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Abstract 22 

How host organisms evolved and maintain specific mutualisms with microorganisms is 23 

a fundamental question that is subject to intensive research. In the large majority of 24 

insect mutualistic interactions, the host-microbe specificity is maintained by a “partner 25 

fidelity” mechanism, mainly through direct symbiont transmission from mother to 26 

offspring. Such a vertical manner of symbiont transmission is remarkably diverse in 27 

insects, including ovarial transmission, milk-gland transmission, coprophagy, egg-28 

smearing, and capsule transmission. In contrast to the insect-microbe symbioses, many 29 

animals and plants do not vertically transmit their symbionts but acquire symbionts 30 

from ambient environments every generation. Sophisticated “partner choice” 31 

mechanisms are at play to maintain these mutualisms. This symbiont transmission 32 

mode, called horizontal transmission or environmental acquisition, is rarely found in 33 

insects, but recent studies have described this type of symbiosis in a few insect groups. 34 

The symbiosis between the bean bug Riptortus pedestris and its gut symbiont 35 

Burkholderia insecticola is one of the model systems that is intensively studied to 36 

understand how host-symbiont specificity and mutualistic interactions are maintained in 37 

insects with horizontal symbiont transmission. Phylogenetic analyses of symbionts in 38 

natural insect populations and bacterial inoculation tests in the laboratory revealed a 39 

high degree of specificity in this symbiosis while mutant screening of the symbiotic 40 

bacterium, genomics and transcriptomics, and histological observations have identified 41 

underpinning genetic and molecular bases. In this chapter, we focus on the symbiont 42 
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transmission modes and mechanisms observed in the amazing diversity of microbial 43 

symbioses in insects and we highlight how they could have evolved. 44 

(247 < 250 words) 45 

 46 
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Introduction 53 

 54 

Many, if not most animals and plants are intimately associated with microorganisms. In 55 

these symbioses, the microbial partners contribute to the host fitness via various 56 

biological services such as the provision of essential nutrients, protection from 57 

antagonists, and degradation of toxins (Engel and Moran, 2013; Itoh et al., 2018b; 58 

Kikuchi, 2009). Since environments are filled with enormously diverse microorganisms 59 

including not only mutualists but also parasites and pathogens, hosts should winnow out 60 

these harmful microbes and selectively acquire the desired partners. To ensure the 61 

specific microbial partnership, host organisms have evolved sophisticated mechanisms 62 

for symbiont transmission and sorting. In the case of many insects that harbor specific 63 

gut or intracellular symbionts, the specific partnership is maintained by the “partner 64 

fidelity” mechanism that is based on the from-mother-to-offspring vertical symbiont 65 

transmission. The vertical transmission mechanisms in insects are remarkably diverse 66 

among taxonomic groups. In other cases, in a few insect groups, in marine invertebrates 67 

and in terrestrial plants, symbionts are not vertically transmitted but acquired from the 68 

ambient environment every generation (called horizontal transmission or environmental 69 

acquisition), wherein “partner choice” mechanisms facilitate the host-microbe 70 

specificity (Bright and Bulgheresi, 2010; Sachs et al. 2004). In this section, we will 71 

review the amazing diversity of symbiont transmission modes in insects and their 72 

underlying mechanisms, highlighting how the host-symbiont specificity is maintained 73 

and has evolved in this most diversified terrestrial animal group.  74 
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 75 

Vertical transmission 76 

 77 

Insects that feed exclusively on a nutritionally imbalanced diet like plant saps or on 78 

indigestible materials like wood commonly harbor specific microbial symbionts that 79 

help the hosts to feed and grow on these specific nutritional sources. These symbionts 80 

reside in body cavities, gut crypts, or the cytoplasm of specialized cells called 81 

mycetocytes or bacteriocytes (Buchner, 1965; Kikuchi, 2009). Symbionts are mostly 82 

bacteria, while in some cases yeast-like symbionts, archaea and protist symbionts were 83 

also reported (Buchner, 1965; Brune and Dietrich, 2015; Engel and Moran, 2013; 84 

Kikuchi, 2009; Ohkuma and Brune, 2010; Sudakaran et al., 2017). The symbiotic 85 

microorganisms play a pivotal metabolic role in the insect hosts, such as the production 86 

of essential metabolites that are scarce in the diets and that the insect cannot synthesize 87 

or the degradation of plant polysaccharides that the insect cannot digest. In such 88 

nutritional and digestive symbioses, symbionts are commonly essential for survival, 89 

development, and reproduction of the hosts, and therefore, insects show high mortality 90 

when symbionts are removed by heat, ethanol and antibiotic treatment (Anbutsu et al., 91 

2017; Brake, 1978; Douglas et al., 2001; Fukatsu and Hosokawa, 2002; Hosokawa et 92 

al., 2010; Itoh et al., 2016; Kikuchi et al., 2009; Salem et al., 2017; Sangare et al., 2016; 93 

Schlein, 1977; Srivastara and Auclair, 1976; Tada et al., 2011). To ensure the 94 

acquisition of the obligate partner by the next generation, most insects have evolved 95 

mechanisms for strict vertical transmission of the symbionts. It should be noted here 96 
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that the vertical manner of symbiont transmission guarantees not only absolute 97 

symbiont-acquisition by the offspring but also the host-symbiont specificity from 98 

generation to generation. A dramatic consequence of the vertical transmission is that the 99 

genomes of the microorganisms are usually strongly eroded and therefore, they are 100 

difficult or impossible to culture and manipulate genetically (Kikuchi, 2009; 101 

McCutcheon and Moran, 2012; Moran and Bennett, 2014; Moya et al., 2008). To date, 102 

various mechanisms for vertical symbiont transmission has been reported in insects. 103 

The transmission mechanisms are fundamentally different depending on the symbiont 104 

localization pattern, i.e. intracellular or extracellular.  105 

 106 

Vertical transmission of intracellular symbionts 107 

Intracellular symbionts are broadly known in diverse groups of insects, including the 108 

orders Blattaria, Hemiptera, Coleoptera, Hymenoptera and Diptera, in which symbiont 109 

harboring bacteriocytes or mycetocytes form clusters in the insect bodies, called 110 

bacteriome or mycetome. Intracellular symbionts are generally transmitted by ovarial 111 

transmission, while in some blood-sucking insects of the Diptera, milk-gland 112 

transmission has been reported. 113 

 114 

Ovarial transmission 115 

In the ovarial transmission mechanism, symbiotic bacteria directly infect the ovary 116 

and/or embryo from maternal bacteriocytes (Salem et al., 2015). The detailed infection 117 

process has been investigated in the pea aphid Acyrthosiphon pisum (Koga et al., 2012). 118 
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At the interface between a maternal bacteriocyte and embryo, the symbiont Buchnera 119 

aphidicola is exocytosed from the maternal bacteriocyte, momentarily released into the 120 

hemolymph, and then immediately endocytosed by the embryo. Although no detailed 121 

observation has been conducted in other insect groups so far, a similar exo- and 122 

endocytosis of symbiotic bacteria probably plays an important role in the ovarial 123 

transmission mechanisms. 124 

 125 

Milk-gland transmission 126 

In blood-sucking insects of the Diptera, such as tsetse flies and bat flies, symbiotic 127 

bacteria, Wigglesworthia glossinidia and Aschnera chinzeii, respectively, are 128 

transmitted to offspring via the milk-gland, a specific organ that supplies “milk” to 129 

larvae (Hosokawa et al., 2012; Attardo et al., 2008). These blood-sucking insects are 130 

unique ovoviviparous species and females grow a single larva in a uterus-like organ 131 

with milk supplementation which contains the symbiotic bacteria, enabling to transmit 132 

the bacteria to the larva.  133 

 134 

Vertical transmission of extracellular symbionts 135 

Specific extracellular symbionts, most of which are gut symbionts, are reported in 136 

termites, stinkbugs, and beetles. The gut symbionts are vertically transmitted either by 137 

coprophagy, egg-smearing, or capsule transmission.  138 

 139 

Coprophagy 140 
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Termites and wood-feeding cockroaches possess specific gut microbiota in the hindgut, 141 

consisting of not only bacteria but also specific protists (Brune and Dietrich, 2015; 142 

Ohkuma and Brune, 2010). In these social insects, aposymbiotic individuals such as 143 

newly-born hatchlings and newly molted nymphs acquire the specific microbiota by 144 

feeding feces excreted from parents or siblings. Such coprophagy is also reported in 145 

blood-sucking kissing bug Rhodnius spp., where the symbiont Rhodococcus rhodonii is 146 

transmitted through the feeding on feces (Beard et al., 2002). It was suggested that 147 

honey bees and ants transmit their specific gut microbiota through coprophagy and/or a 148 

specific food-exchange behavior called mouth-to-mouth trophallaxis (Koch et al., 2011; 149 

Onchuru et al., 2018; Powell et al., 2014). 150 

 151 

Egg-smearing 152 

Egg-smearing, or egg surface contamination by symbiotic bacteria, has been described 153 

in detail in stinkbugs (Bansal et al., 2014; Bistolas et al., 2014; Buchner, 1965; Dasch 154 

and Weiss, 1984; Hayashi et al., 2015; Hosokawa et al., 2013; Itoh et al., 2016; 155 

Karamipour et al., 2016; Kashkouli et al., 2019a, 2019b, 2019c; Kenyon et al., 2015; 156 

Kikuchi et al., 2012, 2009; Miyamoto, 1961; Prado et al., 2009, 2006; Tada et al., 2011; 157 

Taylor et al., 2014). Phytophagous species of stinkbugs, particularly members of the 158 

infraorder Pentatomomorpha, develop a symbiotic organ composed of rows of crypts, 159 

located in the posterior region of the midgut and housing specific extracellular bacterial 160 

symbionts (Buchner, 1965; Dasch and Weiss, 1984; Kikuchi et al., 2009; Miyamoto, 161 

1961). Most species of the superfamily Pentatomoidea possess gammaproteobacterial 162 
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symbionts, which are smeared on the egg surface upon oviposition. In female insects, 163 

the last few crypts are bulbous compared with the other crypts and can discharge 164 

symbiotic bacteria from the crypt lumen. These crypts are thought to be specialized for 165 

housing symbionts for transmission (Hayashi et al., 2015). In the particular case of the 166 

stinkbug family Acanthosomatidae however, all crypt entrances are completely sealed 167 

in adult insects, making the direct smearing from crypts impossible (Kikuchi et al., 168 

2009). Instead, female insects evolved a novel pair of organs, associated with the female 169 

ovipositor and called “lubricating organs”. From these sac-like organs, symbionts are 170 

smeared on the egg surface during oviposition (Kikuchi et al., 2009). It is still enigmatic 171 

when and how the symbiotic bacteria migrate from the gut to the lubricating organ and 172 

how the new organ specialized for symbiont transmission evolved in the stinkbug 173 

family. In the case of Lagria beetles, antibiotic-producing defensive Burkholderia 174 

gladioli symbionts are associated with female accessory glands. They are smeared on 175 

the egg surface, protecting host eggs from pathogenic fungi (Kaltenpoth and Florez, 176 

2019).  177 

 178 

Capsule transmission 179 

Contrary to species of the other Pentatomoidea families, stinkbugs of the family 180 

Plataspidae deploy a unique mechanism for vertical transmission, called “capsule 181 

transmission” (Buchner, 1965; Fukatsu and Hosokawa, 2002). Together with the egg 182 

masses, mother insects oviposit brownish capsules containing the symbiotic bacterium 183 

Ishikawaella capsulata and hatchlings acquire the symbiont by sucking up the capsule 184 



 10 

content. Females of the insect develop for capsule production a specific portion in the 185 

midgut, located just after the crypt-bearing symbiont-harboring region (Fukatsu and 186 

Hosokawa, 2002; Hosokawa et al., 2008; 2007; 2006; 2005). A similar mechanism, 187 

called “jelly transmission”, has been reported in another stinkbug family of the 188 

Pentatomoidea, the Urostylididae, in which mother insects oviposit eggs with a large 189 

amount of a symbiont containing jelly-like matrix (Kaiwa et al., 2014). Hatchlings 190 

acquire symbiotic bacteria by consuming the jelly.  191 

In addition to the stinkbug symbioses, another unique type of capsule 192 

transmission was discovered in the tortoise leaf beetle Cassida rubiginosa (Salem et al., 193 

2017). The leaf beetle harbors a pectin-degrading symbiont, Candidatus Stammera 194 

capleta, inside a pair of sac-like organs associated with the foregut. Female insects 195 

deposit a symbiont-containing capsule or “caplet” on the top of each egg and hatchlings 196 

acquire the symbiont by consuming the caplet compounds. 197 

 198 

Partner choice in insect-microbe symbiosis with vertical transmission 199 

Since insects develop highly sophisticated mechanisms for vertical symbiont 200 

transmission as shown above and symbionts generally show phylogenetic congruence 201 

with host phylogeny, the transmission mechanisms are commonly thought of as very 202 

rigorous without room for parasites and cheaters. However, several studies 203 

demonstrated that also partner choice plays a role to maintain the insect-microbe 204 

mutualism with vertical transmission. For example, the pea aphid is frequently infected 205 

with secondary intracellular symbionts, such as Serratia symbiotica, in addition to the 206 
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primary symbiont B. aphidicola (Moran et al., 2005; Oliver et al., 2010). Detailed 207 

microscopic observations revealed that Buchnera is selectively transmitted from 208 

maternal bacteriocytes to the embryo by the exo-/endocytosis process even when 209 

secondary symbionts co-colonize in the bacteriocytes (Koga et al., 2012).  210 

Beewolf wasps, that harbor the defensive symbiont Streptomyces philanthi in 211 

antennal glands, transmit the symbiont by spreading out gland secretions in their nest, 212 

where larvae develop through the pupal stage until adult emergence (Goettler et al., 213 

2007; Kaltenpoth et al., 2010, 2005). The bacteria in the nests provide protection against 214 

pathogenic fungi and bacteria by producing different antimicrobial compounds (Kroiss 215 

et al., 2010). Interestingly, experimental inoculation of a non-symbiotic actinomycetes 216 

bacterium to aposymbiotic adult females revealed that the related bacterium can stably 217 

colonize the antennal glands but cannot be secreted and transmitted from the antennae 218 

(Kaltenpoth et al., 2014), suggesting that a partner choice mechanism exists in the 219 

vertical transmission process. Both cases highlight that partner choice mechanisms 220 

reinforce partner fidelity to stabilize long-term, strictly specific insect-microbe 221 

symbioses.  222 

 223 

Horizontal transmission of symbionts in animals and plants 224 

 225 

Apart from the majority of insect-microbe mutualisms, most animals and also plants do 226 

not commonly transmit their symbionts vertically; instead, they acquire specific partners 227 

from the ambient environment every generation. Because of the enormous diversity of 228 
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microorganisms in environments, hosts should actively select their symbionts from the 229 

environmental microbiota in these symbioses with horizontal symbiont transmission. To 230 

efficiently and specifically choose a partner, host organisms develop sophisticated 231 

mechanisms for symbiont sorting. Such partner choice mechanisms have been well 232 

investigated and described in two model systems: the nitrogen-fixing Rhizobium 233 

symbiosis in leguminous plants and the bioluminescent Vibrio symbiosis in the 234 

Hawaiian bobtail squid (Nyholm and McFall, 2004; Wang et al., 2018). As mentioned 235 

above, the vertically transmitted insect symbionts have strongly reduced genomes, 236 

making them unculturable outside their host (Kikuchi, 2009; McCutcheon and Moran, 237 

2012; Moran and Bennett, 2014; Moya et al., 2008). Because of their different lifestyles 238 

including the free-living state in the environment, the symbionts maintained by 239 

horizontal transmission are in contrast culturable and genetically manipulatable. These 240 

traits have been very useful to clarify the genetic and molecular bases of the symbiotic 241 

associations.  242 

 243 

The legume-Rhizobium symbiosis 244 

The legume-Rhizobium symbiosis is probably the best-characterized symbiotic system 245 

from different perspectives, including the understanding of the evolutionary ecology 246 

and the molecular mechanisms that govern the symbiosis. In response to nitrogen 247 

starvation and the presence of specific compatible rhizobium bacteria in the 248 

rhizosphere, legumes will form particular symbiotic organs on their roots, called 249 

nodules. The rhizobia are housed in large numbers inside these nodules as intracellular 250 
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symbionts and they convert atmospheric nitrogen gas into ammonia, which is used by 251 

the plant as a nitrogen source for its growth. The legume-Rhizobium interaction is 252 

usually extremely specific and a given Rhizobium strain will interact only with a narrow 253 

range of legume species and vice versa. The host-symbiont compatibility is monitored 254 

all along the symbiotic process, from the initiation of the interaction over the 255 

development and infection of the nodules till the nitrogen fixation in mature nodules. 256 

This is achieved by a continuous exchange of signals between the two partners, 257 

including plant-derived flavonoids and antimicrobial peptides, and bacterial molecules 258 

like lipochitooligosaccharides, extracellular polysaccharides, lipopolysaccharides, type 259 

III and type IV secretion effectors and even small RNAs (Poole et al., 2018; Mergaert, 260 

2018). Most emblematic among these signals are the rhizobial Nod factors which are 261 

produced in the rhizosphere and upon recognition trigger the plant genetic nodulation 262 

program. Nod factors are lipochitooligosaccharides, which have a similar structure in all 263 

rhizobia but which still differ from each other by the presence of strain-specific 264 

chemical modifications (D’Haeze and Holsters, 2002). Nod factor signaling contributes 265 

to the specificity of the interaction by the presence of a matching Nod factor receptor 266 

complex in the plant. Similarly for the other signals, it is believed that a specific signal-267 

receptor correspondence exists. Moreover, in a mature nodule, the host plants monitor 268 

the symbiont’s nitrogen- fixation activity. If its performance is not optimal, the hosts 269 

control the oxygen supply to the nodule and limit the survival of the symbiont (Kiers et 270 

al., 2003). Such sanction mechanisms are thought to be important to prevent the 271 

evolution of cheaters and maintain the mutualistic association with horizontal symbiont 272 
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transmission (Archetti et al., 2011; Sachs et al., 2004). Thus, the legume-Rhizobium 273 

mutualism is stabilized by partner choice mechanisms based on signaling cues, avoiding 274 

legumes from initiating or completing interactions with incompatible rhizobia, as well 275 

as by sanctions applied in established interactions to reduce the costs of maintaining 276 

low-quality partners. 277 

 278 

The squid-Vibrio fischeri symbiosis 279 

In the case of the squid-Vibrio symbiosis, another type of host-symbiont chemical 280 

signaling has been reported (Nyholm and McFall-Ngai, 2004; Visick and Ruby, 2006). 281 

Depending on the presence of marine bacteria, squid hatchlings start to produce mucus 282 

at ciliated epithelia of the light organ, which traps V. fischeri from marine water. V. 283 

fischeri aggregates on the mucus and out-competes other bacteria, and then migrate into 284 

the light organ by passing through a narrow entrance using flagellar motility (Graf and 285 

Ruby, 1994; Millikan and Ruby, 2004, 2003; Nyholm et al., 2000). In the duct and crypt 286 

of the light organ, a certain concentration of nitric oxide and hypohalous acid is reached 287 

further winnowing out contaminating bacteria (Davidson et al., 2004; Small et al., 1999; 288 

Weis et al., 1996). Tracheal cytotoxin (TCT), a peptidoglycan fragment derived from V. 289 

fischeri and LPS are recognized by host receptors and stimulate a morphological 290 

alteration of the symbiotic organ (Koropatnick et al., 2004; Nyholm and Graf, 2012), 291 

leading to maturation of the light organ and establishment of the symbiosis. V. fischeri–292 

derived outer membrane vesicles (OMVs) are also involved in the morphological 293 

alteration and apoptosis of the light organ (Aschtgen et al., 2016a, 2016b). From the 294 
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host side, peptidoglycan recognition proteins (PGRPs) and probably also LPS-binding 295 

proteins (LBPs) play important roles for recognition and interaction with the symbiont-296 

derived signals (Chun et al., 2008; Krasity et al., 2011; Nyholm and Graf, 2012; Troll 297 

2009; 2010). 298 

 299 

Horizontal transmission of symbionts in insects 300 

Recent studies have discovered a few exceptions to the general pattern of vertical 301 

symbiont transmission in the insects. These groups of insects acquire the symbionts 302 

from the environment (Bright and Bulgheresi, 2010; Salem et al., 2015), like in the 303 

legume-Rhizobium and squid-Vibrio symbioses. Among these insect-microbe symbioses 304 

with horizontal transmission, the symbiosis between the bean bug Riptortus pedestris 305 

and Burkholderia insecticola is a powerful model system (Kaltenpoth and Florez, 2019; 306 

Takeshita and Kikuchi, 2017) and it has been well investigated how host-microbe 307 

specificity has evolved and is maintained in this insect. 308 

 309 

The bean bug-Burkholderia symbiosis 310 

The bean bug R. pedestris (Heteroptera: Pentatomomopha: Coreoidea: Alydidae) (Fig. 311 

1A) is a serious pest of leguminous crops in India, South-East Asia, China, Korea and 312 

Japan (Kikuhara, 2005; Schaefer and Panizzi, 2000). R. pedestris is a hemimetabolous 313 

insect and develops to adults via five instar stages in approximately 20 days (Kikuchi 314 

and Fukatsu, 2014). As is typical for stinkbugs, R. pedestris possesses numerous crypts 315 

at the posterior part of the midgut, in which Burkholderia symbionts are harbored (Fig. 316 
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1B-G) (Kikuchi et al., 2005). Burkholderia insecticola strain RPE64 is the type strain 317 

for the R. pedestris symbionts (Takeshita et al., 2018). The Burkholderia symbiont is 318 

beneficial for the host insect: symbiotic insects show a faster development, larger body 319 

size, and a higher number of eggs than aposymbiotic insects (Kikuchi et al., 2007; 320 

Kikuchi and Fukatsu, 2014). Transcriptomic analyses of the Burkholderia symbiont 321 

revealed that the symbiont recycles host’s metabolic wastes and provides the host with 322 

essential amino acids and vitamins (Ohbayashi et al., 2019a). Among the five instar 323 

stages, R. pedestris acquires the Burkholderia symbiont from ambient soil mainly in the 324 

2nd instar stage (Kikuchi et al., 2011b).  325 

The Riptortus-Burkholderia symbiosis is an ideal model to elucidate the 326 

molecular bases of host-microbe symbiosis for several reasons. The Burkholderia 327 

symbiont is easy to culture in standard bacterial media and to genetically manipulate by 328 

standard techniques and tools (Kikuchi and Fukatsu, 2014; Kim et al., 2013; Ohbayashi 329 

et al., 2015). The whole genome sequence of the Burkholderia symbiont is available 330 

(Shibata et al., 2013; Takeshita et al., 2014). In addition, the bean bug host is easily 331 

reared and produces large numbers of offspring in small containers, requiring only dried 332 

soybean seeds and distilled water containing ascorbic acid (Kikuchi et al., 2007). The 333 

symbiont inoculation method is well established and is based on adding the desired 334 

bacteria to the drinking water of the insects (Kikuchi and Fukatsu, 2014). This 335 

laboratory inoculation method closely mimics the natural infection process in which the 336 

insects acquire the symbionts through drinking or feeding. Although the bean bug 337 

genome is not completely sequenced, several sets of transcriptome data are available, 338 



 17 

notably for symbiotic conditions and immune responses (Futahashi et al., 2013; 339 

Ohbayashi et al., unpublished data). RNA interference (RNAi) works very well in R. 340 

pedestris (Futahashi et al., 2011). Contrary to most insect-microbe symbioses where 341 

symbionts are essential and aposymbiotic insects have thus a high mortality, 342 

aposymbiotic insects of the bean bug show a growth delay but have high survivability 343 

(Kikuchi et al., 2007), enabling the genetic and physiological comparisons between 344 

aposymbiotic and symbiotic insects. This attractive model system has been used to 345 

investigate host-symbiont specificity and how it evolved and is maintained in insect-346 

microbe symbiotic associations with horizontal transmission.  347 

 348 

The bean bug-Burkholderia symbiosis is highly specific 349 

The genus Burkholderia consists of over 100 species and is an ecologically diverse 350 

group (Eberl and Vandamme, 2016). Based on genomic phylogeny, the genus is 351 

grouped into at least three distinct clades. The first one includes human-, animal-, and 352 

plant-pathogens, named the “B. cepacia complex and B. pseudomallei” (BCC&P) clade 353 

(Mahenthiralingam et al., 2005). The second clade consists of many plant growth-354 

promoting rhizobacteria and nodule symbionts of leguminous plants, designated as the 355 

“plant-associated beneficial and environmental” (PBE) clade (Suárez-Moreno et al., 356 

2012). The third clade mainly consists of environmental species, leaf-nodule symbionts 357 

of Rubiaceae plants, and gut symbionts of stinkbugs, and is called the “stinkbug-358 

associated beneficial and environmental” (SBE) clade (Takeshita and Kikuchi, 2017; 359 

Peeters et al., 2016). The BCC&P, PBE, and SBE clades are recently designated as 360 
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different genera called Burkholderia sensu stricto, Paraburkholderia, and Caballeronia, 361 

respectively (Beukes et al. 2017). The outgroup of the Burkholderia is the genus 362 

Pandoraea, mostly consisting of common soil bacteria. 363 

Analyses of the M4 midgut crypt symbionts in natural populations of R. 364 

pedestris systematically demonstrated the colonization by Burkholderia species (Jung 365 

and Lee, 2019; Kikuchi et al., 2005; 2011a). These Burkholderia are genetically divers 366 

but nearly all of them belong to the SBE clade, although infection with species of the 367 

more distant BCC&P clade was also reported in a particular study of overwintering R. 368 

pedestris specimens (Jung and Lee, 2019). 369 

As mentioned above, the presence of bacterial symbiont-carrying M4 midgut 370 

crypts is very common in the heteropteran infraorder Pentatomomorpha (Kikuchi et al., 371 

2011a). In many species of the superfamilies Coreoidea and Lygaeoidea of the 372 

Pentatomomorpha, these crypts are also colonized with SBE Burkholderia (Boucias et 373 

al., 2012; Itoh et al., 2014; Garcia et al., 2014; Kikuchi et al., 2011a, 2005; Kuechler et 374 

al., 2016; Ohbayashi et al., 2019b; Oliver-Espejel et al., 2011). Nevertheless, other 375 

Burkholderia, belonging to the BCC&P and PBE clades, and even Cupriavidus and 376 

Pseudomonas species were occasionally identified in some insect species (Boucias et 377 

al., 2012; Garcia et al., 2014; Itoh et al., 2014). However, it should be noted that, except 378 

for several SBE Burkholderia isolates from R. pedestris (Kikuchi et al., 2007), Coreus 379 

marginatus (Ohbayashi et al., 2019b) and Blissus insularis (Xu et al., 2016), for none of 380 

the other identified strains (Burkholderia or other species) the Koch’s postulates were 381 

verified. These bacteria were not cultured and tested for their capacity to infect and 382 
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colonize the crypts of aposymbiotic hosts. Finally, also the M4 midgut crypts in species 383 

of the family Largidae of the superfamily Pyrrhocoroidea carry Burkholderia but they 384 

belong strictly to the PBE clade (Gordon et al., 2016; Sudakaran et al., 2015; Takeshita 385 

et al., 2015).  386 

Together, the inspections of these natural stinkbug samples suggest a very 387 

strong or nearly exclusive colonization of the midgut crypts with SBE Burkholderia in 388 

the Coreoidea and Lygaeoidea superfamilies and with PBE Burkholderia in the family 389 

Largidae of the Pyrrocoroidea. Similarly as what is firmly established for the R. 390 

pedestris symbionts (Kikuchi et al., 2007), environmental acquisition of the 391 

Burkholderia was postulated or demonstrated in all the examined insect species, even if 392 

occasional vertical transmission was suggested in some of them (Itoh et al., 2014; Xu et 393 

al., 2016). Thus, the infections of the M4 midgut crypts in R. pedestris and its allied 394 

stinkbug species should be controlled by efficient partner choice mechanisms that are 395 

specific at the broad taxonomic scale of Burkholderia groups. Nevertheless, because of 396 

the observed genetic diversity of the symbionts in each insect species, these 397 

mechanisms may have a more relaxed specificity at a finer scale of the species and 398 

strain level. 399 

Two types of laboratory experiments in R. pedestris supported these 400 

conclusions. In laboratory insects reared on soil, infections with PBE Burkholderia as 401 

well as Pandoraea were occasionally identified in the crypts but the overwhelming 402 

majority of crypt bacteria belonged to the SBE clade (Itoh et al., 2018a). In a second 403 

type of experiments, infection tests of aposymbiotic R. pedestris were performed with a 404 
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broad range of bacteria in pure culture, including 34 Burkholderia species (13 species of 405 

SBE, 12 species of PBE, and 7 species of BCC&P) and an additional 18 taxonomically 406 

diverse non-Burkholderia bacterial species (Itoh et al., 2019). All tested SBE species 407 

were very efficiently colonizing the midgut crypts but also most tested PBE species and 408 

the tested Pandoraea species, although PBE and Pandoraea species did not fully 409 

colonize the M4 crypts. Moreover, the PBE and Pandoraea species enhanced the 410 

survival and development of the bean bug similar to SBE species, indicating that these 411 

bacteria are not harmful but beneficial to the insect host. On the contrary, the tested 412 

BCC&P Burkholderia species and all other bacterial species, which included other 413 

Burkholderiaceae (Ralstonia, Chitinimonas, Cupriavidus) and non-Burkholderiaceae, 414 

were unable to establish in the crypts. Thus overall, these laboratory infection 415 

experiments using soil or cultured bacteria recapitulated very well the observed natural 416 

specificity of R. pedestris for SBE Burkholderia, although the specificity seems to be 417 

broader in the laboratory than in nature. This then raises the question what the 418 

underlying partner choice mechanisms are that determine the symbiont selection in 419 

natural and laboratory conditions. This seems to be a particularly fundamental issue in 420 

light of the enormous diversity of bacteria in soils (Bahram et al., 2018; Delgado-421 

Baquerizo et al., 2018), suggesting that these mechanisms must be particularly 422 

performant. 423 

 424 

Partner choice mechanisms in Riptortus pedestris 425 

The gut constricted region as a partner-choice apparatus 426 
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Histological observations and inoculation experiments have revealed that R. pedestris 427 

develops a marked symbiont sorting organ in the midgut (Ohbayashi et al., 2015). The 428 

midgut is separated in five morphologically different sections (Fig. 1C): a swollen first 429 

section (M1), a tubular second section (M2), an ovoid-shaped third section (M3), the 430 

crypt-bearing fourth section (M4) and in addition, a bulbous part in front of the M4 431 

region, called the M4 bulb (M4B). The Burkholderia symbiont partially colonizes the 432 

M4B in addition to the M4 crypts. The M1 to M3 sections constitute the digestive 433 

regions of the intestine, while the M4B and M4 are symbiotic regions. 434 

The junction between M3 and M4B is a remarkably narrow channel which 435 

has a diameter close to the dimensions of bacterial cells (Fig. 1C; Fig. 2C). This so-436 

called “constricted region” is filled with a mucus-like matrix and strictly prevents food 437 

flow from M3 to the symbiotic gut sections (Fig. 2A) but this channel also constitutes 438 

the gate through which ingested bacteria pass to enter the symbiotic M4 region of the 439 

intestine (Fig. 2B and C). However, the constricted region is not a simple open gate 440 

allowing any bacteria to pass but it filters them and only bacteria with the right (still 441 

unknown) key can pass through. Indeed, co-inoculation tests of a green fluorescence 442 

protein (GFP)-labelled B. insecticola and a red fluorescent protein (RFP)-labelled E. 443 

coli revealed that while E. coli is sorted out by the constricted region, only the 444 

Burkholderia symbiont passes and reaches the symbiotic region (Fig. 2D). In addition to 445 

E.coli, typical soil bacteria like Pseudomonas putida, Bacillus subtilis, Bradyrhizobium 446 

japonicum as well as many other species, also cannot pass through the constricted 447 

region and are sorted out (Itoh et al., 2019; Ohbayashi et al., 2015).  448 
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In contrast to the crypt-bearing species of the Lygaeoidea and Coreoidea 449 

superfamilies and the Largidae family, which are commonly associated with 450 

Burkholderia, members of the Pentatomoidea, another superfamily of the 451 

Pentatomomorpha, possess gammaproteobacterial symbionts in midgut crypts which are 452 

maintained by strict vertical transmission (Bansal et al., 2014; Bistolas et al., 2014; 453 

Hayashi et al., 2015; Hosokawa et al., 2016, 2013; Itoh et al., 2016; Karamipour et al., 454 

2016; Kashkouli et al., 2019a, 2019b, 2019c; Kenyon et al., 2015; Kikuchi et al., 2012; 455 

Prado et al., 2009, 2006; Tada et al., 2011; Taylor et al., 2014) using the earlier 456 

mentioned mechanisms of egg-smearing, capsule transmission or jelly transmission. 457 

Interestingly, the constricted region is broadly conserved, not only in the Burkholderia-458 

associated lygaeoid, coreoid and largid species, but also in the Pentatomoidea (Gordon 459 

et al., 2016; Ohbayashi et al., 2015). This strongly suggests that the constricted region 460 

evolved in the common ancestor of the stinkbug superfamilies. Thus, even if in the 461 

Pentatomoidea, the symbiotic association is mainly maintained by partner fidelity 462 

mechanisms, i.e. vertical transmission, partner choice achieved by the constricted region 463 

may play a pivotal role in these species too. 464 

 465 

Corkscrew flagellar motility 466 

Although the molecular mechanism underpinning the bacterial sorting in the constricted 467 

region remains unclear, a screening for colonization-defect mutants of B. insecticola 468 

revealed that flagellar motility is a key factor for the symbiont’s ability to colonize the 469 

M4 crypts (Ohbayashi et al., 2015). Although non-motile mutants reach the M3, they 470 
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cannot enter the constricted region and never reach M4B and M4, clearly demonstrating 471 

the importance of flagellar motility for passing through the mucus-filled narrow 472 

passage. However, this finding raises the question why only the Burkholderia symbiont 473 

can pass through the constricted region, in spite of active motility also in the tested E. 474 

coli, P. putida, and B. subtilis. 475 

To date, two types of flagellar motility have been described in bacteria (Jarrel 476 

and McBride, 2008): run-and-tumbling motility, described well in bacteria having 477 

peritrichous flagella, such as E. coli and Pseudomonas species, but also common in 478 

bacteria having polar flagella; and forward-and-reverse motility, found in bacteria 479 

having polar flagella, such as Vibrio species. In addition, some peritrichous bacteria 480 

show swarming motility on a surface of semi-solid agar (Jarrel and McBride, 2008). B. 481 

insecticola, that has one to three polar flagella (Fig. 1B), shows normal run-and-482 

tumbling motility in a liquid environment. However, in a viscous condition, a unique, 483 

novel type of flagellar motility has been found in the Burkholderia symbiont, called 484 

“corkscrew flagellar motility”. In this particular swimming mode, the symbiont wraps 485 

the flagellar filaments around the cell body and moves like a drill in the viscous 486 

environment (Fig. 2F and G) (Kinoshita et al., 2018). Considering that this type of novel 487 

motility has been reported in a few polar-flagellated bacteria including Vibrio fischeri 488 

and Shewanella putrefaciens (Kinoshita et al., 2018; Kuhn et al., 2017), it is tempting to 489 

speculate that the corkscrew motility contributes to the specific penetration of the 490 

mucus-filled constricted region in the Burkholderia symbiont. To prove this hypothesis, 491 

it will thus be of interest to analyze the corkscrew flagellar motility in other 492 
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Burkholderia or Pandorea strains that can move into the M4 crypts or to identify the 493 

genetic determinants of corkscrew motility in B. insecticola. 494 

 495 

Midgut closure stimulated by symbiont colonization 496 

In addition to the partner choice achieved by the selective passage through the 497 

constricted region, a second layer mechanism for maintaining the Riptortus-498 

Burkholderia specificity was recently discovered. This mechanism also involves the 499 

constricted region and is called the “midgut closure” (Kikuchi et al. submitted). In a few 500 

hours after the Burkholderia symbiont starts penetrating into the constricted region and 501 

colonizing the M4 crypts, the constricted region and the M4B, which are at first 502 

permeable for the bacteria, become closed, completely preventing the entrance of 503 

additional bacteria. Later on, after the full occupation of the M4 crypts with the 504 

symbionts, the M4B region is re-opened and surplus symbiont cells from the crypts 505 

flow back to the M4B, filling it with symbiont cells. Notably, even if the re-opening of 506 

M4B occurs, the constricted region is kept firmly closed. This midgut closure prevents 507 

additional colonization of the symbiotic region by symbiotic bacteria or any possible 508 

contaminants and it thus contributes to preserve the specific colonization of the crypts.  509 

 510 

Competition-based selection in the gut 511 

As mentioned above, the capacity to pass through the constricted region and the 512 

infection of the M4 crypts is not limited to the natural symbiont group of SBE 513 

Burkholderia (Itoh et al., 2019). For example, Pandoraea norimbergensis and 514 
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Burkholderia fungorum are capable to colonize the midgut crypts of R. pedestris (Fig. 515 

3A-D), even though these common soil bacteria are usually not associated with the bean 516 

bug in natural conditions. An additional partner choice mechanism, called “competition-517 

based selection”, was put forward to explain this observed symbiont specificity (Itoh et 518 

al., 2019). It was shown that the SBE Burkholderia always outcompete PBE 519 

Burkholderia or Pandoraea species in the M4 region when these species are co-520 

infecting the symbiotic organ, achieving the predominance of SBE Burkholderia in the 521 

bean bug gut (Fig. 3E-G). These experimental data clearly demonstrate that the abilities 522 

for colonization and cooperation, usually thought of as specific traits of mutualists, are 523 

not unique to the Burkholderia symbiont (i.e. SBE Burkholderia). On the contrary, 524 

competitiveness inside the gut is a derived trait of the bean bug symbiont lineage only 525 

(Fig. 3H) and has thus played a critical role in the evolution of the insect gut symbiont. 526 

Although at present the molecular bases of the in vivo competitiveness of the 527 

Burkholderia symbiont remains unclear, the following four types of mechanisms can be 528 

considered.  529 

(i) Nutrient-based mechanism. Auxotrophic mutants of the Burkholderia 530 

symbiont, such as purine biosynthesis mutants, show a severe crypt colonization defect 531 

(Kim et al., 2014), suggesting that the M4 environment is nutritionally poor or there is a 532 

selective repertoire of available nutrients. In fact, transcriptomic analyses revealed that 533 

the Burkholderia symbiont actively proliferates by assimilating host’ metabolic wastes, 534 

such as sulfate and allantoin/urea, in M4 (Ohbayashi et al., 2019a). Adaptive abilities to 535 
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the M4 nutritional environment probably affect the competitiveness and the selective 536 

colonization of the Burkholderia symbiont. 537 

(ii) Antimicrobial agent-based mechanism. Previous studies demonstrated 538 

that the AMP resistance of B. insecticola plays an important role in stable colonization 539 

of the symbiont in M4. For example, a deletion mutant of uppP (undecaprenyl 540 

pyrophosphate phosphatase; involved in cell wall biosynthesis) becomes susceptible to 541 

lysozymes in vitro and also shows a severe colonization defect in the M4 crypts (Kim et 542 

al., 2013). Similarly, lipopolysaccharide (LPS) biosynthesis mutants, such as ∆wabO, 543 

∆waaC and ∆waaF, also show decreased colonization ability in M4 (Kim et al., 2016; 544 

Kim et al., 2017). It should be noted that transcriptomic analyses of M4 revealed that a 545 

novel type of antimicrobial peptides (AMPs), called crypt-specific cysteine-rich 546 

peptides (CCRs), are highly and specifically expressed in the midgut crypts (Futahashi 547 

et al., 2013). Although the principal role of these crypt-specific AMPs remains unclear, 548 

they may play a role in the symbiont’s competitiveness and the in vivo selection 549 

process.  550 

(iii) Adhesion-based mechanism. Theoretical studies have predicted that 551 

bacterial adhesion to gut epithelial cells has a selective advantage for competitive 552 

colonization in the gut (McLoughlin et al., 2016). Genomic data indicates that the 553 

Burkholderia symbiont possesses some Tad pilli and type I fimbriae, which may 554 

contribute to the efficient colonization and competitiveness of the Burkholderia 555 

symbiont. 556 
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(iv) Direct inhibition-based mechanism. Type VI secretion system (T6SS) is 557 

one of the well-known bacterial systems to directly inject anti-bacterial effectors and 558 

inhibit competitors (Russell et al., 2014). The importance of T6SS in internal bacterial 559 

competition has been reported in the squid-Vibrio symbiosis (Speare et al., 2018) and 560 

the honey bee gut symbiosis (Steele et al., 2017). Although SBE Burkholderia have a 561 

single type of T6SS, co-inoculation tests of PBE Burkholderia or Pandoraea and T6SS 562 

deletion mutants of B. insecticola demonstrated that T6SS is not involved in the M4 563 

competitiveness of the symbiont (Itoh et al., 2019). Some BCC&P Burkholderia dispose 564 

of another type of microbe-microbe toxin-delivery system, called “contact-dependent 565 

growth inhibition (CDI)” (Garcia et al., 2016). However, the SBE Burkholderia do not 566 

have any CDI genes. Hence, at this stage these direct systems do not seem to be 567 

involved in the symbiont’s in vivo competitiveness.  568 

 569 

Conclusion 570 

Although theoretical studies have proposed mechanisms for host-microbe mutualisms, 571 

such as partner fidelity feedback, partner choice and sanction, competition-based 572 

selection, and public goods theory (Archetti et al., 2011), it is not entirely clear how 573 

mutualistic associations have evolved and are maintained. Furthermore, the genetic and 574 

molecular bases of interspecific mutualisms are almost totally unclear in most of the 575 

symbiotic systems, except a few model systems such as the legume-Rhizobium and 576 

squid-Vibrio symbioses. The recent works on the Riportus-Burkholderia symbiosis have 577 

greatly improved our knowledge concerning the molecular bases of insect-microbe 578 
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symbiosis with horizontal symbiont transmission. This useful model system contributes 579 

to clarify how host-symbiont specificity evolved and is maintained in insect gut 580 

symbiosis. In contrast, the genetic and molecular bases of the vertical symbiont 581 

transmission remain unknown, despite the omnipresence of this type transmission in 582 

insects. At this stage, only a few studies have tackled the question because reverse-583 

genetic approaches like RNAi and genome-editing do not efficiently work in many 584 

insect models of endosymbiosis. Stinkbugs and beetles may be promising models 585 

because they possess well-developed symbiotic systems and RNAi experiments are 586 

possible in most cases. In fact, by use of the RNAi technique, recent studies have 587 

succeeded in identifying a transcription factor and immune-related genes that play 588 

pivotal roles in the maintenance of intracellular symbioses (Login et al., 2011; Maire et 589 

al., 2019; Matsuura et al., 2015). 590 

In insects, as summarized in this section, there are diverse vertical 591 

transmission mechanisms involving highly sophisticated morphological features and 592 

behaviors, as well as environmental acquisition mechanisms with well-developed 593 

partner choice and competition-based mechanisms. It remains totally unknown how 594 

such complex adaptive traits could evolve. The amazing diversity of microbial 595 

symbioses in insects, in conjunction with the established molecular tools and the rapidly 596 

progressed omics techniques, provides us a great opportunity to tackle this fundamental 597 

but still enigmatic question.  598 

  599 
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Figures legends 1024 

Figure 1. Gut symbiosis between the bean bug Riptortus pedestris and its symbiont 1025 

Burkholderia insecticola.  1026 

(A) A female adult of the bean bug R. pedestris. (B) B. insecticola. (C) Whole midgut of 1027 

R. pedestris. (D-G) A GFP-labeled strain of B. insecticola colonizes the posterior region 1028 

of the midgut (D-E), in which GFP signals are specifically detected in the crypt-bearing 1029 

symbiotic region (E-G). Abbreviations: M1, midgut first section; M2, midgut second 1030 

section; M3, midgut third section; M4, midgut fourth section with crypts; M4B, M4 1031 

bulb; CR, constricted region; H, hindgut. Each crypt is indicated by arrowheads in F 1032 

and G. Panels B and C are from Ohbayashi et al. 2015. 1033 

 1034 

Figure 2. Partner-choice in the gut of R. pedestris. 1035 

(A) A midgut fed with water containing 0.05% food coloring (congo red). Note that the 1036 

coloring is blocked at the constricted region. (B) A midgut infected with GFP-labeled B. 1037 

insecticola showing that the bacteria can flow from M3 into M4B by passing through 1038 

the constricted region. (C) Electron microscopy image of the narrow channel in the 1039 

constricted region. The lumen of the channel is bordered by a layer of microvilli (ML) 1040 

and contains a few bacterial cells (S) that are passing through the channel. (D) The 1041 

constricted region in an insect co-inoculated with a GFP-labeled B. insecticola and an 1042 

RFP-labeled E. coli. At the constricted region, E. coli is sorted out and only the 1043 

Burkholderia symbiont passes through the channel. (E) Normal swimming mode of B. 1044 

insecticola in a liquid environment. (F) Corkscrew motility of B. insecticola in a 1045 
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viscous environment. Flagellar filaments are visualized by covalent coupling to the 1046 

fluorescent dye Cy3-NHS-ester. Panels A, C and D are from Ohbayashi et al. 2015. 1047 

 1048 

Figure 3. Microbe-microbe competition in the gut of R. pedestris. 1049 

Midgut M3-M4B-M4 regions of (A) an aposymbiotic insect; (B) an insect infected with 1050 

a SBE Burkholderia (B. insecticola); (C) an insect infected with a PBE Burkholderia 1051 

(B. fungorum); (D) an insect infected with Pandoraea (P. norimbergensis). (E-G) M4 1052 

region of an insect inoculated with an RFP-labeled SBE Burkholderia (B. insecticola) 1053 

and an RFP-labeled Pandoraea (P. norimbergensis) at 2, 3, and 5 days post inoculation 1054 

(dpi). (H) The schematic image of a symbiont specificity in the midgut of the bean bug 1055 

R. pedestris. In the early infection stage, SBE-Burkholderia, PBE Burkholderia, and 1056 

Pandoraea co-colonize the M4 (left). In the mature stage, SBE Burkholderia 1057 

outcompetes the other strains and becomes dominant in the M4 (right). Panels A-G are 1058 

from Itoh et al. 2019. 1059 

 1060 
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