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The radial and thickness extensional vibration modes in piezoelectric cylinders are always inevitably coupled due to the finite dimension, Poisson's ratio, and piezoelectric effect. In this paper, an analytical model based on the superposition method is developed to obtain the coupled dynamic response of a piezoelectric cylinder under an applied voltage. The problem can be described mathematically by three partial differential equations with mixed boundary conditions in the cylindrical coordinates system. To solve this, the problem is decomposed first into two building blockvibrations in radial and thickness directions. In each building block, the expressions of displacements and electric potential are assumed and then the induced dynamic responses, such as in-plane stress and electric displacements, are calculated. Finally, the vibration responses of the two building blocks are superimposed to satisfy the mixed boundary conditions using Fourier and Fourier-Bessel series expansions. Electrical impedance of a typical piezoelectric disk and frequency spectrum of piezoelectric cylinders of different diameter-to-thickness ratios are calculated by the present analytical method as well as by finite element method. Comparison shows an excellent agreement. This analytical model can be applied to material characterization and the design and the optimization of the active elements of piezoelectric devices.

Introduction

Piezoceramic cylinders of different diameter-to-thickness (D/T) ratio have been widely used as the active element of ultrasonic transducers in many applications such as medical diagnostics, therapy, non-destructive evaluation (NDE), cleaning, atomizing liquids, drilling or milling materials, welding plastics as well as for many other purposes [START_REF] Farmer | The application of power ultrasound to the surface cleaning of silica and heavy mineral sands[END_REF][START_REF] Marechal | High-frequency transducers based on integrated piezoelectric thick films for medical imaging[END_REF][START_REF] Lethiecq | Piezoelectric transducer design for medical diagnosis and NDE[END_REF][START_REF] Bavencoffe | Modelling and experimental measurements of the mechanical response of piezoelectric structures from millimetre to micrometre[END_REF]. Depending on the material properties, the dimensions, the electric field applied and the poling direction, two principal vibration modes can be excited: the thickness extensional and the radial modes. One dimensional (1D) analytical models such as Van Dyke [START_REF] Dyke | The Piezo-Electric Resonator and Its Equivalent Network[END_REF], Mason [START_REF] Mason | Electromechanical transducers and wave filters[END_REF], or KLM [START_REF] Krimholtz | New equivalent circuits for elementary piezoelectric transducers[END_REF] models have been proposed to characterize the dynamic response of the resonator when the diameter is much larger (i.e. ceramic disks) or much smaller (i.e. ceramic rods) than the thickness. However, these 1D models are not applicable to describe the coupling between radial and thickness modes. To address this, a two-dimensional (2D) or three-dimensional (3D) model is needed.

Due to its axisymmetric structure, the 3D vibration analysis of a piezoceramic cylinder can be reduced to a 2D problem in the cylindrical coordinate and can be described mathematically by a system of three partial differential equations (PDEs). The biggest difficulty of solving this problem lies in finding the appropriate forms for the unknown variables, i.e. mechanical displacements and electric potential, to satisfy both the differential equations and boundary conditions. Different kinds of potential functions were proposed in literature by Saito [START_REF] Saito | The Axially Symmetrical Deformation of a Short Circular Cylinder[END_REF], Rajapakse et al [START_REF] Rajapakse | Electroelastic field of a piezoelectric annular finite cylinder[END_REF][START_REF] Chen | Electric Charge Loading of a Piezoelectric Solid Cylinder[END_REF], Wei and Chau [START_REF] Wei | Analytic Solution for Axial Point Load Strength Test on Solid Circular Cylinders[END_REF][START_REF] Wei | Analytic Solution for Finite Transversely Isotropic Circular Cylinders under the Axial Point Load Test[END_REF], and Wang et al [START_REF] Wang | A general solution and the application of space axisymmetric problem in piezoelectric material[END_REF]. In these works, one or two potential functions were introduced, then the mechanical displacements and electric potential could be represented by a differential form to satisfy the equations of equilibrium and boundary conditions. However, they are only suitable in static regimes, not in dynamics. Recently, Ding et al [START_REF] Ding | General solutions for coupled equations for piezoelectric media[END_REF] obtained the general solutions for coupled dynamic equations for a transversely isotropic piezoelectric medium by introducing two potential functions. Although the method was later extended to calculate the fundamental frequencies of a circular plate under open and closed circuit conditions [START_REF] Ding | Exact solutions for free vibration of transversely isotropic piezoelectric circular plates[END_REF], it is limited to the two specific boundary conditions, named as elastic simple support and rigid slipping support.

Approximate methods by virtue of weakening the coupling effect were developed lately by Brissaud [START_REF] Brissaud | Characterization of piezoceramics[END_REF][START_REF] Brissaud | Three-dimensional modeling of piezoelectric materials[END_REF], Iula [START_REF] Iula | An approximated 3-D model of cylindershaped piezoceramic elements for transducer design[END_REF], and Zhang [START_REF] Zhang | Three-dimensional coupled vibration theory for the longitudinally polarized piezoelectric ceramic tube[END_REF]. The displacement along each propagation direction was considered as independent, i.e. only related to the corresponding coordinate, and the electrical quantities in non-polarized directions were assumed to be zero. The shear deformation was always neglected. In some ways, these assumptions did not satisfy the constitutive equations. A set of 2D second order approximate equations were deduced by Lee [START_REF] Lee | A new two-dimensional theory for vibrations of piezoelectric crystal plates with electroded faces[END_REF][START_REF] Huang | Extensional, thickness-stretch and symmetric thickness-shear vibrations of piezoceramic disks[END_REF][START_REF] Lee | An accurate two-dimensional theory of vibrations of isotropic, elastic plates[END_REF]. The calculated dispersion curves and resonance frequencies of piezoelectric crystal plates gave a good prediction. Similar second order equations were also developed by Li [START_REF] Li | Two-dimensional equations for piezoelectric thin-film acoustic wave resonators[END_REF][START_REF] Li | Forced coupling vibration analysis of FBAR based on two-dimensional equations associated with state-vector approach[END_REF][START_REF] Li | Two-Dimensional Plate Theory for the Analysis of Coupling Vibrations in Shear Mode FBARs[END_REF] and were applied to the vibration analysis of thin-film bulk acoustic wave resonators.

The coupling between vibration modes has been widely studied. Satisfactory results have been obtained in static regime for rectangular or cylindrical geometries. To the best of the author's knowledge, the dynamic coupled response of a piezoelectric ceramic under external electric field has not been established. In the present work, a complete analytical solution for coupled vibration in piezoelectric ceramic cylinders in vacuum is proposed based on the superposition method, which was first proposed by Gorman [START_REF] Gorman | Free vibration analysis of the completely free rectangular plate by the method of superposition[END_REF][START_REF] Gorman | Free in-plane vibration analysis of rectangular plates by the method of superposition[END_REF][START_REF] Gorman | Accurate in-plane free vibration analysis of rectangular orthotropic plates[END_REF]. In section 2, the mathematical formulation is presented. Section 3 shows the coupling effect between radial and thickness modes and compares the results with those calculated by finite element (FE) method. Conclusions are given in section 4.

Mathematical Formulation

Here, a piezoelectric cylinder of thickness 2H and diameter 2R in vacuum is considered. Fig. 1 shows the coordinate system and dimensions. The poling direction is parallel to z-axis. The cartesian coordinates are x, y, and z. They correspond to r, θ, and z coordinates in a cylindrical system. An AC-voltage is applied between the top and bottom surfaces covered by metallic electrodes. Due to the axisymmetric structure, the 3D vibration analysis can be reduced to a 2D axisymmetric one as shown in Fig. 1 The constitutive equations of a piezoelectric element can be expressed as [START_REF] Royer | Elastic waves in solids I: Free and guided propagation[END_REF] , 1, 2,3 and , 1,..., 6

E i i S i ij j i T c S e E i j D E e S α αβ β α α α α β ε = - = = = + (1) 
where E c αβ are the elastic stiffness constants under constant electric field, i e α are the piezoelectric constants,

S ij

ε are the dielectric constants under constant strain, T α , S β , i E and i D are the stress, strain, electric field and electric displacement, respectively.

For the 2D axisymmetric model, the interaction between θ and r/z-axis is omitted, thus Srθ = Sθz = 0 and Trθ = Tθz = 0. Based on this, the constitutive equations can be simplified and rewritten in the cylindrical coordinate system as follows 
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For axisymmetric structures, the strain and displacements are related by , , ,
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The electric fields are related to electric potential by ,
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The coupled motion equations and Maxwell's equation for electrostatic field are 
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where ρ is the mass density of the material. Substituting Eqs. ( 2)-(4) into Eq. ( 5) yields three coupled differential equations 
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where u, w are the displacements along r and z axes and φ is the electric potential. The operators ∆ and ∇ 2 are defined as
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Since there are no electrodes on the lateral surface, the electric displacement is equal to zero. In addition, the piezoelectric element is stress free and connected to an ACvoltage of angular frequency ω, therefore, the boundary conditions can be expressed as 0 0 at 0, at

r rz r j t z rz T T D r R T T e z H ω ϕ ϕ = = = = = = = ± = ± (8) 
Owing to the piezoelectric effect, a symmetric constraint is imposed on the sample when an AC-voltage is applied. This leads to the displacement u(r,z) being an even function versus z coordinate while w(r,z) and φ(r,z) are odd functions of z. It can be summarized as follows
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General solution for the vibration responses

Since the piezoelectric element is axisymmetric with respect to z-axis and symmetric with respect to r-axis, a half part is chosen to be studied, as shown in Fig. 2(a). Two pairs of small circles indicate the symmetry condition along each side. As mentioned above, the major difficulty of solving the PDEs is to find an appropriate expression of the variables such that the PDEs and boundary conditions can be satisfied simultaneously. To address this, the model is divided into two building blocks as shown schematically in Fig. 2(b). In fact, the superposition method adopted here is a modified version of the method of separation of variables in mathematics. This separation process is tightly related to normal vibration modes in radial and thickness directions. Let's now consider the first building block on the right of Fig. 2(b). Supposing that only the radial vibration modes are induced, the displacements and electric potential are expressed as follows [START_REF] Chen | Electric Charge Loading of a Piezoelectric Solid Cylinder[END_REF][START_REF] Senjuntichai | Piezoelectric cylinder under voltage and axial loading[END_REF] ( )
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where J0(kmr) and J1(kmr) are Bessel functions of the first kind of order zero and one, respectively. The wavenumber in the radial direction, km, is the m-th root of J0(kmR) = 0. For simplicity, the time component e jωt is omitted.

By substituting Eq. ( 10) into the coupled PDEs Eq. ( 6), we obtain ρω =0 
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where the coefficients ami and bmi (i = 1,2,3,4) are constants related to material properties, ω, and km. They are listed in Appendix (Eq. (A. 1)). Differentiating Eq. (12b) once with respect to z and combining with Eq. (12a), the quantities
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differentiating twice with respect to z, a sixth order homogeneous differential equation involving only
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Substituting the exponential function z e λ into Eq. ( 13), the characteristic equation related to the quantity

( ) m U z is obtained 6 4 2 1 1 1 0 b c d λ λ λ + + + = (14) 
For given ω and km, three roots with respect to λ 2 are given by the roots of a general cubic equation [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF][START_REF] Weisstein | Cubic formula[END_REF]. The roots of the characteristic equation are represented by three sets of square roots, denoted as ( )

1, 2,3 i mi k i λ = ± = (15) 
The frequency ω and wavenumber km are real, but

2 i
λ may be either real-positive, real-negative, or complex, which leads to several cases for the roots kmi. In the present work, roots are considered as complex for the sake of generalization. Although we may have + kmi and -kmi results, only the + kmi need to be considered since they give the same solution after the conversion from exponential functions to hyperbolic ones [START_REF] Tiersten | Linear Piezoelectric Plate Vibrations[END_REF].

The general solution ( ) m U z , being an even function of z, can be expressed as

( ) ( ) 3 1 cosh m mi mi i U z U k z = = ∑ (16) 
where Umi are arbitrary constants.

Turning back to Eqs. ( 11) and ( 12), the quantities 
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and the coefficients cmi (i = 1,2,3) are given in Appendix (Eq. (A. 2)). Now let's turn to the second building block on the right of Fig. 2(b). The derivation is similar to the one of the first building block but slightly more complicated because of the cylindrical coordinate system. Therefore, for completeness sake, the derivation process is briefly presented here. In the second building block, the thickness vibrations are induced. To avoid confusion, a n-index is used for the notations of the displacements and electric potential [START_REF] Gorman | Free in-plane vibration analysis of rectangular plates by the method of superposition[END_REF][START_REF] Kim | Coupled vibration analysis for a piezoelectric array element using superposition method[END_REF] 
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Inserting this into Eq. ( 6), we have ρω 0
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where the apostrophe implies differentiation with respect to variable r. By combining the equations following a procedure similar to the previous case, we can eliminate the quantity ( )
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After combining these equations, we can eliminate the quantity 
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where the definition of the operator 2 ∇ is given in Eq. ( 7).

For given ω and kn, the three roots for ( )

2 n U r ∇ are denoted as 2 ni
k , then, the solution of Eq. ( 22) is given by ( ) ( )
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where Uni are arbitrary constants and ( ) 
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where ( )

0 ni
I k r is the modified Bessel function of the first kind of order zero.

The coefficients ani, bni and cni (i = 1,2,3,4) for the second building block are detailed in the Appendix (Eq. (A. 3)). The other coefficients, such as bi, ci and di (i = 1,2,3), are exactly the same as those that appeared in the first building block. To obtain these coefficients, we need only to replace symbol m by n. For clarity, they are also given in the Appendix (Eq. (A. 4)).

With the solutions of the two building blocks above, the general solution for mechanical displacements and electric potential can be expressed as
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The unknown coefficients mi U and ni U can be obtained after substituting the solution Eq. ( 26) into the boundary conditions Eq. [START_REF] Saito | The Axially Symmetrical Deformation of a Short Circular Cylinder[END_REF]. Once these coefficients are determined, the following expressions can be used to evaluate the dynamic vibration responses of stress, electric field, and electric displacements inside the element: , cosh cos , , sinh sin 
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Contrary to the common assumption [START_REF] Brissaud | Characterization of piezoceramics[END_REF][START_REF] Iula | An approximated 3-D model of cylindershaped piezoceramic elements for transducer design[END_REF][START_REF] Zhang | Three-dimensional coupled vibration theory for the longitudinally polarized piezoelectric ceramic tube[END_REF], the electric filed in radial direction Er is not equal to zero. In addition, the symmetry property versus z-axis, shown in Eq. ( 9), can be verified here.

Determination of unknown coefficients

Assuming the number of vibration modes induced in the radial and thickness directions are K1 (m = 1, 2,…,K1) and K2 (n = 1,2,…,K2), there will be 3(K1+K2) linear equations for the 3(K1+K2) unknown coefficients of Umi and Uni by substituting the solutions into the boundary conditions of Eq. ( 8). The 3(K1+K2) linear equations can be presented in a concise way as
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where mi j F and ni j F (j =1,2,3) can be easily obtained from Eq.( 27); they are given by ( ) 
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Eq. [START_REF] Gorman | Accurate in-plane free vibration analysis of rectangular orthotropic plates[END_REF] shows that the stress z T , rz T , and electric potential ϕ at z H = ± can be expanded with the first kinds of Bessel functions of order 0, 1, and 0, respectively. The stress r T , rz T , and electric displacement r D at r R = can be expanded with cosine, sine, and sine functions, respectively. The boundary conditions are satisfied in the form of Fourier series and Fourier-Bessel series expansions. The summation of the expanded coefficients should be equal to zero except for the electric potential at z H = ± . The nonhomogeneous linear system in matrix notation can be described by = Ax b [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] where A is a 3(K1+K2)×3(K1+K2) coefficient matrix, x is the unknown variable of Umi and Uni, and b is a 3(K1+K2)×1 vector with K1 non-zero elements related to φ0. For clarity, an example is shown here, where K1 = 2 and K2 = 3. The augmented matrix of the linear system is assembled and depicted schematically in Fig. 3 

Electrical impedance

The electrical impedance of piezoelectric material is defined as

= V Z I ( 32 
)
where V is the voltage applied between the electrodes and I is the electric current flowing through the sample.

Since the electric potential on the top and bottom electrodes are

0 j t e ω ϕ ± , we have 0 2 H H j t z H H V E dz dz e z ω ϕ ϕ - - ∂ = = - = - ∂ ∫ ∫ (33) 
The electric current is defined by the differential of charge versus time. The charge on electrodes can be calculated by integrating the electric displacement density D3 over the surface. Therefore,

( ) ( ) 3 0 
, , 2 ,

R j t z S I D r H t dS j e D r H rdr t

ω π ω ∂ = = ∂ ∫ ∫ (34)
Due to Eq. ( 19) and Eq. ( 27), ( )

, z D r H is given as ( ) ( ) ( ) ( ) 3 33 33 31 0 1 1 D , ε cosh S z mi mi mi m mi m mi i m r H e B C k e k k H J k r U ∞ = =   = - +   ∑∑ ( 35 
)
After obtaining all the unknown coefficients in Section 2.2, we can substitute them into Eqs. ( 32)-( 35), then the electrical impedance is determined. The time component j t e ω and the constant φ0 vanish in the results.

Results and Discussion

To verify the validity of the analytical model proposed here, the results are compared with those computed by a FE method. The FE analysis is carried out with COMSOL Multiphysics software in vacuum. Quadratic Lagrange rectangular elements with nine nodes are used and a frequency domain analysis is performed using 8 elements per shear wavelength for the highest frequency. The validation is performed in two parts: the electrical impedance and mode shape, represented by the spatial distribution of the mechanical displacements and electric potential, given in section 3.1. The predicted frequency spectrum comparison of different diameter-to-thickness ratios is shown in section 3.2.

Soft PZT materials provide high coupling factors and piezoelectric charge coefficients. They are widely used in applications such as medical diagnostic transducers, doppler flow meters, accelerometers and NDE. A soft PZ27 (Ferroperm Piezoceramics [START_REF]Ferroperm piezoceramic material data for modelling[END_REF]) ceramic disk is used here, with diameter of 16 mm and thickness of 1.13 mm. An AC-voltage of ±1V is applied between the top and bottom electrodes. 

Material properties are listed in

Electrical impedance and mode shape of a ceramic disk

Since the analytical model is based on Fourier and Fourier-Bessel series expansions, any desired degree of accuracy could be achieved by increasing the number of terms K1 and K2. To determine the values of K1 and K2, a convergence test for resonance frequency (fr) is performed. Fig. 4 shows the variation of resonance frequency with number of terms K1, for all vibration modes in the frequency range between 0 and 2.4 MHz. The number of terms K2 is set at 2 and the frequency resolution is set at 1kHz.

One can see that as the number of terms K1 increases, more and more radial or coupling modes appear -in other words, to characterize high order radial harmonics and the coupling between thickness and radial modes in higher frequency ranges, K1 needs to increase. One can also see that the calculated values of fr converge vertically more or less to an asymptotic value as K1 increases. The upper left area in Fig. 4, separated by a symbolic oblique solid line, can be considered as the area of convergence. It should be noted that in the case presented here (from 0 MHz to 2.4 MHz), 21 K1 terms and 2 K2 terms are sufficient to allow this asymptotic value to be obtained with good reproducibility. 5. To measure the discrepancy, a mean absolute percentage deviation (MAPD) metric [START_REF] Wang | Monitoring of the strength gain of concrete using embedded PZT impedance transducer[END_REF] is introduced and defined as

( ) ( ) ( ) 1 1 MAPD= 100 N Analytical i FE i i FE i Z f Z f N Z f = - × ∑ (36) 
where Z(fi) is the electrical impedance value at frequency fi and N is the number of points evaluated. The agreement between the analytical and the FE model improves and the MAPD decreases from Fig. 5(a) to Fig. 5(c). The MAPDs of the three sets of results are close to 55%, 15% and 2%, respectively. For a better illustration, the resonance and antiresonance frequencies in the third case are extracted and compared with those of the FE model. They are listed in Table 2, including the discrepancies in parentheses. The values are very close: the maximum discrepancy is inferior to 3 kHz for the frequency range calculated and the maximum deviation is under 2%, which occurs at the lower frequencies. , and electric potential φ are calculated by Eq. ( 26). Results at the antiresonance frequency of the fundamental radial (R1) and thickness (T1) modes, as labelled in Fig. 5, are shown in Fig. 6 and Fig. 7. Comparison shows an excellent agreement, in accordance with [START_REF] Kocbach | Finite element modeling of ultrasonic piezoelectric transducers[END_REF], including not only the spatial distribution but also the amplitudes (i.e. total displacement and electric potential respectively). The vibration pattern of R1 mode can be easily recognized from Fig. 6(a) & (c): the piezoceramic disk extends in the radial direction while keeping close to constant in the thickness direction. The electric potential distribution, as shown in Fig. 6(b) & (d), is uniform in the radial direction but linear in its poling direction, i.e. the thickness direction. From Fig. 7(a) & (c) we can see that the vibration of T1 mode is predominant in the thickness direction but is greatly influenced by the higher harmonics of radial modes. Additionally, the displacement is higher at the surface center than at the periphery. Owing to the piezoelectric effect, the distribution of electric potential of T1 mode (Fig. 7(b) &(d)) is similar to that of displacement. Besides, although an ACvoltage of ±1V is applied between the top and bottom electrodes in the poling direction, the electric potential inside some locations of the element exceeds this range and is more than ±2V.

In addition, compared to the FE method, the analytical method shows a great advantage in terms of computational efficiency: the calculation time is reduced from the FE method's 181.3s to only 2.8s for the third case. Thus, a comparable accuracy is attained 64 times faster. 

Frequency spectrum

The present analytical model has been extended to predict the frequency spectrum of PZ27 piezoelectric disks, that is, relations between resonance frequencies and diameterto-thickness (D/T) ratios, as shown in Fig. 8. Here, the material is assumed to be lossless. The D/T ratio varies from 0.2 to 20 with a step of 0.05 while the thickness is kept constant as 1.13 mm. This range covers most of the piezoelectric element geometries used in ultrasonic transducers. Since the electrical impedance is inversely proportional to the electrode area, the amplitude is first normalized to a unit area and then normalized between 0 and 1. The resonance amplitude of the vibration modes is represented by the color scale in Fig. 8. Besides, to avoid a convergence analysis in each case, K1 and K2 are set at 30 and 2 for D/T ratios larger than 5 and are both set at 10 for the other cases.

The overall vibration pattern shown in Fig. 8 is similar to the measured or calculated frequency spectrum by FE model [START_REF] Kocbach | Finite element modeling of ultrasonic piezoelectric transducers[END_REF][START_REF] Ikegami | Frequency spectra of resonant vibration in disk plates of PbTiO3 piezoelectric ceramics[END_REF][START_REF] Guo | Measurement and prediction of the frequency spectrum of piezoelectric disks by modal analysis[END_REF][START_REF] Dimi | Resonance frequencies of PZT piezoceramic disks: a numerical approach[END_REF]. Results from the FE model, marked by black circles, are superimposed over analytical ones in Fig. 8. An excellent agreement can be observed. Several features are also clearly shown in the frequency spectrum. The three "terraces", as mentioned in [START_REF] Guo | Measurement and prediction of the frequency spectrum of piezoelectric disks by modal analysis[END_REF], are noted as edge modes (E), thickness shear modes (TS), and thickness extensional modes (TE). Their locations are also indicated by the arrows on the right of the plot area. The TS terrace is the most obvious in Fig. 8. It is close to flat and the number of TS modes increases as D/T ratio increases. The TE terrace is obviously characterized by its high resonance amplitude, i.e. the lighter color. The E terrace can be speculated because the rate of change of resonance frequency with D/T ratio is reduced in this region. The two horizontal dotted lines, labeled as k33 and kt in Fig. 8, are results from the one-dimensional (1D) KLM model [START_REF] Krimholtz | New equivalent circuits for elementary piezoelectric transducers[END_REF]. As D/T ratio approaches 0, the piezoelectric cylinder turns into a long rod with small section poled along its largest dimension, which can be modelled by KLM model with electromechanical coupling coefficient equal to k33 (D/T → 0). As D/T ratio approaches 20 or even higher, the cylinder turns into a thin disk poled along its thickness. It can be modelled by KLM with coupling coefficient kt (D/T → +∞). The electrical impedances of these two extreme cases calculated by two analytical models are shown in Fig. 9. In Fig. 9(a), only the length expander (LE) mode exists in the frequency range (0 to 2.4 MHz), and the resonance frequency is close to 1.1 MHz. In Fig. 9(b), the TE mode is highly perturbated by other modes, and the resonance frequency is around 1.7 MHz. These two resonance frequencies, calculated by model, could be considered as two asymptotic bounds for real situation: an upper bound (D/T → 0) and a lower bound (D/T → +∞). They are found by our analytical model with a discrepancy of less than 1%. This small discrepancy is linked to the D/T ratio: contrary to KLM model, the radial contribution is taken into account in our analytical model by means of a finite value of D/T. Plus, compared with KLM model, the analytical model proposed here can describe not only the two fundamental vibrations in radial and thickness directions but also the coupled modes such as E and TS modes. 

Conclusions

In this paper, accurate analytical solutions have been obtained for coupled vibrations in piezoceramic cylinders based on superposition method. The problem has been divided into two building blocks -vibrations in radial and thickness directions -and solution in each building block are superimposed to form the final solution. The mixed boundary conditions are satisfied using Fourier and Fourier-Bessel series expansions.

The solutions for the in-plane dynamic responses, such as stress, electric field, and electric displacements, are formulated. Electrical impedance and mode shape of a typical size PZ27 piezoelectric disk, as well as the frequency spectrum of the same material but with different diameter-to-thickness ratios are calculated and compared to those of the FE method. An excellent agreement is observed. The mean absolute percentage deviation (MAPD) of the electrical impedance curve is inferior to 2%. In addition, the analytical method shows a great advantage in terms of computational efficiency -it is over 64 times faster than FE one for the same level of precision. Furthermore, comparison shows that the present analytical method is more accurate than KLM model: not only the radial and thickness modes but also the other coupled modes can be characterized using the analytical model proposed here.

The present analytical model can be used to help with the characterization of some material parameters but also for the design and the optimization of the active elements of piezoelectric devices, such as ultrasonic transducers.

( ) ( ) The constants cmi (i = 1,2,3) appearing in Eq. ( 18) are defined by ( The coefficients ani, bni and cni (i = 1,2,3,4) for the second building block (on the right of Fig. 2(b))) are defined as ( 
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 1 Schematic representation of the piezoelectric cylinder element. (a) threedimensional (3D) model; (b) two-dimensional (2D) axisymmetric model.

  The radial km and thickness kn wavenumbers of vibration modes are induced in the first and second building blocks respectively (Fig 2.(b)). After that, their vibration responses are superimposed to satisfy the boundary conditions. (a) (b) Fig. 2. Schematic representation of a half of the 2D axisymmetric piezoelectric element (a) and two divided building blocks (b) for the general solution.

  ni I k r is the modified Bessel function of the first kind of order one. The solutions for

  =1,2,3) are obtained using the Projection method[START_REF] Kevorkian | An accurate method for free vibration analysis of structures with application to plates[END_REF] 

  the rest are zeros. Once the constant φ0 is known, all the coefficients can be determined.

Fig. 3 .

 3 Fig. 3. Schematic representation of assembled augmented matrix of the system (* :

Fig. 4 .

 4 Fig. 4. The variation of resonance frequency with the number of terms K1. The electrical impedances for three different cases -K1 = K2 = 1 (Fig. 5(a)), K1 = 5, K2 = 2 (Fig. 5(b)), and K1 = 21, K2 = 2 (Fig. -are shown and compared with those of the FE method in Fig.5. To measure the discrepancy, a mean absolute percentage deviation (MAPD) metric[START_REF] Wang | Monitoring of the strength gain of concrete using embedded PZT impedance transducer[END_REF] is introduced and defined as

Fig. 5 .

 5 The modulus of electrical impedance of the piezoelectric disk obtained by using different number of terms. (a) K1 = 1, K2 = 1; (b) K1 = 5, K2 = 2; (c) K1 = 21, K2 = 2. Solid lines refer to the results of the FE model and chain dotted lines refer to the results of the analytical model.The mode shapes of total displacement U,

Fig. 6 .Fig. 7 .

 67 The total displacement and electric potential of the piezoelectric ceramic disk at the antiresonance frequency of the first radial (R1) mode. (a)-(b) indicate results of the FE model; (c)-(d) indicate results of analytical model with K1 = 21 and K2 = 2. The total displacement and electric potential of the piezoelectric ceramic disk at the antiresonance frequency of the first thickness (T1) mode. (a)-(b) indicate results of the FE model; (c)-(d) indicate results of analytical model with K1 = 21 and K2 = 2.

Fig. 8 .

 8 Fig. 8. Resonance frequencies vs diameter-to-thickness ratios D/T of PZ27 disks with constant thickness 1.13 mm. Gray points, scaled by normalized amplitude, are results of the analytical model and black circle are results of the FE model.The two horizontal dotted lines, labeled as k33 and kt in Fig.8, are results from the one-dimensional (1D) KLM model[START_REF] Krimholtz | New equivalent circuits for elementary piezoelectric transducers[END_REF]. As D/T ratio approaches 0, the piezoelectric cylinder turns into a long rod with small section poled along its largest dimension, which can be modelled by KLM model with electromechanical coupling coefficient

Fig. 9 .

 9 The modulus of electrical impedance of a long piezoelectric rod (a) and a thin piezoelectric disk (b). Solid lines refer to the results of the present analytical model and chain dotted lines refer to the results of KLM model.

Table 1 ,

 1 where ρ is the density, E c αβ are the elastic

	stiffness constants under constant electric field, i e α are the piezoelectric constants, S ij ε
	are the dielectric constants under constant strain, m δ and e δ are respectively the
	mechanical loss factor and dielectric loss factor.				
	Table 1									
	Soft PZ27 piezoelectric material properties [36]				
	ρ (kg•m -3 )	11 E c (GPa)	12 E c (GPa)	13 E c (GPa)	33 E c (GPa)	44 E c (GPa)	66 E c (GPa)
	7800	147.4	104.9	93.7	112.6	23.0	21.25
	31 e (C•m -2 )	33 e (C•m -2 ) 15 e (C•m -2 )	ε	r	11 S	ε	r	33 S	m δ (%)	e δ (%)
	-3.1	16.0	11.6	913.7	1129.7	1.35	1.7

Table 2

 2 Resonance and antiresonance frequencies of the piezoelectric disk from 0 to 2.4 MHz

	Model						Resonance frequency (MHz)
	FE		0.124 0.315 0.485 0.636 0.762 0.864 0.949 1.018 1.062 1.300
	Analytical		0.126 0.315 0.486 0.634 0.762 0.864 0.949 1.020 1.065 1.300
	(deviation (%))	(1.61) (0.00) (0.21) (0.00) (0.00) (0.00) (0.00) (0.20) (0.28) (0.00)
	FE		1.392 1.481 1.560 1.649 1.736 1.825 1.930 2.051 2.187	̸
	Analytical		1.392 1.482 1.561 1.650 1.736 1.824 1.929 2.050 2.187	̸
	(deviation (%))	(0.00) (0.07) (0.06) (0.06) (0.00) (0.05) (0.05) (0.05) (0.00)	̸
	Model						Antiresonance frequency (MHz)
	FE		0.146 0.324 0.494 0.645 0.772 0.875 0.961 1.032 1.075 1.308
	Analytical		0.147 0.325 0.494 0.645 0.772 0.875 0.961 1.033 1.078 1.308
	(deviation (%))	(0.68) (0.31) (0.00) (0.00) (0.00) (0.00) (0.00) (0.10) (0.28) (0.00)
	FE		1.404 1.512 1.578 1.667 1.804 1.891 1.953 2.070 2.201	̸
	Analytical		1.404 1.512 1.578 1.668 1.804 1.891 1.953 2.068 2.199	̸
	(deviation (%))	(0.00) (0.00) (0.00) (0.06) (0.00) (0.00) (0.00) (0.10) (0.10)	̸
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Appendix

The constants ami and bmi (i = 1,2,3,4) appearing in Eq. ( 12) are defined by (

) ( ) e e e

and the other coefficients bi, ci and di (i = 1,2,3) are defined as (

)