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A B S T R A C T   

Shelled pteropods, known as sea butterflies, are a group of small gastropods that spend their entire lives 
swimming and drifting in the open ocean. They build thin shells of aragonite, a metastable polymorph of calcium 
carbonate. Pteropod shells have been shown to experience dissolution and reduced thickness with a decrease in 
pH and therefore represent valuable bioindicators to monitor the impacts of ocean acidification. Over the past 
decades, several studies have highlighted the striking diversity of shell microstructures in pteropods, with 
exceptional mechanical properties, but their evolution and future in acidified waters remains uncertain. Here, we 
revisit the body-of-work on pteropod biomineralization, focusing on shell microstructures and their evolution. 
The evolutionary history of pteropods was recently resolved, and thus it is timely to examine their shell mi-
crostructures in such context. We analyse new images of shells from fossils and recent species providing a 
comprehensive overview of their structural diversity. Pteropod shells are made of the crossed lamellar and 
prismatic microstructures common in molluscs, but also of curved nanofibers which are proposed to form a 
helical three-dimensional structure. Our analyses suggest that the curved fibres emerged before the split between 
coiled and uncoiled pteropods and that they form incomplete to multiple helical turns. The curved fibres are seen 
as an important trait in the adaptation to a planktonic lifestyle, giving maximum strength and flexibility to the 
pteropod thin and lightweight shells. Finally, we also elucidate on the candidate biomineralization genes un-
derpinning the shell diversity in these important indicators of ocean health.   

1. Introduction 

Shelled pteropods, known as sea butterflies, are considered vulner-
able to ocean acidification (OA) (Bednaršek et al., 2012b; Gazeau et al., 
2013; Manno et al., 2017; Mekkes et al., 2021b). Pteropods spend their 
entire lives swimming and drifting in the open ocean, a major sink of 
anthropogenic CO2 (Zeebe, 2012; Gruber et al., 2019). They build thin 
and lightweight shells of aragonite, a metastable polymorph of calcium 
carbonate that can be 50% more soluble in seawater than calcite (Mucci, 
1983; Sun et al., 2015) and are major contributors to carbon and car-
bonate fluxes in the pelagic domain (Bednaršek et al., 2012a; Berner and 
Honjo, 1981; Buitenhuis et al., 2019). Over the last decade, shelled 
pteropods have been under scrutiny in OA research and were reported to 
decrease calcification rates and experience extensive shell dissolution in 
low pH conditions (Feely, 2004; Orr et al., 2005; Fabry et al., 2008; 
Comeau et al., 2009; Bednaršek et al., 2012b; Moya et al., 2016; Maas 

et al., 2018). Moreover, they were found to produce thinner shells across 
time in their natural environment (Roger et al., 2012; Howes et al., 
2017), and along declines in aragonite saturation levels in situ (Mekkes 
et al., 2021a). Thus pteropods have been regarded as biological in-
dicators to monitor the impacts of OA (Bednaršek et al., 2014, 2017; 
Manno et al., 2017), however, the extent of pteropod’s vulnerability to 
OA remains a matter of debate. Structural studies have demonstrated 
that representatives of the species Limacina helicina can effectively repair 
their damaged shells by extensive thickening of the inner shell wall, and 
as long as the organic outermost layer of the shell – the periostracum – 
remains intact (Peck et al., 2016, Peck et al., 2018). 

Recently, a phylogenomic approach combined with molecular clock 
dating demonstrated that the split of pteropods in shelled (sea butter-
flies, order Thecosomata) and non-shelled (sea angels, order Gymnoso-
mata) groups was much older than predicted based on their fossil record, 
dating back to the early Cretaceous, 139.1 million years ago (Ma) 
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(Peijnenburg et al., 2020). Peijnenburg et al. (2020) showed that all 
lineages including the modern fully, partially and non-shelled groups, 
were already present in the mid to the late Cretaceous. These lineages 
have thus persisted through periods of major environmental change and 
ocean acidification such as the Cretaceous Paleogene extinction event 
(K-Pg, 66 Ma) and the Paleocene-Eocene Thermal Maximum (PETM, 56 
Ma), the most analogous event to the present day rises in CO2 (Janssen 
et al., 2016; Peijnenburg et al. 2020). 

Thus, pteropods may have been more resilient to global change than 
currently thought. While sea angels (shell-less as adults) evolved as 
specialized predators of sea butterflies during the Cretaceous, sea but-
terflies adapted to their planktonic life and responded to predation 
pressure by developing ever more complex, thin, lightweight, but also 
strong aragonitic shells. In fact, many open questions remain with 
regards to the evolution and biomineralization of pteropod shells. How 
do pteropods make their shells? How did they adjust their shells to a wholly 
pelagic existence? How did their unique microstructures evolve? Which genes 
are involved in biomineralization? How did biomineralization genes evolve to 
give rise to shelled, partially shelled and unshelled species? 

Similarly to other molluscs, pteropods produce their shells through a 
biomineralization process biologically controlled at the molecular and 
cellular levels (Lalli and Gilmer, 1989). In molluscs, the mantle – the soft 
tissue directly in contact with the shell growth surface – is responsible 
for shell formation. Mantle cells activate biomineralization pathways 
and express biomineralization genes, including genes coding for ion 
transporters and shell matrix proteins (SMPs) (Marin and Luquet, 2004; 
Marin et al., 2007; Marin et al., 2012; Marin, 2020), among other cat-
egories. The SMPs together with sugars, polysaccharides, lipids and 
pigments, form an extracellular organic matrix that is secreted to the 
extrapallial space, at the interface between the shell and the mantle 
tissue, and directly induces crystal nucleation, growth, morphology and 
deposition (Addadi and Weiner, 1985; Mann, 1988; Albeck et al., 1996; 
Belcher et al., 1996; Samata et al., 1999; Kono et al., 2000). The process 
results in a stable and well-packed organo-mineral assemblage with 
96–99% of mineral phase and up to 4% of organic matrix, depending on 
the mollusc species (Marie et al., 2009, 2011, 2013; Ramos-Silva et al., 
2012). The exceptional mechanical properties of the shell biomaterials 
are due to: (1) the three-dimensional arrangement of crystal aggregates, 
i.e. shell microstructures, and (2) the occluded organic matrix (Wain-
wright et al., 1982; Weiner and Addadi, 1997). 

The SMPs have long been recognized as key components of the 
biological control underlying shell formation (reviewed in Marin 2020). 
SMPs influence the modulation of calcium carbonate polymorphs, e.g. 
calcite vs. aragonite (Belcher et al., 1996; Falini et al., 1996; Thompson 
et al., 2000), crystal nucleation, growth and orientation (Belcher et al., 
1996) as well as crystal morphology (Samata et al., 1999; Kono et al., 
2000). Whether SMPs regulate other aspects of shell microstructures is 
still an open question (Marin, 2020). 

To date, SMPs and biomineralization genes remain uncharacterized 
for pteropods, but a growing number of studies have focused on their 
shell microstructures. Pteropod shell microstructures have tremendous 
potential as environmental proxies (Howes et al., 2017), possess valu-
able taxonomic information that can be used by palaeontologists in 
combination with other morphological traits (Garvie et al., 2020) and 
constitute an inspirational source for the design of ultrathin and/or 
lightweight biomaterials with superior mechanical properties (Zhang 
et al., 2011; Teniswood et al., 2013). Here, we review the body-of-work 
on pteropod microstructures carried out over the decades while bringing 
new insights on the evolution of pteropod biomineralization. With 
pteropods having their evolutionary history resolved, it is timely to 
examine their shell morphologies and microstructures in this context 
and look for candidate biomineralization genes underpinning the shell 
diversity of these important ocean sentinels. 

2. Diversity in pteropod shell microstructures 

Pteropods are a monophyletic group within the euopisthobranch 
gastropods (Heterobranchia) (Klussmann-Kolb and Dinapoli, 2006; 
Zapata et al., 2014) (Fig. 1A). Apart from the pteropods, heterobranchs 
include only benthic species, some of which are commonly used as 
outgroups in pteropod phylogenies (Burridge et al., 2017; Peijnenburg 
et al., 2020) such as sea hares with internal shells (e.g. Aplysia), bubble 
snails (e.g. Haminoea), sea slugs and false limpets with limpet-like shells 
made of protein (e.g. Tylodina) (Jörger et al., 2010; Kano et al., 2016). 
Hence, pteropods are unique within the whole Heterobranchia subclass 
in that they have adapted to a strictly planktonic life cycle and encom-
pass fully or partially aragonitic shelled as well as unshelled species 
(Lalli and Gilmer, 1989). The shell, if present, can be either left-coiled or 
uncoiled (bilaterally symmetrical). Although pteropods that are shell- 
less as adults also have a small aragonite shell in their larval stage, 
here we focus our attention on the pteropods with a calcified shell as 
adults. 

2.1. Superfamily Cavolinioidea (suborder Euthecosomata, uncoiled 
shells) 

The first detailed study on pteropod biomineralization was published 
in 1972 (Bé et al., 1972). Until that time pteropod shells had received 
little attention from biologists and palaeontologists, mostly because of 
their small size and extremely thin walls (<40 μm). Bé and co-workers 
proposed an exceptional microstructure, only found in pteropods, 
where aragonitic curved nanofibres coil helically around axes perpen-
dicular to the shell surface (Fig. 1C and D). In their study, Bé et al. (1972) 
used specimens of Cuvierina (Euthecosomata, Cavolinioidea) and scan-
ning electron microscopy (SEM) to describe four shell layers: apertural, 
inner and outer prismatic layers, and a main middle helical layer along 
the whole shell. The existence of the helical microstructure was further 
confirmed in other pteropod species, particularly in all the other mem-
bers of the Cavolinioidea, including the genera Creseis, Clio, Cuvierina, 
Cavolinia, Diacavolinia, Diacria, Styliola and Hyalocylis (Rampal, 1975; 
Glaçon et al., 1994; Checa et al., 2016). Here, we provide new SEM 
images showing examples of these curved microstructures for the spe-
cies Diacria costata, Diacavolinia longirostris, Creseis acicula and Styliola 
subula (Fig. 2). 

Members of the Cavolinioidea have uncoiled bilaterally symmetrical 
shells with remarkably distinct shell shapes from other gastropods 
including straight cones, vases or more intricately shaped shells (see 
Fig. 2A, E, G and I for some examples). Besides curved fibres, Cav-
olinioidea shells also display other (thinner) shell layers, at external 
regions, made of the more common crossed lamellar (composed of 
straight fibres crossing at an angle, Fig. 1B) or prismatic microstructures 
(see also Bé et al., 1972; Checa et al., 2016; Glaçon et al., 1994; Rampal, 
1975). 

2.2. Superfamily Limacinoidea (suborder Euthecosomata, sinistrally 
coiled shells) 

In contrast to Cavolinioidea, members of their sister group, Limaci-
noidea – including the genera Limacina and Heliconoides, have regularly 
coiled shells with varying heights (Fig. 3A and D). Species of the Lima-
cina genus exhibit a crossed lamellar layer (middle) (Fig. 3C) between 
two thin prismatic layers (inner and outer) (Fig. 3B) in most of their shell 
sections, which can vary in thickness depending on the location (Ram-
pal, 1975; Glaçon et al., 1994; Sato-Okoshi et al., 2010; Teniswood et al., 
2016). Aragonitic crossed lamellar and prismatic microstructures are 
among the most common in molluscs and they have been described in 
detail for several species (Bøggild, 1930; Nakahara, 1981; Suzuki et al., 
2011; Checa et al., 2012; Almagro et al., 2016; Böhm et al., 2016; Agbaje 
et al., 2017; Crippa et al., 2020). The curved fibres, usually seen as a 
distinctive trait of the Cavolinioidea (Lalli and Gilmer, 1989; Checa 
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et al., 2016), are also present in Limacinoidea. In the genus Limacina 
they were reported exclusively at the apex (Rampal, 2017), which is the 
oldest part of the shell, produced at embryonic stages. In the genus 
Heliconoides (formerly known as Limacina inflata) curved fibres comprise 
the main layer of the shell (Rampal, 1975; Glaçon et al., 1994). Images E 
and F of Fig. 3. show the presence and details of the curved fibres in 
Heliconoides inflatus collected from the southern Atlantic Ocean. The 
fibres seem to form a helical structure similar to the one found in some 
cavolinioidean species (Fig. 2H and J-L). In addition, Heliconoides shells 
also have the crossed lamellar microstructure at external positions 
(Fig. 3G). Despite also having a coiled shell, Heliconoides inflatus speci-
mens are morphologically quite distinct from Limacina species. They 
usually have less whorls, with the last whorl inflated and a wide aperture 
(Fig. 3D). 

2.3. The genus Peracle (suborder Pseudothecosomata, sinistrally coiled 
shells) 

Pseudothecosomes are still an understudied group of pteropods that 
is estimated to have diverged from the euthecosomes in the early 
Cretaceous (110.9 Ma) (Peijnenburg et al., 2020). The group includes 
fully shelled, for example, the genus Peracle with aragonitic coiled shells 
(Fig. 4.), but also partially shelled (e.g. Cymbulia with a gelatinous 
pseudoconch) and completely unshelled genera (e.g. Desmopterus). 
Peracle species have sinistral coiled shells with high but also lower 
spires, and a last whorl that is relatively large (Fig. 4A and E). The shell 
is often made of a main crossed lamellar layer and thin outer fibrous 
layers (Rampal, 1975) (Fig. 4B–D). The spire is thicker and can be made 
of multiple superimposed crossed lamellar layers aligned in different 
directions (Fig. 4G). Complex ornamentations on the shell surface are 
present in some species, for example, P. reticulata and P. valdiviae 
(Fig. 4F). In the latter, the ornament microstructure is made of first order 
elongated fibres (Fig. 4G and H). The crossed lamellar microstructure 
also comprises the main layer of other euopisthobranch (benthic) gas-
tropods including Aplysia (Marin et al., 2018), Akera and Haminoea 
(Rampal, 1975). 

3. Fossil record and evolution of curved fibres 

It is interesting to note that there are at least two types of the helical 
microstructure clearly distinguishable in pteropods: one with one turn 
or less (here termed ‘simple helical’) and one with multiple turns (here 
termed ‘complex helical’) (Fig. 1C and D). The number of turns is 
correlated to shell thickness but other aspects, such as the lead angle of 
the helices and their diameters, also influence the number of turns. The 
coiled Heliconoides and the earlier diverging groups of Cavolinioidea, 
including the straight-shelled Creseis (~99 Ma), Styliola (~70 Ma) and 
Hyalocylis (~63 Ma), all have the simple version of the helical micro-
structure as the main shell layer (Fig. 1C), in which curved fibres form 
one or less helical turns and seem to have higher lead angles and di-
ameters. In contrast, the more recently diverged clade comprising the 
genera Diacria, Cavolinia, Diacavolinia, Clio and Cuvierina, which origi-
nated ~58 Ma, in the late Paleocene (Fig. 6), has clearly developed 
further into a more sophisticated version of the structure, more compact, 
with smaller lead angles and diameters, and displaying more than one 
turn (Glaçon et al., 1994; Zhang et al., 2011; Li et al., 2015; Checa et al., 
2016) (Fig. 1D). Also, Limacina species appear to have curved fibres but 
only located at the apex (Rampal, 2017). Curved crystals have also been 
described in the meroplanktonic larval shells of benthic gastropods, 
including the architectonicid Philippia krebsii, sacoglossans (a clade of 
small photosynthetic sea slugs) (Richter, 1976) and fissurellids (known 
as keyhole limpets) (Batten, 1975). Moreover, curved fibres have been 
depicted in the adult shell layers of other microgastropods including the 
holoplanktonic atlantid heteropods (sea elephants) (Batten and Dumont, 
1976) and the scissurelids (little slit snails) (Batten, 1975). Batten 
(1975) and Batten and Dumont (1976) coined the term type-2 crossed 
lamellar structure to describe the layers found in benthic scissurelids, 
embryonic fissurellids and heteropods. As the name suggests, this 
microstructure was described as a modified version of the typical 
crossed lamellar structures (Carter et al., 1991) and was proposed to be a 
specific adaptation resulting from the thinness of the shell walls to 
provide a flexing function (Batten, 1975). In the type-2 structure 
described by Batten, both first order lamellae and second order rods may 
have curved or sigmoidal fibres, among other variations that blur the 
crossed lamellar aspect (Batten and Dumont, 1976). It would be 

Fig. 1. Pteropods and schematic views of the main 
microstructures forming their shells. (A) Cladogram 
depicting the position of pteropods in relation to 
other molluscs based on the phylogenetic relation-
ships described in Kocot et al. (2020) and Zapata 
et al. (2014). (B) Crossed lamellar: parallel rods or 
blades crossing at angles, perpendicular or oblique to 
the depositional surface. Adapted from Currey and 
Taylor (1974). (C) Simple helical: coiled helical fi-
bres with one turn or less. (D) Complex helical: coiled 
helical fibres with more than one turn. Diameter and 
leading angle of the spirals are larger in the simple 
helical than in the complex helical. Fibre interlocking 
is not represented. Adapted from Li et al. (2015). N, 
normal direction, i.e., perpendicular to the shell 
surface.   
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interesting to re-examine the curved fibres across these and other 
molluscan groups, in particular, at larval stages and in thin-shelled taxa, 
to compare their morphology with the pteropod helical microstructures. 

Batten (1975) suggested that scissurelids were neotenously derived 
from fissurelids based on similar growth stages and on the presence of 
the type-2 crossed lamellar wall on the adult and embryonic stages, 
respectively (Batten, 1975). Similarly, neotenic origins have been pro-
posed for pteropods, i.e. the larvae of a benthic gastropod became 
sexually mature and stayed in the water column for their entire lives 
(Bandel et al., 1984; Huber, 1993; Lemche, 1948). However, this hy-
pothesis has been questioned by other authors (Jägersten, 1972; Lalli 
and Gilmer, 1989). In the transition from a benthic to a holoplanktonic 
life the gastropod foot (poda) – an adult feature – was decisive to evolve 
swimming wings (ptero-). In any case, the development of a shell layer 
made of curved fibres seems to be an adaptation not only related to a 
planktonic existence but also due to the thinness and lightweight nature 
of the shells (of a few micrometres). Curved structures with a helical 
shape have been observed at different scales in several biological sys-
tems, ensuring a favourable combination of strength and flexibility 
(Wainwright et al., 1982). The aragonitic helical microstructure allows 
for more suppleness over brittleness to the thin pteropod shells that must 
withstand varied hydrodynamic forces in the water column (Karakas 
et al., 2020). 

The development of the curved fibres can be further elucidated by 
looking at the fossil record. To date, however, only a few descriptions of 
microstructures have been made for fossil pteropods (Rampal, 1975; 
Curry and Rampal, 1979; Rehfeld and Janssen, 1995; Garvie et al., 
2020). With their thin aragonitic shells, pteropods are particularly 
sensitive to diagenesis, the process by which aragonite transforms into 
the more stable polymorph calcite, in ambient conditions and in the 
presence of water. The diagenetic process in molluscan shells is still far 
from understood (Milano and Nehrke, 2018) but it is known to blur or 
even destroy the original microstructures in molluscs (Janiszewska 
et al., 2018), including pteropods (Brachert and Dullo, 2000). In addi-
tion, pteropods are more susceptible to post-mortem dissolution in the 
water column, disappearing more rapidly from sediments than other 
planktonic calcifiers that produce calcite biominerals (Brachert and 
Dullo, 2000; Janssen and Peijnenburg, 2017; Manno et al., 2017). 
Hence, the occurrence of pteropods in rocks of Cretaceous age is likely to 
be underestimated (Janssen and Peijnenburg, 2017). Consequently, 
some fossil placements remain unclear. This is the case of the genus 
Altaspiratella, whose oldest fossils date back to the early Ypresian, but 
has long been proposed as the coiled ancestor of the genus Creseis 
(Cavolinioidea), and of the fossils Camptoceratops (Ypresian) and 
Euchilotheca (Ypresian and Lutetian) (Garvie et al., 2020; Janssen and 
Peijnenburg, 2017; Janssen and Peijnenburg, 2014). The curved fibres 

Fig. 2. Curved fibres in Cavolinioidea (Euthecosomata). (A) Diacria costata, (B) fresh cut in D. costata showing the main layer of helical fibres and ornaments on the 
shell surface (yellow arrowhead), (C) polished cut in D. costata highlighting the complex helical microstructure with multiple turns, (D) internal shell-growth surface 
showing the tips of the fibres, (E) Diacavolinia longirostris, (F) fresh cut in D. longirostris, (G) Styliola subula (H) fresh cut in S. subula showing the simple helical 
microstructure. (I) Creseis acicula, (J-K) fresh cuts in C. acicula showing simple helical microstructure and the interlocked texture (red arrowhead). (L) Oblique view 
from shell of C. acicula from Wall-Palmer et al. (2011). IS – inner surface, OS – outer surface. Information about sample origins is given in Tab. S1. Shell locations 
from which the SEM images were taken are represented in Fig. S1. 
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observed here for Altaspiratella bearnensis (Fig. 5A–C) would support this 
evolutionary path, placing Altaspiratella at the base of Euthecosomata 
(placement [1], Fig. 6). Yet, the coiled shell and fossil age, given the 
context of pteropod’s evolutionary history, suggest that Altaspiratella 
could also be an ancestor of modern Limacina species. The fossil Camp-
toceratops priscus, whose shell is slightly coiled in an open helix (Fig. 5D), 

was proposed as an intermediate form between coiled species and un-
coiled Creseidae (Janssen and Peijnenburg, 2014; Janssen and Peij-
nenburg, 2017), see placement [2] in Fig. 6. This fossil has curved fibres 
(Curry and Rampal, 1979) (see Fig. 5E and F). In addition, the younger 
fossil Creseis cylindrica, from the middle Eocene, with a shape resembling 
that of modern Creseis, has curved fibres (Garvie et al., 2020) as well as 

Fig. 3. Shell microstructures in Limacinioidea (Euthecosomata). (A) Limacina helicina antarctica, (B) fresh cut in L. h. antarctica showing the thicker crossed lamellar 
(middle) layer and two thinner fibrous outer and inner layers (blue arrowheads), (C) details of the crossed lamellar microstructure in a polished cut in L. h. antarctica, 
(D) Heliconoides inflatus, (E) fresh cut in H. inflatus showing the simple helical microstructure, (F) polished cut in H. inflatus highlighting the simple helical 
microstructure and the interlocked fibers (red arrowhead), (G) details of the crossed lamellar layer located at external positions in a polished cut in H. inflatus. IS – 
inner surface, OS – outer surface. Information about sample origins is given in Tab. S1. Shell locations from which the SEM images were taken are represented 
in Fig. S1. 

Fig. 4. Shell microstructures in the genus Peracle (Pseudothecosomata). (A) Peracle moluccensis, (B) fresh cut of P. moluccensis and (C) polished cut showing crossed 
lamellar and fibrous layers in the last whorl (D) details of the elongated crossed lamellar layer, (E) Peracle valdiviae, (F) details of the reticulate ornamentation in the 
spire of the shell of P. valdiviae, (G) polished cut at the spire revealing crossed lamellar layers with various aspects according to the orientation of the lamellae (length 
of each layer marked with black and white bar on the right), growth line (dashed line and blue arrow), and elongated fibres of the ornament on top (yellow 
arrowhead), (H) detail of the border between ornamentation and crossed lamellar layer. IS – inner surface, OS – outer surface. Information about sample origins is 
given in Tab. S1. Shell locations from which the SEM images were taken are represented in Fig. S1. 
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the Miocene Vaginella depressa (Curry and Rampal, 1979) and Gamo-
pleura melitenses (Rehfeld and Janssen, 1995). Hence, the most likely 
scenario is that the last common ancestor of the Cavolinioidea (99.1 Ma) 
had a main shell layer composed of curved fibres. The same is true for 
the last common ancestor of the Limacinoidea (107.2 Ma) and, by 
extension, the entire Euthecosomata clade (110.2 Ma) because we find 
curved fibres in fossil Heliconoides (Fig. 5G–L) similar to the those 
observed in the modern H. inflatus (Fig. 3E and F), which are proposed to 
form a simple helical microstructure. These fossils include Heliconoides 
tertiaria, from the middle Miocene, and H. mercinensis, a pre-PETM 
(Paleocene-Eocene Thermal Maximum) species from the latest Paleo-
cene/earliest Eocene transition (Janssen and Peijnenburg, 2017). 
Finally, there is also evidence of curved fibres in the whole shell of 

Limacina pygmaea from the Lutetian (middle Eocene) (Curry and Ram-
pal, 1979) and in the apex of the extant Limacina retroversa (Rampal, 
2017), which suggests that at some point, the genus Limacina has 
adapted the crossed lamellar microstructure as its main shell layer.  

Fossil pteropods of Cretaceous age are extremely rare with only a 
single specimen of a Heliconoides known from the middle to late Cam-
panian (Cretaceous, ~ 79–72 Ma), followed by a gap in the fossil record 
until the late Paleocene (reviewed in Janssen and Peijnenburg 2017). 
Yet, a recent study reported pteropod-like fossils from the late Creta-
ceous with a Creseis-like shape and a crossed lamellar microstructure 
(Garvie et al., 2020). If these specimens are later confirmed as ptero-
pods, despiralisation must have happened more than once in pteropod 
evolution (Garvie et al., 2020; Peijnenburg et al. 2020). 

Fig. 5. Shell microstructures in fossil pteropods. (A) Altaspiratella bearnensis specimen (RGM.229304.a; Eocene, Ypresian) (B) fresh cut showing the curved 
microstructure of A. bearnensis (C) polished cut showing an outer crossed lamellar layer and the inner layer made of curved fibres (D) Camptoceratops priscus specimen 
(RGM.396617.a; Eocene, Ypresian) (E-F) polished cuts of C. priscus shell showing two layers, curved and confused, probably due to diagenetic processes (G) Heli-
conoides mercinensis specimen (RGM. 515524.a; Eocene, Ypresian) (H-I) fresh cuts showing curved fibres and the interlocking structure (red arrowhead) in H, 
mercinensis (J) Heliconoides tertiaria specimen (RGM.229472.a; Miocene, ~ Langhian) (K – L) fresh cuts showing curved fibres in H. tertiaria (RGM.229472.b). In-
formation of sample origins is given in Tab. S1. Shell locations from which the SEM images were taken are represented in Fig. S1. 
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4. From biomineralization to bioinspiration 

4.1. Microstructures and their formation mechanisms 

Of the three main types of microstructures found in modern ptero-
pods – crossed lamellar, prismatic and helical – crossed lamellar is by far 
the most common among gastropods (Salinas and Kisailus, 2013). This 
structure is found in all pteropod lineages and encompasses the main 
shell layers in the genera Peracle and Limacina (Fig. 6). The crossed 
lamellar microstructure is composed of blades oblique to the deposi-
tional surface and crossing at an angle. It has a complex hierarchical 
structure with first-, second-, and third-order lamellae (Carter, 1989; 
Carter et al., 1991) (Fig. 1B). Due to its complexity and wide distribution 
among molluscs, many open questions remain on the fabrication of the 
crossed lamellae (Almagro et al., 2016). In one of the first structural 
studies on the gastropod Strombus gigas, Nakahara, (1981) identified 
envelopes of organic matrix where the crystals initially develop (Naka-
hara, 1981). More recently, using cryo-scanning electron microscopy on 
the aragonitic crossed lamellar layer of limpet shells (also Gastropoda), 
Suzuki et al. (2011) showed that the deposition of the first crystalline 
particles occurs in a thin granular layer on the growing surface of the 
mature crossed lamellae. The granules subsequently grow to form the 
crossing fibres in alternate orientations, typical of the mature crossed 
lamellar structure (Suzuki et al., 2011). 

Prismatic microstructures are also found in many pteropod lineages, 
but only located at peripheral positions. These microstructures are 
structurally more simple and consist in adjacent, elongated crystalline 
units that grow in parallel without interlocking themselves (Carter, 
1989; Carter et al., 1991). This general construction can have several 
variations among molluscs. In pteropods there are also different vari-
eties that have not yet been described in detail (Glaçon et al., 1994; 
Teniswood et al., 2016) (e.g. Fig. 3B and Fig. 4G). Crystal competition 
and direct cellular activity have been proposed as the main drivers for 
the formation of the columnar prismatic microstructure (reviewed in 
Checa 2018). However, given their quite distinct morphologies, it is 

unlikely that the same mechanisms would apply to the pteropods pris-
matic layers. 

The curved fibres are proposed to form a helical 3D structure con-
sisting of nested coiled helical rods with helix axes oriented perpen-
dicular to the depositional surface (Bé et al., 1972; Carter, 1989; Carter 
et al., 1991) (Fig. 1C and D). This structure is unique to pteropods, 
although other curved fibres have been found in the shells of planktonic 
veligers and micromolluscs (see above), they do not seem to form a 
helical assembly. The helical microstructure was first described by Bé 
and co-authors (1972) in Cuvierina sp. Four decades later, it became the 
subject of intense research with several studies describing the structural 
nature of the aragonite curved nanofibers. In 2011, Zhang and co- 
workers published a new characterization of the helical microstructure 
and its mechanical properties in Cavolinia uncinata (Zhang et al., 2011). 
The authors showed that shells of C. uncinata are made of tightly packed 
curved nanofibers, twisting clockwise and crystallographically aligned, 
with the coiling axis perpendicular to the shell surface. The nanofibers 
intergrow, resulting in an interlocking structure that produces irregular 
mosaic cross-sections (as marked in Fig. 2J and Fig. 5I with the arrow-
heads). Follow-up work in Cuvierina shells showed evidence for 
continuously crystalline fibres with preferred crystallographic growth 
directions that constantly adapt to the changes in curvature imposed by 
helical growth (Willinger et al., 2016). The authors argued that this 
preferential growth must result from strong biological control. More-
over, helical fibres were proposed to be surrounded by an organic-rich 
band, whose tips appear as micro elevations on the internal growth 
face of the shell (Checa et al., 2016) (Fig. 3D). These micro elevations 
were proposed as contact-points between shell growing edges and 
mantle cells, which directly determine the growth trajectories of the 
fibres (Checa et al., 2016). Because the tips are wider than the rest of the 
fibre once incorporated within the shell, Checa et al. (2016) suggested 
that this reduction in volume would make sense if the tip initially con-
sisted of amorphous calcium carbonate and subsequently transformed 
into aragonite. Later, by Raman spectroscopy of living Creseis acicula it 
was indeed shown that the growing edge and newly formed parts of the 
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internal shell are made of a highly disordered aragonite precursor phase 
(Sibony-Nevo et al., 2019). From the disordered precursor the mineral 
matures into crystalline aragonite fibres (Sibony-Nevo et al., 2019). This 
formation strategy is common to other molluscs and calcifying organ-
isms (Weiss et al., 2002; Addadi et al., 2003; Weiner et al., 2003, Weiner 
et al., 2009). Still, no consensus has been reached about whether the 
curved fibres are or not continuous crystals, and about the evidence that 
they form complete helices (Li et al., 2015, Willinger et al., 2016). 

4.2. Shell properties for bioinspired design 

Shell microstructures from benthic molluscs provide exceptional 
mechanical properties to the calcified shell and hold great potential in 
the design of novel bioinspired materials (Kamat et al., 2000; Munch 
et al., 2008; Morris et al., 2016; Connors et al., 2019). Likewise, the 
microstructures described here for pteropods can also inspire bio-
mimetic studies since they underpin very thin, transparent and light-
weight shells, with outstanding mechanical properties. Shells of 
Limacina helicina antarctica (with crossed lamellar microstructure, 
Fig. 3A–C) were shown to be quite resistant to local deformation with an 
average hardness of 2.30 GPa and modulus of 45.27 GPa by nano-
indentation (Teniswood et al., 2013, 2016). There were no significant 
variations in these values from multiple positions across the shell 
because the majority of the sample has a crossed lamellar microstruc-
ture. In contrast, hardness and modulus in the cavolinioidean Cavolinia 
uncinata (Zhang et al., 2011) were significantly higher with values of 5.2 
or 5.6 GPa and 85.9 or 51.5 GPa, respectively, depending if the mea-
surements were taken parallel or transverse to the shell surface. These 
values and differences across the shell are as good as nacre and reflect 
the anisotropic mechanical properties provided by the well-packed 
curved fibres and their interlocked structure (Zhang et al., 2011). 
Anisotropic properties, i.e., having different mechanical properties in 
different directions, have long been described in wood (Wainwright 
et al., 1982) and have also been reported in other biominerals due to 
their complex hierarchical microstructures, such as bone (Weiner and 
Wagner, 1998), tooth enamel (Zaytsev and Panfilov, 2015), nacre 
(Barthelat et al., 2006), chiton scales (Connors et al., 2019) and crus-
tacean exoskeletons (Chen et al., 2008; Fabritius et al., 2009). Li and co- 
authors, using shells of the pteropod Clio pyramidata, have also 
demonstrated the shell anisotropic properties for this species and that 
the helical and interlocking nature of the fibres limits damage and re-
tards crack propagation (Li et al., 2015). The shells of the Cavolinioidea 
are thus mechanically robust although being very thin and made of at 
least 95% of aragonite, a mineral that is naturally stiff and brittle (Zhang 
et al., 2011; Li et al., 2015). Pteropods undergo considerable vertical 
migrations everyday by sinking and swimming in the water column 
(Karakas et al., 2020). The improved mechanical properties of their 
shells make them well adapted to withstand variations from hydrody-
namic forces. 

Interlocking structures in nature have been sought to develop new 
multifunctional materials, which are both flexible and fracture resistant 
(Estrin et al., 2009; Connors et al., 2019; Zhu et al., 2020). Helical 
shapes have also been found to have a favourable effect on the overall 
mechanical properties of novel materials (Lapovok et al., 2017; Chang 
et al., 2021; Gao et al., 2021). The interlocked design of the aragonite 

fibres in pteropod shells combined with the helical structure is therefore 
a promising prototype in the field of biomaterials research, ensuring a 
good combination for high strength and stretchability. An exact in vitro 
reproduction of the structure can however be quite challenging since it is 
the product of mantle epithelial cells and particular organic molecules, 
notably SMPs, which are likely to provide a scaffold and are able to 
promote/prevent growth by adhering to particular crystal faces (Checa 
et al., 2016). 

5. The quest for biomineralization genes 

Due to the growing interest in pteropods as bioindicators of OA 
(Bednaršek et al., 2014, 2017; Manno et al., 2017), different species 
have been subject to studies on the effects of increasing CO2 on calcifi-
cation (Comeau et al., 2009; Moya et al., 2016; Howes et al., 2017; Maas 
et al., 2018; Mekkes et al., 2021a, Mekkes et al., 2021b). Differential 
gene expression has become a commonly used method to understand the 
observed physiological responses at a molecular level and has been 
performed in the straight shelled Clio pyramidata (Maas et al., 2015), the 
coiled Limacina helicina (Koh et al., 2015), Limacina helicina antarctica 
(Johnson and Hofmann, 2017; Johnson and Hofmann, 2020; Johnson 
et al., 2019; Bogan et al., 2020), Limacina retroversa (Maas et al., 2018, 
Maas et al., 2020), Heliconoides inflatus (Moya et al., 2016) and the 
unshelled species Clione limacina (Thabet et al., 2017). Some of the 
studies combine both molecular and physiological responses (e.g. by 
measuring calcification and respiration rates) and report shifts in the 
expression of biomineralization genes (reviewed in Strader et al., 2020). 
Identifying candidate biomineralization genes is thus a critical step for 
accurate interpretation of gene expression results with respect to calci-
fication. In pteropods, annotation of biomineralization genes has been 
done by homology searches against a biomineralization database (Moya 
et al., 2016) or by using the mantle transcriptome and SMPs identified 
from the pacific oyster Crassostrea gigas as a reference (Maas et al., 2015; 
Johnson and Hofmann, 2017). However, biomineralization genes, most 
notably those coding for SMPs, show a complex evolutionary history, 
with both ancient and rapidly evolving genes being continuously 
recruited to shell formation (Marie et al., 2013; Arivalagan et al., 2017). 
Moreover SMP-coding genes have the tendency to expand, contract and 
rearrange in the genome (Kocot et al., 2016; Aguilera et al., 2017) giving 
rise to a pool of shared domains and lineage-specific novelties that 
hinder cross-species sequence comparisons. On one hand, domains in 
SMPs are not specific of biomineralization and are present in many other 
sequences, returning false positives in blast searches. On the other hand, 
molluscan SMPs are primarily identified from bivalves or gastropods 
that are phylogenetically distant from pteropods, resulting in lower 
detection of homologs for fast evolving genes in this group. To minimize 
these aspects while having an indication of candidate SMPs across the 
pteropods evolutionary tree, we searched the adult transcriptomes (Tab. 
S2) from 19 Euthecosomata (fully shelled), 2 Pseudothecosomata (1 
pseudo-shelled, 1 shelled) and 4 Gymnosomata (unshelled) from Peij-
nenburg et al. (2020) plus 3 outgroups from Zapata et al. (2014) against 
a database of the SMPs identified in two heterobranch species by pro-
teomics (Mann and Jackson, 2014; Herlitze et al., 2018). The two gas-
tropods were the terrestrial grove snail Cepaea nemoralis and the 
freshwater great pond snail Lymnaea stagnalis, which are the most 

Fig. 6. Chronogram with the evolutionary relationships of pteropods (25 taxa and 3 outgroups) based on 200 concatenated genes, adapted from Peijnenburg et al. 
(2020). Gymnosomata (sea angels) are unshelled pteropods and the sister clade of the Thecosomata (sea butterflies). Sea butterflies include Euthecosomata (fully 
shelled) – comprising the superfamilies Cavolinioidea (uncoiled shells mostly made of curved fibres) and Limacinoidea (coiled shells mostly made of crossed lamellar 
or curved fibres) – and Pseudothecosomata (covering unshelled to fully shelled species with crossed lamellar microstructure). Fossils that were examined in this study 
are placed onto the branches of this phylogeny and their microstructures are indicated (top left). Microstructure of the shell main layer is indicated before each 
species name on the chronogram. See legend (bottom right) for explanation of the symbols used. (Right) Homology profiles of candidate SMPs in pteropods and 
outgroups. The transcriptomes from Peijnenburg et al. (2020) were used in a blast search against the shell proteomes from two panpulmonate gastropods: Cepaea 
nemoralis and Lymnaea stagnalis (Mann and Jackson, 2014; Herlitze et al., 2018). Homology searches were performed using BLASP (Cut-off: 35% id, 75% query 
coverage). Name of protein clusters are indicated on the right. Bar sizes are proportional to the number of blast hits. Methods are described in the supplementary file. 
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closely related species to pteropods with a characterized shell proteome, 
also known as ‘shellome’ (Marin et al., 2013). The resulting homology 
profiles (Tab. S3) are visualized in the context of pteropod evolution 
(Fig. 6). 

Overall, the transcriptomes of unshelled pteropod species have fewer 
hits (<20) with SMPs than the transcriptomes of the shelled species. The 
SMP ‘Chitin-binding peritrophin-A’ (light brown, Fig. 6) is present as a 
putative single gene in 18 out of 20 shelled pteropods and absent from 
all unshelled species (Tab. S3). Experiments with a recombinant Pif97, a 
pearl oyster SMP having one von Willebrand factor type A (vWA) 
domain and one Peritrophin A chitin-binding domain, have shown that 
the protein interacts with calcite crystals by becoming occluded and 
forming nanochambers within the crystal interior (Chang and Evans, 
2015). The same study suggested that both the vWA and Peritrophin A 
chitin-binding domains would be directly involved in the pro-
tein–mineral interaction. Moreover chitin, a complex polymer of N- 
acetylglucosamine, is often an important component of shells (Goffinet 
and Jeuniaux, 1979) and it is therefore likely that other genes involved 
in chitin formation are expressed in shelled species. Most shelled species 
show the presence of multiple transcripts homologous to chitin- 
interacting proteins (see in blue, Fig. 6), while unshelled species have 
fewer blast hits (Tab. S3). One exception is the pseudothecosome Cym-
bulia sibogae which possesses 11 transcripts and at least 6 putative genes 
homologous to chitin-interacting proteins. This species lacks a calcified 
shell but is characterized by a gelatinous pseudoconch made of proteins 
and polysaccharides. The presence of multiple transcripts with chitin- 
interacting domains may indirectly suggest that chitin is a major 
component of this structure. Also the ‘Adipocyte plasma membrane- 
associated like protein’ (APMAP), which is one of the most abundant 
SMP in the land snail Euhadra quaesita based on a proteomics approach 
(Shimizu et al., 2019), is consistently found in the shelled pteropods but 
absent from the unshelled species (see APMAP in dark pink, Fig. 6). 
Similar homology profiles are also observed for the ‘Shell-related pro-
tein’ (dark green, Fig. 6) and several uncharacterized proteins (pink, 
Fig. 6), i.e. proteins that lack homology with known domains or func-
tionally characterized sequences. By contrast, some SMPs have identical 
homology profiles across the dataset for shelled and unshelled species, 
for example, ‘Carbonic anhydrase 2′ (green, Fig. 6), ‘Mucin-2-like’ (dark 
purple, Fig. 6), ‘Gly-, Glu- and Pro-rich protein’ (pink, Fig. 6), the 
‘Neurofilament protein’ (light brown, Fig. 6) and the ‘Intermediate 
filament protein’ (light purple, Fig. 6). These proteins highlight the 
multifunctional aspects of some SMPs and might have harnessed other 
structural roles in non-shelled lineages, suggesting that extensive co- 
option events may underlie the evolution of shells in pteropods. Iden-
tification of bona fide SMPs from pteropods, however, is still missing but 
essential for understanding the molecular bases of their biomineraliza-
tion and for quantifying the impact of environmental changes, such as 
ocean warming and acidification, on this process. 

6. Conclusions 

In this review we aimed to describe the striking diversity of pteropod 
shell microstructures, including prismatic, crossed lamellar and helical 
arrangements of aragonite fibres. We highlight that the helical micro-
structure, commonly viewed as a trait unique to the Cavolinioidea 
(uncoiled shells), is also present in species of the superfamily Limaci-
noidea (coiled shells). Moreover, there appear to be different levels of 
complexity of the helical microstructure, depending on the species. 
While the genus Heliconoides (Limacinoidea) and the early diverging 
lineages within Cavolinioidea (Creseis, Styliola, Hyalocylis) have a simple 
version of the structure – with one or incomplete helical turns – the more 
recent Cavolinioidea (Clio, Diacria, Cavolinia, Diacavolinia, Cuvierina) 
have a more compact helical assembly with more than one turn. Curved 
fibres, that seem to form the same helical assemblies, were also found in 
pteropod fossils, supporting the appearance of the curved microstruc-
tures at the base of the Euthecosomata. Older scientific literature reports 

the presence of curved crystals in other micromolluscs, in particular, in 
larval stages and in thin shelled taxa, suggesting that the crystal bending 
may be a specific adaptation for having thin, yet flexible shells. In the 
case of pteropods, these were essential features for a successful adap-
tation to a fully planktonic lifestyle, in which they drift, swim or sink, 
creating varying flow conditions around their shells. 

To this date there is no direct identification of shell matrix proteins 
(SMPs) in pteropod species but, using the SMPs from the grove snail and 
the great pond snail as reference, we were able to determine some 
transcripts associated with shelled pteropods. Based on the homology 
profiles of SMPs between shelled and non-shelled species we identified 
the Chitin-binding peritrophin-A, the Adipocyte plasma membrane- 
associated like protein, the Shell-related protein and several uncharac-
terized proteins as being strong candidates for roles in pteropod 
biomineralization. 

Shelled pteropods are seen as valuable bioindicators to monitor the 
impacts of ocean acidification. Identifying biomineralization genes and 
characterizing the diversity of shell microstructures in different ptero-
pod species is thus an important piece of the puzzle in understanding 
their potential to adapt to ocean’s changes. 
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Ward, P., Kuzirian, A., Lézé, B., Feely, R.A., Murphy, E.J., 2012b. Extensive 
dissolution of live pteropods in the Southern Ocean. Nat. Geosci. 5 (12), 881–885. 
https://doi.org/10.1038/ngeo1635. 

Belcher, A.M., Wu, X.H., Christensen, R.J., Hansma, P.K., Stucky, G.D., Morse, D.E., 
1996. Control of crystal phase switching and orientation by soluble mollusc-shell 
proteins. Nature 381 (6577), 56–58. https://doi.org/10.1038/381056a0. 

Berner, R.A., Honjo, S., 1981. Pelagic Sedimentation of Aragonite: Its Geochemical 
Significance. Science 211 (4485), 940–942. https://doi.org/10.1126/science: 
211.4485.940. 

Bogan, S.N., Johnson, K.M., Hofmann, G.E., 2020. Changes in genome-wide methylation 
and gene expression in response to future pCO2 extremes in the Antarctic pteropod 
Limacina helicina antarctica. Front. Mar. Sci. 6 https://doi.org/10.3389/ 
fmars.2019.00788. 

Bøggild, O.B., 1930. The shell structure of the mollusks. Det Kongelige Danske 
Videnskabernes Selskabs Skrifter, Natruvidenskabelig og Mathematisk, Afdeling, 
Ser. 9, Copenhagen, Denmark. 
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