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ABSTRACT

According to the United Nations, 70% of earth population is
going to live in cities by 2050. Given this fast urban evolu-
tion, urban monitoring is a key process to qualify sustainable
development. Vertical changes need to be assessed, and var-
ious methods for 3D change detection have been published.
However, there is no common quantitative benchmark assess-
ing their performance in urban areas yet. In this paper, we
aim to fill this gap and introduce a simulation tool to generate
synthetic 3D point cloud data in a well-controlled scenario.
These data are then used to compare qualitatively and quan-
titatively representative 3D change detection methods for
urban areas. These methods are based on distance compu-
tation (DSMd, C2C, M3C2), traditional machine learning
(RF with stability feature) and deep learning (Feed Forward
and Siamese networks). We distinguish between binary and
multi-class classification of changes at different levels (3D
points, 2D pixels, and 2D patches). While deep neural net-
works have led to numerous success in remote sensing, we
show that they do not systematically outperform more simple
methods for 3D change detection. Besides, the existing net-
works are limited to 2D patches while outputs at the pixel or
point scale are more attractive.

Index Terms— 3D change detection, urban monitoring,
bi-temporal point clouds dataset, LIDAR simulator

1. INTRODUCTION

Change detection (CD) in urban areas is an important field
of study in remote sensing since it provides key information
regarding urbanization of our planet. Multiple types of data
could be used for CD including 3D point clouds (PCs). While
a lot of existing studies use 2D images for CD, 3D PCs bring
some supplementary information on height that seems useful
in the context of building change extraction as main modifica-
tions occur on the height axis. Furthermore, spectral variabil-
ity of a same object over time, difference of viewing angles
between acquisition of 2D images, perspective and distortion
effects could complicate CD retrieval based on 2D data [1].
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While CD on urban 3D data has been addressed in sev-
eral studies, so far there is a strong lack of experimental com-
parison. To the best of our knowledge, the only comparative
analysis [2] remains at a qualitative level and does not include
deep learning (DL) methods that represent the state-of-the-art
in remote sensing. In this paper, we aim to fill this gap through
two contributions: first we design a novel simulator of 3D
aerial LIDAR PCs over urban areas that has been specifically
tailored to enable the introduction of changes over buildings,
leading to generation of annotated 3D CD urban datasets in
well-controlled benchmarking scenarios. We then provide a
comparison between representative methods of the state-of-
the-art in the context of Aerial LIDAR Survey (ALS) in urban
areas, from classical distance based methods to the latest deep
learning developments.

2. 3D CHANGE DETECTION METHODS

We present here the methods that have been included in our
experimental comparison. They have been selected as repre-
sentative of the current literature, and are based on distance
computation, machine learning (ML) with hand-crafted fea-
tures or DL. In order to process 3D PCs, two main strategies
have been reported, namely converting 3D PCs into Digital
Surface Models (DSMs) or directly processing raw PCs. A
DSM is a 2D rasterisation of the PCs which allows us to have
for each pixel some information on height. Often inspired by
CD algorithms based on 2D images, these methods are eas-
ier to apply as DSMs can be seen as grayscale images. Apart
from the difficulty of processing unordered and sparse data
like PCs, methods operating on raw PCs have the advantage
of avoiding the loss of information brought by the rasterisa-
tion process.

2.1. Distance-based methods

The first idea to detect 3D changes and the easiest one is to
measure difference between DSMs. It was first explored in [3]
for building change extraction. It is still often used because
of its simplicity and of the quality of results for buildings



change highlighting, and even in other fields of earth observa-
tion [4]. After having computed the DSM difference (DSMd),
a thresholding is required to retrieve changes. One can either
choose an empiric threshold [3] or use the Otsu algorithm in
order to select thresholds according to the DSMd histogram.
Finally, DSMd is often the first step in a lot of studies, some
further refinement of results is usually done to obtain better
results. For instance, morphological filters such as opening
can be apply to filter isolated pixels [5].

Distance computation can also be done directly on 3D
PCs as in C2C (cloud to cloud) method [6] where PCs are sub-
divided in octrees and the Hausdorff distance is used. In [7],
authors first extract surface normal and orientation at specific
scales with the local surface roughness. The measurement of
the mean surface change is performed along the normal direc-
tion is realised (method M3C2: Multi Scale Model to Model
Cloud Comparison). M3C2 is able to differentiate positive
and negative changes conversely to the C2C, and comes with
a lower computation time [2]. A threshold can be apply on
results of both methods to categorize each point into classes.

2.2. Machine learning with hand-crafted features

Several studies, called post-classification methods, consist
first of classifying the data at each date, before comparing the
classification results. On the contrary, [8] tries to combine
classification and change detection in one single step. To do
so, the authors extract features related to points distribution,
terrain elevation, multi-target capability of LiDAR and finally
a feature called stability. The stability is computed for each
point based on the distribution of the neighboring points in
the PC coming from the other date, and more precisely as
the ratio of the number of points in a spherical and vertical
cylindrical z-oriented neighborhood. Then, a random forest
(RF) algorithm is applied to obtain a supervised classification
of changes. This method will be noted RF in our experiments.

2.3. Deep learning methods

More recently, [9] tries to use DL on DSMs to detect changes
in patches in urban areas. Two kind of Convolutional Neural
Network (CNN) are explored: a Feed-Forward (FF) network
and a Siamese architecture. Siamese networks are often used
for change detection or similarity computation between two
inputs, and have been largely used for remote sensing appli-
cation. They are known to provide high-accuracy results even
with significantly heterogeneous inputs. The objective of [9]
is to use bi-temporal multi-modal 3D information from both
ALS and photogrammetric PCs. They achieve quite good re-
sults with a precision of 63% for both FF and Siamese net-
works on DSM only, where DSMd reached only 38% accord-
ing to the original paper. Let us notice that DSMd is here
measured per patch, i.e. an average of DSMd is made over the
whole patch and thresholded to distinguish between changed

or unchanged patches. In their study, [9] consider only a bi-
nary classification of patches. We extended their architectures
in order to be able to predict the three classes of interest: un-
changed, construction and demolition.

3. BENCHMARKING URBAN 3D CHANGES

To assess the methods reviewed in the previous section, we
rely on a data simulation tool that allows us to build a novel
urban change dataset. We present here these different compo-
nents together with the evaluation metrics used in our study
to compare the different methods.

3.1. Point cloud simulator

In order to perform quantitative evaluation of various meth-
ods, we have designed a simulator of LiDAR surveying over
urban areas to allow us a fine characterization of the behaviour
of 3D change detection methods. Given a 3D model (OBJ
format) of a city, the simulator allows us to introduce random
changes in the model and generate a synthetic ALS above the
city. With adding or removing buildings in the model, we can
simulate construction or demolition of buildings. The simu-
lator allows us to obtain as many 3D PCs over urban changed
areas as needed. It could be useful especially for DL su-
pervised approaches that require a lot of training instances.
Moreover, the created PCs are all directly annotated by the
simulator according to the changes, thus no time-consuming
manual annotation needs to be done on these data. Figure 1
gives an example of PCs at two epochs generated by the sim-
ulator. The second epoch is labelled according to the changes.

A flight plan is defined according to predefined parame-
ters such as resolution, covering between swaths and scan an-
gle. For each obtained model, the ALS simulation is realised
thanks to the flight plan and ray tracing with the Visualisa-
tion ToolKit (VTK) python library . Finally, Gaussian noise
can be added to the simulation to simulate errors and lack of
precision in LiDAR range measuring and scan direction. A
qualitative validation of PCs acquired thanks to the simulator
has been realised by an expert of 3D PCs.

3.2. Urban change dataset

We use our simulator to generate PC synthetic data from a 3D
Level of Detail 2 (LoD2) model of the french city of Lyon 2.
Two dates are considered with several building construction
and demolition instances. 3

In practice the flight plan is set randomly. As a conse-
quence, the swath will not be the same between pairs of PCs,

'https://vtk.org

https://geo.data.gouv.fr/datasets/073198934974
2867£8e65904d70b707612bece89

3The dataset is publicly available at the following link: https://ieece
-dataport.org/open-access/urb3dcd-urban-point-clou
ds-simulated-dataset-3d-change-detection



(a) Epoch 1

(b) Epoch 2

Fig. 1. Sample PCs at two epochs, with new buildings (green), demolished buildings (red), and unchanged objects (blue) in (b).

thus each acquisition may not have exactly the same visible or
invisible parts. Moreover range error is set to 5 cm and scan
direction error across track to 0.01° and the average resolu-
tion is 0.5 points/m?. By doing so, we ensure more realistic
and tricky simulation conditions, in particular with this chal-
lenging low spatial resolution.

We have split the area into three distinct parts to pro-
vide a common testing set for all methods, and some specific
training/validation sets for ML/DL-based methods. Figure 2
presents a vertical view of the LoD2 model of Lyon where all
available buildings are shown (height shown in color).

A large number of PC pairs has been used, building con-
struction/destruction between the two dates being randomly
generated by the simulator. It could be seen as a data aug-
mentation process especially useful for supervised learning.

3.3. Evaluation metrics protocol

The quantitative evaluation relies on the mean of Intersection
over Union (IoU) over classes of change. We recall that for
a given class, IoU is defined by the ratio TP/(TP+FP+FN)
where TP, FP and FN stand for True Positive, False Positive
and False Negative, respectively. In case of binary classifica-
tion, the formula is used as it is with positive meaning change.
Otherwise, the mean of IoU over both change classes (con-
struction and demolition) is used. This metric has been pre-
ferred over accuracy or precision measures since it allows us
to focus on classes of change, while most of pixels or points
remain unchanged between the two epochs.

4. RESULTS AND DISCUSSION

Experimental results are summarized in Table 1, considering
the three output levels (3D point, 2D pixel and 2D patch) as
well as binary and multiclass change prediction.

We can observe that among methods that process directly
3D PCs, best results are achieved with RF [8], that however
requires some level of supervision and the prior extraction of

Fig. 2. Lyon dataset split into 3 distinct parts: West and North
are used for training and validation for DL and ML methods,
South is always the testing set. Height is shown in color.

hand-crafted features. In our dataset, we have changed the
LiDAR flight plan between the two dates, thus the point of
view is not exactly the same. These varying positions of the
LiDAR during the acquisition step introduce different hidden
parts in PCs especially in dense urban areas due to building
shadows for instance. As a consequence, classification errors
are mainly due to this effect whatever the method. Let us note
that the stability feature, by taking into account the neighbor-
hood of each point, allows RF to bring more precision in the
prediction of change classes.

When comparing predictions operating at the pixel level,
we can notice the positive effect of the morphological open-
ing. Indeed, we are interested here in changes related to build-
ing, and building are never isolated pixels. We also report the



Name Type Points 3D Pixel 2D Patch 2D Ref.
Binary MC  Binary MC Binary MC
la  DSMd + Empiric thresholding Dist - - 0.37 0.37 0.36 0.35 [3]
1b DSMd + Otsu Dist 0.59 0.59 0.62 0.60 [3]
1lc DSMd + Otsu + Opening Dist - 0.72 0.72 0.82 0.80  [3],[5]
2 C2C Empiric Dist 0.50 - - - - - [6]
3 M3C2 Empiric Dist 0.34 0.30 - - - - [7]
4 RF ML 0.64 0.63 - - - - [8]
5 FF DL - - - - 0.78 0.75 [9]
[§ Siam. DL - 0.72 0.64 [9]

Table 1. Mean of IoU on change class. MC stands for multi-class classification.

improvement brought by Otsu thresholding.

Finally, for methods dealing with image patches, as done
in [9], we extend the DSMd method to patch prediction by
attributing a label of change to patches where the percentage
of pixel labeled as changed after the thresholding, and even-
tually here the opening, is higher than 10%. The same pro-
cess is made in order to build the ground truth database for the
learning step of DL methods. As observed in [9], DL methods
outperform DSMd with Otsu thresholding. However, simply
filtering the latter with a morphological opening retains wider
changes, leading to even higher results. This certainly calls
for developing more spatially-aware deep neural networks for
urban change detection, able to output pixel or point-level re-
sults.

5. CONCLUSION

In this paper, we have dealt with 3D urban change detec-
tion and provided a novel benchmark to assess state-of-the-
art methods. It relies on an original simulator tool to generate
synthetic point clouds in a well-controlled experimental pro-
tocol (in particular spatial resolution, flight plan and noise),
yielding training and evaluations databases without requiring
a costly manual labeling at the point level.

We have then compared representative methods, based on
distance computation, machine learning with handcraft fea-
tures, and more recent deep learning ones. Their results can
be assessed at three different scales, in 3D as points, or in 2D
as pixels or patches, and in a binary classification or multi-
class scenario distinguishing new and demolished buildings.

Urban 3D change detection is still far from benefiting
from the advances of deep learning conversely to other EO
applications. This might be explained by the lack of labeled
datasets and too simple network architectures unable to cope
with changes at the point level. While our contribution tackles
the former, our future work will focus on the latter.
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