
HAL Id: hal-03379913
https://hal.science/hal-03379913

Submitted on 15 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ChaT: Evaluation of Reconfigurable Distributed
Network Systems Using Metamorphic Testing

Alif Akbar Pranata, Olivier Barais, Johann Bourcier, Ludovic Noirie

To cite this version:
Alif Akbar Pranata, Olivier Barais, Johann Bourcier, Ludovic Noirie. ChaT: Evaluation of Reconfig-
urable Distributed Network Systems Using Metamorphic Testing. GLOBCOM 2021 - IEEE Global
Communications Conference, Dec 2021, Madrid, Spain. pp.1-6. �hal-03379913�

https://hal.science/hal-03379913
https://hal.archives-ouvertes.fr


ChaT: Evaluation of Reconfigurable Distributed
Network Systems Using Metamorphic Testing

Alif Akbar Pranata, Olivier Barais, Johann Bourcier
Inria, IRISA, Univ Rennes 1

Rennes, France
alif-akbar.pranata@inria.fr, olivier.barais@irisa.fr, johann.bourcier@inria.fr

Ludovic Noirie
Nokia Bell Labs
Nozay, France

ludovic.noirie@nokia-bell-labs.com

Abstract—Detecting faults in distributed network systems is
challenging because of their complexity, but this is required to
evaluate and improve their reliability. This paper proposes ChaT,
a testing and evaluation methodology under system reconfigu-
rations and perturbations for distributed network systems, to
evaluate QoS reliability by discriminating safe and failure-prone
behaviors from different testing scenarios. Motivated by meta-
morphic testing technique that removes the burden of defining
software oracles, we propose some metamorphic relationships
that correlate system inputs and outputs to find patterns in
executions. Classification techniques based on machine learning
(principal component analysis and support vector machine)
are used to identify system states and validate the proposed
metamorphic relationships. These metamorphic relationships
are also used to help anomaly detection. We verify this with
several anomaly detection techniques (isolation forest, one-class
SVM, local outlier factor, and robust covariance) that categorize
experiments belonging to either safe or failure-prone states. We
apply ChaT to a video streaming application use case. The
simulation results show the effectiveness of ChaT to achieve our
goals: identifying execution classes and detecting failure-prone
experiments based on metamorphic relationships with high level
of statistical scores.

Index Terms—distributed network systems, metamorphic
testing, metamorphic relationships, classification techniques,
anomaly detection techniques

I. INTRODUCTION

Distributed network systems and functions are implemented
as pieces of software (microservices) [1]. This increases the
configurability of deployed solutions and the ability to imple-
ment autonomic techniques to optimize system performance or
to support recovery strategies (e.g., see Tootaghaj et al. [2]).
While this trend brings many benefits in terms of flexibility
to deploy new services, it also significantly increases the state
space of such distributed systems, forcing the community to
revisit the techniques used to guarantee their reliability.

In the line of traditional software development, testing
techniques are used to deal with the explosion of the state
space of such systems, resulting from the high frequency of
evolution of these services implementation. Unlike model-
checking or software proving techniques, testing can detect
the presence and the absence of errors. In standard testing,
every software test case requires oracles (a mechanism found
in software testing practice for matching the correct outputs
with each given input) [3]. Defining a precise oracle for each
test case is costly and complex (the observed system behavior

and its performance are often non-deterministic). Among many
testing practices, metamorphic testing (MT) [4] can minimize
the effort of determining the oracle. In MT, the oracle problem
can be mitigated by alleviating metamorphic relationships
(MRs). MRs is a property to model the relationships between
output and input data of the system under test (SUT). MRs
tell that for each given input, then the observed outputs should
be as what found in baseline information. Hereafter, we call
these input data execution classes. MRs can also perform more
tasks, such as failure and anomaly detection [5].

The intuition we explore in this work is the following:
Machine learning techniques applied to a set of observable
metrics of the distributed system can be used to define disjoint
classes, allowing to classify the behaviors of the system. These
classes can then be used as a basis for establishing the MRs
necessary for the use of MT. Therefore, the execution of
known test scenarios such as normal behavior, reconfiguration,
perturbation test, etc., must be classified correctly. If not, the
test scenario cannot be correctly analyzed.

We propose ChaT, a learning-based testing and evaluation
methodology using MT with MRs formalization for detecting
safe and failed executions in distributed network systems.
ChaT performs execution classification using principal compo-
nent analysis (PCA) and support vector machine (SVM) tech-
niques. The classification result is used to check and compare
the model of MRs, validating the accuracy of the modeling.
ChaT also validate MRs usage with anomaly detection tech-
niques: isolation forest (IF), one-class SVM (OCSVM), local
outlier factor (LOF), and robust covariance (RC) to decide
safe and failed scenario of each execution. We also compare
the performance of these detection techniques. We apply
ChaT to a small but representative distributed network system,
a video streaming application with a set of nodes serving
various network functions and roles. Our main contribution
is twofold: 1) the formalization of MRs for testing distributed
network systems and their validation by using classification
techniques, 2) the evaluation of anomaly detection techniques
on a representative use case to validate the usage of the MRs.

The rest of the paper is as follows. We discuss related works
in section II and ChaT methodology in section III. We explain
our use case for the MRs evaluation in section IV. Section V
evaluates ChaT methodology in validating the MRs. Section
VI concludes the paper and provides future works for ChaT.



II. RELATED WORKS

ChaT is motivated by MT that removes the burden of de-
termining software oracles in various application domains [6].
Luo et al. proposed simple uses of the verification technique
on microservices using MT and they proved the effectiveness
of the technique in detecting failures using the defined MRs
[7]. ChaT enhances the proposal by not only detecting and val-
idating the failures using MRs, but also using some anomaly
detection algorithms. TDD4Fog by Li et al. also addressed
the challenge of testing and verifying software applications
in distributed systems using MT [8]. Their approach used
several testing techniques, one of them is MT, to test the mi-
croservices applications on specific fog computing technology.
Consequently, they narrowed their methodology to follow fog
computing approach, which is testing the system on bottom-up
design fashion. Their approach was also limited to verifying
software in its development platform. ChaT proposes not only
testing and verifying the software, but also detecting failures in
software affected by reconfigurations and perturbations in any
execution platform with any network technology, for example,
cloud networks.

Johnson et al. offered reconfigurations and perturbations
for testing the system using delta debugging approaches [9],
which is similar to ChaT. Another example is ConfAdvisor, a
configuration tuning framework that works close to system
reconfigurations and offers the oracles absence to test and
verify the system in Kubernetes [10]. Yet, each of them tests
different platforms and use cases. ChaT offers more flexibility
in performing testing and verification as it could be applied to
a variety of applications in numerous network platforms and
environments by formalizing the correct MRs.

There are many applications applied by anomaly detection
techniques in the literature, such as time series monitoring,
fraud detection, and satellite image analysis [11], [12]. Among
those techniques, unsupervised learning approaches are popu-
lar for detecting errors and failures in network monitoring and
performance on large data set [13]. Tuan et al. implemented
the detection scheme using local outlier factor in SDN [14].
In this paper, ChaT applies four popular automatic anomaly
detection techniques: Isolation forest (IF) [15], one-class SVM
(OCSVM) [16], local outlier factor (LOF) [17], and robust
covariance (RC) [18], [19] algorithms. The algorithms have
been applied for detecting anomalies in various domains, such
as wind turbine monitoring [20] and crop classification data
[21]. ChaT is close to Jin et al. [22], working on microservices
architecture (MSA) as they used PCA to obtain specific, useful
information about MSA before performing anomaly detection
techniques, for example as mentioned above, to find anomalies
in the microservices metrics performance.

To the best of our knowledge, the ChaT approach, described
in the rest of this paper, is the first proposal of testing and
verifying distributed systems with a representative use case
using MT and the MRs and its validation using classification
and anomaly detection techniques.

III. CHAT METHODOLOGY USING METAMORPHIC
TESTING

A. Metamorphic relationships (MRs) modeling for ChaT

Metamorphic testing (MT) is a testing technique which
compares several executions to learn the system behavior by
defining MRs in replace of the standard software oracles [6].
The MRs are the system properties represented by the relations
among input and output data of the system under test (SUT).
The goal of MT is to help verify the system correctness
without the need for oracles found in traditional software
testing.

The general concept of MRs is as follows. In standard
software testing, we need to define oracles (a mechanism
to test if the test case has passed or failed based on the
relationships between output data for each input data). ; Based
on the knowledge from this mechanism, we can decide if new
execution is safe or erroneous scenario. In MT, we remove
the oracles and instead rely on MRs that are able to assert the
decision (safe or erroneous).

Our modeling for MRs is the following. There are some
definitions a priori to explain each variable. We use our use
scenario (video streaming application in section IV) to give a
concrete example corresponding to each definition.

Definition III.1 (Baseline configuration). B is the set of
baseline configurations, i.e., B = {b1, b2, ..., bnB

}.

We started our execution with default configurations (we
assume the absence of errors in the execution). In our video
streaming application on section IV, we have 4 video servers
which store and relay video information to the clients. An
identity manager sits in front of these servers to provide
authentication and authorization, as well as a load balancer for
balanced traffic distribution. We set some parameters in this
configuration, and parameter variations give different baseline
configurations (b1, b2, ..., bnB

).

Definition III.2 (Reconfigurations). R is the set of reconfig-
urations, i.e., R = {r1, r2, ..., rnR

}.

A reconfiguration is an action on the SUT that changes
execution parameters in the experiment during runtime. This
action can take the form of CREATE, DELETE, MODIFY,
REROUTE, ROLLBACK, and RESTART. Reconfiguration
variations may take the same action above, but each should
aim for different purposes.

Definition III.3 (Perturbations). P is the set of perturbations,
i.e., P = {p1, p2, ..., pnP

}.

A perturbation is an action that alters the behavior of the
system due to external injection of faults. Some examples are
PACKET LOSS, LATENCY, STRESS. In the same manner
with reconfigurations, perturbation variation may take the
same action above, but each should aim for different purposes.

Definition III.4 (Executions). E is the set of executions,
i.e., E = B × Parts(R) × Parts(P ) = {e1, e2, ..., enE

}.



The selection of B, R, P is arbitrary in any E, e.g., e1 =
(b1, {r1, r2} , {p1}), where b1 ∈ B, {r1, r2} ⊂ R, {p1} ⊂ P .

An execution is a set of an experiments running in our
simulation environment, using a baseline configuration in B
from which it starts, none or some reconfigurations in R and
none or some perturbations in P . For example, execution
e1 started the executions with baseline configuration b1, then
creates new clients (reconfiguration r1), reroutes some traffic
to another video server (another reconfiguration r2), and finally
injects stress to load balancer (perturbation p1).

The set E has the following specific subsets, each of which
we call execution class:

1) EB = B × {∅} × {∅} ⊂ E is the subset of baseline
executions;

2) ER = B × (Parts(R)− {∅})× {∅} ⊂ E is the subset of
executions with reconfigurations only;

3) EP = B × {∅} × (Parts(P )− {∅}) ⊂ E is the subset of
executions with perturbations only;

4) ERP = B × (Parts(R)× Parts(P )− {(∅, ∅)}) ⊂ E is
the subset of executions with reconfigurations and/or
perturbations.

Definition III.5 (Vector space of metrics vectors). M is the
vector space of metrics vectors, i.e., M = RnM with nM real
metrics.

M = RnM is the vector space of metrics vectors containing
the nM real metrics that one may measure on the SUT,
e.g., number of HTTP 400 error code, CPU load, memory
consumption, etc.

Definition III.6 (Metric function). m is the metric function
such that m : E →M where x 7→ m(x).

This function gives for each execution in E the resulting
metrics vector in M that we observed in the experiments.
The metric function gives the following subsets of the metrics
vector space M :

1) MB = m(EB) ⊂M is the set of baseline metrics;
2) MR = m(ER) ⊂M is the set of reconfiguration metrics;
3) MP = m(EP ) ⊂M is the set of perturbation metrics;
4) MRP = m(ERP ) ⊂M is the set of combined reconfig-

uration & perturbation metrics.
For our MRs formalization, we assume that the metrics of

baseline execution and the ones for other execution classes
should be separated: MB

⋂
MR = ∅, MB

⋂
MP = ∅ and

MB

⋂
MRP = ∅. Then, based on the above definitions and

assumptions, the following MRs should hold for ChaT:

MRB : if ∀x ∈ EB , m(x) ∈MB , then ∀y ∈ E, m(y) ∈MB ⇒ y ∈ EB

MRR: if ∀x ∈ ER, m(x) ∈MR, then ∀y ∈ E, m(y) ∈MR ⇒ y ∈ ER

MRP : if ∀x ∈ EP , m(x) ∈MP , then ∀y ∈ E, m(y) ∈MP ⇒ y ∈ EP

MRRP : if ∀x ∈ ERP , m(x) ∈MRP , then ∀y ∈ E, m(y) ∈MRP ⇒ y ∈ ERP

Our formalized MRs above are simple and understandable
so as to clearly define each relations based on the execution
classes applied to the SUT, replacing the need of determining
software oracles in standard software testing.

B. Principal component analysis (PCA) and support vector
machine (SVM) for MRs validation

To evaluate ChaT, we run the executions classes: baseline
(EB), reconfiguration (ER), perturbation (EP ), and perturba-
tion & reconfiguration (ERP ). This gave metrics vectors that
we grouped in two data set matrices: Dtrain for training and
Dtest for testing. The dimension nM of the metrics vectors is
usually high, so we used PCA to reduce this dimension. Its
effect can be modeled as a function fPCA : M →M ′ = RnM′

with nM ′ << nM . With PCA, we obtained a lower number
nM ′ of new metrics that are given by the composed metrics
function m′ = fPCA ◦ m : E → M ′. The data set matrix
Dtrain was used to learn the parameters of fPCA, which can
then be applied on both Dtrain and Dtest data sets.

SVM supports ChaT evaluation by setting decision bound-
aries between each execution class (for classification). In
SVM, each data point contributes to the setting of the decision
boundaries for the classification among classes. The best
boundary is the one that maximized the margin from each
class. For ChaT, SVM discriminates each execution class
corresponding to EB , ER, EP , and ERP , using decision
boundaries in the composed metrics vector space of dimension
nM ′ identified by the PCA technique previously applied.

C. Anomaly detection exploiting MRs modeling in ChaT

Detecting anomalies in streaming data is a crucial problem
in a wide range of real-world systems since it contains critical
details, such as cybersecurity threats, fraud detection, and
other real-time applications risks [11]. To detect anomalies,
various approaches such as statistics-based, isolation-based,
and clustering-based have been developed. ChaT uses sev-
eral machine learning techniques for detecting anomalies: IF,
OCSVM, LOF, and RC algorithms. The purpose of detecting
anomalies by ChaT is to find which actions (reconfigurations
and perturbations) may lead to system failures by proving and
matching the anomalies finding and the error found in the
execution set E. ChaT also aims to recognize patterns in large
data sets as well as patterns in the system execution behavior.

The methodology of anomaly detection techniques by ChaT
is as follows. After we had PCA calculation and SVM
classification techniques above, we expanded our original
training set Dtrain and testing set Dtest with nM by adding
the two principal components from PCA calculation and the
execution classes (EB , ER, EP , and ERP ) inferred by SVM
classification. We then performed 4 outlier detection algo-
rithms mentioned above. The results consist of each algorithm
findings with inliers (experiments that are considered safe,
normal executions) and outliers (experiments that may lead to
system/network failures) for each data set Dtrain and Dtest

plotted in 2D graph with nM ′ = 2.

IV. USE CASE TO VALIDATE CHAT METHODOLOGY

Video streaming applications can create service and delivery
quality issues to clients, mostly when reconfigurations or
perturbations occur during runtime. For example, when a
service is down or changes some parameters, other dependant



Fig. 1: The network topology of video streaming application.

services may lose their states to continue functioning correctly.
We performed ChaT methodology on this use case to discover
dynamic system misbehavior resulting from reconfigurations
and perturbations and to find potential failures caused by them.

We set up the network architecture and ran our video
streaming application consisting of nodes that run services
in container applications. We then evaluated ChaT in GNS3
emulation environment by injecting reconfigurations and per-
turbations to the application. The GNS3 server ran in our
private cloud lab with computing resources that can run
thousands of microservice applications: Intel(R) Xeon(R) Gold
6238 CPU with 2.10GHz 88 Core, 187GB memory, and 11
TB disk storage size.

Figure 1 illustrates our video streaming application topol-
ogy. We had objects in the SUT as a set of nodes: 4 video
servers, an identity provider, a reversed proxy, 50 clients to
send and receive traffics, and monitoring with all necessary
tools to collect metrics information for evaluation and analysis.
The collected metrics were mainly from the network proper-
ties: the number of requests (video server and load balancer),
HTTP codes, CPU usage, traffic loads (received and sent),
RSS memory, used memory & available memory. In total, the
number of metrics used for PCA evaluation was nM = 12.

Using this representative use case which is composed of
few services and with nominal metrics, we argue that ChaT is
adequate in any scale of distributed systems with a factual
number of metrics. The plan for greater system scales is
included in our future works.

For the evaluation in the next section, we emulated 1784
executions of this use case with the baseline (EB), reconfigu-
ration (ER), perturbation (EP ), and perturbation & reconfigu-
ration (ERP ) execution classes. We split the executions into a
training data set Dtrain with 1338 experiments and a testing
data set Dtest with 446 experiments.

V. EVALUATION OF CHAT METHODOLOGY

A. Validation of the metamorphic relationships (MRs)

We first validate the MRs defined in subsection III-A with
the PCA & SVM method of subsection III-B on the video
streaming use case defined in the section IV.

Figure 2 visualizes our evaluation results using PCA and
SVM techniques. In figure 2a, PCA was applied on the training
data set Dtrain with reduced dimension nM ′ = 2: the two
main principal components found by PCA were enough to
discriminate the points of different 4 classes represented by
different colors. Figure 2b shows the boundaries obtained by
SVM classification after dimension reduction by PCA, and
the points corresponding to the testing data set Dtest. We
calculated the precision, recall, and F1-score of each execution
class to support the visualization of SVM technique. Table I
gives the obtained results. The overall accuracy, precision, and
recall of our classification were 99%.

Using this classification, we can learn that new executions
will be classified correctly by ChaT because the results above
have a high level of accuracy of MRs defined in section III-A.
For example, we can know from table I that the correctly
classified execution class that belongs to baseline execution
(EB) is 91 (100% accuracy of true positive), meaning that all
of 91 experiments has respected the definition of metamorphic
relation EB in section III-A, so any new EB execution would
have 100% accuracy to be classified as EB execution. Thus,
the formalized MRs in section III-A are validated, the assump-
tions are correct and our classification method automatically
builds oracles to determine the execution classes.

B. Validation of the usage of MRs for anomaly detection

Then we validate the usage of MRs for anomaly detection
with the method of subsection III-C on the same video
streaming use case defined in the section IV, using isolation
forest (IF), one-class SVM (OCSVM), local outlier factor
(LOF) and robust covariance (RC) algorithms.

Figure 3 shows the inliers and outliers both in Dtrain and
Dtest sets for the 4 algorithms. Table II shows the classical
accuracy, precision, recall, and F-measure scores as defined by
Powers [23], from each machine learning algorithm for outliers
and inliers and for both Dtrain and Dtest sets. This shows that
ChaT achieves higher accuracy with LOF and RC algorithm,
with about 97% accuracy for both training and testing data
sets, while IF and OCSVM have lower accuracy. Focusing on
the most accurate algorithm (LOF and RC), they correctly
predict inliers with precision and recall between 97% and
100%. About outliers, they succeed in detecting them with
a good precision between 96% and 100% but there are about
20% of false alarms with a recall between 77% and 80%. Thus,
our approach is good to detect alarms (outliers) with a rate of
about 20% false alarms. This is acceptable if the objective is
to detect alarms when they occur. By this results, we validated
our MRs-based approach to detect anomalies.

The fact that the accuracy is high despite the low recall score
(about 80%) is because our data set is imbalanced [24] with
few outliers compared to inliers, and most outliers coming
from ER and some from ERP , none in EB as expected.
This could be corrected by using resampling approaches
(oversampling and undersampling) [25], even though it can
be thought of as an inadequate practice in applying machine
learning techniques.



(a) PCA applied on Dtrain with nM′ = 2. (b) The classification using SVM on Dtest.

Fig. 2: Executions classification using ML techniques.

TABLE I: Execution classification results for each execution class.

Execution class Support TP TN FP FN Precision Recall F1-score
Baseline (EB) 91 91 355 0 0 100% 100% 100%
Reconfiguration (ER) 135 135 310 0 1 100% 99% 100%
Perturbation (EP ) 65 63 379 2 2 97% 97% 97%
Reconfiguration,
Perturbation (ERP ) 155 153 290 2 1 98% 99% 99%

VI. CONCLUSION & FUTURE WORKS

This paper proposes ChaT, a testing and evaluation method-
ology under reconfigurations and perturbations for distributed
network systems to evaluate QoS reliability by finding safe
and failure-prone system behaviors. ChaT performed meta-
morphic testing with our formalized metamorphic relation to
find patterns of each input class with its expected outputs
for the system under test, replacing the traditional known
oracles in common software testing scenarios. ChaT has 4
execution classes: baseline (EB), reconfiguration (ER), pertur-
bation (EP ), and reconfiguration and perturbation (ERP ). For
execution classification, we used PCA and SVM techniques on
metrics data we obtained on the video streaming application.
PCA reduced the high dimensional data knowledge to lower
dimension nM ′ = 2 without losing the essential information,
separating each execution class. SVM could then easily find
the boundaries between these classes and classify different
system behaviors corresponding to different execution classes
with a high accuracy: 99% in our use case. ChaT then applied
various anomaly detection techniques, analyzed and compared
the system performance dynamics under the 4 execution
classes that we could identify with the MRs. Among these
techniques, local outlier factor (LOF) and robust covariance
(RC) could detect potential failed experiments in the execu-
tions with a level of accuracy up to 98%.

For future work, we plan to apply ChaT in the software
production phase with real-world use cases. In such use
cases, PCA can learn the system performance and behavior
by examining its historical data information. Thus, the data
set Dtrain can be replaced by such data and the rest of the
approach should follow ChaT methodology. After we collect
metrics data and information of such implementation, we are

interested in carefully examined the data in both Dtrain and
Dtest for any data sets imbalances. The goal is to improve the
analysis of ChaT classification and anomaly detection, thus
improving the evaluation of the system QoS reliability.

REFERENCES

[1] T. Salah, M. Jamal Zemerly, Y. Chan Yeob, M. Al-Qutayri, and Y. Al-
Hammadi. The evolution of distributed systems towards microservices
architecture. In 2016 11th International Conference for Internet Tech-
nology and Secured Transactions (ICITST), pages 318–325. IEEE, dec
2016.

[2] D.Z. Tootaghaj, N. Bartolini, H. Khamfroush, T. He, N.R. Chaudhuri,
and T.L. Porta. Mitigation and Recovery From Cascading Failures in
Interdependent Networks Under Uncertainty. IEEE Transactions on
Control of Network Systems, 6(2):501–514, jun 2019.

[3] E.T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The Oracle
Problem in Software Testing: A Survey. IEEE Transactions on Software
Engineering, 41(5):507–525, may 2015.

[4] T.Y. Chen, S.C. Cheung, and S.M. Yiu. Metamorphic Testing: A New
Approach for Generating Next Test Cases. feb 2020.

[5] O. Johnston, D. Jarman, J. Berry, Z.Q. Zhou, and T.Y. Chen. Meta-
morphic Relations for Detection of Performance Anomalies. In 2019
IEEE/ACM 4th International Workshop on Metamorphic Testing (MET),
pages 63–69. IEEE, may 2019.

[6] S. Segura, G. Fraser, A.B. Sanchez, and A. Ruiz-Cortes. A Survey
on Metamorphic Testing. IEEE Transactions on Software Engineering,
42(9):805–824, sep 2016.

[7] G. Luo, X. Zheng, H. Liu, R. Xu, D. Nagumothu, R. Janapareddi,
E. Zhuang, and X. Liu. Verification of Microservices Using Metamor-
phic Testing. pages 138–152. 2020.

[8] Rui Li, Xiao Liu, Xi Zheng, Chong Zhang, and Huai Liu. TDD4Fog:
A Test-Driven Software Development Platform for Fog Computing
Systems. In 2020 20th IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computing (CCGRID), pages 673–676. IEEE, may
2020.

[9] J. De Bleser, D. Di Nucci, and C. De Roover. A Delta-Debugging
Approach to Assessing the Resilience of Actor Programs through
Run-time Test Perturbations. In Proceedings of the IEEE/ACM 1st
International Conference on Automation of Software Test, pages 21–30,
New York, NY, USA, oct 2020. ACM.



Fig. 3: Anomaly detection techniques for finding potential errors in system exections.

TABLE II: Anomaly detection results for each algorithm on training and testing data set.

Algorithm Type Training Set Testing Set
Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

IF Outlier 78% 61% 69% 93% 84% 68% 75% 94%Inlier 95% 98% 96% 96% 98% 97%

OCSVM Outlier 43% 98% 60% 83% 26% 93% 41% 66%Inlier 100% 81% 90% 96% 98% 97%

LOF Outlier 99% 78% 87% 97% 100% 80% 89% 98%Inlier 97% 100% 98% 97% 100% 99%

RC Outlier 100% 78% 88% 97% 96% 77% 85% 97%Inlier 97% 100% 98% 97% 99% 98%

[10] T. Chiba, R. Nakazawa, H. Horii, S. Suneja, and S. Seelam. Con-
fAdvisor: A Performance-centric Configuration Tuning Framework for
Containers on Kubernetes. In 2019 IEEE International Conference on
Cloud Engineering (IC2E), pages 168–178. IEEE, jun 2019.

[11] V.J. Hodge and J. Austin. A Survey of Outlier Detection Methodologies.
Artificial Intelligence Review, 22(2):85–126, oct 2004.

[12] R. Domingues, M. Filippone, P. Michiardi, and J. Zouaoui. A com-
parative evaluation of outlier detection algorithms: Experiments and
analyses. Pattern Recognition, 74:406–421, feb 2018.

[13] Z. Cheng, C. Zou, and J. Dong. Outlier detection using isolation forest
and local outlier. Proceedings of the 2019 Research in Adaptive and
Convergent Systems, RACS 2019, pages 161–168, 2019.

[14] N.N. Tuan, N. Danh Nghia, P.H. Hung, D. Khac Tuyen, N.M. Hieu,
N. Tai Hung, and N.H. Thanh. An Abnormal Network Traffic Detection
Scheme Using Local Outlier Factor in SDN. In 2020 IEEE Eighth
International Conference on Communications and Electronics (ICCE),
pages 141–146. IEEE, jan 2021.

[15] F.T. Liu, K.M. Ting, and Z.-H. Zhou. Isolation Forest. In 2008 Eighth
IEEE International Conference on Data Mining, pages 413–422. IEEE,
dec 2008.

[16] B. Schölkopf, J.C. Platt, J. Shawe-Taylor, A.J. Smola, and R.C.
Williamson. Estimating the Support of a High-Dimensional Distribution.
Neural Computation, 13(7):1443–1471, jul 2001.

[17] M.M. Breunig, H.-P. Kriegel, R.T. Ng, and J. Sander. LOF: identifying
density-based local outliers. ACM SIGMOD Record, 29(2):93–104, jun
2000.

[18] P.J. Rousseeuw and K.V. Driessen. A Fast Algorithm for the Minimum

Covariance Determinant Estimator. Technometrics, 41(3):212–223, aug
1999.

[19] M. Hubert, M. Debruyne, and P.J. Rousseeuw. Minimum covariance
determinant and extensions. WIREs Computational Statistics, 10(3), may
2018.

[20] C. McKinnon, J. Carroll, A. McDonald, S. Koukoura, D. Infield, and
C. Soraghan. Comparison of New Anomaly Detection Technique for
Wind Turbine Condition Monitoring Using Gearbox SCADA Data.
Energies, 13(19):5152, oct 2020.

[21] L. Shumilo. Automatic Anomaly Detection Methodology for Crop
Classification Data Using Morphological Features. In 2020 IEEE 5th
International Symposium on Smart and Wireless Systems within the
Conferences on Intelligent Data Acquisition and Advanced Computing
Systems (IDAACS-SWS), pages 1–5. IEEE, sep 2020.

[22] M. Jin, A. Lv, Y. Zhu, Z. Wen, Y. Zhong, Z. Zhao, J. Wu, H. Li,
H. He, and F. Chen. An Anomaly Detection Algorithm for Microservice
Architecture Based on Robust Principal Component Analysis. IEEE
Access, 2020.

[23] D. Powers. Evaluation: From precision, recall and f-factor to roc,
informedness, markedness & correlation. Mach. Learn. Technol., 2, 01
2008.

[24] Haibo, H. and E.A. Garcia. Learning from Imbalanced Data. IEEE
Transactions on Knowledge and Data Engineering, 21(9):1263–1284,
sep 2009.

[25] N.V. Chawla. Data Mining for Imbalanced Datasets: An Overview. Data
Mining and Knowledge Discovery Handbook, pages 875–886, 2009.


