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Abstract 

The radial and thickness extensional vibration modes in piezoelectric cylinders are 
always inevitably coupled due to the finite dimension, Poisson’s ratio, and piezoelectric 
effect. In this paper, an analytical model based on the superposition method is 
developed to obtain the coupled dynamic response of a piezoelectric cylinder under an 
applied voltage. The problem can be described mathematically by three partial 
differential equations with mixed boundary conditions in the cylindrical coordinates 
system. To solve this, the problem is decomposed first into two building block – 
vibrations in radial and thickness directions. In each building block, the expressions of 
displacements and electric potential are assumed and then the induced dynamic 
responses, such as in-plane stress and electric displacements, are calculated. Finally, the 
vibration responses of the two building blocks are superimposed to satisfy the mixed 
boundary conditions using Fourier and Fourier-Bessel series expansions. Electrical 
impedance of a typical piezoelectric disk and frequency spectrum of piezoelectric 
cylinders of different diameter-to-thickness ratios are calculated by the present 
analytical method as well as by finite element method. Comparison shows an excellent 
agreement. This analytical model can be applied to material characterization and the 
design and the optimization of the active elements of piezoelectric devices. 

Keywords: coupled vibration, analytical model, superposition method, electrical 
impedance, piezoelectric cylinder, finite element method 

1. Introduction 

Piezoceramic cylinders of different diameter-to-thickness (D/T) ratio have been 
widely used as the active element of ultrasonic transducers in many applications such as 
medical diagnostics, therapy, non-destructive evaluation (NDE), cleaning, atomizing 
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liquids, drilling or milling materials, welding plastics as well as for many other purposes 
[1–4]. Depending on the material properties, the dimensions, the electric field applied 
and the poling direction, two principal vibration modes can be excited: the thickness 
extensional and the radial modes. One dimensional (1D) analytical models such as Van 
Dyke [5], Mason [6], or KLM [7] models have been proposed to characterize the 
dynamic response of the resonator when the diameter is much larger (i.e. ceramic disks) 
or much smaller (i.e. ceramic rods) than the thickness. However, these 1D models are 
not applicable to describe the coupling between radial and thickness modes. To address 
this, a two-dimensional (2D) or three-dimensional (3D) model is needed. 

Due to its axisymmetric structure, the 3D vibration analysis of a piezoceramic 
cylinder can be reduced to a 2D problem in the cylindrical coordinate and can be 
described mathematically by a system of three partial differential equations (PDEs). The 
biggest difficulty of solving this problem lies in finding the appropriate forms for the 
unknown variables, i.e. mechanical displacements and electric potential, to satisfy both 
the differential equations and boundary conditions. Different kinds of potential 
functions were proposed in literature by Saito [8], Rajapakse et al [9,10], Wei and Chau 
[11,12], and Wang et al [13]. In these works, one or two potential functions were 
introduced, then the mechanical displacements and electric potential could be 
represented by a differential form to satisfy the equations of equilibrium and boundary 
conditions. However, they are only suitable in static regimes, not in dynamics. Recently, 
Ding et al [14] obtained the general solutions for coupled dynamic equations for a 
transversely isotropic piezoelectric medium by introducing two potential functions. 
Although the method was later extended to calculate the fundamental frequencies of a 
circular plate under open and closed circuit conditions [15], it is limited to the two 
specific boundary conditions, named as elastic simple support and rigid slipping 
support. 

Approximate methods by virtue of weakening the coupling effect were developed 
lately by Brissaud [16,17], Iula [18], and Zhang [19]. The displacement along each 
propagation direction was considered as independent, i.e. only related to the 
corresponding coordinate, and the electrical quantities in non-polarized directions were 
assumed to be zero. The shear deformation was always neglected. In some ways, these 
assumptions did not satisfy the constitutive equations. A set of 2D second order 
approximate equations were deduced by Lee [20–22]. The calculated dispersion curves 
and resonance frequencies of piezoelectric crystal plates gave a good prediction. Similar 
second order equations were also developed by Li [23–25] and were applied to the 
vibration analysis of thin-film bulk acoustic wave resonators. 

The coupling between vibration modes has been widely studied. Satisfactory results 
have been obtained in static regime for rectangular or cylindrical geometries. To the 
best of the author’s knowledge, the dynamic coupled response of a piezoelectric 



ceramic under external electric field has not been established. In the present work, a 
complete analytical solution for coupled vibration in piezoelectric ceramic cylinders in 
vacuum is proposed based on the superposition method, which was first proposed by 
Gorman [26–28]. In section 2, the mathematical formulation is presented. Section 3 
shows the coupling effect between radial and thickness modes and compares the results 
with those calculated by finite element (FE) method. Conclusions are given in section 4. 

2. Mathematical Formulation 

Here, a piezoelectric cylinder of thickness 2H and diameter 2R in vacuum is 
considered. Fig. 1 shows the coordinate system and dimensions. The poling direction is 
parallel to z-axis. The cartesian coordinates are x, y, and z. They correspond to r, θ, and 
z coordinates in a cylindrical system. An AC-voltage is applied between the top and 
bottom surfaces covered by metallic electrodes. Due to the axisymmetric structure, the 
3D vibration analysis can be reduced to a 2D axisymmetric one as shown in Fig. 1(b). 

 
 (a) (b) 
Fig. 1. Schematic representation of the piezoelectric cylinder element. (a) three-
dimensional (3D) model; (b) two-dimensional (2D) axisymmetric model. 

The constitutive equations of a piezoelectric element can be expressed as [29] 
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where Ecαβ  are the elastic stiffness constants under constant electric field, ieα  are the 

piezoelectric constants, S
ijε  are the dielectric constants under constant strain, Tα , Sβ

, 

iE  and iD  are the stress, strain, electric field and electric displacement, respectively. 

For the 2D axisymmetric model, the interaction between θ and r/z-axis is omitted, 
thus Srθ = Sθz = 0 and Trθ = Tθz = 0. Based on this, the constitutive equations can be 
simplified and rewritten in the cylindrical coordinate system as follows 
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For axisymmetric structures, the strain and displacements are related by 
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The electric fields are related to electric potential by 
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The coupled motion equations and Maxwell’s equation for electrostatic field are 
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where ρ is the mass density of the material. 
Substituting Eqs. (2)-(4) into Eq. (5) yields three coupled differential equations 
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where u, w are the displacements along r and z axes and φ is the electric potential. The 
operators ∆ and ∇2 are defined as 
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Since there are no electrodes on the lateral surface, the electric displacement is equal 
to zero. In addition, the piezoelectric element is stress free and connected to an AC-
voltage of angular frequency ω, therefore, the boundary conditions can be expressed as 
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Owing to the piezoelectric effect, a symmetric constraint is imposed on the sample 
when an AC-voltage is applied. This leads to the displacement u(r,z) being an even 



function versus z coordinate while w(r,z) and φ(r,z) are odd functions of z. It can be 
summarized as follows 
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2.1 General solution for the vibration responses 

Since the piezoelectric element is axisymmetric with respect to z-axis and symmetric 
with respect to r-axis, a half part is chosen to be studied, as shown in Fig. 2(a). Two 
pairs of small circles indicate the symmetry condition along each side. As mentioned 
above, the major difficulty of solving the PDEs is to find an appropriate expression of 
the variables such that the PDEs and boundary conditions can be satisfied 
simultaneously. To address this, the model is divided into two building blocks as shown 
schematically in Fig. 2(b). In fact, the superposition method adopted here is a modified 
version of the method of separation of variables in mathematics. This separation process 
is tightly related to normal vibration modes in radial and thickness directions. The radial 
km and thickness kn wavenumbers of vibration modes are induced in the first and second 
building blocks respectively (Fig 2.(b)). After that, their vibration responses are 
superimposed to satisfy the boundary conditions. 

 
 (a) (b) 
Fig. 2. Schematic representation of a half of the 2D axisymmetric piezoelectric element 
(a) and two divided building blocks (b) for the general solution.  

Let’s now consider the first building block on the right of Fig. 2(b). Supposing that 
only the radial vibration modes are induced, the displacements and electric potential are 
expressed as follows [10,30] 
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where J0(kmr) and J1(kmr) are Bessel functions of the first kind of order zero and one, 
respectively. The wavenumber in the radial direction, km, is the m-th root of J0(kmR) = 0. 
For simplicity, the time component ejωt is omitted. 



By substituting Eq. (10) into the coupled PDEs Eq. (6), we obtain 
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where the single apostrophe implies differentiation with respect to variable z once, 
double apostrophe implies twice, and so on. We can see that the variable r is separated 
from the PDEs in Eq. (6).  

Solving Eqs. (11b) and (11c), the quantities ( )m zψ  and ( )m zψ ′′  can be expressed 

in terms of ( )mU z′ , ( )mW z′′ , and ( )mW z . Combining this with Eq. (11a), we have 
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where the coefficients ami and bmi (i = 1,2,3,4) are constants related to material 
properties, ω, and km. They are listed in Appendix (Eq. (A. 1)).  

Differentiating Eq. (12b) once with respect to z and combining with Eq. (12a), the 

quantities ( )mW z′′′  and ( )mW z′  can be expressed in terms of ( )iv
mU z , ( )mU z′′ , and 

( )mU z . Let ( )mW z′′′  be equal to ( )mW z′  differentiating twice with respect to z, a sixth 

order homogeneous differential equation involving only ( )mU z  and its derivatives is 

obtained 
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Substituting the exponential function zeλ  into Eq. (13), the characteristic equation 

related to the quantity ( )mU z  is obtained 

 6 4 2
1 1 1 0b c dλ λ λ+ + + =   (14) 

For given ω and km, three roots with respect to λ2 are given by the roots of a general 
cubic equation [31,32]. The roots of the characteristic equation are represented by three 
sets of square roots, denoted as 

 ( )1,2,3i mik iλ = ± =   (15) 

The frequency ω and wavenumber km are real, but 2
iλ  may be either real-positive, 

real-negative, or complex, which leads to several cases for the roots kmi. In the present 
work, roots are considered as complex for the sake of generalization. Although we may 



have + kmi and - kmi results, only the + kmi need to be considered since they give the same 
solution after the conversion from exponential functions to hyperbolic ones [33]. 

The general solution ( )mU z , being an even function of z, can be expressed as 
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where Umi are arbitrary constants. 

Turning back to Eqs. (11) and (12), the quantities ( )mW z  and ( )m zψ  can be 

expressed by ( )mU z  
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and the coefficients cmi (i = 1,2,3) are given in Appendix (Eq. (A. 2)). 
Now let’s turn to the second building block on the right of Fig. 2(b). The derivation 

is similar to the one of the first building block but slightly more complicated because of 
the cylindrical coordinate system. Therefore, for completeness sake, the derivation 
process is briefly presented here. In the second building block, the thickness vibrations 
are induced. To avoid confusion, a n-index is used for the notations of the displacements 
and electric potential [27,34] 
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Inserting this into Eq. (6), we have 
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where the apostrophe implies differentiation with respect to variable r. By combining 
the equations following a procedure similar to the previous case, we can eliminate the 

quantity ( )n rψ . Then we have 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2
1 2 3 4

2
1 2 3 4

0

0
n n n n n n n n

n n n n n n n n

a U r a U r a W r a W r

b U r b U r b W r b W r

′ ′∇ + + ∇ + =

′∆∇ + ∆ + ∆ + =
  (21) 

After combining these equations, we can eliminate the quantity ( )nW r  and obtain a 

differential equation involving only ( )nU r  and its derivatives 
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where the definition of the operator 2∇  is given in Eq. (7). 
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where Uni are arbitrary constants and ( )1 niI k r  is the modified Bessel function of the 

first kind of order one. The solutions for ( )nW r  and ( )n rψ  can be expressed as 
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where ( )0 niI k r  is the modified Bessel function of the first kind of order zero.  

The coefficients ani, bni and cni (i = 1,2,3,4) for the second building block are detailed 
in the Appendix (Eq. (A. 3)). The other coefficients, such as bi, ci and di (i = 1,2,3), are 
exactly the same as those that appeared in the first building block. To obtain these 
coefficients, we need only to replace symbol m by n. For clarity, they are also given in 
the Appendix (Eq. (A. 4)). 

With the solutions of the two building blocks above, the general solution for 
mechanical displacements and electric potential can be expressed as 
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The unknown coefficients miU  and niU  can be obtained after substituting the 

solution Eq. (26) into the boundary conditions Eq. (8). Once these coefficients are 
determined, the following expressions can be used to evaluate the dynamic vibration 
responses of stress, electric field, and electric displacements inside the element: 
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Contrary to the common assumption [16,18,19], the electric filed in radial direction 
Er is not equal to zero. In addition, the symmetry property versus z-axis, shown in Eq. 
(9), can be verified here. 

2.2 Determination of unknown coefficients 

Assuming the number of vibration modes induced in the radial and thickness 
directions are K1 (m = 1, 2,…,K1) and K2 (n = 1,2,…,K2), there will be 3(K1+K2) linear 
equations for the 3(K1+K2) unknown coefficients of Umi and Uni by substituting the 
solutions into the boundary conditions of Eq. (8). The 3(K1+K2) linear equations can be 
presented in a concise way as 
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where mi
jF  and ni

jF  (j =1,2,3) can be easily obtained from Eq.(27); they are given by 
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and mi
jG , ni

jG , and 
0
miϕ  (j =1,2,3) are obtained using the Projection method [35] 
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 (30) 

Eq. (28) shows that the stress zT , rzT , and electric potential ϕ  at z H= ±  can be 

expanded with the first kinds of Bessel functions of order 0, 1, and 0, respectively. The 

stress rT , rzT , and electric displacement rD  at r R=  can be expanded with cosine, 

sine, and sine functions, respectively. The boundary conditions are satisfied in the form 
of Fourier series and Fourier-Bessel series expansions. The summation of the expanded 
coefficients should be equal to zero except for the electric potential at z H= ± . 

The nonhomogeneous linear system in matrix notation can be described by 
 =Ax b   (31) 
where A  is a 3(K1+K2)×3(K1+K2) coefficient matrix, x  is the unknown variable of 
Umi and Uni, and b  is a 3(K1+K2)×1 vector with K1 non-zero elements related to φ0. 

For clarity, an example is shown here, where K1 = 2 and K2 = 3. The augmented 
matrix of the linear system is assembled and depicted schematically in Fig. 3. The 

elements denoted by an asterisk (*) are mi
jF  and ni

jF , those denoted by a short solid 

bar (-) are mi
jG , ni

jG  and 
0
miϕ , and the rest are zeros. Once the constant φ0 is known, all 

the coefficients can be determined. 
 
 



 
Fig. 3. Schematic representation of assembled augmented matrix of the system (* : mi

jF  

and ni
jF ; -: mi

jG , ni
jG , and 

0
miϕ ). 

2.3 Electrical impedance 

The electrical impedance of piezoelectric material is defined as 

 = VZ
I

  (32) 

where V is the voltage applied between the electrodes and I is the electric current 
flowing through the sample. 

Since the electric potential on the top and bottom electrodes are 0
j te ωϕ± , we have 
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The electric current is defined by the differential of charge versus time. The charge 
on electrodes can be calculated by integrating the electric displacement density D3 over 
the surface. Therefore, 
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Due to Eq. (19) and Eq. (27), ( ),zD r H  is given as 
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After obtaining all the unknown coefficients in Section 2.2, we can substitute them 



into Eqs. (32)-(35), then the electrical impedance is determined. The time component 
j te ω  and the constant φ0 vanish in the results. 

3. Results and Discussion 

To verify the validity of the analytical model proposed here, the results are compared 
with those computed by a FE method. The FE analysis is carried out with COMSOL 
Multiphysics software in vacuum. Quadratic Lagrange rectangular elements with nine 
nodes are used and a frequency domain analysis is performed using 8 elements per shear 
wavelength for the highest frequency. The validation is performed in two parts: the 
electrical impedance and mode shape, represented by the spatial distribution of the 
mechanical displacements and electric potential, given in section 3.1. The predicted 
frequency spectrum comparison of different diameter-to-thickness ratios is shown in 
section 3.2. 

Soft PZT materials provide high coupling factors and piezoelectric charge 
coefficients. They are widely used in applications such as medical diagnostic 
transducers, doppler flow meters, accelerometers and NDE. A soft PZ27 (Ferroperm 
Piezoceramics [36]) ceramic disk is used here, with diameter of 16 mm and thickness of 
1.13 mm. An AC-voltage of ±1V is applied between the top and bottom electrodes. 

Material properties are listed in Table 1, where ρ  is the density, Ecαβ  are the elastic 

stiffness constants under constant electric field, ieα  are the piezoelectric constants, S
ijε  

are the dielectric constants under constant strain, mδ  and eδ  are respectively the 
mechanical loss factor and dielectric loss factor. 

Table 1 
Soft PZ27 piezoelectric material properties [36] 

ρ (kg∙m-3) 11
Ec (GPa) 12

Ec (GPa) 13
Ec (GPa) 33

Ec (GPa) 44
Ec (GPa) 66

Ec (GPa) 
7800 147.4 104.9 93.7 112.6 23.0 21.25 

31e (C∙m-2) 33e (C∙m-2) 15e (C∙m-2) 11
S

rε  33
S

rε  mδ (%) eδ (%) 

-3.1 16.0 11.6 913.7 1129.7 1.35 1.7 

3.1 Electrical impedance and mode shape of a ceramic disk 

Since the analytical model is based on Fourier and Fourier-Bessel series expansions, 
any desired degree of accuracy could be achieved by increasing the number of terms K1 
and K2. To determine the values of K1 and K2, a convergence test for resonance 
frequency (fr) is performed. Fig. 4 shows the variation of resonance frequency with 



number of terms K1, for all vibration modes in the frequency range between 0 and 2.4 
MHz. The number of terms K2 is set at 2 and the frequency resolution is set at 1kHz.  

One can see that as the number of terms K1 increases, more and more radial or 
coupling modes appear - in other words, to characterize high order radial harmonics and 
the coupling between thickness and radial modes in higher frequency ranges, K1 needs 
to increase. One can also see that the calculated values of fr converge vertically more or 
less to an asymptotic value as K1 increases. The upper left area in Fig. 4, separated by a 
symbolic oblique solid line, can be considered as the area of convergence. It should be 
noted that in the case presented here (from 0 MHz to 2.4 MHz), 21 K1 terms and 2 K2 
terms are sufficient to allow this asymptotic value to be obtained with good 
reproducibility. 

 
Fig. 4. The variation of resonance frequency with the number of terms K1. 

The electrical impedances for three different cases – K1 = K2 = 1 (Fig. 5(a)), K1 = 5, 
K2 = 2 (Fig. 5(b)), and K1 = 21, K2 = 2 (Fig. 5(c)) – are shown and compared with those 
of the FE method in Fig. 5. To measure the discrepancy, a mean absolute percentage 
deviation (MAPD) metric [37] is introduced and defined as 

 ( ) ( )
( )1

1MAPD= 100
N

Analytical i FE i

i FE i

Z f Z f
N Z f=

−
×∑   (36) 

where Z(fi) is the electrical impedance value at frequency fi and N is the number of 
points evaluated. 

The agreement between the analytical and the FE model improves and the MAPD 
decreases from Fig. 5(a) to Fig. 5(c). The MAPDs of the three sets of results are close to 
55%, 15% and 2%, respectively. For a better illustration, the resonance and 
antiresonance frequencies in the third case are extracted and compared with those of the 
FE model. They are listed in Table 2, including the discrepancies in parentheses. The 
values are very close: the maximum discrepancy is inferior to 3 kHz for the frequency 
range calculated and the maximum deviation is under 2%, which occurs at the lower 
frequencies. 
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Table 2 

Resonance and antiresonance frequencies of the piezoelectric disk from 0 to 2.4 MHz 
Model Resonance frequency (MHz) 

FE 0.124 0.315 0.485 0.636 0.762 0.864 0.949 1.018 1.062 1.300 

Analytical 
(deviation (%)) 

0.126 0.315 0.486 0.634 0.762 0.864 0.949 1.020 1.065 1.300 

(1.61) (0.00) (0.21) (0.00) (0.00) (0.00) (0.00) (0.20) (0.28) (0.00) 

FE 1.392 1.481 1.560 1.649 1.736 1.825 1.930 2.051 2.187 ̸ 

Analytical 
(deviation (%)) 

1.392 1.482 1.561 1.650 1.736 1.824 1.929 2.050 2.187 ̸ 

(0.00) (0.07) (0.06) (0.06) (0.00) (0.05) (0.05) (0.05) (0.00) ̸ 

Model Antiresonance frequency (MHz) 

FE 0.146 0.324 0.494 0.645 0.772 0.875 0.961 1.032 1.075 1.308 

Analytical 
(deviation (%)) 

0.147 0.325 0.494 0.645 0.772 0.875 0.961 1.033 1.078 1.308 

(0.68) (0.31) (0.00) (0.00) (0.00) (0.00) (0.00) (0.10) (0.28) (0.00) 

FE 1.404 1.512 1.578 1.667 1.804 1.891 1.953 2.070 2.201 ̸ 

Analytical 
(deviation (%)) 

1.404 1.512 1.578 1.668 1.804 1.891 1.953 2.068 2.199 ̸ 

(0.00) (0.00) (0.00) (0.06) (0.00) (0.00) (0.00) (0.10) (0.10) ̸ 
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(c) 

Fig. 5. The modulus of electrical impedance of the piezoelectric disk obtained by using 
different number of terms. (a) K1 = 1, K2 = 1; (b) K1 = 5, K2 = 2; (c) K1 = 21, K2 = 2. 
Solid lines refer to the results of the FE model and chain dotted lines refer to the results 
of the analytical model. 

The mode shapes of total displacement U, defined as 2 2u w+ , and electric potential 
φ are calculated by Eq. (26). Results at the antiresonance frequency of the fundamental 
radial (R1) and thickness (T1) modes, as labelled in Fig. 5, are shown in Fig. 6 and Fig. 
7. Comparison shows an excellent agreement, in accordance with [38], including not 
only the spatial distribution but also the amplitudes (i.e. total displacement and electric 
potential respectively). The vibration pattern of R1 mode can be easily recognized from 
Fig. 6(a) & (c): the piezoceramic disk extends in the radial direction while keeping close 
to constant in the thickness direction. The electric potential distribution, as shown in 
Fig. 6(b) & (d), is uniform in the radial direction but linear in its poling direction, i.e. 
the thickness direction. From Fig. 7(a) & (c) we can see that the vibration of T1 mode is 
predominant in the thickness direction but is greatly influenced by the higher harmonics 
of radial modes. Additionally, the displacement is higher at the surface center than at the 
periphery. Owing to the piezoelectric effect, the distribution of electric potential of T1 
mode (Fig. 7(b) & (d)) is similar to that of displacement. Besides, although an AC-
voltage of ±1V is applied between the top and bottom electrodes in the poling direction, 
the electric potential inside some locations of the element exceeds this range and is 
more than ±2V. 

In addition, compared to the FE method, the analytical method shows a great 
advantage in terms of computational efficiency: the calculation time is reduced from the 
FE method’s 181.3s to only 2.8s for the third case. Thus, a comparable accuracy is 
attained 64 times faster. 
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 (a) (c) 

 
 (b) (d) 
Fig. 6. The total displacement and electric potential of the piezoelectric ceramic disk at 
the antiresonance frequency of the first radial (R1) mode. (a)-(b) indicate results of the 
FE model; (c)-(d) indicate results of analytical model with K1 = 21 and K2 = 2. 

 
 (a) (c) 

 
 (b) (d) 
Fig. 7. The total displacement and electric potential of the piezoelectric ceramic disk at 
the antiresonance frequency of the first thickness (T1) mode. (a)-(b) indicate results of 
the FE model; (c)-(d) indicate results of analytical model with K1 = 21 and K2 = 2. 

3.2 Frequency spectrum 

The present analytical model has been extended to predict the frequency spectrum of 
PZ27 piezoelectric disks, that is, relations between resonance frequencies and diameter-
to-thickness (D/T) ratios, as shown in Fig. 8. Here, the material is assumed to be 
lossless. The D/T ratio varies from 0.2 to 20 with a step of 0.05 while the thickness is 
kept constant as 1.13 mm. This range covers most of the piezoelectric element 
geometries used in ultrasonic transducers. Since the electrical impedance is inversely 
proportional to the electrode area, the amplitude is first normalized to a unit area and 
then normalized between 0 and 1. The resonance amplitude of the vibration modes is 
represented by the color scale in Fig. 8. Besides, to avoid a convergence analysis in each 



case, K1 and K2 are set at 30 and 2 for D/T ratios larger than 5 and are both set at 10 for 
the other cases. 

The overall vibration pattern shown in Fig. 8 is similar to the measured or calculated 
frequency spectrum by FE model [38–41]. Results from the FE model, marked by black 
circles, are superimposed over analytical ones in Fig. 8. An excellent agreement can be 
observed. Several features are also clearly shown in the frequency spectrum. The three 
“terraces”, as mentioned in [40], are noted as edge modes (E), thickness shear modes 
(TS), and thickness extensional modes (TE). Their locations are also indicated by the 
arrows on the right of the plot area. The TS terrace is the most obvious in Fig. 8. It is 
close to flat and the number of TS modes increases as D/T ratio increases. The TE 
terrace is obviously characterized by its high resonance amplitude, i.e. the lighter color. 
The E terrace can be speculated because the rate of change of resonance frequency with 
D/T ratio is reduced in this region. 

 
Fig. 8. Resonance frequencies vs diameter-to-thickness ratios D/T of PZ27 disks with 
constant thickness 1.13 mm. Gray points, scaled by normalized amplitude, are results of 
the analytical model and black circle are results of the FE model. 

The two horizontal dotted lines, labeled as k33 and kt in Fig. 8, are results from the 
one-dimensional (1D) KLM model [7]. As D/T ratio approaches 0, the piezoelectric 
cylinder turns into a long rod with small section poled along its largest dimension, 
which can be modelled by KLM model with electromechanical coupling coefficient 
equal to k33 (D/T → 0). As D/T ratio approaches 20 or even higher, the cylinder turns 
into a thin disk poled along its thickness. It can be modelled by KLM with coupling 



coefficient kt (D/T → +∞). The electrical impedances of these two extreme cases 
calculated by two analytical models are shown in Fig. 9. In Fig. 9(a), only the length 
expander (LE) mode exists in the frequency range (0 to 2.4 MHz), and the resonance 
frequency is close to 1.1 MHz. In Fig. 9(b), the TE mode is highly perturbated by other 
modes, and the resonance frequency is around 1.7 MHz. These two resonance 
frequencies, calculated by KLM model, could be considered as two asymptotic bounds 
for real situation: an upper bound (D/T → 0) and a lower bound (D/T → +∞). They are 
found by our analytical model with a discrepancy of less than 1%. This small 
discrepancy is linked to the D/T ratio: contrary to KLM model, the radial contribution is 
taken into account in our analytical model by means of a finite value of D/T. Plus, 
compared with KLM model, the analytical model proposed here can describe not only 
the two fundamental vibrations in radial and thickness directions but also the coupled 
modes such as E and TS modes. 

 
(a) 

 
(b) 

Fig. 9. The modulus of electrical impedance of a long piezoelectric rod (a) and a thin 
piezoelectric disk (b). Solid lines refer to the results of the present analytical model and 
chain dotted lines refer to the results of KLM model. 
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4. Conclusions 

In this paper, accurate analytical solutions have been obtained for coupled vibrations 
in piezoceramic cylinders based on superposition method. The problem has been 
divided into two building blocks – vibrations in radial and thickness directions – and 
solution in each building block are superimposed to form the final solution. The mixed 
boundary conditions are satisfied using Fourier and Fourier-Bessel series expansions. 

The solutions for the in-plane dynamic responses, such as stress, electric field, and 
electric displacements, are formulated. Electrical impedance and mode shape of a 
typical size PZ27 piezoelectric disk, as well as the frequency spectrum of the same 
material but with different diameter-to-thickness ratios are calculated and compared to 
those of the FE method. An excellent agreement is observed. The mean absolute 
percentage deviation (MAPD) of the electrical impedance curve is inferior to 2%. In 
addition, the analytical method shows a great advantage in terms of computational 
efficiency – it is over 64 times faster than FE one for the same level of precision. 
Furthermore, comparison shows that the present analytical method is more accurate than 
KLM model: not only the radial and thickness modes but also the other coupled modes 
can be characterized using the analytical model proposed here. 

The present analytical model can be used to help with the characterization of some 
material parameters but also for the design and the optimization of the active elements 
of piezoelectric devices, such as ultrasonic transducers. 
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Appendix 

The constants ami and bmi (i = 1,2,3,4) appearing in Eq. (12) are defined by  
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The constants cmi (i = 1,2,3) appearing in Eq. (18) are defined by 

( ) ( )
( )

( )

( )

13 55 33 31 15 33
1

15 33 33 11

2
33 33 33

2 2
15 33 33 11

2
55 33 15 33 33

3 2
15 33 33 11 15 33 33 11

+ ω ρ

E E S

m S S
m

E S

m S S
m

E S S

m S S S S
m

c c e e e
c

e e k

c ec
k e e

c e ec
e e e e k

ε

ε ε

ε
ε ε

ε ε
ε ε ε ε

+ + +
=

−

+
=

−

= − +
− −

 (A. 2) 

The coefficients ani, bni and cni (i = 1,2,3,4) for the second building block (on the 
right of Fig. 2(b))) are defined as 
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and the other coefficients bi, ci and di (i = 1,2,3) are defined as 
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