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2 Université Bretagne Sud, IRISA UMR 6074, F-56000 Vannes, France

3 European Space Agency, ESRIN Φ-lab, I-00044 Frascati (Rome), Italy
4 valeo.ai, F-75008 Paris, France

ABSTRACT

Deep learning has changed unbelievably the processing of
Earth Observation tasks such as land cover mapping or im-
age registration. Yet, today new models are needed to push
further the revolution and enable new possibilities. We pro-
pose a new framework for generative modelling of Earth Ob-
servation images. It learns an energy-based model to estimate
the underlying distribution of the data while jointly training
a deep neural network for classification. On the varied im-
age types of the EuroSAT benchmark, we show this model
obtains classification results on par with state-of-the-art and
moreover allows us to tackle a wide range of high-potential
applications: image synthesis, out-of-distribution testing for
domain adaptation, and image completion or denoising.

Index Terms— Deep Learning, Energy-based Models,
Generative Models, Earth Observation.

1. INTRODUCTION

The uptake of deep learning in Earth observation (EO) has
been massive in the recent years and has revolutionized ap-
plications such as classification, segmentation, detection or
change analysis [1, 2], enabling also for building or road ex-
traction at global scale [3, 4]. It was made possible thanks
to large datasets and well-defined tasks, i.e. settings adequate
for discriminative learning of feedforward neural networks.
Yet, there is now a need for addressing more complex tasks
such as explaining decision-making processes or simulating
complex scenarios with Earth observation data, e.g. to evalu-
ate and mitigate the effects of climate change.

The opportunity lies in modelling the joint distribution of
data and the various variables at stake rather than only a pos-
teriori outputs. Such generative models include Generative
Adversarial Networks (GANs) which have been widely used
in the last years [5, 6] but have known issues such as being
prone to mode collapse in the estimated distribution.
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Fig. 1. Class-conditional samples generated by the model.
First two columns contain real EuroSAT samples. Last five
columns present JEM-generated samples.

Alternatively, we propose to use a Joint Energy-based
Model (JEM) [7], which allows us to learn to classify and
generate data at the same time. By plugging an energy func-
tion into a single classification neural network, we are able to
generate images via Markov chain Monte Carlo sampling (as
shown in Fig. 1). Furthermore, our probabilistic model can
measure compatibility of new data with respect to the train
data, enabling the possibility of out-of-distribution detection.



In this work, we establish the potential of joint energy-
based models for classification and image generation in Earth
observation. The key features of our approach are:

I Classification performances comparable with the state-
of-the-art approaches;

I High quality image generation following the global dis-
tribution of the training data;

I Domain comparison using the energy function for reli-
able applicability on new data;

I Energy-based insight on model confidence when ap-
plied to unseen locations;

I EO image inpainting for incomplete data.
We present in Sec. 2 energy-based models and the proce-

dure to train a joint classification-generation model. We then
report experimental results for several applications in Sec. 3.
Finally, conclusion and future works are discussed in Sec. 4.

2. ENERGY-BASED MODELS AND JEM

Energy-based models. Inspired from statistical physics,
energy-based models [8] (EBMs) aim to capture dependen-
cies between variables, x ∈ X , through a scalar function
E : X → R, referred as the energy function. Learning an
EBM consists in finding an energy function that associates
low energy values to correct configurations of variables, and
higher energy values to incorrect configurations. Then, the
energy can be considered as a measure of compatibility.

EBMs can easily be interpreted as probabilistic models
using the Gibbs distribution, expressing the density p(x) as:

p(x) =
exp(−E(x))

Z
, (1)

where Z =
∫
X e
−E(x) is a normalization constant.

The advantage of training EBMs is that the energy value
parameterizes all the information about inputs. This alleviates
the burden of computing the normalization constant Z, which
is often intractable. Moreover, this provides much more flex-
ibility in the design of learning models.

Recently, EBMs have benefited from the expressive power
of deep neural networks to model complex energy functions,
with impressive results in generation, hybrid generation-
classification and other applications [7, 9]. However, EBMs
have been scarcely used in remote sensing [10], and have
never been coupled with image generation in this context.

Joint energy-based models [7] can be used to extend a
classic classifier architecture into an hybrid discriminative-
generative model, by simply re-interpreting the outputs of the
classification network. Let fθ : RD → RK be a classifica-
tion neural network, with K the number of classes. The key
idea of JEM is to express the joint distribution of images and
labels as a joint energy-based model:

pθ(x, y) =
exp(fθ(x)[y])

Zθ
(2)

The marginal distribution pθ(x) can be obtained by:

pθ(x) =

K∑
y=1

pθ(x, y) =

∑K
y=1 exp(fθ(x)[y])

Zθ
(3)

where fθ(x)[y] is the y-th entry of fθ(x).
From (3), one may observe that the distribution pθ(x) is

also an energy-based model, with the energy given by:

Eθ(x) = − log

(
K∑
y=1

exp(fθ(x)[y])

)
(4)

The model is then trained to maximize the joint log-likelihood,
log pθ(x, y), factorized as:

log pθ(x, y) = log pθ(x) + log pθ(y|x) (5)

As shown below, (5) is the key to obtain an hybrid model.
Classification. The second term is related to pθ(y|x), which
written as pθ(y|x) = pθ(x, y) / pθ(x) corresponds to the
softmax output of a usual classifier. Thus it can be optimized
using the cross-entropy loss, as a standard neural network.
Generation. The first term log pθ(x) corresponds to the
generative part. It is trained as an energy-based model by
approximating the gradient ∇xpθ(x) using a sampler based
on Stochastic Gradient Langevin Dynamics (SGLD) [9] and
thus, generates samples following:

xi+1 = xi − α
2∇xEθ(xi) + ε, x0 ∼ p0(x), (6)

with ε ∼ N (0, α) and p0(x) usually a Uniform distribution.

3. EXPERIMENTS

We perform experiments using the EuroSAT Dataset [11]
which comprises 64 × 64 patches from Sentinel-2 images,
including scenes from 34 countries in Europe. Each image
patch is labeled with one of 10 land cover/land use classes
(e.g. industrial, residential, highway, pasture, forest, etc.).
Classes are well-balanced, with 2,000 to 3,000 examples per
class. In our experiments, we use the EuroSAT RGB version.

Implementation details. Following [7], we perform our
experiments using a WideResNet-28-10 architecture [12],
with no batch normalization. We train our networks with the
Adam optimizer [13], during 200 epochs, following the JEM
training scheme. Pytorch [14] is used for all implementations.

3.1. Hybrid Generative-Discriminative Results

As stated before, JEM, as a new training paradigm, allows us
to train a standard classifier not only to classify images, but
also to generate new ones.

Fig. 1 shows some class-conditional examples generated
by the network after being trained on the EuroSAT dataset.
First two columns present real samples from the dataset, while
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Fig. 2. Out-of-Distribution Detection using JEM. Out-of-distribution samples are assigned lower log p(x) values. Comparison
between EuroSAT, OSCD and ISPRS Potsdam.

the five last columns show images generated by the model.
Each row represents a class in the dataset. We observe that
JEM-generated samples are akin to real EuroSAT samples,
which is quantitatively supported by a KID score [15] of 0.06.
Moreover, the model is capable to produce samples for every
class on the dataset, with a large variety of images per class.

However, some classes remain challenging. For instance,
forests (last row in Fig. 1) seem to be difficult to generate,
maybe due to the lack of texture on forests patches. As a
result, only 0.5% of generated samples correspond to forests,
even though the training set is well-balanced. Industrial build-
ings (first row in Fig. 1) would require finer and more rectan-
gular outlines to correctly match industrial buildings in the
EuroSAT dataset. Conversely, generated samples for high-
ways, rivers and various types of fields are remarkably simi-
lar to real images. This is a very good result because it means
that the model is able to learn the true distribution behind the
dataset and leads to compelling applications. Examples gen-
erated from the learnt distribution may be used for simula-
tion or even for training new models. One could also use the
learnt distribution for semi-supervised learning algorithms or
in continuous learning applications.

We report in Table 1 classification results over EuroSAT.
JEM results reach the same level of performances as previous
methods. The slight discrepancy of the multi-task JEM with
classification-only Wide-ResNet might be explained by the
intrinsic regularization of the JEM model.

Table 1. Classification results comparison of standard dis-
criminative networks vs. JEM on EuroSAT.

Wide-ResNet JEM ResNet-50 [11] GoogLeNet [11]

Acc. 98.3% 97.6% 98.6% 98.2%

3.2. Out-of-Distribution Testing

Out-of-distribution (OOD) detection is the task of identifying
anomalous or significantly different examples from the train-
ing ones. This is an essential capacity to assert if the model is
able to correctly classify new samples, especially in applica-
tions involving real-world decisions.

Fig. 3. Classification on a never-seen OSCD city (Beirut).
From left to right: Image, classification map and confidence
map (unnormalized log p(x)).

We measure the capacity of the model to detect OOD sam-
ples by comparing in Fig. 2 the histograms of unnormalized
log-likelihood values of the EuroSAT training set with differ-
ent public EO datasets: OSCD [2] and ISPRS Potsdam [16].
Samples which match EuroSAT distribution should get higher
values of log p(x). On the leftmost histogram, we observe no
difference between EuroSAT training and test sets, while for
OSCD and Potsdam datasets, the log p(x) can be extremely
small compared to the EuroSAT train set. This is quantita-
tively confirmed by computing the Kullback-Leibler (KL) di-
vergence with respect to the model trained on EuroSAT. In-
deed, KL is only 0.2 for EuroSAT test data, while for OSCD
and Potsdam values are 28.2 and 25.6, respectively: more in-
formation would be needed to represent these datasets which
differ in terms of location or appearance.

3.3. Measuring the Confidence of the Classifier

Since our model is able to perform OOD detection, we can
use the unnoormalized log p(x) value as a proxy for the
confidence of its prediction. To illustrate, we apply EuroSAT-
trained JEM to OSCD tiles. The tiles are split into 64×64
patches which go through the network to obtain the corre-
sponding class and the estimated log-likelihood value per
patch, leading to both classification and confidence maps.

We observe in Fig. 3 the results on a never-seen location
from OSCD: Beirut. The segmentation map produced by the
classifier is globally correct, however the model confidence,
expressed as the model log-likelihood, varies. Indeed, low
confidence happens on the most peculiar downtown districts,
near the harbor and in Ras Beirut, which are areas the more
likely to be different from training European cities.



Fig. 4. Image completion on EuroSAT dataset. Two up rows:
inpainting, 12.5% information missing at the center. Two bot-
tom rows: pixel defect correction, 10% salt and pepper noise.

3.4. Image Completion

The generative power of JEM can also be exploited to per-
form image completion. Fig. 4 shows some examples where
the model is used to reconstruct missing pixels of an image,
for tasks such as inpainting (missing regions) or restoration
(missing pixels due e.g. to sensor defects).

4. DISCUSSION

We have introduced a new hybrid discriminative-generative
framework applied to Earth observation data. The joint
energy-based model leads to simultaneous classification and
generation of images. Classification results are on par with
state-of-the-art discriminative methods, while generated sam-
ples are, in general, of good quality and remarkably similar to
real examples. We have also shown appealing remote sensing
applications for this model: the capacity of detecting out-of-
distribution samples to decide if the model can be reliably
used in a new domain or use-case; the ability to classify un-
seen zones with a confidence map based on the OOD metric;
and image completion or restoration of corrupted images.

However, large-scale deployment of JEM remains an open
issue, mostly due to computation time of the Monte Carlo
sampling. Yet, our promising results show how interesting
JEM can be to benefit a wide range of high potential EO ap-
plications: simulation, domain adaptation, interpretability.
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[15] Mikołaj Bińkowski, Dougal J Sutherland, Michael Ar-
bel, and Arthur Gretton, “Demystifying MMD GANs,”
in ICLR, 2018.

[16] F. Rottensteiner, G. Sohn, et al., “The ISPRS bench-
mark on urban object classification and 3D building re-
construction,” ISPRS Annals, vol. 1, pp. 293–298, 2012.


	 Introduction
	 Energy-based Models and JEM
	 Experiments
	 Hybrid Generative-Discriminative Results
	 Out-of-Distribution Testing
	 Measuring the Confidence of the Classifier
	 Image Completion

	 Discussion
	 References

