that the necessary receptive field is
smaller than the depth-three model’s. Therefore, a spatially bigger input
captures irrelevant, spurious context to the classification.

4.5. Learning curve
Figure 6 highlights the most promising finding in our results. Our

model was capable of learning with only 1% of the training dataset (about
ten z-slices) even with no “smart” strategy to select the layers in the experi-
ment (the training volume was sequentially reduced along the z-axis), and
even a single layer was sufficient to achieve nearly the same performance.

5. Conclusion

An annotated dataset of a three-phase composite material was pre-
sented, and a reinterpretation of the U-Net architecture as a modularized
structure was proposed as a solution to scale up the segmentation of such
images. Our models achieved satisfactory results showing a promising
venue to automate processing pipelines of XCTs of this material with only
a few annotated tomography slices. The Modular U-Net is a conceptually
more compact interpretation of its precursor, providing a more abstract
representation of this family of network architectures.

2D and 3D versions of the Modular U-Net were compared, showing
that both were capable of learning the patterns in a human-made annota-
tion, but the former was systematically better than the latter. An ablation
study provided insights about the hyperparameters of our architecture,
especially revealing that we might further accelerate the processing with
smaller models. We also qualitatively analyzed the usability of our models
on an image of a different specimen, confirming that it is a viable solution.

Our code is available on GitHub7, and the data and trained models
referred here are publicly available on Zenodo [26, 30].

7github.com/joaopcbertoldo/tomo2seg
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6. Future work

Carrying on the encouraging results found in this work, we envision
scaling up the use of our models to process other volumes and 4D X-ray
Computed Tomographys (XCTs). We also plan identifying better strate-
gies to deal with ill-defined regions (e.g.: matrix/fiber blurred interfaces),
an issue modestly mitigated in our work, to improve our approach’s us-
ability. Two possibilities are considered: (1) post-processing the class prob-
abilities to detect bad predictions, for instance using the method proposed
by [37]; (2) define a special class for uncertain regions. Finally, we might
as well search for better ways to measure a prediction’s consistency with
respect to the objects’ 3D morphology.
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Appendix A. Data: further details

(a) A 1300× 1040 slice on the XY plane of the volume
Train-Val-Test. On the upper left corner, a histogram of
the gray level values in the image; linear scale in black,
log scale in gray.

(b) Zoom. Ring artifacts, from the acquisi-
tion process, can be as dark as porosities,
making it harder to segment such regions.

Figure A.7: Glass fiber-reinforced Polyamide 66 raw tomography. Supplementary video: youtu.be/
4kifxlvxzb8.

Appendix A.1. Data annotation
We annotated the data in two phases. First, the fiber and the poros-

ity were separated from the matrix independently using Seeded Region
Growing [29]. As the results carried a considerable amount of artifacts in
the porosity phase, we manually corrected them with a second procedure.

Data annotation step 1: Seeded Region Growing [29]. To generate the seeds,
we applied contrast and brightness transformations to enhance the infor-
mation on the phase of interest, then applied Non-Local Means [38, 39] to
attenuate the ring artifacts, and finally used manual thresholds to select
“easy” voxels (mostly, regions without class superposition in Fig. A.8). Fi-
nally, we run it on each tomography z-slice independently.

We observed that some regions were poorly segmented due to the ring
artifacts, creating false, larger porosities. To mitigate this issue, we man-
ually corrected part of the artifacts, reducing their size while keeping it
consistent with adjacent z-slices.
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Data annotation step 2: artifacts correction. We separated 2D blobs (con-
nected components) in the porosity phase, then extracted region proper-
ties (e.g.area, aspect ratio, etc) to find outliers – mostly, porosities signif-
icantly larger than the average. Using Avizo, we then corrected imper-
fections manually editing the annotation. Most problematic regions were
on pronounced rings, where it is hard to define the borders of a porosity
(e.g.: Fig. A.7), so we cleaned ill-defined porosities conservatively shrink-
ing their volume/borders based on the layers above and below.

Appendix A.2. Ground truth analysis
Class-wise histogram. Figure A.8 shows a normalized gray level histogram
per class (the normalization is relative to all the classes confounded). Us-
ing a threshold approach is naturally prone to imprecise results because
a voxel’s gray value is insufficient to determine its class. This illustrates
how this volume cannot be segmented using a threshold. An example can
be seen in Fig. A.7b, where the rings are as dark as the porosities.

Figure A.8: Glass fiber-reinforced Polyamide 66 gray value (normalized) histograms (one per class).
The histogram is normalized globally, i.e. a bin’s value is the proportion of voxels out of all the
voxels (all classes confounded). The superposition of the classes’ value ranges make it impossible to
segment the image with a threshold on the gray values.

Appendix A.3. Data availability
The volumes mentioned here (Table A.1) are available on Zenodo [40].

Notice that the volumes (a) and (b) contain all the three splits (train, val-
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idation, test) together (1900 z-slices), while the volumes (c) and (d) corre-
spond to their last 300 z-slices. The values in the segmentation volumes
(predictions and ground truth) are 0, 1, and 2, which respectively corre-
spond to the phases matrix, fiber, and porosity. The volumes (e) and (f)
correspond to the volume in Fig. 4. The .raw files have complementary
.raw.info files containing metadata (volume dimensions and data type)
about its respective volume.

Table A.1: Published 3D volumes: all the data necessary to train and test the models presented in
this paper are publicly available on Zenodo [26]. A demo of how to read the data is available on
GitHub.

.zip file .raw file Description

pa66.zip
pa66.raw (a) Data (gray level image stack) of the Train-Val-Test volume.

pa66.ground_truth.raw (b) Ground truth segmentation of the Train-Val-Test volume.

pa66_test.zip
pa66.test.prediction.raw (c) Segmentation generated by the best 2D model on the test set.

pa66.test.error_volume.raw (d) Disagreement between the ground truth and the model’s prediction
on the test set: 1 means incorrect, 0 means correct.

crack.zip
crack.raw (e) Data of the non-annotated volume containing a crack inside.

crack.prediction.raw (f) Segmentation generated with the best 2D model on the crack volume.

Figure A.7 was generated in Fiji[25] with the volume (a). Figure 1 was
generated in Avizo with volumes (a) and (d), which is derived from vol-
umes (b) and (c). Figure 4b was generated in Avizo with volumes (e) and
(f). All the supplementary videos were generated in Avizo.
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Appendix B. Default hyperparameters

Parameters not mentioned are the default in TensorFlow 2.2.0.

Table B.2: Modular U-Net variations: input, convolutional layer, and output nature (2D or 3D).

Model Input (data) Convolution Output (segm.)

2D 2D 2D 2D
2.5D 3D 2D 2D

3D 3D 3D 3D

Table B.3: Default hyperparameters.

Parameter 2D 2.5D 3D

U-depth 3 3 3

Convolution kernel 3 × 3 3 × 3 3 × 3 × 3

Batch size 10 10 10

Crop shape 160 × 160 160 × 160 × 5 32 × 32 × 32

Dropout 10% 10% 10%

Gaussian noise (zero mean)

standard deviation
0.03 0.03 0.03

f0 16 16 16

Up/Down-sampling stride

or Max pooling size
2 × 2 2 × 2 2 × 2 × 2

BatchNorm momentum 0.5 0.5 0.5
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Appendix C. Training

Loss function. We trained our models using a custom loss inspired on the
Jaccard index, also known as Intersection over Union (IoU).

Def. 1. Let A and B be two discrete sets. The Jaccard index J ∈ [0, 1] is

J(A, B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B| − |A ∩ B| (C.1)

We adapt, similarly to [41], the second form in Equation C.1 to define
the multi-class Jaccard2 loss for a batch of voxels (a batch of 2D or 3D
images unraveled on the spatial dimensions) as follows.

Def. 2. Let yi ∈ {0, 1}C be the one-hot-encoding ground truth vector of the
voxel at position i ∈ JBK in a batch of B voxels y ∈ {0, 1}B×C , where yic ∈
{0, 1} is its value in the c-th position.

yic =

{
1, if the voxel i belongs to the class c ∈ JCK
0 otherwise

A model’s last activation map, a per-voxel softmax, is a tensor ŷ ∈ [0, 1]B×C ,
where each row is a probability vector ŷi ∈ [0, 1]C , and the component ŷic corre-
sponds to the probability assigned to the class c .

The Jaccard2 loss J2 ∈ [0, 1] of the batch (y, ŷ) is

J2(y, ŷ) = 1− ∑N
i=1 ∑C

c=1 yicŷic

∑N
i=1 ∑C

c=1 yicyic + ∑N
i=1 ∑C

c=1 ŷicŷic −∑N
i=1 ∑C

c=1 yicŷic

(C.2)

= 1− ∑N
i=1 ŷi∗

N + ∑N
i=1

((
∑C

c=1 ŷ2
ic

)
− ŷi∗

) (C.3)

where ŷi∗ = ∑C
c=1 yicŷic is the probability assigned to the correct class of the

voxel i.

Notice that the J2 ∈ [0, 1], which is convenient because it can be ex-
pressed as a percentage. J2 = 100% is a completely uncorrelated estima-
tion, and J2 = 0% is a perfect replication of the ground truth.
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Optimizer and Learning Rate. We used AdaBelief [42], an optimizer that
combines the training stability and fast convergence of adaptive optimiz-
ers (e.g.: Adam [43]) and good generalization capabilities of accelerated
schemes (e.g.: Stochastic Gradient Descent (SGD) [44]). We used a learn-
ing rate of 10−3 for 100 epochs (10 batches each with batch size 10), fol-
lowed by a linearly decaying rate until 10−4 in another 100 epochs. Adam
gave equivalent results but took longer (more epochs) to converge.

Data augmentation. In order to increase the variability of the data, random
crops are selected from the data volume, then a random geometric trans-
formation (flip, 90° rotation, transposition, etc) is applied. As our training
dataset is reasonably large, we used a simple data augmentation scheme,
but richer transformations may be applied as long as the transformations
result in credible samples.

Implementation and hardware. We trained our models using Keras [45] with
TensorFlow’s [12] GPU-enabled version10 with CUDA 10.1 running on
two NVIDIA Quadro P400011 (2x 8 GB). The implementation of our ex-
periments is available on GitHub12.

10tensorflow-gpu on PyPi
11pny.com/nvidia-quadro-p4000
12github.com/joaopcbertoldo/tomo2seg
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Appendix D. Further results

In this section we present complementary performance metrics, im-
ages, and videos from the segmentation generated by the 2D model (see
Section 2) using our default hyperparameters (Appendix B) on the test
split. Videos are available as supplementary material13.

Table D.4 presents the expected performances of the two baseline mod-
els we considered (Section 3).

Table D.4: Expected performance of baseline theoretical models in terms of class-wise Jaccard index (%).

Model Description Matrix Fiber Porosity Mean

ZeroOC Classify every voxel with the major-
ity class (matrix).

81.0 0 0 27.0

Bin-ZeroOC Classify a voxel based only on its
value. The majority class of each
value is chosen. This is equivalent
to a ZeroOC model per gray level.

98.4 94.2 35.9 76.2

Table D.5 shows a report with classic classification metrics and the Jac-
card index by class along with their macro/micro averages. As one can
see, the accuracy, precision, and recall of the matrix and the fiber are all
close to 100%, while the porosity’s scores are considerably lower.

Table D.5: 2D Modular U-Net ( f0 = 16 ) classification report.

class accuracy (%) precision (%) recall (%) f1 (%) jaccard (%) support
matrix 99.0 99.3 99.4 99.4 98.8 334.4 million
fiber 99.2 97.7 97.6 97.6 95.3 69.1 million

porosity 99.8 84.2 76.5 80.2 66.9 2.1 million
macro avg. 99.3 93.7 91.2 92.4 87.0 -
micro avg. 99.0 99.0 99.0 99.0 - -

Figure D.9 shows that, as the matrix and the fiber phases have high
scores, the mean Jaccard index is driven by the performance on the poros-
ity detection, which can also seen in Fig. 6. Recall that the baseline model
Bin-ZeroOC is expected to have a Jaccard index of 35% on the porosity and
76.2% of mean (Table D.4).

Figure D.10 presents detailed confusion matrices. The top one is ex-
pressed percentage of the number of voxel counts. The two bottom ones
are normalized, respectively, by row and column, and their diagonals cor-
respond to the recall and the precision of each class.

13youtu.be/HvdWhDZJgLE, youtu.be/dXlYcLXHFAA, youtu.be/CjwG-1FoSCY
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Figure D.9: Class-wise Jaccard index Modular U-Net 2D, 2.5D, and 2D variations.

Figure D.10: Confusion matrices of the 2D model on the test set normalized in three different ways.
(top) Normalized by the sum of all cells confounded. (bottom left) Normalized by the sum of ground
truth labels (a.k.a. support) of each class (each line sums up to 100%); the diagonal corresponds to
the recall values. (bottom right) Normalized by the sum of predicted labels of each class (each
column sums up to 100%); the diagonal corresponds to the precision values.
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