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Workers are the most important resource in crowdsourcing. However, only investing in worker-centric needs, such as skill improvement,
often conflicts with short-term platform-centric needs, such as task throughput. This paper studies learning strategies in task assignment
in crowdsourcing and their impact on platform-centric needs. We formalize learning potential of individual tasks and collaborative
tasks, and devise an iterative task assignment and completion approach that implements strategies grounded in learning theories.
We conduct experiments to compare several learning strategies in terms of skill improvement, and in terms of task throughput and
contribution quality. We discuss how our findings open new research directions in learning and collaboration.
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1 INTRODUCTION

Career advancement is considered a right in many physical workplaces, but it is not yet in place in online labor
markets [46]. Up until now, most crowdsourcing research has catered to platforms with the goal of ensuring high
worker performance, a.k.a., quality control and cost reduction. This focus does not always favor workers. The study
of humans factors in crowdsourcing is a recent trend with various contributions that account for motivation [47, 48],
mental stress [37], learning [18, 19, 29, 45, 60], as well as fatigue and boredom [7, 27, 49]. In this paper, we revisit task
assignment and examine the impact of learning strategies on worker performance and skill improvement.

In physical workplaces, skill improvement strategies are regularly implemented and tested [15, 34, 39]. They include
scaffolding where tasks are combined in alternating difficulty levels, and collaboration where workers learn from their
interactions with higher-skilled peers. In online labor marketplaces, a few studies focused on the role of task difficulty
and workers’ ability to complete micro-tasks in improving skills [23], and how affinity between workers can be used
to form teams that collaborate to produce high quality contributions while also improving skills [22]. Usually, such
approaches require additional human cost to build training material or give feedback to workers. Moreover, there
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2 Matsubara, et al.

Fig. 1. Task assignment strategy for learning: Given a worker 𝑤 and a set𝑇 of tasks, how to generate a sequence of 𝑘 tasks for her to
maximize her learning?

is little understanding of the interplay between achieving high worker performance, a.k.a., quality control and cost
reduction, a platform-centric goal, and improving worker skills, a worker-centric goal.

This paper explores an approach for improving worker skills in crowdsourcing while also ensuring high worker
performance; we study how to assign tasks to workers, expecting that appropriate assignments will have a positive
impact on the inherent skill improvement of humans and on their overall performance. We focus on a common class
of tasks referred to as “Knowledge and Comprehension tasks” in Bloom’s taxonomy of educational objectives [5, 35]
such as image classification, labeling, editing grammar and spelling mistakes, and speech transcription. Our question
is illustrated in Figure 1. We have a set 𝑇 of tasks of varying difficulty levels, each task receives 𝑁 (=3 in the figure)
contributions. At each iteration, some tasks have already been completed by some workers. Given a worker𝑤 and a set
of uncompleted tasks, which sequence of 𝑘 tasks will maximize𝑤 ’s learning potential? Here, learning potential is the
maximum possible improvement in𝑤 ’s skill. We assume that worker skill and task difficulty are uni-dimensional and
that the skill of a worker either remains the same or increases as time passes [43, 54].

Several studies showed that a worker learns better when contributions from higher-skilled workers are shown to
them [18, 19, 29, 31]. We adopt this same model. In addition, although the impact of assignment strategies on worker’s
learning remains an open question, it is well-known that task ordering impacts platform-centric measures, such as
quality and task throughput [1, 8, 17].

Given the above, our task assignment challenges are: C1 - how to choose an appropriate batch of 𝑘 tasks where a
worker can see previous higher-skilled workers’ contributions; C2 - how to order the chosen 𝑘 tasks appropriately so
that the worker’s skill improvement is maximized; C3 - how to reconcile worker-centric and platform-centric goals.

To address C1, we formalize the learning potential of a worker for a task and choose 𝑘 tasks that maximize the total
learning potential. There are two theories underlying our framework. First, Zone of Proximal Development (ZPD) [55]
is a well-known theory that defines three zones of tasks with different skill improvements; (1) A learnable zone that
contains tasks a person can learn how to complete when assisted by a teacher or peer with a higher skill set, (2)
a flow/comfort zone of tasks that are easy and can be completed with no help, and (3) a frustration zone of tasks
that a learner cannot complete even with help. Second, the Flow theory [12] states that people are able to immerse
Manuscript submitted to ACM



Task Assignment Strategies for Crowd Worker Ability Improvement 3

Fig. 2. Zone of Proximal Flow [4], which combines the results of ZPD and Flow Theory. In [4], it is shown that “scaffolding” tasks
helps workers improve their skills by completing more challenging tasks (the dotted line).

themselves in doing things whose challenge matches their skills. Figure 2 integrates the two theories and illustrates
their relationship with respect to the task challenge, the worker skill, and the affect state [4, 53]. In [4], the authors claim
that to improve skills, the tasks should be either in the flow/comfort zone, or in the learnable zone on the condition that
there is some “scaffolding” to help workers complete tasks that are a bit more challenging for them. This results in skill
improvement (the dotted line). Our formalization builds on that and defines the learning potential for both individual
tasks (mainly in the flow/comfort zone) and collaborative tasks (mainly in the learnable zone).

To addressC2, we devise learning strategies which build on two ideas: (1) task ordering, and (2) interleaving individual
and collaborative tasks. We study their impact on workers’ performance and skills. Previous work found that both task
ordering and task types impact contribution quality and completion time [8, 13, 17]. That is the basis for designing
our four task orderings: NoOrder, a baseline where tasks are in no particular order; TotalOrder, where tasks are
presented in increasing difficulty level, PartialOrder, a variation of TotalOrder, where tasks are grouped according
to their difficulty and groups presented in increasing difficulty; and Alternate, that groups tasks and presents them in
alternating difficulty levels.

To address C3, we propose an iterative task assignment process that takes a worker 𝑤 , a learning strategy and a
set of uncompleted tasks, and assigns to𝑤 , at each iteration, a batch of 𝑘 tasks according to the learning strategy. We
formalize a simple Knapsack optimization problem for skill improvement that incorporates learning strategies and
solve it using a top-𝑘 search solution.

Our experiments show, with statistical significance, that the learning strategies are effective in helping workers
improve their skills. More specifically, Alternate yields the highest average skill improvement for individual tasks,
and workers produce the highest quality contributions, best task throughput, and highest skill improvement, when
collaborative and individual tasks are interleaved.

Manuscript submitted to ACM



4 Matsubara, et al.

In summary, our key findings are:

• Lessons on learning and working in physical workplaces also apply in virtual marketplaces: the ordering of tasks
matters and collaborative tasks help learning.
• We can develop a task assignment algorithm that accounts for task ordering and learning.
• Alternate is the best strategy.

2 RELATEDWORK

Since learning is one of the main motivations for joining the online job market [28], and most workers face “on-the-fly”
learning situation [24], worker’s skill improvement through task completion should constitute an important concern in
crowdsourcing.

2.1 Paying Explicit Costs for Skill Improvement

For skill improvement, there have been studies on paying an extra human cost for helping other workers with advise,
feedback review, Q&A, and explanation. For example, Crowd Coach [10] allows workers to give peers a short advice
for how to do tasks while working. Ask the Crowd [40] lets workers ask questions and discuss answers. AXIS [57]
lets workers provide explanations to future learners. Atelier [52] connects a worker as an intern to another worker as
a mentor via online jobs. There are also several studies on performance improvement with additional tasks such as
reviewing and justifying other answers [21, 60], reflecting own answers [30], and retaining workers via pricing [16].
Though these studies do not directly examine skill improvement, short-term performance improvement is observed and
can be used to infer that workers experience some learning.

However, requesters usually have a limited budget in crowdsourcing settings. Our framework generates training
material without requiring additional human costs, and while aiming to also achieve platform-centric goals.

2.2 Task Assignment Objective Functions

Another approach for skill improvement is task assignment, which controls when and to whom tasks are assigned.
Assignment algorithms are usually designed to improve platform-centric and requester-centric goals such as result
quality, completion time and throughput. There are also task assignment solutions that consider worker-centric goals,
such as mental stress [37], motivation [48], affinity [22] and boredom [13].

It is known that carefully designed task assignment improves crowdwork quality. For instance, introducing micro-
diversions [13] improves worker retention and contribution quality. Cai et. al. found that sorting impacts quality and
completion time for editing tasks [8]. That is the basis for our task ordering. TotalOrder is inspired from [8] and
Alternate is inspired from [13].

Many papers report that making other workers’ contributions visible improves skills during task completion
[19, 20, 29, 31, 32, 38, 42]. We use this kind of indirect communication among workers in our collaborative tasks. Our
solution chooses collaborative tasks that have higher learning potential, without requiring requesters to pay additional
costs.

2.3 Education Science and Theoretical Rationale

As Gadiraju pointed out, most crowdsourcing tasks are short and less time-consuming in nature, and workers face
an “on-the-fly” learning situation [24]. In education science, such a situation is called experiential learning [33], i.e.,
Manuscript submitted to ACM
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Table 1. Task Metadata: Number indicates difficulty or contributor’s skill. Three contributions are required for each task.

Contribution
Task ID Difficulty 1st 2nd 3rd

𝑡1 Hard (5) 5 5 -
𝑡2 Easy (1) 1 - -
𝑡3 Medium (3) 3 5 -
𝑡4 Easy (1) 1 3 -
𝑡5 Medium (3) 5 - -
𝑡6 Easy (1) - - -
𝑡7 Easy (1) - - -
. . . . . . - -

learning by doing. Experiential learning is a process in which learners actively build their own understanding in a
context-dependent manner, rather than learning by incorporating knowledge given by the teacher as it is the case in
classrooms. An important assumption in experiential learning is that learners have different levels of skills. Therefore,
experiential learning theory emphasizes the importance of choosing appropriate tasks for students, which is also the
case in our context. Flow [12] and ZPD [55] theories conceptualize this idea. Recently, flow theory was applied in the
physical world in on-the-job training [44], and was shown to be effective [15]. That is our rationale for adopting it as a
basis to develop algorithms to choose the optimal task difficulty level for a given learner.

2.4 Learning through task completion in the Physical World

There are other learning theories applied to learning through task completion in the physical world, such as situated
learning theory [41] and collaborative learning theory [6]. One representative of situated learning is Apprenticeship
where knowledge is propagated from experts to novice workers based on based on the principle of Legitimate Peripheral

Participation [41]. In this study, we design scaffolding based on the same principle. Collaborative learning is also
effective in online learning environments like MOOCs, and studies have shown that rich interactions such as peer
review, feedback and discussion promote learning [11, 14, 58].

We rely on those ideas as long as they do not require additional cost. For example, our collaborative tasks show a
reference answer given by other higher skilled workers.

3 FORMALIZATION AND PROBLEM DEFINITION

Example 1. We have three workers: a novice worker Mary, an intermediate worker John, and an

expert worker Sarah. Their initial uni-dimensional skill levels 𝜃 are 1, 3, and 5, respectively. Given the

tasks completed so far (Table 1), our goal is to assign to Mary a batch of 𝑘 = 5 tasks that maximize

her learning. The available tasks are chosen from {𝑡6, 𝑡7, . . .} as individual tasks and {𝑡1, . . . , 𝑡5} as
collaborative tasks.

Mary is a novice worker. Her ZPD [55] is medium difficulty level. She can only perform easy tasks

by herself and medium tasks with the support of John or Sarah. She cannot perform hard tasks even if

Sarah helps her. If we assign to Mary 𝑡3 and 𝑡5, we assume she can learn from seeing other workers’

contributions [20]. Furthermore, assigning over-challenging tasks to her may result in frustration, and

assigning under-challenging tasks may lead to boredom.

Manuscript submitted to ACM



6 Matsubara, et al.

3.1 Formalism

Tasks and Workers. Crowdsourcing supports two task types: 1) individual tasks, denoted 𝑖𝑑𝑣 , performed by a single
worker at a time, and 2) collaborative tasks, 𝑐𝑜𝑙 completed by several workers. Whether a task is an individual or a
collaborative task determines if a worker can see or not contributions from others while completing the task. For
example, image labeling and text editing are individual tasks if workers do them independently, but are collaborative
tasks if other workers’ labels and sentences are made visible to them. In collaborative tasks, it is known that workers
can learn from contributions by higher-skilled workers [20, 31]. Collaborative tasks can be completed in a fixed HTML
form, and in a collaborative environment such as Google docs.

We consider a set of workersW and a set of tasks T . When the distinction is not necessary, we use 𝑡 to refer to
either task types. Each worker completes tasks in batches. A batch B𝑖𝑤 is a sequence of tasks of mixed type completed
by a worker𝑤 at iteration 𝑖 .

The skill of a worker𝑤 at iteration 𝑖 is represented by 𝜃𝑖𝑤 . The difficulty of a task 𝑡 is denoted by 𝜃𝑡 . We assume that
worker skills and task difficulty are uni-dimensional and that the skills improve monotonically: the skill level remains
the same or increases as a worker completes more tasks [43, 54]. 𝜃0𝑤 (the skill of a worker𝑤 at iteration 0) and 𝜃𝑡 are
pre-computed (Section 5.1 under Exp. 1 Dataset and Flow describes for details on how skill and difficulty are estimated
in our experiments). The difficulty of a batch 𝜃B is defined simply as the average difficulty of all tasks in that batch:

𝜃B = 𝑎𝑣𝑔𝑡 ∈B𝜃𝑡

Learning potential. The learning potential of a batch of tasks B for a worker 𝑤 at iteration 𝑖 + 1 depends on two
factors: 1) the skill gap between 𝑤 ’s skill and tasks in B and 2) 𝑤 ’s performance factor. We now define these two
concepts.
Skill gap. Let skillgap(𝑤, 𝑡) be the function that evaluates the gap between the worker skill and the task difficulty to
reflect the hardness of completing 𝑡 by𝑤 .

For an individual task 𝑖𝑑𝑣 :
skillgap(𝑤, 𝑖𝑑𝑣) = 𝜃𝑖𝑑𝑣 − 𝜃𝑤

If other workers 𝑣 , whose skill 𝜃𝑣 is higher than 𝜃𝑤 , completed task 𝑡 so far, 𝑡 can be a collaborative task 𝑐𝑜𝑙 . The
skill gap is then reduced by other worker’s support, i.e. we assume worker’s skill become the average of 𝜃𝑤 and 𝜃𝑣 (If
𝜃𝑣 is higher than 𝜃𝑡 , it will be treated as 𝜃𝑡 ). Therefore, for a collaborative task 𝑐𝑜𝑙 :

skillgap(𝑤, 𝑐𝑜𝑙) = 𝜃𝑐𝑜𝑙 −
min(𝜃𝑣, 𝜃𝑐𝑜𝑙 ) + 𝜃𝑤

2
In Example 1, as specified in Table 1, 𝑡6 is an individual task, and 𝑡5 cannot be an individual task for Mary, but

should be a collaborative task. Thus, skillgap(Mary, 𝑡6) = 1 − 1 = 0, skillgap(Mary, 𝑡5) = 3 − (3 + 1)/2 = 1. In practice,
skillgap(𝑤, 𝑐𝑜𝑙) is time-dependent and only those workers 𝑣 who completed 𝑐𝑜𝑙 , and whose skill is higher than 𝑤 ’s,
will help improve the skill of𝑤 . We will consider this when we formalize our problem.
Performance Factor. Let 𝑠𝑖𝑤 be the performance factor of worker𝑤 at iteration 𝑖 . This factor captures the difference
between the expected performance and the observed performance of𝑤 for a batch of tasks B at iteration 𝑖 .

𝑠𝑖𝑤 ∈ [-1,1] reflects whether the observed performance is better than the expected (𝑠𝑖𝑤 is close to 1), same (𝑠𝑖𝑤 = 0), or
worse (𝑠𝑖𝑤 is close to -1). A worker’s learnable zone is extended when the performance factor is high.

observed (𝑤,B𝑖𝑤) is computed as the average worker performance for tasks in B𝑖𝑤 . We measure performance as a
tuple of quality and completion time. Those performance scores should be normalized, e.g. z-score: a standard deviation

Manuscript submitted to ACM
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Fig. 3. Learning potential distribution

from the mean.
observed (𝑤,B𝑖𝑤) = ⟨𝑎𝑣𝑔𝑡 ∈B𝑖

𝑤
quality(𝑤, 𝑡), 𝑎𝑣𝑔𝑡 ∈B𝑖

𝑤
time(𝑤, 𝑡)⟩

expected (𝑤,B𝑖𝑤) is computed as the average performance of past tasks whose skill gap is the same as tasks in B at
iteration 𝑖;

expected (𝑤,B𝑖𝑤) = ⟨𝑎𝑣𝑔𝑡 ∈B̂quality(𝑤, 𝑡), 𝑎𝑣𝑔𝑡 ∈B̂time(𝑤, 𝑡)⟩,

where B̂ = {𝑡 | 𝑡 ∈ {B1
𝑤 . . .B𝑖−1𝑤 }, 𝜃𝑡 ≃ 𝜃𝑡 ∈B𝑖

𝑤
}.

A worker’s performance factor is therefore measured as follows:

𝑠𝑖𝑤 = erf (d(observed (𝑤,B𝑖𝑤), expected (𝑤,B𝑖𝑤))),

where d(p, q) is a Euclidean distance of two vector p = ⟨𝑝1, 𝑝2, . . . , 𝑝𝑛⟩ and q = ⟨𝑞1, 𝑞2, . . . , 𝑞𝑛⟩

d(p, q) =

√√
𝑛∑
𝑖=1
(𝑞𝑖 − 𝑝𝑖 )2

and erf(𝑧) is Gauss error function of error 𝑧 (𝑧 ∈ Z):

erf (𝑧) = 2
√
𝜋

∫ 𝑧

0
𝑒−𝑥

2
d𝑥

We can now define the learning potential function that takes a worker𝑤 , a task 𝑡 , and a batch of tasksB, learning(𝑤, 𝑡)
and learning(𝑤,B𝑖+1𝑤 ), as follows:

learning(𝑤, 𝑡) = SN(0, 1, 𝑠𝑖𝑤) × 𝑒skillgap (𝑤,𝑡 )

learning(𝑤,B𝑖+1𝑤 ) =
∑

𝑡 ∈B𝑖+1
𝑤

learning(𝑤, 𝑡)

Manuscript submitted to ACM



8 Matsubara, et al.

Fig. 4. Schematic illustration of our problem

where SN(0, 1, 𝛼) is the skew normal distribution, and 𝛼 is shape parameter of skewness. The distribution is right
skewed if 𝛼 > 0 and is left skewed if 𝛼 < 0. When 𝛼 = 0, it corresponds to standard normal distribution. Figure 3 shows
the distributions of learning potential. The optimal skill gap that maximizes learning changes according to the worker’s
current performance factor. That is, the higher (resp. lower) the performance factor, the higher the optimal skill gap
(resp. lower). If there is a stagnation during the batch, the performance factor decreases. Thus, easier tasks will be
assigned for the next batch, expecting to reduce stagnation. In example 1, if 𝑠𝑖Mary = 0, her optimal skill gap is around 1.
For individual tasks, her learning potential is expected to be high in difficulty level (up to 2) and hence tasks 𝑡6 and 𝑡7
with an easy level, are optimal for her. For collaborative tasks, her learning potential is expected to be high with 𝑡5,
because skillgap(Mary, 𝑡5) = 3 − (3 + 1)/2 = 1. Interleaving individual and collaborative tasks in a batch will provide
different levels of task difficulty.
Learning Strategies. A learning strategy defines an ordering of tasks in a batch and takes into account the type of
tasks. We draw inspiration from [8, 17] and define several strategies and test them in our experiments. For task ordering:
NoOrder where tasks are presented in no particular order; TotalOrder where tasks are presented in increasing
difficulty; PartialOrder where tasks are grouped according to their difficulty and groups presented in increasing
difficulty; Alternate where tasks are grouped according to difficulty and groups presented in alternating difficulty
levels. For task type: individual tasks only; interleaving individual and collaborative tasks; collaborative tasks only.

3.2 Problem Definition

We are now ready to define our task assignment problem (Figure 4). Given a worker𝑤 and the batches of tasks completed
by𝑤 up to iteration 𝑖: B1

𝑤 . . . B𝑖𝑤 , find a batch B of at most 𝑘 tasks to assign to worker𝑤 at iteration 𝑖 + 1 such that:

argmax
B

learning(𝑤,B)

Our problem is to determine the right batch of tasks to provide to a worker at every iteration. At each iteration, one
of NoOrder, TotalOrder, PartialOrder, or Alternate is applied before providing tasks to workers.

Manuscript submitted to ACM
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Challenges. Our problem raises several challenges.

1. Assigning tasks to workers. Our problem is a variant of the Knapsack Problem [9]. Items are tasks and each task
has a value (in our case 𝑣 = learning(w, t)) and a weight (in our case 1), we want to find 𝑘 tasks that maximize the
sum of values

∑
𝑣𝑖 under a capacity constraint 𝑘 . What makes our problem simple is that the weight is equal to 1

which yields a top-𝑘 solution. Additionally, as the value of assigning a task to a worker depends on the worker and
evolves over time as other workers complete tasks, we need to account for that dynamicity in the task assignment process.

2. Handling different task types.Out of the 𝑘 tasks in each batch, some could be individual tasks, others collaborative.
We deliberately left out from our problem statement the proportions of each task type. It could be modified by adding
constraints that specify the exact numbers or bounds on each task type. It could also be left to the optimization objective
to pick and choose among task types. In this work, we propose to solve the batch problem first and then choose the
desired mix of task types according to a given learning strategy.

3. Updating task and worker information.Whenever a worker completes a task, the task’s metadata is updated, i.e.,
contributor’s answer and skill level are recorded, and the number of required contributions is reduced by 1. A worker’s
performance factor and skill also need to be updated after workers complete a batch. We do not limit worker withdrawal
and we update metadata only with observed performance. We assume that a worker’s skill improves monotonically:
the skill level remains the same or increases as time passes [43, 54]. A worker’s skill is updated as follows:

𝜃𝑖𝑤 = max
𝑡 ∈B𝑖

𝑤 |observed (𝑤,𝑡 ) ≥ ⟨�̃�,𝑇 ⟩𝜃𝑡 , 𝜃
𝑖−1
𝑤 ,

where �̃� and𝑇 are thresholds for quality and time completion at which a worker can be considered to have mastered
a task. These thresholds are defined as the worst value among workers whose skill is above the difficulty of the task.
Additionally, we need to set 𝜃𝑡 to 𝜃𝑖𝑤 if the observed performance exceeds the threshold in task 𝑡 .

Worker retention in the multi-batch case needs to be carefully formalized. For instance, assume a worker could
complete only one task per batch and stay the whole time (all 10 batches), and another worker could complete all tasks
in the first 3 batches and leave. It is difficult to determine which one of the two has a higher retention. Taking into
account such cases is planned for future work in which performance factor is considered in formulating retention.

4 OUR SOLUTION

We describe the overall architecture of our solution following which we describe our task assignment algorithm.

4.1 Overall architecture

Figure 5 shows the architecture of our solution. There are several components in the architecture and each component
is called at different times (either during the completion of a batch) or between batches:

In a preprocessing phase, (1) we compute worker and task metadata, and between iterations, (2) we assign tasks to
a worker (solve our problem and apply a task ordering), and (3) quantify the performance of that worker (quality of
contribution and completion time) and update that worker’s skill and performance factor.

To address (1), we ask available workers to perform a set of gold standard tasks to estimate worker skills and task
difficulty; we can directly measure them as we did in our experiments. (Details on how skill and difficulty are estimated

Manuscript submitted to ACM



10 Matsubara, et al.

Fig. 5. Overall architecture. 1) Preprocessing: estimate worker’s skill and task difficulty. 2) Task assignment: solve the Knapsack
Problem and apply a learning strategy, then assign the tasks to our worker. 3) Updating metadata: update task metadata during
completion of batch, and quantify the worker performance and update worker metadata after completion of batch.

Algorithm 1: Iterative Task Assignment, Ordering and Completion Algorithm

Input:𝑤, 𝜃𝑖−1𝑤 , 𝑠𝑖−1𝑤 ,T , 𝑙
1 B𝑖𝑤 ← call Algorithm 2 to solve Knapsack for worker𝑤 , tasks T
2 Apply learning strategy 𝑙 to B𝑖𝑤
3 for task 𝑡 in B𝑖𝑤 do
4 Let worker𝑤 complete task 𝑡
5 Calculate quality(𝑤, 𝑡) and time(𝑤, 𝑡)
6 Update task metadata
7 end
8 Update worker skill 𝜃𝑖𝑤 and performance factor 𝑠𝑖𝑤
9 Next iteration with𝑤, 𝜃𝑖𝑤 , 𝑠

𝑖
𝑤 ,T , 𝑙

in our experiments are described in Section 5.1 under Exp. 1 Dataset and Exp. 1 Flow). We can also use test theories to
calculate them such as Item Response Theory (IRT) [3] to compute worker metadata and difficulty of the tasks at once.
Using those difficulties as training examples, all available tasks are clustered into several difficulty levels by a 𝑘-NN
algorithm. The number of clusters is given by the task requester, and feature vectors for clustering depend on the task
type.

4.2 Assignment algorithm

To assign the tasks, we run Algorithm 1 that takes as input a worker𝑤 with skill 𝜃𝑖−1𝑤 and performance factor 𝑠𝑖−1𝑤 , a set
of available tasks T and a learning strategy 𝑙 , and returns a set of tasks B𝑖𝑤 for𝑤 . At a high level, the algorithm selects
the tasks assigned to a given worker according to contributions from other workers, and applies a learning strategy 𝑙 ,
NoOrder, TotalOrder, PartialOrder, or Alternate, to produce a task ordering. To solve the Knapsack problem, at
the beginning of each iteration, we calculate the learning of each task learning(𝑤, 𝑡) based on 𝜃𝑖−1𝑤 and 𝑠𝑖−1𝑤 , and find
top-𝑘 tasks. To update task and worker metadata, each time a individual task is completed, it is marked as done. Each
time a collaborative task is completed, the number of remaining workers to complete it decreases by one. Each time a
full batch is completed, the performance of the worker (contribution quality and completion time) and the worker’s
skill are quantified.

The top-𝑘 search can be computed linearly with the number of tasks (Algorithm 2). To make this search efficient, we
keep the sorted list of tasks in their difficulty. Then, we can prune irrelevant tasks that cannot have a larger learning
Manuscript submitted to ACM
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Algorithm 2: Solving Knapsack Problem
Input:𝑤,𝑘,T (Sorted in difficulty)
Output: B𝑖𝑤

1 Index 𝑗 ← The binary search result for finding optimal index at maximal learning potential
2 B𝑖𝑤s← a tentative set of 𝑘 tasks around 𝑗 that are likely to have high learning potentials
3 Set 𝑏𝑜𝑢𝑛𝑑𝑙 and 𝑏𝑜𝑢𝑛𝑑𝑢 to the lowest and highest indexes of the range of tasks whose learning potentials are

more than the minimum one in B𝑖𝑤
4 for 𝑖 ← 𝑏𝑜𝑢𝑛𝑑𝑙 to 𝑏𝑜𝑢𝑛𝑑𝑢 do
5 if 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔(𝑤,T [𝑖]) ≥ lowest learning potential of the B𝑖𝑤s then
6 Replace the lowest one of the B𝑖𝑤s with T [𝑖]
7 end
8 end

potential than a given threshold based on learning potential function 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔(𝑤, 𝑡). Therefore, finding a good threshold
is important for reducing the number of tasks to be examined. To find a good threshold, we can pick up a tentative set
of 𝑘 tasks that are likely to have high learning potentials (such as those in the middle range of the sorted tasks). Then,
we search again for the final set of 𝑘 tasks among the remaining range of tasks after pruning irrelevant tasks using the
minimum learning potential in the tentative 𝑘 tasks.

5 EXPERIMENTS

Our experiments are based on actual task deployments to verify the impact of learning strategies on skill improvement
and their performance in terms of quality and throughput1 of their contributions. Specifically, we first study the impact
of learning strategies applied to 12 or 120 individual tasks (Exp. 1). We further examine the workers’ learning and
performance in a series of collaborative tasks, and in a series of interleaved collaborative tasks and individual tasks
(Exp. 2). We use tasks that belong to the “Knowledge and Comprehension” class of Bloom’s taxonomy [5]. In particular,
we use image classification tasks in Exp. 1 and text editing tasks in Exp. 2. Scripts, data sets and worksheets used in the
experiments are available on GitHub.2

Summary of Results. We observed that learning strategies are effective in helping workers improve their skills.
Among the four task orderings, Alternate yielded the highest average skill improvement for individual tasks. We
also found that workers obtained higher skill improvement and throughput when completing interleaved collaborative
tasks and individual tasks, compared to collaborative tasks alone. All our results are statistically significant.

5.1 Exp. 1: Task ordering as a learning strategy

Exp. 1 Tasks. The task is to identify the specified blackbird given a pair of two bird images (Figure 6). The image pair
may be a red-winged blackbird and bronzed cowbird, bronzed cowbird and brewer blackbird, and brewer blackbird and
rusty blackbird.
Exp. 1 Dataset. We used images from the Caltech-UCSD Birds 200 images data set. The data set generated 2,186 tasks
or image pairs (728 pairs of red-winged blackbird and bronzed cowbird, 702 pairs of bronzed cowbird and brewer’s
blackbird, and 756 pairs of brewer’s blackbird and rusty blackbird). We randomly selected 120 tasks and crowdsourced
the difficulty rating of each task in Amazon Mechanical Turk. Workers with more than 99% HIT acceptance rate were

1Quality is checked against a ground-truth and throughput is defined as the number of tasks per minute.
2https://github.com/virtualtaskselection/task-assignment
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Fig. 6. The image classification task
Fig. 7. Difficulty rating task in AMT

Fig. 8. Flow of Exp. 1

Table 2. Task Composition of Treatment Tests for Exp. 1

Learning Strategy 12-task Experiment 120-task Experiment
NoOrder 12 tasks randomly taken from the task data set 120 tasks randomly taken from the task data set

TotalOrder 4 easy tasks (tasks 1-4), 4 medium tasks
(tasks 41-44), 4 hard tasks (tasks 81-84)

40 easy tasks (tasks 1-40), 40 medium tasks
(tasks 41-80), 40 hard tasks (tasks 81-120)

PartialOrder 4 randomly selected tasks each from the easy,
medium, and hard groups

40 randomly selected tasks each from the easy,
medium, and hard groups

Alternate 2 easy, 2 medium, 2 easy, 4 hard,
2 medium tasks

10 easy, 10 medium, 10 easy, 10 medium, 10 hard, 10 easy,
10 medium, 10 hard, 10 medium, 10 hard, 10 easy, 10 hard

recruited and paid $0.08 to give a difficulty rating to each task or image pair. Figure 7 shows a sample difficulty rating
task. Each task was rated by 5 workers. We derived the difficulty score of each task from the average ratings it received.
We then ordered the tasks according to their difficulty score and categorized them as follows: easy (tasks 1-40), medium
(tasks 41-80), and hard (tasks 81-120).
Exp. 1 Flow. Figure 8 illustrate the flow of Exp.1. First, a worker takes the pre-assessment test, consisting of 5 easy,
5 medium, and 5 hard tasks shown in random order. Next, a worker is assigned to a treatment group (NoOrder,
TotalOrder, PartialOrder, and Alternate) and takes the corresponding treatment test. There are 30 workers in a
group. The configuration of the treatment tests is specified in Table 2. After completing the treatment test, the worker
takes the post-assessment test, which is similar to the pre-assessment test but with different questions.

Since completing a large number of tasks may lead to a drop in performance, we wanted to see if the number of
tasks would affect the learning improvement and workers’ performance. Thus, we conducted two experiments: one
with 12 tasks and another with 120 tasks. Table 2 provides more details.
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Table 3. Results of 12-task Experiment

Learning
Strategy Quality Throughput

(tasks/min)
Skill

Improvement
NoOrder 0.93 7.85 0.12
TotalOrder 0.90 7.90 0.10
PartialOrder 0.90 4.93 0.04
Alternate 0.80 6.10 0.15

Table 4. Results of 120-task Experiment

Learning
Strategy Quality Throughput

(tasks/min)
Skill

Improvement
NoOrder 0.77 17.58 0.09
TotalOrder 0.81 15.19 0.02
PartialOrder 0.88 14.79 0.09
Alternate 0.81 16.82 0.18

In the 12-task experiment, 120 workers with 100% HIT approval rate contributed. Each worker was paid a total
of $0.90 for completing all the tests for an estimated duration of 9 minutes. In the 120-task experiment, another 120
workers with 100% HIT approval rate contributed. Each worker was paid a total of $3.90 for completing all the tests for
an estimated duration of 39 minutes. We recruited a total of 240 workers, 120 for the 12-task experiment, and 120 for
the 120-task experiment. This sample size enables us to observe 95% confidence level and 10% margin of error based on
the Central Limit Theorem [51].

Exp. 1 Evaluation.We recorded the scores workers obtained in pre-assessment, treatment, post assessment and the
number of tasks completed per minute (throughput). From the requester viewpoint, the measures are the quality of
aggregated results and overall throughput. From the worker viewpoint, the measure is individual skill improvement.
Based on the workers’ scores, we calculated their skill improvement as follows:

post assessment score − pre assessment score
pre assessment score

Exp. 1 Results. Tables 3 and 4 summarizes results. We observed that all treatments are effective in helping workers
improve their skill. In particular, Alternate yielded the highest average skill improvement in both 12-task and 120-task
experiments. The results are statistically significant with 𝑝 = 0.10 based on one-way Analysis of Variance (ANOVA)
test.

In the 12-task experiment, workers obtained the highest average quality score in NoOrder. Additionally, the highest
task throughput was observed in TotalOrder. In the 120-task experiment, workers obtained the highest average
quality score in PartialOrder and the highest task throughput in NoOrder.

We further analyzed workers’ skill improvement based on their original skill level. Based on their scores in the
pre-assessment test, we classified workers into novice, intermediate, and expert. Figures 9 and 10 show the average skill
improvement per group. We can see that Alternate is the best strategy for both novice and intermediate workers
while there is a ceiling effect for expert workers.
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Fig. 9. Skill Improvement in the 12-task Experiment Fig. 10. Skill Improvement in the 120-task Experiment

5.2 Exp. 2: Interleaving collaborative tasks and individual tasks as a learning strategy

We also investigated how workers learn through pure collaborative tasks (CTs) or in combination with individual tasks.
We conducted an experiment for novice and intermediate workers that compares two learning strategies. In the first
strategy (Figure 11), we asked workers to complete a series of CTs. In the second one (Figure 12), we asked them to
complete CTs interleaved with individual tasks.

Exp. 2 Tasks.We designed a collaborative and individual version of text editing task, which asks workers to correct
spelling and grammar errors of English paragraphs. Each paragraph has an average of 50 words. In the collaborative
version, workers are able to see answers of higher-skilled workers. From the sample task in Figure 11, we can see that
Worker 2 can see the answer of Worker 1 and has the option to simply edit the existing answer. In this setting, the
collaborator has always a relatively higher skill. In the individual version, workers do not see answers of a higher
skilled worker and have to work on the task independently.

Exp. 2 Flow. First, a worker takes a pre-assessment test to measure his/her English language skills through an English
grammar and vocabulary test (15 items). In the test, given 4 sentences, the worker must select the one with correct
grammar and vocabulary usage. Next, a worker is classified as novice-intermediate if he/she answered ≥ 90% of the
test correctly. Novice-intermediate workers then work using either the CTs only strategy (Figure 11) or the interleaved
strategy (Figure 12). Workers who correctly answer ≥ 90% of the test are classified as expert workers.

In the CTs only strategy, workers were asked to complete 6 collaborative tasks. In the interleaved strategy, workers
were asked to complete CTs interleaved with individual tasks. Tasks were presented to them in the following order: 2
CTs, 1 individual task, 2 CTs, 1 individual task, 2 CTs, 1 individual task. Lastly, novice-intermediate workers take a post
assessment test, which is similar to the pre-assessment test but with different questions.

We asked AMT 400 workers to take the pre-assessment test: 214 were experts and 186 novice-intermediate workers.
We then asked an expert worker to complete 6 text-editing tasks and used the worker’s answers as input in all the CTs.
Manuscript submitted to ACM



Task Assignment Strategies for Crowd Worker Ability Improvement 15

Fig. 11. Flow of Collaborative Task Learning Experiment (Collaborative Tasks Only)

Fig. 12. Flow of Collaborative Task Learning Experiment (Interleaved Collaborative and Individual tasks)

We invited novice-intermediate workers to complete tasks using the CTs only strategy (Figure 11) or the interleaved
strategy (Figure 12) and received 70 valid responses (35 per strategy). All workers had a HIT approval rate of 100%.
Workers who used the CTs only strategy completed the tasks for an estimated duration of 22 minutes and were paid a
total of $2.20. Those who used the interleaved strategy completed the tasks for an estimated duration of 27 minutes and
were paid a total of $2.70.

We recorded task throughput, average quality, and skill improvement. To measure answer quality, we used an online
grammar checking tool, Grammarly3 and recorded the overall score given by the tool. Skill improvement is computed
as in the Exp. 1.

Exp. 2 Results. The results for Exp. 2. are summarized on Table 5. The observations on skill improvement and
throughput are statistically significant based on a one-way ANOVA, where p = 0.10. While the quality observed in
both cases are not significantly different, the quality score was higher in the CTs only. We examined this further and
noted that the quality of CTs in both cases are similar. However, in the interleaved case, the individual tasks have lower
quality scores that affected the overall quality of the interleaved case.

For example, we look at Worker 1 who performed tasks in the interleaved case. The average quality of the 6 CTs
performed by Worker 1 is 0.97. However, the average quality of the 3 individual tasks he/she performed is only 0.70. As
a result, his/her overall quality is only 0.88.
3www.grammarly.com
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Table 5. Comparison of Collaborative Tasks Only vs. Interleaved Collaborative and Individual Tasks

Learning
Strategy Quality Throughput

(tasks/min)
Skill

Improvement
Collaborative
tasks only 0.93 0.28 0.06

Interleaved collaborative
and individual tasks 0.88 0.34 0.42

On the other hand, skill improvement is significantly higher in the interleaved case compared to the CTs only case.
Worker 1 is one of the workers whose skill improved. Initially, he/she obtained a score of 0.60 in the pre-assessment test
then eventually obtained a score of 0.93 in the post-assessment test. Using the same formula for skill improvement in
Exp. 1, Worker 1’s skill improvement score is 0.56.

The higher skill improvement in the interleaved case may be attributed to the fact that individual tasks are similar
to CTs, which may have contributed to the learning of the worker. Moreover, in the case of CTs only, since there are
already answers from expert workers, the novice-intermediate workers may have become under-challenged, resulting
in a lower skill improvement.

Throughput is also observed to be higher in the interleaved case. We can conjecture that as skills improve, workers
become more proficient and faster.

In the future, we need a further investigation comparing to individual tasks only or collaborative tasks only with
the same number of tasks. We will also need to investigate an impact of different types of individual tasks on learning
when interleaved with collaborative tasks.

6 CONCLUSION AND PERSPECTIVES

In this paper, we developed task assignment and completion strategies that implement learning strategies that are
grounded in existing theories. We showed that optimizing task assignment toward workers’ learning has a positive
effect on skill improvement, task throughput and contribution quality in image classification and text editing tasks. In
particular, strategies that alternate task difficulties achieve the best balance between worker-centric and platform-centric
goals.

6.1 Generalization to other task types

We have shown that our results are beneficial for citizen sciences, where we often see long-term commitment of
workers. While our experiments focused on image classification and text editing tasks, they are applicable to some of
the tasks in Bloom’s “Knowledge and Comprehension classes” such as labeling, counting, transcription, and spelling
and grammar [5], because they have a ground truth where workers can improve their skills by completing individual
tasks, or learn from each other in collaborative tasks.

It is however unclear whether our framework can be applied to tasks in Bloom’s “Evaluation and Synthesis class”
such as design, creation, examination, and critique. As those tasks require more advanced skills than knowledge and
comprehension class tasks, rich interaction is expected, and is likely to be necessary to improve skills [2, 25, 36, 59].
Since we cannot avoid additional cost required by rich interaction, how to balance platform-centric and worker-centric
needs for such tasks is challenging.
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6.2 Toward a more expressive framework

We are currently exploring several avenues to make our framework more expressive. Regarding learning potential,
our main assumption was that learning depends on a worker’s performance factor which is modeled as the difference
between expected and observed performance. In our new formulation, we seek to design holistic workflows that balance
learning and productivity. In [56], a workflow called CrowdSCIM provides high learning gain but completion time
is significantly longer (10 min. more) than other methods. As a result, deciding which workflow is better could be
formulated as an optimization objective that combines learning and productivity.

Hettiachchi proposed assessing worker’s cognitive skills and subsequent assignment based on strong cognitive skills
improves contribution quality [26]. This could potentially be combined to further improve both worker satisfaction and
task outcomes. This formulation can be leveraged to study long-term effects of learning by deploying tasks during an
extended period, and measuring worker satisfaction, retention, and performance over time.

We would also like to study the impact of revealing other workers’ contributions on the learner’s response [42]. This
priming can improve crowdwork quality for task types with objective answers [20], but in tasks that require subjective
answers, this may introduce a selection bias and reduce diversity. In this context, we would like to investigate how
enabling self-correction in which workers are allowed to change their contribution after seeing other responses [50],
impacts learning.

To enable the above, we need to revisit our formulation to assign tasks to several workers at a time. This raises new
computational problems [48] that need to account for the evolution of skills of multiple workers at a time. In particular,
this will impact collaborative task assignment that will need to be adaptive and account for a holistic treatment of
workers.
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