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Abstract 8 

In this paper, the superposition method is extended to obtain analytical solutions for the 9 

coupled vibration of a piezoelectric slender bar in a configuration corresponding to a 10 

typical ultrasonic linear array transducer element. The problem can be described 11 

mathematically by three partial differential equations with electrical and mechanical 12 

boundary conditions. To solve this, the vibrations in lateral and thickness directions are 13 

referred to as two building blocks. In each building block, the expressions of 14 

displacements and electric potential are assumed first based on their symmetry 15 

properties and then the induced dynamic responses, such as in-plane stress and electric 16 

displacements, are calculated. Finally, the vibration responses of the two building 17 

blocks are superimposed to satisfy the boundary conditions using Fourier series 18 

expansions. Electrical impedance and mode shapes, represented by the spatial 19 

distribution of displacements and electric potential, are calculated analytically and 20 

compared with the results of the finite element method. An excellent agreement is 21 

observed. The method can be applied to design and optimize piezoelectric array 22 

transducers for various applications. 23 

Keywords: coupled vibration, analytical model, superposition method, electrical 24 

impedance, piezoelectric array element, finite element method 25 

1. Introduction 26 

As it is well known, the piezoelectric elements in linear array transducers used for 27 

ultrasonic imaging are usually in the form of rectangular slender bars, poled along their 28 

thickness. The piezoelectric elements can generally be considered as two-dimensional 29 

(2D) structures since the length is much larger than the width and the thickness. 30 

Moreover, if the width is much larger or smaller than the thickness, then a simple one-31 
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dimensional (1D) model, dominated by either width or thickness vibration mode, can be 1 

used to characterize the behavior of the transducer [1]. Similarly, various vibration 2 

modes in piezoelectric ceramics have been modelled by making 1D approximations of 3 

different geometrical shapes of samples. Results are summarized in some textbooks 4 

[2,3] and standards [4]. 5 

The 1D theory usually considers only the uncoupled motion of the sample in a 6 

specific direction. It gives a good prediction of the basic behavior of the transducer and 7 

has been widely applied to transducer design and manufacture [5–7]. However, due to 8 

the piezoelectric effect and Poisson’s ratio, coupling effects are involved in the 9 

vibration modes and the 1D theory is no longer applicable to describe mode interactions. 10 

In order to address this, a 2D or three-dimensional (3D) model is needed. The vibration 11 

of a piezoelectric element can be described mathematically by a system of three (for a 12 

2D model) or four (for a 3D model) coupled partial differential equations (PDEs). 13 

Among these equations, one relates to the electric field and the other two or three to the 14 

mechanical field. The biggest difficulties in solving these equations lie in finding the 15 

right expressions for the functions of unknown variables, i.e. mechanical displacements 16 

and electric potential in this case. They are generally functions of all spatial coordinates 17 

and time and need to satisfy the mechanical and electrical boundary conditions. Since 18 

the exact solution to this problem is very difficult to obtain, approximation methods are 19 

usually required. One way to reduce the complexity is to use decoupled field functions. 20 

Brissaud [8,9] proposed an approximated 3D model wherein the displacement along 21 

each propagation direction is independent, only related to the corresponding coordinate, 22 

and the electrical quantities, i.e. electric field and electric displacement, in non-23 

polarized directions are assumed to be zero. Recently, Brissaud [10] developed a model 24 

to characterize the coupling between shear and longitudinal modes inside rectangular 25 

elements. Pappalardo et al. [11,12] adopted two orthogonal functions to represent 26 

displacements. Although the expressions combine a sine and a cosine function, they are 27 

still only related to the corresponding coordinate. Besides, the piezoelectric constant e31 28 

has to be omitted so as to satisfy the electrical boundary condition. Another kind of 29 

approximate solution was presented by Tiersten [13] where a set of solutions was 30 

combined with undetermined coefficients, one from the solution of the thickness 31 

vibration of a plate and the other one from that of 2D standing waves in an elastic plate. 32 

The boundary conditions were satisfied by the method of least squares. The undesirable 33 

feature of this method is the non-uniqueness of the solution. Moojoon [14] also 34 

presented similar expressions of displacements for the coupled equations. However, the 35 

derivation neglected shear vibration and the coupling from electric field was not 36 

considered in the mechanical field equations. In addition, high order of approximation 37 

methods by expanding the displacements and electric potential in cosine or power series 38 

were also developed by Lee [15,16] and Li [17]. The calculated dispersion curves, i.e. 39 



frequency vs dimension ratios, gave a good prediction. 1 

In fact, the coupling effect between vibration modes in elastic materials has been 2 

given attention for decades, some studies dating back to the 1930s [18]. The theoretical 3 

problem of conducting a free vibration analysis of a completely free rectangular plate 4 

has a history of almost a century [19]. Various quasi-exact approaches have been 5 

developed for the vibration of thin plates with different kinds of boundary conditions, 6 

such as Rayleigh-Ritz [20–23] and Galerkin method [24,25]. For a comprehensive 7 

review of these methods, one can refer to [26–28]. The superposition method was first 8 

proposed by Gorman and has been successfully employed to solve various vibration 9 

problems of elastic structures [19,29–31]. The method seeks an analytical solution for 10 

each of the vibrations in lateral and thickness directions, considered as two building 11 

blocks, and then superimposes them to satisfy the boundary conditions. Recently, 12 

Daeseung et al. [32] tried to extend the superposition method to analyze the coupled 13 

vibration of a piezoelectric element. However, they only considered the two coupled 14 

differential equations of mechanical field while the third one of electric field was 15 

missed out. 16 

Approximate methods mentioned above are either based on uncoupled field 17 

functions or developed without the consideration of shear vibrations or electric field 18 

coupling. For all of them, the constitutive equations are not satisfied in some way. In the 19 

present work, the superposition method is extended to solve the coupled vibration 20 

problem of a piezoelectric array element, which to our knowledge had never been 21 

realized successfully. This analytical model can be applied to several types of 22 

piezoelectric materials whose symmetry classes belong to orthorhombic 2mm, 23 

tetragonal 4mm and hexagonal 6mm due to the similarities in their elastic, piezoelectric 24 

and dielectric tensors [33]. The vibrations in lateral and thickness directions are 25 

separated and referred to as two building blocks. In each building block, appropriate 26 

expressions of displacements and electric potential are given based on their symmetry 27 

properties. By inserting them into the coupled differential equations, the induced 28 

dynamic responses are obtained. Solutions from the two building blocks are then 29 

superimposed to satisfy the boundary conditions by means of Fourier series expansions. 30 

The results are compared with those obtained by the finite element (FE) method and 31 

discussed. 32 

2. Mathematical Formulation 33 

The derivation of the analytical solutions focuses on transversely isotropic materials 34 

which exhibit hexagonal 6mm symmetry with five elastic, three piezoelectric and two 35 

dielectric constants.  Fig. 1 shows the coordinate system and dimensions for a typical 36 



piezoelectric slender bar such as those used as ultrasonic array element. The poling 1 

direction is parallel to z axis. Since the length of the element is much larger than the 2 

thickness and the width ( L H W>� ), the strain along y axis can be considered as 3 

constant, in which case the problem can be reduced to a 2D one as shown in Fig. 1(b). 4 

 5 

 (a) (b) 6 

Fig. 1. Schematic representation of the piezoelectric slender bar. (a) three-dimensional 7 

(3D) problem; (b) two-dimensional (2D) problem. 8 

The constitutive equations of a piezoelectric element can be expressed as [33] 9 
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where 
Ecαβ  are the elastic stiffness constants under constant electric field, i

eα  are the 11 

piezoelectric constants, 
S

ij
ε  are the dielectric constants under constant strain, Tα , Sβ , 12 

i
E  and i

D  are the stress, strain, electric field and electric displacement, respectively. 13 

Since the length of the piezoelectric slender bar is much larger than the thickness and 14 

width, it satisfies plane strain condition in y axis, thus S2 = S4 = S6 = 0. The interaction 15 

between y axis and xz plane can be omitted. Therefore, electric field E2 and electric 16 

displacement D2 are equal to zero. With these hypotheses, Eq. (1) can be simplified and 17 

rewritten as follows 18 
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The strains and displacements are related by 20 
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The electric fields are related to the electric potential by 2 
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The equations of motion and Maxwell’s equation for electrostatic field are 4 
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Substituting Eqs. (2)-(4) into Eq. (5) yields three coupled differential equations 6 
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where the three variables are u, w and φ. The former two are respectively the 8 

displacements along x and z axes, and the last one is the electric potential. 9 

Because there are no electrodes on the lateral surfaces, their electric displacement is 10 

equal to zero. In addition, the piezoelectric element is stress free and an AC-voltage is 11 

applied on the electrodes, therefore, the electrical and mechanical boundary conditions 12 

can be expressed as 13 

 1 5 1

j
3 5 0

0 at

0, e atωϕ ϕ
= = = = ±
= = = ± = ±t

T T D x W

T T z H
  (7) 14 

The major difficulty in solving the problem is to find suitable expressions of 15 

variables which simultaneously satisfy the coupled equations in Eq. (6) and the 16 

mechanical and electrical boundary conditions in Eq. (7). Before exploring solutions to 17 

the coupled equations described above, it is necessary to investigate the symmetry 18 

properties of the displacements and electric potential inside the element. In Ref.[29], 19 

three mode families are proposed to represent the final solutions. They are defined as 20 

symmetric-symmetric, antisymmetric-antisymmetric and symmetric-antisymmetric 21 

modes. Actually, the vibration of a piezoelectric element is a special form of “free” 22 

vibration: when an AC-voltage is applied on the metallized electrode, a symmetric 23 

“force” is applied on the top and bottom surface simultaneously due to the piezoelectric 24 

effect. Even if this force is not a traditional mechanical volume or surface force, the 25 

electric boundary condition constrains the vibration of the structure to only symmetric-26 



symmetric vibrations. Therefore, the symmetry properties of the in-plane displacements 1 

and electric potential can be summarized as follows 2 
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where the displacement ( ),u x z  is an even function versus z coordinate but an odd 4 

function versus x coordinate; the displacement ( ),w x z  and the electric potential 5 

( ),x zϕ  are odd functions versus z coordinate but even functions versus x coordinate. 6 

2.1 General solution for displacement and electric potential 7 

Due to the symmetry property, the study is limited to a quarter of the element, as 8 

shown in Fig. 2(a). Two pairs of small circles indicate the symmetry condition along 9 

each side. In order to establish a correct solution satisfying the boundary condition, the 10 

model is divided in two building blocks as shown schematically in Fig. 2(b). The way to 11 

perform the superposition is slightly different than Gorman’s one [29,30]. In Gorman’s 12 

method, a set of two linear equations has to be solved first to obtain the coefficients of 13 

displacements from those of edge driving forces. In the present work, this step is 14 

avoided. The coefficients of the displacements and electric potential are used directly in 15 

the derivation process and in the assembly of final nonhomogeneous linear system. This 16 

method is easier to implement especially when there are more than two variables. 17 

 18 

 (a) (b) 19 

Fig. 2. Schematic representation of a quarter of the slender bar (a) and two divided 20 

building blocks (b) for symmetric-symmetric mode analysis.  21 

Let’s now consider the first building block on the left of Fig. 2(b), where only the 22 

lateral vibration is induced. Combine with their symmetry properties shown in Eq. (8), 23 

the displacements and electric potential are expressed as follows in terms of a Levy-type 24 

solution 25 
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where km is the wavenumber in the lateral direction. For simplicity, the time component 2 

je ω t  is omitted. By substituting Eq. (9) into the coupled equations Eq. (6), we obtain 3 
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where the single apostrophe implies differentiation with respect to the variable z once, 7 

double apostrophe implies twice, and so on. 8 

From Eqs. (10b) and (10c) , we can see that the quantities ( )m
zψ  and ( )m

zψ ′′  can 9 

be expressed in terms of ( )m
W z′′ , ( )m

W z  and ( )m
U z′ . Combine with Eq. (10a), we 10 

have a set of equations without the variable ( )m
zψ  and its derivatives 11 
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where the coefficients ami and bmi (i = 1,2,3,4) are constants expressed in terms of 14 

material properties, ω and km. They are defined in the Appendix (Eq. (A. 1)). 15 

Differentiating Eq. (11b) once with respect to z, we can obtain ( )m
W z′′′  and ( )m

W z′  16 

in terms of ( )iv
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differentiating twice with respect to z, then we obtain the following sixth order 18 

homogeneous differential equation involving only the quantity ( )m
U z  19 

 ( ) ( ) ( ) ( )1 1 1 0vi iv

m m m m
U z bU z cU z d U z′′+ + + =   (12) 20 

where 21 

( ) ( )1 3 2 4 1 1 3 3 1 1 4 2 1 4 2 3 3 1

1 2 4 3 1

,
m m m m m m m m m m m m m m m m

m m m m

b a b a b a b a b c a b a b a b a b

d a b a b

= + − = − −
= −

 22 

From Eq. (11b), we are also able to express the quantity ( )m
W z  in terms of ( )m

U z  23 

and its derivatives 24 
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v

m m m m
W z b U z c U z d U z′′′ ′= + +  (13) 25 

Finally, turning back to Eq. (10a), the quantity ( )m
zψ  is given by 26 
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where the coefficients b2, c2, d2, b3, c3 and d3 are given in the Appendix (Eq. (A. 2)). 1 

It is clear that the quantity ( )m
W z  and ( )m

zψ  can be expressed by ( )m
U z , 2 

which satisfies the sixth order homogeneous differential equation Eq. (12). After 3 

substituting the exponential function e λ z  into Eq. (12), its characteristic equation is 4 

obtained 5 

 6 4 2
1 1 1 0b c dλ λ λ+ + + =   (15) 6 

The three roots with respect to λ2 are given by the roots of general cubic equation 7 

[34,35]. Roots of the characteristic equation are composed of three sets of square roots, 8 

denoted as 9 
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In the present work, we do not classify the different cases of the roots as in Gorman’s 11 

method [29]. Whether they are real, imaginary, or complex, for the sake of 12 

generalization, they are all considered complex. This helps reduce the burden of 13 

derivation of the analytical solutions by transferring much of the trivial work to a 14 

computer.  15 

The general solution for Eq. (12), while satisfying the condition of an even function 16 

versus z coordinate, is therefore written as follows 17 
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where mi
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Substituting Eq. (17) into Eqs. (13) and (14), the following expressions of the other 20 

two variables are obtained 21 
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where  23 
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Now let’s turn to the second building block on the right of Fig. 2(b). It differs from 25 

the first block only in that the thickness vibration is induced in this block. The 26 

displacements and electric potential are expressed as follows 27 
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Now, following the same procedure as above, the solutions of the second building 29 

block can be obtained. There is no need to give the whole derivation here. To avoid 30 



confusion, the symbol m is replaced by symbol n.  1 

Substituting Eq. (19) into Eq. (6), equations similar to Eq.(10) are obtained 2 
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where the single apostrophe here implies differentiation with respect to the variable x 6 

once, double apostrophe implies twice, and so on. 7 

Except for the symbol m being replaced, expressions after Eq. (11) are exactly the 8 

same until we obtain all the solutions of ( )n
W z , ( )n

U z  and ( )n
zψ  9 
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where  11 
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The expressions and coefficients corresponding to the second building block are 13 

detailed in the Appendix (Eq. (A. 3)). Note that we make no distinction between bi, ci, di 14 

(i = 1,2,3) in Eqs. (12)-(14) and (21) for the two building blocks as they are exactly the 15 

same except for the corresponding symbol m and n. 16 

2.2 Assembly procedure of the augmented matrix of the system 17 

The solutions of displacements and electric potential in the two building blocks (Fig. 2) 18 

have already been obtained by separating the variables x and z. They are given in Eq. (9) 19 

and Eqs. (17)-(21) and are superimposed to form the final solution 20 
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Substituting the solution Eq. (22) into the boundary condition Eq. (7), a linear system 2 

with respect to the unknown coefficients Umi and Uni is obtained. The results may be 3 

presented in a concise way as 4 
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∑∑

∑∑ ∑
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m

m i

ni mi

ni mi n

n i m

k x z H

F U G U k z D x W

  (23) 5 

where 
mi

j
F  and 

ni

j
F  (j =1,2,3) can be easily derived from the previous derivation, they 6 

are given by 7 

( ) ( )

( ) ( )

( ) ( )

( ) ( )
( )

1 33 33 13

1 13 31 11

2 55 15 55

2 55 15 55

3

3 11 15

cosh

cosh

sinh

sinh

sinh

ε

mi E E

mi mi mi m mi

ni E E

ni ni n ni ni

mi E E

mi mi m mi mi

ni E E

ni ni ni n ni

mi

mi mi

ni S

ni n

F c B C e k c k k H

F c B C e k c k k W

F c B e C k c k k H

F c B e C k c k k W

F C k H

F C e B

 = + + 

 = + + 

 = − − + 

 = + − 

=

= − +( ) ( )15 sinhi ni n nik e k k W − 

 8 

and 
mi

j
G , 

ni

j
G , and 

0
miϕ  (j =1,2,3) are obtained using the Projection method [36] 9 



( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2 55 15 55 0

2 55 15 55 0
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∫
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(

H
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∫

∫

 1 

One thing to notice in Eq. (23) is that since ( )cos
n

k H  and ( )cos
m

k W  are equal to 2 

zero, the quantities ( ),
m

u x z x∂ ∂  and ( ),
m

w x z z∂ ∂  are consequently equal to zero at 3 

x W= ± , so do the quantities ( ),
n

u x z x∂ ∂  and ( ),
n

w x z z∂ ∂  at z H= ± . This is 4 

the reason why 
1 1 0m i n i

G G= = . 5 

Based on the above theory, assuming that the number of terms used for km and kn in 6 

the two building blocks are K1 (m = 1,…,K1) and K2 (n = 1,…,K2), we obtain a 7 

nonhomogeneous linear system with 3(K1+K2) unknown coefficients Umi and Uni. The 8 

linear system in matrix notation is given by 9 

 =Ax b   (24) 10 

where A  is a 3(K1+K2)×3(K1+K2) coefficient matrix, x  is the unknown variable, and 11 

b is a 3(K1+K2)×1 vector with K1 non-zero elements related to φ0. 12 

For clarity, an example is shown here. K1 and K2 are set to 2. The augmented matrix 13 

of the system is assembled and depicted schematically in Fig. 3. It corresponds precisely 14 

to Eq. (23), as indicated by the boundary conditions on the right. The elements denoted 15 

by an asterisk (*) are 
mi

j
F  and 

ni

j
F , those denoted by a short solid bar (-) are 

mi

j
G , 

ni

j
G  16 

and 
0
miϕ , and the rest are zero. The linear system has a unique non-trivial solution 17 

associated with φ0. In other words, the solutions of all the unknown coefficients depend 18 

on constant φ0. Once the constant φ0 is known, the coefficients can be determined. 19 

 Um1 Un1 Um2 Un2 Um3 Un3 φ  

1 2 1 2 1 2 1 2 1 2 1 2  

 
* * * 

T3 (z = ±H) 
* * * 

 
* * * 

T1 (x = ±W) 
* * * 

 
* - - * - - * - - 

T5 (z = ±H) 
* - - * - - * - - 

 
- - * - - * - - * 

T5 (x = ±W) 
- - * - - * - - * 



 
* - - * - - * - - - 

φ (z = ±H) 
* - - * - - * - - - 

 
- - * - - * - - * 

D1 (x = ±W) 
- - * - - * - - * 

Fig. 3. Schematic representation of assembled augmented matrix of the system (* : 
mi

j
F  1 

and 
ni

j
F ; -: 

mi

j
G , 

ni

j
G , and 

0
miϕ ). 2 

2.3 Electrical impedance calculation 3 

The electrical impedance of the piezoelectric material is defined as 4 

 =
V

Z
I

  (25) 5 

where V is the voltage applied across the electrodes and I is the electric current flowing 6 

through the sample. 7 

Since the electric potential on the top and bottom electrode surface is j
0 e ωϕ± t , we 8 

have 9 

 j
3 02 e ωϕ ϕ

− −

∂= = − = −
∂∫ ∫

H H
t

H H
V E dz dz

z
  (26) 10 

The electric current is defined by the differential of charge versus time. The charge 11 

on electrodes can be calculated by integrating the electric displacement density D3 over 12 

the surface. Therefore, 13 

 ( ) ( )j
3 3, , 2 j e ,ωω

− − −

∂= =
∂ ∫ ∫ ∫

L W W
t

L W W
I D x H t dxdy L D x H dx

t
  (27) 14 

The general form of ( )3 ,D x H  is given by 15 

 ( ) ( ) ( ) ( )
13

3 33 33 31
1 1

, ε cosh cos
= =

 = − + ∑∑
K

S

mi mi mi m mi m mi

i m

D x H e B C k e k k H k x U   (28) 16 

After obtaining all the unknown coefficients related to φ0 in Section 2.2, we can 17 

substitute them into Eqs. (25)-(28), then the electrical impedance is determined. This 18 

shows that the electrical impedance is only related to the coefficients mi
U . The time 19 

component je ω t  and the constant φ0 vanish in the results. 20 

3. Results and Discussion 21 

In order to verify the validity of the analytical model proposed here, the results are 22 

compared with those computed by the FE method. The FE analysis is carried out with 23 



COMSOL Multiphysics software. Quadratic Lagrange rectangular elements with nine 1 

nodes are used and a frequency domain analysis is performed using N = 5 and N = 18 2 

elements per wavelength for the highest frequency. These two FE configurations are 3 

carefully selected to represent a coarse mesh (N = 5, 8×12 elements) and a convergent 4 

mesh (N = 18, 16×40 elements) after a mesh convergence study was performed. The 5 

validation consists of two parts: the electrical impedance and the mode shape, which is 6 

represented by the spatial distribution of the mechanical displacements respectively in 7 

the x and z dimensions and the spatial distribution of the electric potential.  8 

The material chosen here is 3203HD, a soft piezoelectric ceramic manufactured by 9 

CTS that is widely used in many transducers for its high dielectric constant and high 10 

electromechanical coupling coefficient [37]. A rectangular slender bar with dimensions 11 

2L = 8 mm, 2H = 320 μm and 2W = 135 μm, as recommended in [38], is considered. 12 

Material properties are listed in Table 1.  13 

Table 1 14 

CTS 3203HD piezoelectric material properties [39] 15 

ρ (kg∙m-3) 
1 1
E

c (GPa) 
1 2
E

c (GPa) 
1 3
E

c (GPa) 
3 3
E

c (GPa) 
44
E

c (GPa) 

7800 107.4 59.3 65.1 98.4 19.1 

66
E

c (GPa) 
31e (C∙m-2) 33e (C∙m-2) 15e (C∙m-2) 11

S

r
ε  

3 3
S

r
ε  

24.05 -11.03 22.32 19.08 1045 1364 

3.1 Electrical impedance 16 

Since the boundary conditions are satisfied in a Fourier series expansion way, the 17 

accuracy of this method depends on the number of terms K1 and K2 employed for km and 18 

kn. Theoretically, any desired degree of accuracy can be achieved by increasing the 19 

number of terms. To determine the values of K1 and K2, a convergence test for the 20 

antiresonance frequency (fa) is performed. Its variation with the number of terms K1 = 21 

K2 = K is shown in Fig. 4. The frequency resolution is set at 0.02 MHz. One can see that 22 

as the number of terms K increases, the calculated values of fa converge vertically more 23 

or less to an asymptotic value. It should be noted that in the case presented (from 0 MHz 24 

to 25 MHz), 6 terms at K are sufficient to allow this asymptotic value to be obtained 25 

with good reproducibility. 26 



 1 

Fig. 4. The variation of antiresonance frequency with the number of terms. 2 

The electrical impedances for three different cases - the number of terms K is equal 3 

to 1, 3 and 6 - are shown in Fig. 5 in comparison with the convergent one of FE model 4 

(N = 18). As can be seen in Fig. 5 (a), although only one term is used for each vibration 5 

mode, the first peaks at around 6.12 MHz are perfectly overlapped. However, in the 6 

frequency range higher than 10 MHz, the analytical method can no longer provide 7 

sufficient accuracy. The correlation coefficient between the FE model and the analytical 8 

one is only 74.31% for this case. As the number of terms increases, the accuracy 9 

improves as shown in Fig. 5 (b)-(c) and the correlation coefficient increases to 94.92% 10 

and 99.98%, respectively. For a better illustration, the antiresonance frequencies are 11 

extracted and relative errors are given in Table 2. The errors are calculated relative to 12 

convergent ones of FE simulation when N = 18. An excellent agreement is achieved up 13 

to 25 MHz and the maximum discrepancy is around 0.1% when the number of terms 14 

equals 6. Based on this, the FE model with N = 18 and analytical model with K1 = K2 = 15 

6 can be considered as having the same precision level. We can also see that coarse 16 

mesh gives predictions with larger error at high frequency (> 20 MHz). Table 3 presents 17 

the computation times for calculating the electrical impedance. The analytical method 18 

shows a great advantage in computational efficiency: the calculation time can be 19 

reduced from the FE model’s 92.35s to analytical model’s 2.6s at the same precision 20 

level using Intel (R) Xeon (R) E-2176M CPU, 2.7 GHz with 32 GB memory. 21 

Table 2 22 

The antiresonance frequencies fa of the piezoelectric element 23 

FE model Analytical model 

N = 5  N = 18  K1 = K2 = 1 K1 = K2 = 3 K1 = K2 = 6 

fa1 (MHz) 6.12 (0.00%) 6.12 6.12 (0.00%) 6.12 (0.00%) 6.12 (0.00%) 

fa2 (MHz) 11.40 (0.18%) 11.38 10.88 (4.56%) 11.40 (0.18%) 11.38 (0.00%) 

fa3 (MHz) 11.96 (0.00%) 11.96 12.22 (2.17%) 11.94 (0.33%) 11.96 (0.00%) 

fa4 (MHz) 13.64 (0.00%) 13.64 14.00 (2.49%) 13.66 (0.44%) 13.64 (0.00%) 



fa5 (MHz) 14.84 (0.27%) 14.80 15.70 (6.08%) 14.78 (4.05%) 14.80 (0.00%) 

fa6 (MHz) 17.76 (0.79%) 17.62 19.34 (9.76%) 18.20 (3.29%) 17.62 (0.00%) 

fa7 (MHz) 19.80 (0.10%) 19.78 22.82 (15.00%) 19.84 (0.30%) 19.76 (0.10%) 

fa8 (MHz) 20.82 (1.07%) 20.60 24.48 (18.83%) 21.3 (3.40%) 20.58 (0.10%) 

fa9 (MHz) 24.52 (2.94%) 23.82 ∕ ∕ 23.80 (0.08%) 

Table 3 1 

Computation times 2 

Model 1250 frequencies calculation time 

N = 5 FE model 8×12 elements 31.37s 

N = 18 FE model 16×40 elements 92.35s 

K1 = K2 = 6 Analytical model 2.60s 

 3 
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 1 

(c) 2 

Fig. 5. The modulus of electrical impedance of the piezoelectric element obtained by 3 

using different numbers of terms. (a) K1 = K2 = 1; (b) K1 = K2 = 3; (c) K1 = K2 = 6. Solid 4 

lines refer to the results of the FE model and chain dotted lines refer to the results of the 5 

present analytical model. 6 

3.2 Mode shape 7 

The mode shapes of displacements u, w and electric potential φ are calculated by 8 

substituting the coefficients into Eq. (22). Results at the first antiresonance frequency fa1 9 

= 6.12 MHz are obtained using 6 vibration terms and compared to those from the FE 10 

model as shown in Fig. 6. The different mode shapes shown in Fig 6 are similar, 11 

including not only the spatial variations of curvature, but also the amplitudes. To have a 12 

better comparison, the displacements and electric potential along the lateral direction at 13 

z = H/2 and along the thickness direction at x = W/2 are plotted in Fig. 7. An excellent 14 

agreement is observed between the results from the FE model and the analytical one. 15 

All the correlation coefficients are practically at 100%.  16 

In addition, the symmetry properties mentioned in Eq.(8) can be verified here. That 17 

is, the displacement u is an even function versus z but an odd function versus x. The 18 

displacement w and electric potential are even functions versus x but odd functions 19 

versus z coordinate. We can also find that at frequency fa1 = 6.12 MHz, the vibration in 20 

thickness direction is predominant as its amplitude w is much bigger than that in lateral 21 

direction. 22 
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Fig. 6. Displacements and electric potential of the piezoelectric element at the first 1 

antiresonance frequency (fa1 = 6.12 MHz). (a)-(c) indicate results of the FE model; (d)-2 

(f) indicate results of analytical model with K1 = K2 = 6. 3 

 4 

 (a) (b) 5 

Fig. 7. Displacements and electric potential distribution at the first antiresonance 6 

frequency (fa1 = 6.12 MHz). (a) along the lateral direction at z = H/2; (b) along the 7 

thickness direction at x = W/2. Solid lines (–) refer to the results of the FE model and 8 

points (•) refer to the results of the present analytical model. 9 

4. Conclusions 10 

In the present work, a two-dimensional analytical model based on the superposition 11 

method has been proposed to obtain the coupled dynamic response of piezoelectric 12 

array elements. It is derived by dividing the coupled vibration into two building blocks 13 

– vibrations in thickness and lateral directions - and superimposing them to form the 14 

final solution. The boundary conditions are satisfied via Fourier series expansions.  15 

The proposed analytical model is able to describe the coupling between thickness 16 

and width mode in a piezoelectric array element of arbitrary width-to-thickness ratio. A 17 

typical size used for ultrasonic array transducer has been selected to demonstrate the 18 

effectiveness. The comparison of the electrical impedance and mode shapes calculated 19 

by the proposed method and by the FE one shows an excellent agreement. The 20 

computational efficiency of the analytical method proposed here has proved to be much 21 

higher than that of the FE method (over 30 times faster) at the same level of precision. 22 

Another interesting point compared to the FE method is that mesh generation problems 23 

are avoided. The model shows a great potential for the design and optimization of 24 

ultrasonic array transducers. 25 



Acknowledgement 1 

The work was financially supported by the China Scholarship Council (CSC) 2 

through the cooperation program UT-INSA (France). 3 

Appendix 4 

The constants ami and bmi (i = 1,2,3,4) appearing in Eq. (11) are defined by 5 

( ) ( )
( ) ( )

13 55 33 31 15 33 55
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31 1515 33 33 11

E E S E

m S S
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c c e e e c
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e e ke e k
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4

15 33 33 11 15 33 33 11

+
ω ρ
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c e e e
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ε ε ε ε
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 13 

The coefficients appearing in Eqs. (13) and (14) are defined by 14 

( )
3 1 3

2

4 3 4 4 3

m m m

m m m m m

a b b
b

b a b a b
= −

− +
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where 3 
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The coefficients related to the second building block (on the right of Fig. 2(b)) are 5 

defined as 6 
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