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Abstract: In this paper, we introduce a hybridization-based feedback control synthesis method
for potentially unstable nonlinear continuous-time systems. We construct a discretization and
feedback control that ensures dissipation form of incremental input-to-state stability property
that a number of abstraction-based control methods rely on or benefit from. This enables the
use of these methods also for the case of potentially unstable systems, to achieve a reachability
or a temporal logic specification. We furthermore show that the algorithm can also improve
abstraction-based methods that do not rely on stability assumptions by reducing the number of
constructed abstract states and non-deterministic transitions. We illustrate the benefits of our
approach in simulations featuring a cart-pendulum.
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1. INTRODUCTION

The main idea of abstraction-based control synthesis tools,
such as CoSyMa, SCOTS, or ROCS, is to break down
the state space of a dynamical system into sub-regions,
seen as abstract states, and capture the dynamics as
transitions between these abstract states (Mouelhi et al.,
2013; Rungger and Zamani, 2016; Li and Liu, 2018).
Controllers can then be synthesized as maps from the sub-
regions to control inputs. Abstraction-based methods are
motivated by three main reasons. First, different classes of
dynamics can be represented in the form of a generic state-
transition system as shown by Reißig (2011). In addition,
they enable consideration of hybrid systems that include
both continuous dynamics and discrete switches (Tabuada,
2006). They also allow control synthesis for specifications
beyond stability or reachability, for example by integration
of various forms of temporal logic (Liu and Ozay, 2014;
Yordanov et al., 2011).

However, abstraction-based control synthesis can become
computationally prohibitive in complex systems. Transi-
tions between abstract states may be non-deterministic
since each abstract state corresponds to an infinite set of
states in the actual system. As a result, a choice of very fine
sub-regions can be required, resulting in many abstract
states. Furthermore, to ensure a correct correspondence
between the synthesized controller for the abstraction and
its implementation on the original system, various abstrac-
tion methods rely on imposing certain assumptions on the
dynamics that allow for deriving formal relations between
the abstraction and the system; for example, simulation
relation (Girard and Pappas, 2007) or refinement relation
(Rungger and Zamani, 2016). An abstraction refinement
procedure is proposed by Li and Liu (2018) that allows

for less restrictive assumptions on the dynamics by an
adaptive iterative refinement of the sub-regions. While an
adaptive refinement policy can be computationally benefi-
cial compared to static fine abstractions, it can still result
in many abstract states, depending on the dynamics.

In this work, we address the problem of abstraction-based
control synthesis for a non-linear system with dynamics
uncertainty. We propose a local multi-step state-feedback
synthesis approach to reduce the non-deterministic tran-
sitions and the need for abstraction refinement to ulti-
mately move toward more scalable abstraction-based con-
trol synthesis. We show that unstable non-linear systems
can be transformed to incrementally stable systems in
regions with controllable local linearizations; such regions
commonly span most of the state-space in physical sys-
tems. For example, in a cart pendulum system, local lin-
earizations are controllable everywhere except around the
horizontal positions of the pendulum. We demonstrate in
simulations that even in the other regions, the proposed
multi-step feedback synthesis approach can allow for fewer
abstract states compared to a purely symbolic approach
with fixed discretized control inputs. Furthermore, we dis-
cuss how such multi-step state-feedback can be used to
speed up abstraction-based methods in general.

Contribution The contributions of this paper can be
summarized as follows: We first provide a method that
utilizes established works in reachable set computation
and affine dynamics approximation to provide the time
discretization of the system (Section 3). Second, in our
main contribution, we design multi-step feedback control
synthesis algorithm to ensure incremental input-to-state
stability for the closed loop dynamics; the stable system
can then be used for symbolic control (Section 4). Finally,



we demonstrate the benefits of using our approach via
a simulation on a cart-pendulum system example (Sec-
tion 5).

1.1 Related work

The idea of using feedback control in order to reduce
the number of transitions in an abstraction has also been
explored by Sinyakov and Girard (2020), specifically for
monotone systems. In contrast to this work, we aim at
decoupling the state-feedback policy from the abstraction
construction to allow integration with various existing
abstraction tools, including tools that do not assume
system monotonicity.

The main challenge of feedback synthesis for non-linear
non-monotone systems is that even in case where the
system has controllable Lie groups, the linearization of
the continuous-time system might not be controllable and
the discretization of the system might not be controllable
in one time step. Some works thus proposed multi-step
state-feedback control synthesis for discretizations of non-
linear systems (Schürmann and Althoff, 2017; Tajvar et al.,
2019). The main contrast in this paper is that instead
of dynamic linearization around pre-defined system tra-
jectories, we adopt a hybridization approach to construct
local discrete-time models that allow computation of state-
feedback policies. While the proposed approach requires an
additional hybridization step, it can be used to construct
abstraction that can be reused for different specifications.

1.2 Motivating example

Consider a simple double-integrator system f : ẍ = u. Let
us assume that we control this system with a 1 second
sampling time and bounded input u ∈ [−1, 1].

This system is linear but unstable, and as a result, the
reachable set from any initial set in the state space grows
over time. Fig. 1.(a) shows the reachable set in 2 seconds
from set [−0.5, 0.5] × [−0.5, 0.5] in light green for the
fixed input u = 0.5. It can be seen that the reachable
set spans three cells in the state space. This would re-
sult in a nondeterministic transition in the corresponding
abstraction. However, the reachable set can be smaller if
state-feedback is used, as illustrated in dark green for 2-
step state-feedback constructed via our proposed method.
State-feedback policies can be derived globally for linear
systems, but in general not for non-linear systems. We sug-
gest an approach to construct hybridizations of non-linear
systems for computation of local state-feedback policies.
Namely, we divide the state space into finite set of smaller
regions, and construct a local state-feedback for each of
them.

The expansion of the reachable set in general is one of
the major bottlenecks in the application of abstraction-
based methods. It can in general result in infeasibility of
tools that use fixed abstractions, such as SCOTS (Rungger
and Zamani, 2016), for unstable systems. In tools such
as ROCS (Li and Liu, 2018) where adaptive abstraction
refinement is employed for computing backward reachable
sets, the expansion of the reachable set will require the
starting set being smaller than the target set in backward
reachability computation. For instance, let us look at the
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Fig. 1. (a) Reachable set contraction with feedback. (b)
Backward reachable set using feedback.

backward reachable set of the target set [−0.2, 0.2] ×
[−0.2, 0.2] (in red) in 2 seconds with bounded input
[−1.0, 1.0] in Fig. 1.(b). The green (thinly outlined) cells
are computed following the abstraction refinement method
used by Li and Liu (2018) without state-feedback, while
the blue (thickly outlined) cells are computed using the
same abstraction refinement approach augmented with
state-feedback proposed in this paper. It can be seen that
using feedback allows finding backward reachable sets that
can be larger than the target set, which is desired for
computational efficiency.

For the local state-feedback computation, we propose syn-
thesizing k-step discrete-time control to keep the reachable
set size within pre-defined bounds. This is not necessarily
possible in k = 1 step depending on input degrees of
freedom, but it is possible in finite time steps as long as
the system is locally controllable. We will later show that
even for uncontrollable linearized dynamics, the synthe-
sized controller can reduce non-deterministic transitions
by shrinking the reachable sets. This approach allows di-
rect incorporation of input bound constraints and does not
require design of a convergence assessment function as for
example control Lyapunov functions. Using our approach,
a part of the input space becomes unavailable for symbolic
control as it is reserved for feedback. For instance, in Fig. 1
we observe that the blue cells do not entirely cover the
area that is covered by the green cells; this is because we
cannot use the entire input range as a result of allocating a
part of it to the state feedback. Hence, there is a trade-off
between computational efficiency determined by the size
of the reachable sets, and conservativeness influenced by
not being able to use a part of the input space for symbolic
control. We discuss this trade-off in Section 4.

1.3 Notation

Let us denote the set of real numbers by IR, an n-
dimensional vector space by IRn, and an m × n matrix
space by IRm×n. We use pi to refer to the i-th element of
a vector p ∈ IRn.

The Minkowski sum A ⊕ B of two sets A ⊂ IRn and
B ⊂ IRn refers to the following set:

A⊕B = {a+ b | a ∈ A, b ∈ B}. (1)

A zonotope Z(µ,G) ⊂ IRn, where µ ∈ IRn and G ∈ IRm×n,
refers to the centrally symmetric set

Z(µ,G) = {x ∈ X | x = µ+Gω, ω ∈ [−1, 1]n}, (2)

where [−1, 1]n ⊂ IRn represents the Cartesian product of
closed [−1, 1] intervals. We refer to µ as the center of the
zonotope and G as the set of generators. Z.µ and Z.G



are used to refer to the corresponding parameters of the
zonotope Z.

A box B(µ,G) is a special case of a zonotope where all of
the off-diagonal elements of G are zero. The size of a box
|B| is the vector of its interval lengths in each dimension.
We use the box operator 2Z to denote the tight box over-
approximation of the zonotope Z.

The following zonotope operations are used in this paper:

A× Z, where (A× Z).µ = AZ.µ,

(A× Z).G = AZ.G;

Z + Z ′, where (Z + Z ′).µ = Z.µ+ Z ′.µ,

(Z + Z ′).G = ZG + Z ′G;

Z ⊕ Z ′, where (Z ⊕ Z ′).µ = Z.µ+ Z ′.µ,

(Z ⊕ Z ′).G = [Z.G|Z ′.G],

where [Z.G|Z ′.G] denotes the concatenation of the two
matrices along their columns.

We denote the farthest distance between two sets S and
S′ as ∆(S, S′) = sup

s∈S
sup
s′∈S′

||s− s′||∞.

A function β : [0,∞)→ [0,∞) is said to be class K∞ if it
is strictly increasing, β(0) = 0, and lim

v→∞
β(v) =∞.

2. PROBLEM FORMULATION

Let us consider continuous-time system Σ with dynamics
that is affine in relation to disturbance w(t):

Σ : ẋ(t) = f(x(t), u(t)) + w(t), (3)

where x ∈ X ⊂ IRn, u ∈ U ⊂ IRm, and w ∈ W ⊂ IRn are
the system state, input and disturbance respectively. We
use x : IR → X , u : IR → U , and w : IR → W, to denote
signals in the corresponding spaces.

Regarding the continuity of the dynamics, let us make
following assumption:

Assumption 1. The function f is twice differentiable and
its Hessian is element-wise bounded:

max
l,l′,z∈X×U

∣∣∣∣ ∂2f

∂zl∂zl′
(z)

∣∣∣∣ ≤ h. (4)

Problem 1. Given a continuous-time system Σ, an initial
set X0 ⊂ X , and a sample interval T , find a control policy
ν(x) : X → U such that the closed-loop time-sampled
system F cl(x, u∗) = F (x, u∗ + ν(x)) satisfies:

∀x, x′ ∈ X0 ∧ u∗ ∈ U∗,
∆(F cl(x, u∗), F cl(x′, u∗))− ||x− x′||∞

≤ −β(||x− x′||∞) + ω,

(5)

where β is a class K∞ function, ω ∈ IR and U∗ = {u∗ |
∀x ∈ X0, u

∗ + ν(x) ∈ U} is the set of inputs that will
remain in U after the application of the state-feedback
control.

Equation (5) is a special case of the dissipation-form
incremental input-to-state stability, i.e. Definition 7 in
Tran et al. (2016), where energy function V (.) = ||.||∞ and
the discrete time function is an implicit map function of
the disturbance. F cl(x, u∗) will be then the discrete-time
stabilized dynamics that can be used for symbolic control
synthesis towards, for example, a reachablity or temporal
logic specification.

3. DISCRETE-TIME HYBRIDIZATION

We recall that F (x, u) is the reachable set of system (3)
from state x ∈ X and under input u ∈ U that cannot,
in general, be computed precisely for a non-linear system.

Hence, in this section, we focus on computing Σ
k

: X ×
U ⇒ IRn, that is a k-step over-approximation of the time-
discretization F of system (3). Furthermore, we require

Σ
k

to be piecewise-affine for the application of our local

state-feedback synthesis in Section 4. In Σ
k
, the state-

input space X × U is decomposed into P partitions, X ×

U =
P⋃
p=1

Xp × Up. For each partition p ∈ P , F p is an

affine map and is computed so that ∀(x, u) ∈ Xp × Up,

F (x, u) ⊆ F p(x, u) = {Apx+ Bpu+ cp} ⊕Wp.

The problem of reachable set construction has been previ-
ously addressed for affine systems by Girard et al. (2006),
who introduced a highly efficient procedure to compute
approximations of reachable sets. The key idea therein is
to use zonotopes for the representation of the approxima-
tions. Since zonotopes are closed under linear transforma-
tions, the wrapping effect (propagation of error) is avoided,
and the resulting approximations are tight.

While some approaches can be used to compute over-
approximations of the reachable set for nonlinear systems
(Althoff and Krogh, 2014; Rungger and Zamani, 2018),
representations used therein are not directly applicable
for the purpose of this paper, i.e. synthesis of a feedback
controller. This is particularly because in computation
of the reachable set in the mentioned works, the time
interval is divided to sub-intervals and at the end of each
sub-interval the reachable set up to that time point is
decomposed into sub-sets to reduce the approximation
errors. As a result of these intermediate decompositions,
the final reachable set cannot be directly formulated as a
function of the initial state and input, which is a property
that we need to design a state-feedback controller.

3.1 1-step hybridization

In our proposed hybridization method, we track the reach-
able set Ω from an initial set XS ⊆ X as the Minkowski
sum of three components that construct the set: Ω = ΩX⊕
ΩU ⊕ ΩW where ΩX is the state reachablity component,
ΩU is the input reachability component, and ΩW is the
disturbance reachability component and each component
is represented as a zonotope. We denote Ω as a 3-tuple
(ΩX ,ΩU ,ΩW ). When computing the intermediate reach-
able sets for sub-intervals, we only let the algorithm de-
compose the state and input components, which allows
us to retain a map between the state and input to the
reachable set.

The hybridization procedure is summarized in Algorithm 1
which takes as an input the nonlinear system, the sam-
ple interval T , a starting zonotope XS and two design
parameters – the desired error bound δ and the number
of sub-intervals N that the sample interval T should be
split into. Each of the N sub-intervals will have length τ
(line 1). In the beginning, XS × U is the only mode that
is considered for affine approximation (line 4). The main



Input : Nonlinear system ẋ = f(x, u); Disturbance zono-
tope W; Sample interval T ; Starting zonotope
XS ⊆ X and US ⊆ U ; Desired error bound δ;
Number of sub-intervals N ;

Output: Discrete-time PWA system Σ;

1 τ ← T/N ;
2 ΩX ← XS ; ΩU ← ∅; ΩW ← ∅;
3 Ω← (ΩX ,ΩU ,ΩW );
4 List ← {(Ω, US)};
5 Σ

T ← {};
6 while List 6= ∅ do
7 (Ω0, U)← pop(List)
8 for i← 0 to N − 1 do
9 Φi ← Inflate(Ωi, U, f,W, τ);

10 (A,B, c, V )← AffineApprox (f,Φi, U)

11 (Ad,Bd, cd)← DiscretizeAffine(A,B, c, τ)

12 V d ← DisturbApprox (V ⊕W,A, τ)

13 Ωi+1
X ← AdΩiX ;

14 Ωi+1
U ← AdΩiU + BdU ;

15 Ωi+1
W ← AdΩiW ⊕ V d;

16 Ωi+1 ← (Ωi+1
X ,Ωi+1

U ,Ωi+1
W );

17 if |ΩNW | ≤ δ then
18 F (Ω0)← AffineParameters(Ω0, U)

19 Σ.append((ΩN , U, F ))
20 else
21 List .append({Refine((Ω0, U))})

22 return Σ

Algorithm 1. Discrete-Time Hybridization

cycle (lines 6-21) then processes affine modes one by one
and either finds a discrete time affine function F for them
(line 18-19), or refines them and queues them for affine
approximation in the next iteration of the cycle (line 21).
The inner cycle considers each sub-interval and computes
intermediate reachable sets for them (lines 8-16).

Let us now go in detail through the functionalities used in
the algorithm.

Inflate In order to compute a valid discretization of
the dynamics in region Ωi, we need to construct the
continuous-time affine over-approximation in region Φi

where the states are guaranteed to stay during the dis-
cretization interval. This can be computed using a reach-
able tube approximation algorithm such as one presented
by Althoff and Krogh (2014) and is invoked in the algo-
rithm as Inflate(Ω, U, f,W, τ) (line 9).

AffineApprox Under the Assumption 1 we can compute
an affine over-approximation of the non-linear function f
in the region Φi × U ⊆ X × U as proposed by Dang et al.
(2010) and refer to it as AffineApprox (f,Φi, U). This way,
we have computed affine inclusion approximation of f that
is valid in Φi, i.e. f(x, u) ∈ Ax + Bu + c ⊕ V , with V
corresponding to the zonotope over-approximation of the
linearization error set (line 10).

DiscretizeAffine For an affine system ẋ = Ax+Bu+ c,
the three-component representation of the reachable set
can be computed in a closed form ΩX = Ad × XS + cd,

ΩU = Bd × US and ΩW = ∅, where:[
Ad Bd cd

0 I

]
= e

[
A B c
0 0 0

]
T

(6)

as explained by DeCarlo (1989). In our method, we invoke
this functionality as DiscretizeAffine(A,B, c, T ) (line 11).

DisturbApprox For a linear system subject to a distur-
bance ẋ = Ax+Bu+w, the ΩX and ΩU can be computed
using (6). ΩW , however, cannot be computed in a similar
way as the disturbance does not remain constant between
the time samples. Given that w ∈ W , the reachable set
from the disturbance can be computed as follows:

ΩW =

T∫
t=0

eAtW. (7)

The exact computation of (7) is not a zonotope, but we
can compute a zonotope over-approximation of (7). Such
over-approximation can be achieved for example via the
method proposed by Althoff et al. (2008); let us assume
that the function DisturbApprox (W,A, T ) provides this.
The discrete time error is thus set including both the
contribution from the continuous disturbance and the
linearization error (line 12).

We note that the input reachable set component is com-
puted as a AdΩU

i + BdU (line 14), hence, keeping the
number of generators fixed throughout the iterations. This
is because of the ZOH discretization that keeps the in-
put fixed throughout the time step T . In contrast the
disturbance reachable set component is computed as the
Minkowski sum, hence, adding new generators at each
iteration (line 15).

If the discrete-time error of the affine mode is within the
predefined size δ (line 17), this mode is added to the
resulting PWA Σ (line 19). Otherwise it will be refined
into smaller regions in the state input product space (line
21) and the procedure is repeated for each region.

AffineParameters When a mode is being added to the
resulting PWA, we have its representation in the means of
the sum of three zonotope components. From them, we can
calculate the parameters of the discrete-time affine approx-
imation of the dynamics through the AffineParameters
procedure (line 18) as follows:

A = ΩNX .G X.G−1 (8a)

B = ΩNU .G U.G−1 (8b)

c = ΩNX .µ+ ΩNU .µ−A X.µ−B U.µ (8c)

W = 2(ΩWN ). (8d)

Note that since X is a box, X.G is diagonal matrix and
invertible. Similar holds for U .

Correctness Note that since all states reachable from
Ωi within τ are in Φi and the i-th step continuous

approximation f
i

= Ax+B+ c⊕V is conservative in Φi,
Ωi+1 is indeed an over-approximation of the reachable set
from Ωi within τ . Based on this observation, we formulate
the following lemma summarizing the properties of the
resulting PWA.



Lemma 1. F is a discrete-time affine function and it is a
conservative abstraction of F in XS .

Proof 1. Consider x(0) ∈ XS = Ω0. Let x(iτ) ∈ Ωi. By the
definition of inflation we have: ∀t ∈ [iτ, (i+1)τ ], x(t) ∈ Φi.
As a result of affine approximation we have:

∀u ∈ U, t ∈ [iτ, (i+ 1)τ ] f(x, u) ∈ f i(x, u),

and hence:

χf (τ ;x(iτ), u) ∈ χ
f
i(x(iτ), u),

where χf (τ ;x(iτ), u) is the reachable set of the original
system from x(iτ) under constant input u and χ

f
i is the

reachable set of the over-approximation f
i
. We can further

see that

χ
f
i(x(iτ), u) = {Aix+Biu+ ci} ⊕ ΩW

and x((i+1)τ) = χf (τ ;x(iτ), u), which implies that x((i+
1)τ) ∈ Ωi+1. Therefore, by induction we can show that for
all x(0) ∈ XS , u ∈ U :

F (x, u) ∈ AN (AN−1...)⊕{BNu}⊕ {cN}⊕WN
def
= F (x, u).

2

Termination Algorithm 1 guarantees that in case of
termination, the calculated error set will be within the pre-
defined bounds δ; however, Algorithm 1 is not guaranteed
to terminate for an arbitrarily small δ. The imposed lower
bound on δ is an inevitable artifact of imposing the three
component structure on the reachable set. As the distur-
bance component cannot be refined in the intermediate
steps τ , the accumulated error cannot be arbitrarily small.
This is in contrast to the methods where reachable sets can
be computed with arbitrary precision and such structure
cannot be imposed on the reachable set, such as (Rungger
and Zamani, 2018).

3.2 Multi-step hybridization

To obtain a k-step hybridization Σ
k

: X × Uk ⇒ IRn of
the continuous dynamics f for a given design parameter
k, Algorithm 1 is first run with XS = X , US = U
(or a zonotope over-approximation of those, if the are

not zonotopes themselves) to obtain Σ
1
. We note that

the reachable set of each mode of the PWA output of
Algorithm 1 is a zonotope itself and is therefore compatible
as an input for this algorithm. The 2-step hybridization is
obtained by setting XS = Ω0 and US = U for each mode of

Σ
1
, etc., and finally Σ

k
is obtained by applying Algorithm

1 to XS , US obtained from Σ
k−1

.

4. FEEDBACK CONTROL SYNTHESIS

In this section we present our approach to synthesizing a

feedback controller for the k-step PWA hybridization Σ
k

obtained using k applications of Algorithm 1. For each

affine mode F
k

of the system, we will compute a feedback
controller that is valid in a subspace Ω0 × U ⊆ X × U .
Such a controller is designed to guarantee that – starting
from a given set Ψ ⊆ X in the state-space – the size of
the reachable set will be smaller than a prescribed design

parameter |Ξ| (|Ξ| is a vector and Ξ is a box) after the
fixed k number of time steps.

The control synthesis problem is formulated as a linear
programming problem, where we aim to minimize the
input-effort that is required to keep the size of the reach-
able set within the prescribed values:

min
ν, α

α

s.t. ∀x0 ∈ Ψ, Cν(x0 : xk−1) ⊆ αU (9a)

∀x0 ∈ Ψ, F
(k)

(x0, Cν(x0 : xk−1)) ⊆ Ξ (9b)

0 ≤ α ≤ 1, (9c)

where Cν denotes a general form of control ν given a
sequence of states from time step 0 to k − 1. The goal
of the optimization is to find a controller that keeps the
state uncertainty within the required bounds with the least
input effort. The remainder of the input spectrum, i.e. U∗,
can then be used for steering purposes later.

We propose two different implementations of (9).

Control synthesis with initial state feedback In this for-
mulation, the controller becomes Cν(x0 : xk−1) = νx0; ν
matrix should therefore have k×m rows and n columns to
map the initial state to each input during the k time-steps,
where n andm are the number of states and inputs, respec-
tively. This formulation makes the controller indifferent to
the evolution of the state during the k time-steps as the
control inputs are planned ahead. The k-step disturbance

set W
(k)

in this case will be the accumulated disturbance
during this time as it will not be compensated:

W
(k)

= W ⊕AW ⊕ ...⊕Ak−1W.

This approach is thus favorable for cases where the system
disturbance is small as it only requires k×m×n = O(kmn)
variables for the controller, leading to a relatively small
linear programming problem. However, since the controller
uses state feedback only once in every T time steps, a
feasible policy might not exist to ensure the prescribed
reachable set size. As a remedy, we propose an alternative
implementation with full state feedback.

Control synthesis with full state feedback Let x0 : xk−1

be the discrete sequence of states from time step 0 to
k − 1. In this formulation, the controller becomes Cν(x0 :
xk−1) = ν(x0 : xk−1); ν matrix should therefore have
k × m rows and k × n columns to map the the states
during the k time-steps to each input during this period.
Note that considering causality, the number of actual
control variables is (k × (k + 1))/2 ×m × n = O(k2mn).
This formulation results in a larger linear programming
problem, but allows a fully closed-loop policy.

4.1 Implementation of LP constraints

Let us go through the implementation of the constraints
for the case where the controller is synthesized as a
function of the initial state, i.e. Cν(x0 : xk−1) = νx0.
The extension to the controller with full state feedback is
straightforward.

To impose constraint (9a), we introduce an auxiliary
matrix νabs that is the element-wise absolute value of



matrix ν. We can impose (9a) as linear constraints as
follows:

ν ≤ νabs (10a)

− ν ≤ νabs (10b)∑
g∈X.G

νabs|g| ≤ νU. (10c)

where g iterates the generators of the zonotope X and
inequalities are element-wise. To impose constraint (9b),
we note that the closed loop dynamics of the system
becomes (A− νB)x⊕W . We introduce another auxiliary
matrix Aabs

cl that is the element-wise absolute value of
the the matrix A − νB. We can impose (9b) as linear
constraints as follows:

A− νB ≤ Aabs
cl (11a)

−A− νB ≤ Aabs
cl (11b)∑

g∈X.G
Aabs
cl |g|+

∑
g′∈W.G

|g′| ≤ |Ξ|. (11c)

where g and g′ iterate the generators of the zonotopes X
and W respectively and inequalities are element-wise.

4.2 Analysis

Let us now look into the necessary and sufficient conditions
for feasibility of the LP problem (9) for an affine mode with

dynamics F
k
. We can obtain the upper bounds on the

initial set size |Ψ| and lower bounds on the target set size
|Ω| that guarantee the feasibility of (9) from the reachable
set components of the dynamics.

Regardless of the control policy, the reachable set of the

closed loop dynamics F
k
(x0, Cν(x0 : xk−1)) is larger than

or equal to the reachable set from disturbance |2ΩW | as
the disturbance is not known a-priori. So one necessary
condition is that |2ΩW | ≤ |Ξ|. We note that ΩW includes
both the continuous time disturbance contribution and the
linearization error in the affine mode. On the other hand
if the target is larger than the reachable set without input
|2(ΩX ⊕ ΩW )| ≤ |Ξ|, (9) is trivially solved with α = 0.

Let us introduce the inner box @ ΩU of the zonotope
ΩU .The inner box of a zonotope can be computed as an
LP. @ ΩU indicates the area where the reachable set of
a state can be moved independently in each dimension
through the input. This is therefore a lower bound on how
the reachable set can be modified through state feedback.
As a result (9) is feasible under the following sufficient
condition:

|Ξ| ≥ max(|2ΩX |+ |2ΩW | − | @ ΩU |, |2ΩW |). (12)

Fig. 2 shows an example of the three components of the
reachable set, i.e. ΩX ,ΩU ,ΩW for an inverted pendulum
in a region around the upright position.

Theorem 1. Let us assume for a starting set Ψ, a target
set Ξ can be chosen such that it satisfies (12) for affine
dynamics F and |Ξ| ≤ r|Ψ|+ |2ΩW | where 0 ≤ r < 1. The
closed loop dynamics in Ψ (controlled with the solution to
(9)) satisfies dissipation from input-to-state incremental
stability (5).

Proof. The closed loop dynamics from Ψ as a solution
to (9) becomes (A − νB)x ⊕ 2ΩW . Let e be the greatest
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Fig. 2. (a) State reach set. (b) Input/disturbance reach
sets.

eigenvalue of A − νB and E be the boundary state in
Ψ along the corresponding eigenvector. Assuming e > r,
the reachable set from the E becomes eE ⊕ 2ΩW that
contradicts |Ξ| ≤ r|Ψ| + |2ΩW |. Therefore, r is an upper
bound on the eigenvalues of A− νB. We get as a result:

∆(F cl(x, u∗), F cl(x′, u∗)) ≤ r(||x− x′||∞) + ||2ΩW ||∞
(13)

following:

∆(F cl(x, u∗), F cl(x′, u∗))− ||x− x′||∞
≤ (r − 1)(||x− x′||∞) + ||2ΩW ||∞

(14)

that satisfies (5). 2

Input allocation: In the optimization problem (9) we
find the smallest input range αU required to satisfy the
reachable set constraint from a set Ψ. However if we apply
the computed feedback rule to a set with a different size
than |Ψ|, The required input range will be different. Given
that in our approach we want to keep part of the input
range for the symbolic controller, we introduce the input
allocation design parameter 0 < ρ < 1 to ensure that our
input allocation will not exceed that value regardless of
the cell size. If applying the feedback rule to a cell results
in a higher input range λρU where λ > 1, we weaken the
feedback, i.e. multiply by 1/λ such that the input range
will remain within the allocated ρU .

5. SIMULATIONS

We have implemented the proposed algorithm in Python
and applied it to the reach-stay problem for the cart-
pendulum system with parameters presented in an earlier
study of this problem in ROCS (Li and Liu, 2017):{

ẋ1 = x2
ẋ2 = mgl

Jt
sinx1 − b

Jt
+ l

Jt
cosx1u,

(15)

with x1 = θ and x2 = θ̇ corresponding to pendulum’s
angle and angular velocity (θ = 0 corresponding to upright
position). The parameters are: Jt = J + ml2, m = 0.2kg,
g = 9.8m/s2, l = 0.3m, J = 0.006kgm2, b = 0.1N/m/s.
The goal is to design a controller to reach the upright
position.

System (15) is used by Li and Liu (2018) with time
discretization T = 0.01s to evaluate the ROCS symbolic
controller. We have used the same time discretization to
construct a k-step hybridizations of the system and feed-
back controllers for each mode of the hybridization. For
hybridization, N = 10 and δ = [0.1, 0.5] are selected. For
control synthesis, the initial state feedback is used and the
prescribed reachable set size |Ξ| is selected as 1.1|ΩW |; this



k ρ THybrid TLP TSymb TTotal ncells

2 0.1 0.9 0.1 567 569 40299
2 0.2 0.9 0.1 420 421 25345
2 0.4 0.9 0.1 284 285 12173

4 0.1 No solutions found
4 0.2 6.5 0.5 137 144 2841
4 0.4 6.5 0.5 91 98 1245

6 0.1 No solutions found
6 0.2 10 1.5 120 132 1707
6 0.4 10 1.5 55 67 779

Table 1. Computation times in sec.

is motivated by the fact that the reachable set is always
larger than or equal to ΩW . We then use (our python re-
implementation of) ROCS symbolic controller to compare
the results with and without feedback application. The
input by Li and Liu (2018) is chosen from the discrete
set {-10,-9.95,...,9.95,10}, therefore we consider continuous
bounded control input u ∈ [−10, 10] for feedback synthesis.

The algorithm has been run on a laptop with a 2.8 GHz
CPU and 16 GB of RAM on Python. We have used
Gurobi Optimization (2020) as solver for the LPs. In
Table 1, the hybridization, feedback synthesis via linear
programming, symbolic synthesis times, and total compu-
tation times are reported as well as number of constructed
abstract cells for different selections of steps k and input
allocation for feedback ρ. We observe that increasing both
k and ρ results in faster synthesis and fewer abstract cells
as intuitively, larger cells can be constructed for back-
ward reachablity. In comparison, running symbolic syn-
thesis only without hybridization and feedback synthesis
for the same problem takes 400s in the original ROCS
implementation and 630s in our Python re-implementation
and results in 26340 states. This means that with a 6-step
controller and ρ = 0.4 we observe an 8 times improvement
in the symbolic synthesis speed and 30 times reduction in
number of abstract states.

However, with a higher k, the reachable set from distur-
bance ΩW also becomes larger and at some point becomes
the dominating factor and impedes successful controller
synthesis for shrinking the reachable set. This effect can
already be seen in k = 4 and k = 6 when only a small
part of the input is allocated for feedback, i.e. ρ = 0.1. In
this case, due to large ΩW , the feedback effort may not be
enough to guarantee solution existence to the LP problem
(9), i.e. shrinking reachable sets. ρ cannot also be selected
arbitrarily high as it limits the input range available for
symbolic controller. In fact for ρ > 0.5 in this problem,
we are unable to find a solution as a higher input value is
required to bring the pendulum back from the state [1, 1].

The abstraction and the resulting feedback controller
are shown in Fig. 3 for k = 6 and ρ = 0.4. The
red stars correspond to time-stamps where the control
sequence is obtained from the abstraction and the blue
stars correspond to the intermediate steps.

6. CONCLUSIONS AND FUTURE WORK

We introduced a hybridization-based feedback control syn-
thesis method for potentially unstable nonlinear continuous-

time systems. After time discretization of the given sys-
tem, we proposed design of a multi-step feedback con-
trol that ensures dissipation form of incremental input-to-
state stability property. We implemented and evaluated
the algorithm on a cart-pendulum use case and noticed
that application of feedback control can indeed improve
abstraction-based control by reducing the number of re-
quired abstract states and synthesis time. We realized
that while increasing the number of steps and input range
allocated to feedback increasingly improves the synthesis
time, they are limited by accumulated error over time and
input range needed for symbolic control synthesis.

Our future work will look into several directions. We
plan to explore the benefits of integrating the technique
with abstraction-based tools for control synthesis under
reachability and temporal logic specifications, such as
SCOTS or ROCS. We also aim to investigate in detail
conditions under which Algorithm 1 terminates, namely
to derive the smallest error bound δ that guarantees
termination.
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