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BAYESIAN DEEP LEARNING WITH MONTE CARLO DROPOUT FOR QUALIFICATION OF
SEMANTIC SEGMENTATION

Clément Dechesne, Pierre Lassalle

CNES
18 avenue Edouard Belin
31401 Toulouse Cedex 9, France

ABSTRACT

Despite the intense development of deep neural networks for
computer vision, and especially semantic segmentation, their
application to Earth Observation data remains usually below
accuracy requirements brought by real-life scenarios. Even
if well-known deep learning methods produce excellent re-
sults, they tend to be over-confident and cannot assess how
relevant their predictions are. In this work, a Bayesian deep
learning method, based on Monte Carlo Dropout, is proposed
to tackle semantic segmentation of aerial and satellite im-
ages. Bayesian deep learning can provide both a semantic
segmentation and uncertainty maps. Based on the popular U-
Net architecture, our model achieves semantic segmentation
with high accuracy, e.g. Fl-score and overall accuracy re-
spectively reaching 90.84% and 93.22% on a public standard
dataset. Uncertainty maps, also derived from our model, show
a strong interest in qualitative evaluation of the segmentation
and in the improvement of the database.

Index Terms— Deep learning, Semantic segmentation,
Bayesian network, Optical imagery, Uncertainty estimation

1. INTRODUCTION

Deep learning methods have been widely used for semantic
segmentation of optical images. Among the earliest works,
[1] and [2] used several Fully Convolutional Neural Networks
(FCN) for semantic segmentation on aerial orthophotos with
three spectral bands (red, green, near-infrared), plus a digital
surface model (DSM) of the same resolution. They both re-
port excellent results for a 5-class classification task (roads,
buildings, low vegetation, tree, car) with an overall accuracy
greater than 88%, and also with an efficient detection of small
objects (such as individual cars). In [3], in addition to the
FCNN, a boundary detection CNN module is added, increas-
ing the accuracy of the model. [4] used a refinement module
in their FCNN trained on multispectral images for a 18-class
classification task, achieving excellent results (overall accu-
racy greater than 93% and average accuracy of 59.8%). They
also showed that data augmentation was meaningful for se-
mantic segmentation.
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Despite deep neural network architectures achieve state-
of-the-art results in almost all classification tasks, they still
make over-confident decisions. Indeed, on the one hand, it
is easy to produce images (not recognizable to humans) that
existing networks believe to be recognizable with high con-
fidence [5]. On the other hand, a small change in the input
image can lead to a very different prediction, still with a high
confidence [6]. No measure of uncertainty of the prediction
is provided from the current network architectures. Some
works have been proposed for generating relevant probabil-
ity estimates from a deep neural network [7] as a measure of
model confidence. However, these metrics are based on soft-
max probabilities which cannot fully capture uncertainty.

Bayesian deep learning has been proposed for seman-
tic segmentation to provide some measure of uncertainty in
the prediction. It can be seen as an ensemble or forest of
deep neural networks, each providing a single prediction. [8]
showed that dropout (initially designed to avoid overfitting)
can be used as a Bayesian approximation. [9] applied this
method, called Monte Carlo Dropout (MCD), for the seman-
tic segmentation of the Cityscape dataset. They designed a
DeepLab model with MCD and achieved great results with
an overall accuracy of 95.3% and Intersection over Union
(IoU) of 78%. They also provided, along with the seman-
tic segmentation output, several uncertainty maps (namely
predictive entropy and mutual information), showing how
the model was pretty uncertain of its prediction on pixels
where the prediction was erroneous. [10] also applied MCD
to a SegNet architecture. The model was trained on CamVid
Road Scenes and SUN RGB-D Indoor Scene Understand-
ing datasets. It achieved better results than state-of-the-art
methods and also provided uncertainty maps (for all classes
and per class, based on output variability). [11] compared
MCD to another Bayesian deep model, where weights were
sampled from a distribution. In this case, the model learns
the parameters of the distribution instead of the weights.
They showed that such models produce better results and
more interpretable uncertainty maps. However, some specific
training strategies were needed.

To our knowledge, Bayesian deep learning has never been



applied to remote sensing images yet. In this paper, we apply
it using Monte Carlo Dropout on aerial images. In addition to
semantic segmentation, we also provide confidence maps, in-
dicating how confident the network is on its prediction. Qual-
ification maps, that combine both segmentation accuracy and
uncertainty are also derived.

Our paper is structured as follows: we first describe our
method in Sec. 2. We then present the dataset and our results
in Sec. 3. We finally draw some conclusions in Sec. 4.

2. METHOD

We briefly recall here the principles of Bayesian learning,
highlight its relevance w.r.t traditional deep learning and ex-
plain how it is applied to neural networks. The proposed net-
work architecture, inspired from U-NET [12] (see Figure 1a)
but including Bayesian layers, will then be introduced.

Bayesian learning for CNN has been recently proposed [13]
and is based on Bayes by Backprop [14]. It produces results
similar to traditional deep learning methods. However, the
weights of the network are no longer simple points but are
sampled according to a distribution whose parameters are
learned. Therefore, each prediction is different from an other.
With a large number of predictions, the average behavior pro-
duces relevant results, while the variability of the predictions
allows us to assess the confidence of the model.

A simple way of implementing Bayesian Deep Learning
is using Monte Carlo Dropout (MCD). [8] demonstrated that
MCD is equivalent to traditional Bayesian Deep Learning. A
layer with weights IM; followed by a dropout layer active in
both training and prediction is equivalent to a Bayesian layer
with weight W defined as:

W, = M, - diag(z)

with z; ~ Bernoulli(p;)

ey

with z; the random (in)activation coefficients and M; the
weights matrix before dropout is applied. p; is the activation
probability for layer ¢ and can be learned or set manually.
The model is composed of several convolution blocks
(made of convolution layers with ELU activation), followed
by a pooling layer (when downsampling) or a deconvolu-
tion layer (when upsampling). After a pooling, the number
of filters of the convolution layers (resp. deconvolution) is
multiplied (resp. divided) by 2. Each upsampled output is
concatenated with the output of the convolution block of the
same size. A model has therefore three parameters; the block
size (i.e. the number of convolutions in a block), the number
of poolings and the number of filters in the convolution layers
of the first convolution block. In order to produce uncertainty
maps, we exploit the MCD strategy. This is done by adding a
dropout layer at the end of a convolution block. The dropout
is active in both training and prediction. The last convolution
layer of the last convolution block has a number of filters
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(a) Traditional U-NET.
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(b) Architecture of a MCD model with a block
size of 2 and 3 poolings.

Fig. 1: Traditional U-NET (a) and our derived MCD model
(b).

corresponding to the number of classes and a softmax activa-
tion. The architecture of the proposed model is presented in
Figure 1b.

3. EXPERIMENTS

We report here some preliminary experiments conducted on
the ISPRS Vaihingen dataset. It is composed of 38 images
at a spatial resolution of 9cm. The three bands of the im-
ages correspond to the near infrared, red and green bands
delivered by the camera. 80% of the images are used for
training/validation, the 20% remaining are kept for testing.
Patches of size 128 x 128 were extracted in order to train the
network. Data augmentation was applied by randomly flip-
ping extracted patches.

The network was trained using the Adam optimizer [15]
with a batch size of 64 and an initial learning rate of 0.001.
The learning rate is reduced on plateau (learning rate divided
by 10 if no decay in the validation loss is observed in the
10 last epochs) and we also perform early stopping (stop the
training if no decay in the validation loss is observed in the
20 last epochs). These are standard parameters, allowing us
to achieve the best results while avoiding over-fitting.



A trained Bayesian model produces different predic-
tions for the same input data since its weights are sampled
from a distribution. Therefore, several predictions need to
be performed. For each iteration, the model will produce a
pixel-wise probability. The final semantic segmentation is
obtained through a majority vote from all these predictions.
From this semantic segmentation, one can derive confusion
matrices and several metrics, e.g. precision, recall, accuracy,
F1-score and kappa coefficient (k).

Since this segmentation is not sufficient to assess the re-
liability of the model, other metrics able to evaluate the un-
certainty of the network were also computed. We investi-
gate here two types of uncertainty measures among those re-
viewed in [13]. The Epistemic uncertainty (or model uncer-
tainty) represents what the model does not know due to in-
sufficient training data. The Aleatoric uncertainty is related
to the measurement noise of the sensor. Combined, these
two uncertainties form the predictive uncertainty of the net-
work. In this work, two metrics were derived, namely the
entropy of the predictive distribution (a.k.a. predictive en-
tropy) and the mutual information between the predictive dis-
tribution and the posterior over network weights [9]. These
metrics are very interesting since mutual information mostly
captures epistemic (or model uncertainty) whereas predictive
entropy captures predictive uncertainty which combines both
epistemic and aleatoric uncertainties. The Predictive entropy
is computed as follow:

H=-) (; > Pea, (y|$)> log (; > e, (ylév)>
c t t

2
where c ranges over all the classes, 7" is the number of Monte
Carlo samples, p. ., (y|z) is the softmax probability of input
x being in class ¢, and w; are the model parameters on the tth
Monte Carlo sample. The mutual information is computed as
follow:

|
T=H+ > Pein, (Yl2)10g(pe.i, (ylz)) 3

c,t

In order to evaluate more precisely the impact of uncer-
tainty metrics, qualification maps were computed. A qualifi-
cation map combines the validity of the majority vote (if the
network predicted the right or the wrong label) and the uncer-
tainty of the majority vote (how confident is the network in
its prediction). For the sake of visual understanding, we com-
pute two different color gradients describing the uncertainty
of the prediction, for the well-labelled and wrongly-labelled
pixels respectively.

The results obtained on the ISPRS Vaihingen dataset are
presented in Figure 2 and Table 1. We achieved very high
scores, with an overall accuracy of 93.22% and a F1-score
of 90.84%. It is slightly better than other results reported on
this dataset (with overall accuracy usually ranging from 80%
to 91%). Figure 2d shows that wrongly predicted pixel are

indeed predicted with a low confidence (blue pixels). It is also
interesting to note that similar classes (e.g. low vegetation and
tree) are well predicted but again with a low confidence. This
shows that our network, and more generally Bayesian deep
learning, is relevant to provide both a high-quality semantic
segmentation but also some associated uncertainty metrics.

(b) Ground truth.

impervious surface,

Color code:
@ Luila-
ing, @ low vegetation, @ tree,
O car, . clutter/background

(a) False-color infrared image
(NIR, red, green) input image.

Right label

wrong abe
(c) Results of the semantic segmen-
tation. Same color code as in (b).

(d) Qualification map using
the predictive entropy as un-
certainty metric.

Fig. 2: Results on the ISPRS dataset using the MCD model.

4. CONCLUSION

In this work, we consider semantic segmentation within a
Bayesian deep learning context in order to both improve seg-
mentation accuracy and provide some measures of prediction
uncertainty. Our model includes the Monte Carlo Dropout
method into the popular U-Net architecture, leading to an
original Bayesian model. The proposed network performs
well on the well-established ISPRS Vaihingen dataset, with
results comparable or better to existing methods (overall ac-



Class
Method Measure Overall impervious surface | building | low vegetation tree car clutter/background
F1-Score 90.84 97.15 92.85 90.53 87.49 | 83.12 93.90
Accuracy 93.22 98.78 95.00 94.84 99.96 | 99.76 98.10
Proposed (Bayesian U-Net) | Precision 88.79 97.36 94.04 89.24 78.07 | 80.45 93.58
Recall 93.27 96.94 91.70 91.86 99.49 | 85.98 94.22
K x 100 93.06 96.38 89.01 86.99 87.47 | 83.00 92.72
Baseline (U-Net) F1-Score 89.85 96.79 91.94 89.02 86.38 | 82.24 92.75
Accuracy 92.23 98.63 94.37 94.02 99.95 | 99.75 97.74

Table 1: Comparative evaluation of our Bayesian U-Net with MCD and a standard U-Net architecture considered as baseline.

curacy of 93.22% and Fl-score of 90.84%). More impor-
tantly, our Bayesian deep network is able to extract uncer-
tainty maps that are very useful for assessing the output seg-
mentation. Qualification of land cover maps is a strong re-
quirement for delivering Al-driven EO products. Further-
more, one can analyse such maps, together with initial ground
truth, to spot areas where the ground truth might be erroneous,
before conducting some automatic or manual correction. In
this context, the uncertainty maps can be exploited to gener-
ate reference data with higher accuracy.

We now plan to evaluate how Bayesian deep learning can
help to improve the quality of reference data. First, the areas
where the network predicted the wrong label with high con-
fidence need to be re-inspected and corrected if needed. It
will also require us to assess whether the network had appro-
priate reasons to be confident or not. Then we can re-trained
the network using the updated ground truth, and experimen-
tally assess the possible gain in prediction quality. We would
like also to investigate Bayesian neural network considering
another variational inference. This would allow us to use dif-
ferent distributions for the network weights (such as a normal
distribution) since it tends to produce more significant uncer-
tainty maps [11]. The main challenge here is the increase in
number of parameters, leading to training issues that need to
be addressed. Finally, as every ensemble method, one no-
table issue is also the inference time, since multiple predic-
tions need to be performed.
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