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Highlights: 

 An algorithm for dissected aorta segmentation based on 3-D and 2-D convolutional neural networks.  

 A 3-D CNN model identifies the proximal and distal regions of the dissected aorta data.  

 A 2-D CNN model for aorta segmentation which incorporates boundary information.  
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Abstract 

Background and objective: Aortic dissection is a severe cardiovascular pathology in which an injury of the intimal layer of 

the aorta allows blood flowing into the aortic wall, forcing the wall layers apart. Such situation presents a high mortality rate 

and requires an in-depth understanding of the 3-D morphology of the dissected aorta to plan the right treatment. An accurate 

automatic segmentation algorithm is therefore needed.  

Method: In this paper, we propose a deep-learning-based algorithm to segment dissected aorta on computed tomography 

angiography (CTA) images. The algorithm consists of two steps. Firstly, a 3-D convolutional neural network (CNN) is 

applied to divide the 3-D volume into two anatomical portions. Secondly, two 2-D CNNs based on pyramid scene parsing 

network (PSPnet) segment each specific portion separately. An edge extraction branch was added to the 2-D model to get 

higher segmentation accuracy on intimal flap area. 

Results: The experiments conducted and the comparisons made show that the proposed solution performs well with an 

average dice index over 92%. The combination of 3-D and 2-D models improves the aorta segmentation accuracy compared 

to 3-D only models and the segmentation robustness compared to 2-D only models. The edge extraction branch improves the 

DICE index near aorta boundaries from 73.41% to 81.39%.  

Conclusions: The proposed algorithm has satisfying performance for capturing the aorta structure while avoiding false 

positives on the intimal flaps. 
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1. Introduction 

Aortic dissection (AD) is a severe pathological condition in which an injury to the intimal layer of the aorta allows blood 

flow between layers of the aortic wall, forcing the layers apart [1]. The incidence of AD is often associated with high blood 

pressure and low blood vessel wall strength caused by injuries, previous heart surgeries and diseases including Marfan’s 

Syndrome and bicuspid aortic valve [1, 2]. The Stanford system classifies aortic dissections into two groups based on their 

anatomical locations. Stanford type-A dissection includes the ascending aorta and possibly the aortic arch and the descending 

aorta, while Stanford type-B concerns the descending aorta or the arch without the involvement of the ascending aorta [3]. 

Despite the low morbidity, aortic dissection causes quick deaths with high mortality rate. Half of the patients with acute type-

A aortic dissection are expected to be dead in 3 days without treatment [4] and at least 10% in 30 days for type-B [5].  

Radiological diagnosis of AD is mainly based on computed tomography angiography (CTA). As shown in Fig.1(a), the 

intimal flap separates the aorta into true and false lumen. The analysis of the morphological features of the dissected aorta, 

such as the size and location of the primary entry, the diameters of true and false lumen as well as the curvature of the aorta, 

is of great importance for diagnosis, personalized medical planning and risk evaluation [6]. Accurate measurements in the 

region near the aortic arch are particularly challenging and a 3-D reconstruction of the aorta based on CTA datasets is needed 

in order to fulfil these clinical requirements.   

Features extraction in dissected aorta relies on a precise 3D delineation of the aorta segments and structures of concern. To 

avoid manual and time-consuming operations, a fully automatic segmentation must be available. It will not only provide a 

reliable way to get the relevant lesion characteristics but also, through 3D rendering and manipulation, the basic assistance for 

treatment planning and advanced simulations. For instance, a few studies investigated the hemodynamic properties of the 

dissected aorta and provided predictions on post-stenting results [7-9]. Such simulations require not only an accurate 

segmentation but also a post-processing to get a regular mesh to represent the structures involved.  

Traditional aorta segmentation algorithms try to model vascular structures in a mathematical way. One approach 

commonly used is enhancing vascular structures using a Hessian-matrix-based filter. Frangi et al. [10] proposed Frangi filter 

for vessel enhancement. Manniesing et al. [11] improved the performance of Frangi filter by following a diffusion step. 

Another class of algorithms extracts vessel centerlines at first, which define the vascular topology, and is followed by a 

segmentation based on the extracted centerline. Deschamps and Cohen proposed a minimal cost path method for centerline 

extraction [12]. Chen et al. introduced a back-tracking operation to the minimal cost path searching in [13]. Researchers use 

geometric models to segment vascular structures as well. Kayikcioglu and Mitra [14] proposed an algorithm in which 

cylinders were used to model vessels. Wörz and Rohr [15] proposed a 3-D cylindrical intensity model for human vessel 

segmentation and quantification. For dissected aorta analysis, Krissian et al proposed a semi-automatic aorta dissection wall 

segmentation method in [16], which was based on previously extracted centerline features. Cattin et al [17] combined Hough 

transformation and an arch model to segment dissected aorta arch. Lee et al. [18] proposed a wavelet-based algorithm for 

true-false lumen segmentation and Fetnaci et al. And deformable models are used in [19] to fulfill the same purpose.  

                  



 

 

Deep learning (DL) architectures, inherently built on multiple linear and non-linear transformations of data, have achieved 

remarkable success in wide computer vision (CV) tasks. Convolutional neural network (CNN) is one of the most commonly 

used deep learning architecture in CV. A recent survey [20] has shown that CNN already attracted a growing attention in the 

medical imaging field for tasks ranging from segmentation, registration to classification and others. It is widely agreed that 

deep neural networks are effective in the tasks of feature representation, recognition and classification et, al [21-28]. For 

image segmentation, deep convolutional neural networks based on Fully Convolutional Network (FCN) [29] show striking 

improvements over those systems relying on hand-crafted features. Recently, encoder-decoder based networks were 

developed by using an encoder module that reduces feature map size to capture higher semantic information, and then a 

decoder module is applied to recover the spatial information [30, 31]. In [32], U-net based networks with added skip 

connections between encoder and decoder were proposed to enhance segmentation precision. DeepLab models [33-36] use 

atrous convolution to enlarge the reception field without pooling layers. In [37], a network termed PSPNet was introduced by 

adding a spatial pyramid pooling at several grid scales for multi-scale object segmentation task .  

Though a 3-D CNN appears a natural choice for segmenting volume data [38], the limited GPU memory introduces a 

dilemma between layer depth and input data volume size. Reducing the 3-D image resolution can be considered an option but 

at the cost of segmentation accuracy degradation and clinical feature missing. On the other hand, though 2-D CNNs allow 

segmenting images at high resolution, the Z-axis tissue information tend to be lost. In this work, we propose a CNN-based 

strategy to give effective dissected aorta segmentation, which consists of the training of three CNN models:  

1) Train a 3-D CNN model which identifies the proximal and distal regions of the dissected aorta data. Two portions with 

distinct topologically features in the aorta can be obtained by applying the trained 3-D CNN model on the dissected aorta 

data. 

2) Train two 2-D CNN models using the data from the above partitioned aorta portions independently. The trained two 2-D 

CNN models are then applied on each slice within the corresponding portions to fulfill the final segmentation task.  

                  



 

 

The main contributions of this work include the following two points. Firstly, we utilized a combination of 3-D and 2-D 

models to improve aorta segmentation reliability. Secondly, an edge extraction branch was added to the 2-D model to get 

higher segmentation accuracy on intimal flap area. 

The rest of the paper is structured as follows. In Section 2, we describe the proposed algorithm and the detailed 

implementation. Quantitative performance assessments are provided in Section 3. Conclusion and future work are 

summarized in Section 4.  

2. Material and methods 

The compromise we propose in this paper takes into consideration this problem and proposes a solution by making use of 

the specific shape of the aorta (an aorta arc at top and a straight descending aorta below). Therefore, with a 3-D CNN model, 

the volume is separated into two portions: (i) the aorta arch including the ascent part (referred as portion B); (ii) the remaining 

descent aorta portion (referred as portion A). The illustration is given in Fig. 1. The CTA slices in portion B contain two aorta 

intersections or long ellipses while, in portion A, only one intersection exists. After this, two 2-D CNN models are 

respectively applied upon the slices of portion A and portion B to get an accurate vessel segmentation. Moreover, we pick out 

10 slices around the partition slice in each training volume. These slices are included in the both two training sets for the two 

2-D CNNs in case that the 3-D partition is not accurate. The complete processing pipeline is outlined in Fig. 2.  
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Figure 1 Dissected aorta. (a) A CTA aorta image in sagittal view. 

The target aorta region is enhanced using the yellow color. The 

region marked with a red arrow stands for the true lumen while the 

region marked with the blue arrow represents the false lumen. (b) A 

3-D dissected aorta is divided in two portions according to the 

different shape feature for improving segmentation accuracy. 

Figure 2 The overall view of the proposed algorithm. Yellow squares represent data while blue squares represent the 

processing procedures. The input data firstly pass through a 3-D model including down-sampling, 3-D CNN and slice 

labelling of portion A and portion B. Slices in portion A and portion B separately pass through two 2-D CNNs. The outputs of 

two 2-D CNNs are concatenated together to provide the final segmentation output. 

Figure 3 Illustration of a residual block. 

                  



 

 

2.1 3-D model for aorta partition 

The 3-D model consists of three steps. Firstly, the 3-D volumes are down-sampled due to memory limitations. Secondly, a 

3-D CNN is utilized to label each portion of the aorta. Finally, a few operations are performed to recover the original volume 

length in z direction. 

2.1.1 data down-sampling 

Datasets may have different spatial resolutions according to the CTA imaging system or clinical protocol used. This 

problem is solved by linear interpolating images into a uniform low resolution. The interpolated volumes has the same voxel 

size of 2.0x2.0x2.0 mm
3
. Thus, any input CTA volume defined with voxel number of          and voxel size       

   is interpolated into a volume sized   
    

    
  using a linear interpolation defined by (1)-(3): 
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Generally, the chest CTA images acquired for aorta dissection diagnosis have           and              , 

which leads to   
    

     . The interpolated volume    is then put into the center of  a uniform volume      according to 

the following equation: 
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where 

     
                                      (5) 

     
                                      (6) 

This preliminary step provides coherent volumes sized           
  with isotropic pixel resolution of 2.0 mm to to the 

3-D CNN.  

2.1.2.  3-D CNN 

The 3-D CNN is devised based on ResNet proposed in [20] which applies residual convolution blocks to facilitate the 

training step. As is shown in Fig. 3, the residual block in this 3-D CNN consists of several stacked convolution layers and a 

skip connection between input and output. The relationship between input    and output      is expressed by (7):  

                                              (7) 

where   stands for layer number,    is the input of layer  and      is the output of layer   as well as the input of layer    . 

   contains all parameters to be trained in the residual block, and   is the transformation composed of convolution layers, 

batch normalization layers and activation layers.  

Table 1 3-D INVERTED RESIDUAL NETWORK 

Layer Kernel size 
Channel 

number 

Output 

shape 

Strided-conv0         
   

     

                  



 

 

Strided-conv1       32       

Res_block0 

Conv0                

Conv1       64       

Conv2       32       

Strided-conv2       64       

Res_block1 

Conv0                 

Conv1       128       

Conv2       64       

Strided-conv3                

Res_block2 

Conv0                 

Conv1       192       

Conv2       96       

Strided-conv4       128     

Res_block3 

Conv0               

Conv1       256     

Conv2       128     

Strided-conv5               

Res_block4 

Conv0               

Conv1       320     

Conv2       160     

Strided-conv6       192     

Last_conv             

 

Each residual block is composed of three convolution layers followed by batch normalization. The first and third layers are 

convolutions along the z direction and the second over the x and y directions. Inverted residuals are applied in our 

implementation in which shortcut connections are added between bottlenecks to allow efficient memory use [39]. We use the 

Rectified Linear Unit (ReLU) [21] as our activation function in the network.  

The proposed 3-D CNN has 19 convolution layers including 13 normal convolution layers and 6 strided convolution 

layers. Each convolution layer is followed by a batch normalization layer and an activation layer. Strided convolutions are 

used in our network with stride=2 or stride=4 in x and y directions. The 3-D network starts with two consecutive strided 

convolution layers in order to reduce the spatial dimension ahead. Five residual blocks are in the network and each block is 

followed by a strided convolution layer. From the network information in Table 1, we can see that the data size is reduced 

from         to    as the input data go through the strided convolution layers. A sigmoid layer is then applied to get 

the final output of our 3-D network. The full architecture of this 3-D CNN model is detailed in Table 1. 

The portion labelling process can be regarded as a binary classification problem. Thus, we choose cross entropy loss as the 

objective function of our 3-D model to accelerate the training. The cross-entropy loss function is given by (8): 

              ⃗       ⃗̂      ⃗         ⃗̂        (8) 

where  ⃗ is the label given and  ⃗̂ is the output of our 3-D network for aorta partition. 

 

2.1.3.  Slice assignment 

                  



 

 

The 3-D network outputs a floating number array      denoting classification confidence with values between 0 and 1. 

    is a    -sized binary array indicating the slice partition information. In    , values lower than 0.5 are assigned to 0 

while the other values are assigned to 1. Note slice assignment error might be induced due to the unavoidable errors made by 

the 3-D CNN. In the aorta volume, we a priori know that the volumes start with slices in portion A and end with slices in 

portion B and this information is used at first. In addition, considering the slice continuity in each portion, one slice (termed 

division slice) dividing all the slices into portion A and portion B should be explicitly identified. Some errors in this binary 

array are corrected using 1-D morphological closing operator with element size set to 5 pixels. A simple search starting from 

the last slice is applied to find the first slice labeled 0, which is assumed to be the slice dividing the aorta parts belonging to 

portion A and portion B. The slices below (including) the division slice are labeled as portion A, and the others are labeled as 

portion B.  

A linear interpolation is then applied to restitute the original length    and another thresholding operation is introduced 

with threshold=0.5 to get the final division. The overall procedure outlined in this section is depicted in Fig. 5. 

Figure 5 The 2-D network model for aorta segmentation in the proposed method. The model has a two-branch architecture. 

The upper branch is a PSPnet based on ResNet-50 to acquire a rough segmentation result. The outputs of ResNet-50 are 

feature maps with 1/8 side length of the input image. The feature maps are then resized into 1/8 , 1/4 , 1/2  and 1  

their side lengths for multi-scale segmentation. The branch at bottom is an edge extraction network. After these steps, 6 

convolution layers are applied to fuse the two outputs to give the final segmentation result. 

Figure 4 The flow chart of 2-D slice assignment 

                  



 

 

 

2.2. 2-D model for aorta segmentation 

In order to segment the aorta structure, two identical 2-D CNN models are trained independently using the slices in the two 

obtained portions. Here the two 2-D CNN models are built based on the PSPnet proposed in [37] which has been shown to 

achieve state-of-art performance in natural image segmentation. PSPnet applies a spatial pyramid pooling (SPP) module 

suitable to handle the diameter variations of the aorta over the slices. To further enhance the segmentation accuracy, a 

boundary extraction branch is added into the model, as depicted in Fig. 4. This multi-branch architecture is inspired by the 

model proposed in [40]. To obtain a higher instance-segmentation accuracy, the authors split their model into three branches 

addressing respectively the three tasks of detection, segmentation and boundary extraction after convolution operations. Here, 

our 2-D PSPnet model only requires two branches for segmentation and boundary extraction whose outputs are later fused. 

Our whole model is detailed below.  

2.2.1. PSPnet 

PSPnet is a CNN architecture aiming at segmenting multi-scale objects. A ResNet is used in PSPnet as a feature extractor 

followed by a SPP module aimed at segmenting the feature map at different scales. Unlike the method in [37], our solution 

applies three scaled branches at 1/2, 1/4 and 1/8 of the input resolution, respectively. After the residual blocks and SPP 

module, images are shrunk into 1/8 of its original resolution because of the strided convolutions in ResNet. Three 

deconvolution layers are applied to recover the original resolution. A sigmoid cross-entropy loss function          is used 

here as the objective function of this branch:  
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Figure 6 The architecture of HED network. 

                  



 

 

where   stands for the Hadamard product operator,   is the ground truth and       is the output of the last deconvolution 

layer. The sigmoid function            is defined as 

           
 

     
                           (10) 

and   is a weighting matrix that can be calculated as  

                                   (11) 

where    and    correspond to the weighting parameters for vascular and non-vascular areas, respectively.  

 

2.2.2. Edge extraction branch 

We apply an edge extraction branch based on the Holistically-nested Edge Detection (HED) network proposed in [41] to 

extract the aorta boundaries as well as the intimal flaps. HED is a network for edge detection under the deep supervision 

proposed in [42] to “guide” segmentation results on early layers. The main branch of HED is a standard CNN with 

convolution layers and strided-conv layers. A side output layer is applied to acquire the edge features at each resolution after 

the convolution block. Each side output layer    corresponds to a sigmoid cross-entropy loss function         
 . The sketch 

map of the HED network is reported in Fig. 6 with implementation details in Table 2.  Each convolution layer is followed 

with a batch normalization layer and an activation layer. It should be noted that not all activation layers and batch 

normalization layers are listed in Table 2. Instead of using multi-task learning, we implemented the edge extraction branch as 

an individual network. This is because the edge extracted this branch is used to correct the segmentation result from the 

PSPnet and any influence from the segmentation branch will destroy the meaning of the edge extraction branch.  

 

All side outputs are resized to the original resolution, concatenated together and then fed into convolution layers to get the 

output     . A sigmoid cross-entropy loss function         is used as the objective function on     .The loss function for the 

edge extraction branch          is expressed as  

                 ∑           
  

                      (12) 

Here,    is the weighting parameter corresponding to the loss function         
  of side output layer   .   is the number of 

side output layers.  

The edge label at the original resolution is calculated using the aorta label. The operation is defined by  

                                           (13) 

where   is the aorta label in a given slice,  is the morphological dilation operator and    is a     structural element. 

The edge labels for lower resolutions are built by down-sampling           using max-pooling operations in each     

neighborhood. 

 

Table 2 2-D EDGE EXTRACTION NETWORK 

Layer Kernel size 
Channel 

number 

Output 

shape 

Conv_block0                    

Side_output0               

                  



 

 

Max_pool0                

Conv_block1                     

Side_output1               

Max_pool1                 

Conv_block2                     

Side_output2               

Max_pool2               

Conv_block3                   

Side_output3             

Max_pool3               

Conv_block4                   

Side_output4             

Concatenate - 5         

Last_conv               

The loss function          is calculated around the tagged aorta area to learn specified knowledge. The aorta boundaries 

and the intimal flaps should be predicted as 1 while the aorta voxels should be predicted as 0. The prediction in other regions  

are inessential in this branch. Therefore, the boundary area  is defined using the following expression: 

                                           (14) 

where  stands for logical OR operation.  

2.2.3. Label fusion 

After the above steps, a label fusion network is used to output the final segmentation by combing the outputs of the PSPnet 

and the edge extraction branch (as illustrated in Fig. 7). Another cross-entropy loss function            is used as the 

objective function of our 2-D model. It is defined deep supervision and end-to-end learning, as the weighted sum of the above 

three loss functions 

                  



 

 

                                                    (15) 

where   ,    and    are the inter-weights between the three loss functions.   

2.3. Implementation Details 

In this section, we briefly describe the implementation of the proposed algorithm and the training process. The computer 

platform was configured as follows: CPU was Intel(R) Core(TM) i7-5930K 3.50GHz; GPU was NVIDIA TITAN X with 

12G memory. All codes were written under Python 2.7 and we used Tensorflow r1.4 as the deep learning library [43]. The 

CUDA edition used here was 8.0. Note that the full source code and the trained models of our approach will be made publicly 

available.  

Unlike natural color images, CTA images only have one channel for CT values. Fine-tuning models trained on natural 

image datasets like ImageNet [44] may not be a good choice. Therefore, the all convolution kernels in our networks were 

initialized randomly under Gaussian distribution and all bias parameters were set to zero initially.  

    During the training phase, the loss function was minimized using the adaptive moment estimation (ADAM) algorithm in 

[45]. Parameters of each network were optimized end-to-end using the back-propagation calculation. All models were trained 

using 15,000 iterations, and the learning rate was set to      for the first 10k iterations and      for the following 5k 

iterations. The decay rates    and    in ADAM were set to 0.9 and 0.999, respectively, according to the default setting in 

Tensorflow framework. For the 3-D model used in the first stage, due to the varying size of the 3-D CTA data, the batch size 

was set to 1 for the 3-D CNN model (1 volume data used for each training iteration). To fully exploit the GPU memory, the 

batch size was set to 4 for the 2-D CNN model (4 slices used for each training iteration). Parameter    and    in the 

weighting matrix were set to 3 and 1 by considering that the vascular pixels only occupy a small portion of the images. 

Figure 7 The architecture of the fusion network.  

                  



 

 

Parameter   ,   ,    and all   appearing in the calculation of        and          were set to 1 as it was done in [40] and 

[41]. 

It should be noted that no data augmentation was applied as the aorta remain in similar positions for all the CTA images. 

In fact, we tested some augmentation operations like image normalization without observing any obvious improvement in 

segmentation accuracy. 

 

2.4. Dataset 

                  



 

 

The CTA volumes for training and evaluation were collected from 42 AD patients including 37 males and 5 females in 

    

    

 
   

    

    

    

(1a) (1b) (1c) (1d) 

(2a) (2b) (2c) (2d) 

(3a) (3b) (3c) (3d) 

(4a) (4b) (4c) (4d) 

(5a) (5b) (5c) (5d) 

(6a) (6b) (6c) (6d) 

Figure 8 Representative 3-D segmentation results. The rows exhibit the results obtained for six patients. The first column shows the input volumes. 

The second column represents the manually delineated results. The third row shows the results of the proposed algorithm. The fourth column 

provides Maximum Intensity Projection (MIP) image of Hausdorff distance between results’ boundaries and manually delineated boundaries. The 

color bar is shown at the bottom.  The proposed algorithm works well in most areas. Blue arrows indicate some vessel branches well segmented by 

our algorithm. Yellow arrows mark some falsely segmented areas while red arrows mark one missing area. 

0 5 10 

                  



 

 

the PLA General Hospital. These patients were aged between 30 to 68. Each volume has from 300 to 1200   slices in Z-axis 

with         pixels in each slice.  The pixel resolution varies from 0.6825 to 0.9850 millimeter as different CT machine 

was used for scanning and the slice thickness is between 0.625 and 1.5 millimeter. Aorta contours were extracted manually 

by cardiovascular experts from Beijing Institute of Technology and Southeast University. Labels indicating portion A and B 

(1a) (1b) (1c) (1d) (1e) (1f) (1g) 

(2a) (2b) (2c) (2d) (2e) (2f) (2g) 

(3a) (3b) (3c) (3d) (3e) (3f) (3g) 

(4a) (4b) (4c) (4d) (4e) (4f) (4g) 

(5a) (5b) (5c) (5d) (5e) (5f) (5g) 

(6a) (6b) (6c) (6d) (6e) (6f) (6g) 

(7a) (7b) (7c) (7d) (7e) (7f) (7g) 

(8a) (8b) (8c) (8d) (8e) (8f) (8g) 

Original 

image 

Manu

al 

Wörz Unet3

d 
PSPnet

 

PSPnet+HED

 

Proposed 

Figure 9 Typical illustrations of segmentation results on several slices from one data volume. The first, third, fifth and seventh rows 

provide results on the whole  images. The second, fourth, sixth and eighth rows focus on the aorta indicated by yellow 

rectangles. The first column shows the original CTA images. The second column displays the ground truth. The third column to the 

seventh columns correspond respectively to the segmentation results of Wörz method., Unet3d, PSPnet, PSPnet+HED and the proposed 

algorithm. Dark blue arrows mark some holes appeared in the results of Wörz method. Yellow arrows mark two obvious zig-zagging 

errors in the results of the Unet3d method. White arrows indicate the areas where PSPnet being unable to divide the true and false 

lumen. Blue and green arrows give examples with large errors even with the edge extraction branch. 

                  



 

 

in aorta were manually specified under the guidance of an experienced radiologist.   In total, we got 42 3-D volumes with 

23946 slices. Since we do not have much data for training and validating, the dataset was divided into 6 groups for six-fold 

cross validation, each group including 7 volumes. Five groups were used for training and the remaining group was used for 

testing.  

2.5 Performance Evaluation 

Four metrics Precision, Recall, Intersection of Union (IoU) and Dice were calculated to evaluate the algorithm 

performance. Precision and Recall are calculated according to the following equations: 
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Here,   is the number of data volumes. True Positive (   ) specifies the number of pixels labeled positive in both manual 

dilineation and segmentation result in the   -th volume. False Positive (   ) is the number of pixels outside the groundtruth 

contour but positive in the segmentation result in the   -th volume. Conversely, False Negative (   ) counts the negative 

pixels in the   -th volume inside the groundtruth contour. The other two metrics IoU and Dice are defined using the set theory
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Here,   represents the manually segmented aorta which we regard as ground truth and    is the segmented result in the   -

th volume. Operator  and  stands for intersection operation and union operation. These two metrics can also be calculated 

using    ,     and     as follows： 
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The minimal dice index (minDice) among all testing data in corss-validation is also compared to show the performance on 

the worse case.  

In addition to an evaluation on the whole image, the performance was also estimated by restricting the computation of the 

four metrics to the boundary area       defined as 

                                       (22) 

where   is the manual delineation  as the ground truth,    is the       structural element with all ones for the 

morphological operations used: dilation represented by  and erosion by  . 

 

3. Results 

 

                  



 

 

Table 3 lists the results obtained when using different algorithms on our dataset. All models here were trained under the 

same protocol and the training iteration numbers and parameters in ADAM algorithm were kept the same. 

  Table 3 COMPARISON WITH OTHER METHODS 

Method Precision Recall IoU Dice minDice 

Unet3d 88.55 86.33 77.50 87.26 81.90 

ERFNet 90.14 87.60 80.34 88.40 74.15 

PSPnet 92.81 87.03 81.15 89.34 65.03 

PSPnet+HED 93.66 90.82 85.22 91.81 69.14 

Proposed 93.54 91.44 85.66 92.13 74.50 

 

All models are evaluated using the whole volumes. Unet3d in the table refers to a 3-D encoder-decoder architecture based 

on the idea proposed in [32], which adds skip connections between the encoder path and the decoder path. The 2-D     

convolutions used in the original U-net model in [32] were replaced by 3-D       convolutions in the Unet3d method. 

The 2-D pooling layers and up-sampling layers were substituted by 3-D strided convolution and deconvolution layers. 

Considering the limited GPU memory, the down-sampling operation mentioned in section 2.1 was introduced to reduce the 

original volume to size            . An up-sampling operation was applied on the output of the network to restore the 

original volume dimensions of the final segmentations. The metrics, including Precision, Recall, IoU and Dice, were 

calculated between the up-sampled results and labels in their original resolution. The Unet 3d model is regarded as the 

baseline model. To further illustrate the advancement of the proposed method, the method is also compared with ERFNet 

[46],  which is an 2-D segmentation specific CNN.  

In Table 3, PSPnet refers to a single 2-D network model without the edge extraction branch, and PSPnet+HED stands for 

the 2-D network for aorta without the 3-D model for aorta portion partition. So, these two networks were both trained using 

the whole data volume without portion partition. It can be seen in Table 3 that the proposed algorithm has an improved 

performance when compared to the other models. The proposed model leads to the best results in Recall, IoU and Dice 

metrics with values equal to 91.44%, 85.66% and 92.13%, respectively. The Precision index for the proposed algorithm is 

only slightly lower than the best result produced by PSPnet+HED, the difference being 0.12%. For minDice, the performance 

of our model takes the second place behind Unet3d. ERFNet performs slightly worse than PSPnet on our dataset, but its 

(a) (b) 
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Figure 10 Network outputs for one data volume before applying the final 0.5 threshold. The values are multiplied with 255 and 

exhibited using pseudo-color. The left image shows the output of PSPnet+HED while the right image shows the output of the 

proposed algorithm 

                  



 

 

performance is more stable as it achieves higher minDice value. The proposed method performs better on every metric 

compared to ERFNet.  

Table 4 lists the quantitative results with calculation limited to the boundary area      . The models with an edge 

extraction branch (PSPnet+HED and the proposed method) perform better than those without (Unet3d, ERFNet and PSPnet). 

The Unet3d method leads to the smallest values for all the four metrics. The results from the methods of PSPnet and Wörz 

method are slightly better than the Unet3d method. The PSPnet+HED and the proposed method show quite similar 

performance.    

Fig. 8 illustrates the 3-D views of the results for six representative data volumes. In most cases, visual comparisons with 

the manually delineations show that the proposed algorithm performs well in capturing aorta features. Besides, the 

connections between vessel branches and aorta are also clearly extracted using the proposed method (see the blue arrows in 

Fig. 8(4c) and Fig. 8(6c)). Several non-aorta voxels (i.e. yellow arrows in Fig. 8(1c) and Fig. 8(6c)) can be easily removed by 

keeping the largest connected region. However, in fig. 8(2c), some voxels of the ascending aorta are missing (see the red 

arrow). This phenomenon results from the abnormally large radius of the ascending aorta. A similar situation (indicated by a 

red arrow) can be observed in Fig. 8(5c).  

Table 4 METRICS ON BOUNDARY 

Method Precision Recall IoU Dice 

Unet3d 65.20 62.73 46.56 63.45 

ERFNet 78.85 69.02 57.52 73.83 

PSPnet 80.74 68.66 58.10 73.41 

PSPnet+HED 81.62 83.11 68.89 81.39 

Proposed 81.32 83.45 68.92 81.39 

Fig. 9 provides 2-D axial views corresponding to the volume depicted in Fig. 8(3a). The visualized results are consistent 

with the quantitative values reported in Table 3 and Table 4. 

The computational cost for the proposed algorithm is analysed in Table 5. The data volume in Fig. 8(1a) with the size 

            was used in computation cost evaluation. It is found in Table 5 that the Wörz method has the highest 

computation cost, and the proposed algorithm requires more computation time than other neural network-based methods 

including Unet3d, PSPnet and PSPnet+HED. This is because three different models are included in the proposed algorithm.  

 

Table 5 COMPUTATIONAL TIME ON ONE SELECTED VOLUME IN SIZE 512x512x433 

Method Time(s) 

Unet3d 17.10 

ERFNet 20.80 

PSPnet 28.96 

PSPnet+HED 37.98 

Proposed 48.74 

 

4. Discussion 

                  



 

 

In this paper, we proposed an algorithm for dissected aorta extraction/segmentation on CTA images. The proposed 

algorithm firstly divided the 3-D volume into two different portions with distinct topologies using a 3-D CNN. Two 2-D 

CNNs based on PSPnet were then applied to fulfill the segmentation task upon the slices within the two portions. An edge 

branch based on HED network was incorporated to improve the extraction accuracy of intimal flaps and boundaries. 

The performance of the proposed method was compared with several different deep-learning-based methods include 

Unet3d, PSPnet, PSPnet+HED and ERFnet. Among all the methods, Unet3d performs the worst, and the extracted aorta 

boundaries present Zig-zagging errors (yellow arrows in Fig. 9(2d) and Fig. 9(8d)), which might be the consequence of 

down-sampling and up-sampling operation in this method. However, even with a GPU with enough physical memory, the 

interpolation is still needed due to the anisotropy of CT images. The performance of PSPnet is better than that of Unet3d 

method. With the proposed method, the outer boundaries of aorta are better extracted but much less at intimal flaps than other 

methods (white arrows in Fig. 9(2e) and Fig. 9(4e)). This is attributed to the use of the edge extraction branch. The models 

with edge extraction branch (PSPnet+HED and proposed method) perform much better in lumen extraction than the other 

methods (Unet3d and PSPnet) in most cases (see the illustrations given in Fig. 9(2f), Fig. 9(2g), Fig. 9(4f) and Fig. 9(4g)). 

Although better than Unet3d and PSPnet, the proposed method leads to reduced adhesion errors (pointed out by the green 

arrows in Fig. 9(6f) and Fig. 9(6g)). Specifically, we can note that the performance is relatively poor around the area with 

multiple intimal flaps (the blue arrows in Fig. 9(8a)), which were caused by patient breathing or cardiac motions. But in this 

work only one intimal flap is routinely delineated (see the blue arrow in Fig. 9(8b)) in manual labelling even for these 

multiple intimal flaps. Such contradiction might lead to lowered performance of the algorithm. 

With respect to the metrics minDice in Table 3, PSPnet, PSPnet+HED and the proposed method perform not as well as 

Unet3d. To highlight this, Fig. 10 depicts the direct output of 2-D network for the data volume displayed in Fig. 8(6a). A 

scalar value termed vesselness (between 0 and 1) was assigned to each voxel representing the confidence we get for this 

voxel to be inside the aorta. Voxels with vesselness larger than 0.5 were labeled as aorta points in the final segmentation 

result. In Fig. 10, the results are presented in pseudo-color. It can be observed in Fig.10 that for the PSPnet+HED method the 

vesselness values in portion B are lower than those in portion A. However, the vesselness values might also drop below 0.5 

and some voxels in aorta region are missing in the segmentation result. Fig. 10(b) depicts the output vesselness values of the 

proposed method. We find that the vesselness values in portion B are much higher than the vesselness values in the same area 

in Fig. 10(a) for the PSPnet+HED method, which implies that the portion partition operation of 3-D CNN contributes to the 

improvement of the final segmentation. Nevertheless, compared to the overall vesselness values in aorta structure, the 

resulted vesselness values are slightly lower in the arch region with sharp bending (see the region pointed by yellow arrow in 

Fig. 10(b)). Further improvement can be expected by using finer portion classification in the first stage. 

We also compared the the proposed method with a non-learning-based method proposed in [15] by Wörz et al. All 

parameters are set according to the paper. As the algorithm is unable to segment aorta in all slices, only chest slices (including 

ascending aorta, aortic arch and a small part of descending aorta) are used to evaluate the performance of this algorithm. 

Wörz method performs badly compared to other learning-based methods. It only achieves an average Dice value of 81.01 

while it takes more than 9 minutes to process an input volume sized 512x512x433. Deep-learning-based methods achieve 

superior performance with much reduced computation time in testing compared with those conventional methods.  

Experimental results in this study have shown that the proposed algorithm has satisfying performance for capturing the 

aorta structure while avoiding false positives on the intimal flaps. However, some improvements still need to be considered.  

                  



 

 

The dataset is small for training a 3-D segmentation network and that is the reason why we only use the 3-D network for 

aorta partition. The inputs to the 3-D network are also down-sampled to weaken the influence of voxel sizes and image 

details. An additional step called slice assignment is applied after the 3-D network to further reduce the impact of errors. The 

2-D network does not seem to easily get overfitted as we have more than 23000 slice to train this network, but we will try 

adding data augmentation like flipping or affine transforms to build a better training dataset. 

The compromise done between computational resources and segmentation efficiency leads us to separate the process into 

two stages. As seen in Table 5, the proposed method nearly doubled the computation time compared to 2-D only method like 

PSPnet. The second stage is operations in 2-D slices and thus the continuity along the z direction is not fully used.  

The vesselness notion, which is introduced for estimating the confidence of a voxel belonging to the aorta structure, still 

presents variations in the segmented arch parts. These variations will lead to notable errors on some CTA volumes. The 

“minDice” values in Table 3 give a rough glancing of this kind of errors. In the results from 2-D method (PSPnet and 

PSPnet+HED), 3 volume of 42 observed severe aorta structure missing in the segmentation results. Most of which appeared 

on the aortic arch. The proposed method alleviated this problem to a certain extent by adding a 3-D network. However, aortic 

structure missing still happens sometime (see Fig.8(5c)). A larger training dataset would be necessary to perfectly solve this 

kind of problems.  

Specially, the lower accuracy due to multiple local intimal flaps need to be overcome by increasing the number of patient 

cases and avoiding the contradicting manual delineations. Further work will also be devoted to processing clinical datasets 

with more pathological situations such as aorta aneurysms.  
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