Alif Akbar Pranata 
email: alif-akbar.pranata@inria.fr
  
Olivier Barais 
email: olivier.barais@irisa.fr
  
Johann Bourcier 
email: johann.bourcier@inria.fr
  
Ludovic Noirie 
email: ludovic.noirie@nokia-bell-labs.com
  
  
  
  
ChaT: Evaluation of Reconfigurable Distributed Network Systems Using Metamorphic Testing

Keywords: distributed network systems, metamorphic testing, metamorphic relationships, classification techniques, anomaly detection techniques

Detecting faults in distributed network systems is challenging because of their complexity, but this is required to evaluate and improve their reliability. This paper proposes ChaT, a testing and evaluation methodology under system reconfigurations and perturbations for distributed network systems, to evaluate QoS reliability by discriminating safe and failure-prone behaviors from different testing scenarios. Motivated by metamorphic testing technique that removes the burden of defining software oracles, we propose some metamorphic relationships that correlate system inputs and outputs to find patterns in executions. Classification techniques based on machine learning (principal component analysis and support vector machine) are used to identify system states and validate the proposed metamorphic relationships. These metamorphic relationships are also used to help anomaly detection. We verify this with several anomaly detection techniques (isolation forest, one-class SVM, local outlier factor, and robust covariance) that categorize experiments belonging to either safe or failure-prone states. We apply ChaT to a video streaming application use case. The simulation results show the effectiveness of ChaT to achieve our goals: identifying execution classes and detecting failure-prone experiments based on metamorphic relationships with high level of statistical scores.

I. INTRODUCTION

Distributed network systems and functions are implemented as pieces of software (microservices) [START_REF] Salah | The evolution of distributed systems towards microservices architecture[END_REF]. This increases the configurability of deployed solutions and the ability to implement autonomic techniques to optimize system performance or to support recovery strategies (e.g., see Tootaghaj et al. [START_REF] Tootaghaj | Mitigation and Recovery From Cascading Failures in Interdependent Networks Under Uncertainty[END_REF]). While this trend brings many benefits in terms of flexibility to deploy new services, it also significantly increases the state space of such distributed systems, forcing the community to revisit the techniques used to guarantee their reliability.

In the line of traditional software development, testing techniques are used to deal with the explosion of the state space of such systems, resulting from the high frequency of evolution of these services implementation. Unlike modelchecking or software proving techniques, testing can detect the presence and the absence of errors. In standard testing, every software test case requires oracles (a mechanism found in software testing practice for matching the correct outputs with each given input) [START_REF] Barr | The Oracle Problem in Software Testing: A Survey[END_REF]. Defining a precise oracle for each test case is costly and complex (the observed system behavior and its performance are often non-deterministic). Among many testing practices, metamorphic testing (MT) [START_REF] Chen | Metamorphic Testing: A New Approach for Generating Next Test Cases[END_REF] can minimize the effort of determining the oracle. In MT, the oracle problem can be mitigated by alleviating metamorphic relationships (MRs). MRs is a property to model the relationships between output and input data of the system under test (SUT). MRs tell that for each given input, then the observed outputs should be as what found in baseline information. Hereafter, we call these input data execution classes. MRs can also perform more tasks, such as failure and anomaly detection [START_REF] Johnston | Metamorphic Relations for Detection of Performance Anomalies[END_REF].

The intuition we explore in this work is the following: Machine learning techniques applied to a set of observable metrics of the distributed system can be used to define disjoint classes, allowing to classify the behaviors of the system. These classes can then be used as a basis for establishing the MRs necessary for the use of MT. Therefore, the execution of known test scenarios such as normal behavior, reconfiguration, perturbation test, etc., must be classified correctly. If not, the test scenario cannot be correctly analyzed.

We propose ChaT, a learning-based testing and evaluation methodology using MT with MRs formalization for detecting safe and failed executions in distributed network systems. ChaT performs execution classification using principal component analysis (PCA) and support vector machine (SVM) techniques. The classification result is used to check and compare the model of MRs, validating the accuracy of the modeling. ChaT also validate MRs usage with anomaly detection techniques: isolation forest (IF), one-class SVM (OCSVM), local outlier factor (LOF), and robust covariance (RC) to decide safe and failed scenario of each execution. We also compare the performance of these detection techniques. We apply ChaT to a small but representative distributed network system, a video streaming application with a set of nodes serving various network functions and roles. Our main contribution is twofold: 1) the formalization of MRs for testing distributed network systems and their validation by using classification techniques, 2) the evaluation of anomaly detection techniques on a representative use case to validate the usage of the MRs.

The rest of the paper is as follows. We discuss related works in section II and ChaT methodology in section III. We explain our use case for the MRs evaluation in section IV. Section V evaluates ChaT methodology in validating the MRs. Section VI concludes the paper and provides future works for ChaT.

II. RELATED WORKS

ChaT is motivated by MT that removes the burden of determining software oracles in various application domains [START_REF] Segura | A Survey on Metamorphic Testing[END_REF]. Luo et al. proposed simple uses of the verification technique on microservices using MT and they proved the effectiveness of the technique in detecting failures using the defined MRs [START_REF] Luo | Verification of Microservices Using Metamorphic Testing[END_REF]. ChaT enhances the proposal by not only detecting and validating the failures using MRs, but also using some anomaly detection algorithms. TDD4Fog by Li et al. also addressed the challenge of testing and verifying software applications in distributed systems using MT [START_REF] Li | TDD4Fog: A Test-Driven Software Development Platform for Fog Computing Systems[END_REF]. Their approach used several testing techniques, one of them is MT, to test the microservices applications on specific fog computing technology. Consequently, they narrowed their methodology to follow fog computing approach, which is testing the system on bottom-up design fashion. Their approach was also limited to verifying software in its development platform. ChaT proposes not only testing and verifying the software, but also detecting failures in software affected by reconfigurations and perturbations in any execution platform with any network technology, for example, cloud networks.

Johnson et al. offered reconfigurations and perturbations for testing the system using delta debugging approaches [START_REF] Bleser | A Delta-Debugging Approach to Assessing the Resilience of Actor Programs through Run-time Test Perturbations[END_REF], which is similar to ChaT. Another example is ConfAdvisor, a configuration tuning framework that works close to system reconfigurations and offers the oracles absence to test and verify the system in Kubernetes [START_REF] Chiba | Con-fAdvisor: A Performance-centric Configuration Tuning Framework for Containers on Kubernetes[END_REF]. Yet, each of them tests different platforms and use cases. ChaT offers more flexibility in performing testing and verification as it could be applied to a variety of applications in numerous network platforms and environments by formalizing the correct MRs.

There are many applications applied by anomaly detection techniques in the literature, such as time series monitoring, fraud detection, and satellite image analysis [START_REF] Hodge | A Survey of Outlier Detection Methodologies[END_REF], [START_REF] Domingues | A comparative evaluation of outlier detection algorithms: Experiments and analyses[END_REF]. Among those techniques, unsupervised learning approaches are popular for detecting errors and failures in network monitoring and performance on large data set [START_REF] Cheng | Outlier detection using isolation forest and local outlier[END_REF]. Tuan et al. implemented the detection scheme using local outlier factor in SDN [START_REF] Tuan | An Abnormal Network Traffic Detection Scheme Using Local Outlier Factor in SDN[END_REF]. In this paper, ChaT applies four popular automatic anomaly detection techniques: Isolation forest (IF) [START_REF] Liu | Isolation Forest[END_REF], one-class SVM (OCSVM) [START_REF] Schölkopf | Estimating the Support of a High-Dimensional Distribution[END_REF], local outlier factor (LOF) [START_REF] Breunig | LOF: identifying density-based local outliers[END_REF], and robust covariance (RC) [START_REF] Rousseeuw | A Fast Algorithm for the Minimum Covariance Determinant Estimator[END_REF], [START_REF] Hubert | Minimum covariance determinant and extensions[END_REF] algorithms. The algorithms have been applied for detecting anomalies in various domains, such as wind turbine monitoring [START_REF] Mckinnon | Comparison of New Anomaly Detection Technique for Wind Turbine Condition Monitoring Using Gearbox SCADA Data[END_REF] and crop classification data [START_REF] Shumilo | Automatic Anomaly Detection Methodology for Crop Classification Data Using Morphological Features[END_REF]. ChaT is close to Jin et al. [START_REF] Jin | An Anomaly Detection Algorithm for Microservice Architecture Based on Robust Principal Component Analysis[END_REF], working on microservices architecture (MSA) as they used PCA to obtain specific, useful information about MSA before performing anomaly detection techniques, for example as mentioned above, to find anomalies in the microservices metrics performance.

To the best of our knowledge, the ChaT approach, described in the rest of this paper, is the first proposal of testing and verifying distributed systems with a representative use case using MT and the MRs and its validation using classification and anomaly detection techniques.

III. CHAT METHODOLOGY USING METAMORPHIC TESTING

A. Metamorphic relationships (MRs) modeling for ChaT

Metamorphic testing (MT) is a testing technique which compares several executions to learn the system behavior by defining MRs in replace of the standard software oracles [START_REF] Segura | A Survey on Metamorphic Testing[END_REF]. The MRs are the system properties represented by the relations among input and output data of the system under test (SUT). The goal of MT is to help verify the system correctness without the need for oracles found in traditional software testing.

The general concept of MRs is as follows. In standard software testing, we need to define oracles (a mechanism to test if the test case has passed or failed based on the relationships between output data for each input data). ; Based on the knowledge from this mechanism, we can decide if new execution is safe or erroneous scenario. In MT, we remove the oracles and instead rely on MRs that are able to assert the decision (safe or erroneous).

Our modeling for MRs is the following. There are some definitions a priori to explain each variable. We use our use scenario (video streaming application in section IV) to give a concrete example corresponding to each definition.

Definition III.1 (Baseline configuration). B is the set of baseline configurations, i.e., B = {b 1 , b 2 , ..., b n B }.
We started our execution with default configurations (we assume the absence of errors in the execution). In our video streaming application on section IV, we have 4 video servers which store and relay video information to the clients. An identity manager sits in front of these servers to provide authentication and authorization, as well as a load balancer for balanced traffic distribution. We set some parameters in this configuration, and parameter variations give different baseline configurations (b 1 , b 2 , ..., b n B ).

Definition III.2 (Reconfigurations). R is the set of reconfigurations, i.e., R = {r 1 , r 2 , ..., r n R }.

A reconfiguration is an action on the SUT that changes execution parameters in the experiment during runtime. This action can take the form of CREATE, DELETE, MODIFY, REROUTE, ROLLBACK, and RESTART. Reconfiguration variations may take the same action above, but each should aim for different purposes.

Definition III.3 (Perturbations). P is the set of perturbations, i.e., P = {p 1 , p 2 , ..., p n P }.

A perturbation is an action that alters the behavior of the system due to external injection of faults. Some examples are PACKET LOSS, LATENCY, STRESS. In the same manner with reconfigurations, perturbation variation may take the same action above, but each should aim for different purposes. The selection of B, R, P is arbitrary in any E, e.g.,

e 1 = (b 1 , {r 1 , r 2 } , {p 1 }), where b 1 ∈ B, {r 1 , r 2 } ⊂ R, {p 1 } ⊂ P .
An execution is a set of an experiments running in our simulation environment, using a baseline configuration in B from which it starts, none or some reconfigurations in R and none or some perturbations in P . For example, execution e 1 started the executions with baseline configuration b 1 , then creates new clients (reconfiguration r 1 ), reroutes some traffic to another video server (another reconfiguration r 2 ), and finally injects stress to load balancer (perturbation p 1 ).

The set E has the following specific subsets, each of which we call execution class:

1) Definition III.5 (Vector space of metrics vectors). M is the vector space of metrics vectors, i.e., M = R n M with n M real metrics.

E B = B × {∅} × {∅} ⊂ E is the subset of baseline executions; 2) E R = B × (Parts(R) -{∅}) × {∅} ⊂ E is
M = R n M is the vector space of metrics vectors containing the n M real metrics that one may measure on the SUT, e.g., number of HTTP 400 error code, CPU load, memory consumption, etc. This function gives for each execution in E the resulting metrics vector in M that we observed in the experiments. The metric function gives the following subsets of the metrics vector space M :

1) M B = m(E B ) ⊂ M is the set of baseline metrics;

2) M R = m(E R ) ⊂ M is the set of reconfiguration metrics;

3) M P = m(E P ) ⊂ M is the set of perturbation metrics; 4) M RP = m(E RP ) ⊂ M is the set of combined reconfiguration & perturbation metrics. For our MRs formalization, we assume that the metrics of baseline execution and the ones for other execution classes should be separated:

M B M R = ∅, M B M P = ∅ and M B M RP = ∅.
Then, based on the above definitions and assumptions, the following MRs should hold for ChaT:

M R B : if ∀x ∈ E B , m(x) ∈ M B , then ∀y ∈ E, m(y) ∈ M B ⇒ y ∈ E B M R R : if ∀x ∈ E R , m(x) ∈ M R , then ∀y ∈ E, m(y) ∈ M R ⇒ y ∈ E R M R P : if ∀x ∈ E P , m(x) ∈ M P , then ∀y ∈ E, m(y) ∈ M P ⇒ y ∈ E P M R RP : if ∀x ∈ E RP , m(x) ∈ M RP , then ∀y ∈ E, m(y) ∈ M RP ⇒ y ∈ E RP
Our formalized MRs above are simple and understandable so as to clearly define each relations based on the execution classes applied to the SUT, replacing the need of determining software oracles in standard software testing.

B. Principal component analysis (PCA) and support vector machine (SVM) for MRs validation

To evaluate ChaT, we run the executions classes: baseline (E B ), reconfiguration (E R ), perturbation (E P ), and perturbation & reconfiguration (E RP ). This gave metrics vectors that we grouped in two data set matrices: D train for training and D test for testing. The dimension n M of the metrics vectors is usually high, so we used PCA to reduce this dimension. Its effect can be modeled as a function f P CA : M → M = R n M with n M << n M . With PCA, we obtained a lower number n M of new metrics that are given by the composed metrics function m = f P CA • m : E → M . The data set matrix D train was used to learn the parameters of f P CA , which can then be applied on both D train and D test data sets.

SVM supports ChaT evaluation by setting decision boundaries between each execution class (for classification). In SVM, each data point contributes to the setting of the decision boundaries for the classification among classes. The best boundary is the one that maximized the margin from each class. For ChaT, SVM discriminates each execution class corresponding to E B , E R , E P , and E RP , using decision boundaries in the composed metrics vector space of dimension n M identified by the PCA technique previously applied.

C. Anomaly detection exploiting MRs modeling in ChaT

Detecting anomalies in streaming data is a crucial problem in a wide range of real-world systems since it contains critical details, such as cybersecurity threats, fraud detection, and other real-time applications risks [START_REF] Hodge | A Survey of Outlier Detection Methodologies[END_REF]. To detect anomalies, various approaches such as statistics-based, isolation-based, and clustering-based have been developed. ChaT uses several machine learning techniques for detecting anomalies: IF, OCSVM, LOF, and RC algorithms. The purpose of detecting anomalies by ChaT is to find which actions (reconfigurations and perturbations) may lead to system failures by proving and matching the anomalies finding and the error found in the execution set E. ChaT also aims to recognize patterns in large data sets as well as patterns in the system execution behavior.

The methodology of anomaly detection techniques by ChaT is as follows. After we had PCA calculation and SVM classification techniques above, we expanded our original training set D train and testing set D test with n M by adding the two principal components from PCA calculation and the execution classes (E B , E R , E P , and E RP ) inferred by SVM classification. We then performed 4 outlier detection algorithms mentioned above. The results consist of each algorithm findings with inliers (experiments that are considered safe, normal executions) and outliers (experiments that may lead to system/network failures) for each data set D train and D test plotted in 2D graph with n M = 2.

IV. USE CASE TO VALIDATE CHAT METHODOLOGY

Video streaming applications can create service and delivery quality issues to clients, mostly when reconfigurations or perturbations occur during runtime. For example, when a service is down or changes some parameters, other dependant services may lose their states to continue functioning correctly. We performed ChaT methodology on this use case to discover dynamic system misbehavior resulting from reconfigurations and perturbations and to find potential failures caused by them.

We set up the network architecture and ran our video streaming application consisting of nodes that run services in container applications. We then evaluated ChaT in GNS3 emulation environment by injecting reconfigurations and perturbations to the application. The GNS3 server ran in our private cloud lab with computing resources that can run thousands of microservice applications: Intel(R) Xeon(R) Gold 6238 CPU with 2.10GHz 88 Core, 187GB memory, and 11 TB disk storage size.

Figure 1 illustrates our video streaming application topology. We had objects in the SUT as a set of nodes: 4 video servers, an identity provider, a reversed proxy, 50 clients to send and receive traffics, and monitoring with all necessary tools to collect metrics information for evaluation and analysis. The collected metrics were mainly from the network properties: the number of requests (video server and load balancer), HTTP codes, CPU usage, traffic loads (received and sent), RSS memory, used memory & available memory. In total, the number of metrics used for PCA evaluation was n M = 12.

Using this representative use case which is composed of few services and with nominal metrics, we argue that ChaT is adequate in any scale of distributed systems with a factual number of metrics. The plan for greater system scales is included in our future works.

For the evaluation in the next section, we emulated 1784 executions of this use case with the baseline (E B ), reconfiguration (E R ), perturbation (E P ), and perturbation & reconfiguration (E RP ) execution classes. We split the executions into a training data set D train with 1338 experiments and a testing data set D test with 446 experiments.

V. EVALUATION OF CHAT METHODOLOGY

A. Validation of the metamorphic relationships (MRs)

We first validate the MRs defined in subsection III-A with the PCA & SVM method of subsection III-B on the video streaming use case defined in the section IV.

Figure 2 visualizes our evaluation results using PCA and SVM techniques. In figure 2a, PCA was applied on the training data set D train with reduced dimension n M = 2: the two main principal components found by PCA were enough to discriminate the points of different 4 classes represented by different colors. Figure 2b shows the boundaries obtained by SVM classification after dimension reduction by PCA, and the points corresponding to the testing data set D test . We calculated the precision, recall, and F1-score of each execution class to support the visualization of SVM technique. Table I gives the obtained results. The overall accuracy, precision, and recall of our classification were 99%.

Using this classification, we can learn that new executions will be classified correctly by ChaT because the results above have a high level of accuracy of MRs defined in section III-A. For example, we can know from table I that the correctly classified execution class that belongs to baseline execution (E B ) is 91 (100% accuracy of true positive), meaning that all of 91 experiments has respected the definition of metamorphic relation E B in section III-A, so any new E B execution would have 100% accuracy to be classified as E B execution. Thus, the formalized MRs in section III-A are validated, the assumptions are correct and our classification method automatically builds oracles to determine the execution classes.

B. Validation of the usage of MRs for anomaly detection

Then we validate the usage of MRs for anomaly detection with the method of subsection III-C on the same video streaming use case defined in the section IV, using isolation forest (IF), one-class SVM (OCSVM), local outlier factor (LOF) and robust covariance (RC) algorithms.

Figure 3 shows the inliers and outliers both in D train and D test sets for the 4 algorithms. Table II shows the classical accuracy, precision, recall, and F-measure scores as defined by Powers [START_REF] Powers | Evaluation: From precision, recall and f-factor to roc, informedness, markedness & correlation[END_REF], from each machine learning algorithm for outliers and inliers and for both D train and D test sets. This shows that ChaT achieves higher accuracy with LOF and RC algorithm, with about 97% accuracy for both training and testing data sets, while IF and OCSVM have lower accuracy. Focusing on the most accurate algorithm (LOF and RC), they correctly predict inliers with precision and recall between 97% and 100%. About outliers, they succeed in detecting them with a good precision between 96% and 100% but there are about 20% of false alarms with a recall between 77% and 80%. Thus, our approach is good to detect alarms (outliers) with a rate of about 20% false alarms. This is acceptable if the objective is to detect alarms when they occur. By this results, we validated our MRs-based approach to detect anomalies.

The fact that the accuracy is high despite the low recall score (about 80%) is because our data set is imbalanced [START_REF] Haibo | Learning from Imbalanced Data[END_REF] with few outliers compared to inliers, and most outliers coming from E R and some from E RP , none in E B as expected. This could be corrected by using resampling approaches (oversampling and undersampling) [START_REF] Chawla | Data Mining for Imbalanced Datasets: An Overview[END_REF], even though it can be thought of as an inadequate practice in applying machine learning techniques. 

VI. CONCLUSION & FUTURE WORKS

This paper proposes ChaT, a testing and evaluation methodology under reconfigurations and perturbations for distributed network systems to evaluate QoS reliability by finding safe and failure-prone system behaviors. ChaT performed metamorphic testing with our formalized metamorphic relation to find patterns of each input class with its expected outputs for the system under test, replacing the traditional known oracles in common software testing scenarios. ChaT has 4 execution classes: baseline (E B ), reconfiguration (E R ), perturbation (E P ), and reconfiguration and perturbation (E RP ). For execution classification, we used PCA and SVM techniques on metrics data we obtained on the video streaming application. PCA reduced the high dimensional data knowledge to lower dimension n M = 2 without losing the essential information, separating each execution class. SVM could then easily find the boundaries between these classes and classify different system behaviors corresponding to different execution classes with a high accuracy: 99% in our use case. ChaT then applied various anomaly detection techniques, analyzed and compared the system performance dynamics under the 4 execution classes that we could identify with the MRs. Among these techniques, local outlier factor (LOF) and robust covariance (RC) could detect potential failed experiments in the executions with a level of accuracy up to 98%.

For future work, we plan to apply ChaT in the software production phase with real-world use cases. In such use cases, PCA can learn the system performance and behavior by examining its historical data information. Thus, the data set D train can be replaced by such data and the rest of the approach should follow ChaT methodology. After we collect metrics data and information of such implementation, we are interested in carefully examined the data in both D train and D test for any data sets imbalances. The goal is to improve the analysis of ChaT classification and anomaly detection, thus improving the evaluation of the system QoS reliability. 
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 1 Fig. 1: The network topology of video streaming application.
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 3 Fig. 3: Anomaly detection techniques for finding potential errors in system exections.

TABLE I :

 I Execution classification results for each execution class.

	Execution class	Support	TP	TN	FP FN	Precision Recall F1-score
	Baseline (E B )	91	91	355	0	0	100%	100%	100%
	Reconfiguration (E R )	135	135 310	0	1	100%	99%	100%
	Perturbation (E P )	65	63	379	2	2	97%	97%	97%
	Reconfiguration, Perturbation (E RP )	155	153 290	2	1	98%	99%	99%

TABLE II :

 II Anomaly detection results for each algorithm on training and testing data set.

	Algorithm	Type	Precision	Training Set Recall F1-score Accuracy	Testing Set Precision Recall F1-score Accuracy
	IF	Outlier Inlier	78% 95%	61% 98%	69% 96%	93%	84% 96%	68% 98%	75% 97%	94%
	OCSVM	Outlier Inlier	43% 100%	98% 81%	60% 90%	83%	26% 96%	93% 98%	41% 97%	66%
	LOF	Outlier Inlier	99% 97%	78% 100%	87% 98%	97%	100% 97%	80% 100%	89% 99%	98%
	RC	Outlier Inlier	100% 97%	78% 100%	88% 98%	97%	96% 97%	77% 99%	85% 98%	97%