
HAL Id: hal-03379655
https://hal.science/hal-03379655

Submitted on 18 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Rapid shifts in Arctic tundra species’ distributions and
inter-specific range overlap under future climate change

Floris Beest, Larissa Beumer, Asbjørn Andersen, Sophia Hansson, Niels
Schmidt

To cite this version:
Floris Beest, Larissa Beumer, Asbjørn Andersen, Sophia Hansson, Niels Schmidt. Rapid shifts in Arc-
tic tundra species’ distributions and inter-specific range overlap under future climate change. Diversity
and Distributions, 2021, 27 (9), pp.1706-1718. �10.1111/ddi.13362�. �hal-03379655�

https://hal.science/hal-03379655
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


1706  |  	﻿�  Diversity and Distributions. 2021;27:1706–1718.wileyonlinelibrary.com/journal/ddi

 

Received: 9 January 2021  |  Revised: 18 May 2021  |  Accepted: 26 May 2021

DOI: 10.1111/ddi.13362  

R E S E A R C H  A R T I C L E

Rapid shifts in Arctic tundra species' distributions and 
inter-specific range overlap under future climate change

Floris M. van Beest1,2  |   Larissa T. Beumer1,2  |   Asbjørn S. Andersen1 |    
Sophia V. Hansson3  |   Niels M. Schmidt1,2

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2021 The Authors. Diversity and Distributions published by John Wiley & Sons Ltd.

1Department of Bioscience, Aarhus 
University, Roskilde, Denmark
2Arctic Research Centre, Aarhus University, 
Aarhus C, Denmark
3Laboratoire Ecologie Fonctionnelle 
et Environnement (UMR-5245), CNRS, 
Université de Toulouse, Castanet Tolosan, 
France

Correspondence
Floris M. van Beest, Department 
of Bioscience, Aarhus University, 
Frederiksborgvej 399, 4000 Roskilde, 
Denmark.
Email: flbe@bios.au.dk

Editor: Zhixin Zhang

Abstract
Aim: The Arctic is one of the planet's most rapidly warming regions, with trends ex-
pected to intensify in the future. Projections of shifts in species distributional ranges 
under future climate change are thus far lacking for most vertebrate species using 
the Arctic tundra. Our aim was to assess possible climate-induced changes in distri-
butional ranges and inter-specific overlap of an Arctic species assemblage within the 
world's largest land-based protected area.
Location: During 1979–2013 location data of eight Arctic birds and mammals, Arctic 
fox (Vulpes lagopus), Arctic hare (Lepus arcticus), Arctic wolf (Canis lupus arctos), muskox 
(Ovibos moschatus), polar bear (Ursus maritimus), rock ptarmigan (Lagopus muta), snow 
bunting (Plectrophenax nivalis) and snowy owl (Bubo scandiacus) were collected in the 
Northeast Greenland National Park.
Methods: The maximum entropy (MaxEnt) algorithm and Schoener's D niche overlap 
index were used to assess shifts and changes in overlap of species-specific distribu-
tions under recent (1979–2013) and future (2061–2080; representative concentra-
tion pathways [RCPs] 2.6, 4.5 and 8.5) bioclimatic conditions.
Results: Species distributions were projected to shift northward and upwards across 
all scenarios, and at higher rates than previously reported. Future distributions were 
also forecasted to become spatially less clustered and to expand in size for all spe-
cies. Species-specific shifts in distribution ranges altered inter-specific overlap, most 
notably by an increase in overlap under scenario RCP 8.5.
Main conclusions: The rapid shifts in distribution ranges detected here underline that 
climate change impacts are most pronounced in areas with higher levels of warming, 
leading to accelerated shifts in species’ ranges towards the poles. However, the con-
comitant range expansions we found may suggest that future climatic conditions in 
north-east Greenland may not have such a detrimental impact on the distribution of 
cold-adapted species as generally expected, at least in the near future.
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1  | INTRODUC TION

Climate is a major determinant of species distribution ranges 
(Louthan et  al.,  2015). Future changes in climate are expected to 
shift distribution ranges poleward (higher latitude) and/or upward 
(higher elevation) (Lenoir et  al.,  2008; Parmesan & Yohe,  2003). 
Yet, due to regional variation in the magnitude and direction of cli-
matic changes, impacts will vary between ecosystems (IPCC, 2013). 
Moreover, differences in physiological traits (e.g. thermal tolerance) 
between species can lead to divergent responses to global warm-
ing (Bennett et al., 2019). In agreement, species distributions have 
been shown to shift, contract or expand (Chen et al., 2011; Scheffers 
et al., 2016), which can lead to a restructuring of biotic communities 
over large areas (Lavergne et al., 2010).

The impacts of climate change are believed to be particularly 
pronounced for cold-adapted species residing in the Arctic, an 
area disproportionally affected by climate change relative to most 
other regions in the world (Gilg et al., 2012; Post et al., 2009). While 
the ecology and evolution of some resident Arctic species are al-
ready being affected by a warming climate (Gilg et al., 2012; Taylor 
et  al.,  2020), most of the evidence is based on marine (Clairbaux 
et al., 2019; Kovacs et al., 2011; Neukermans et al., 2018) and inver-
tebrate (Høye et al., 2020; Nielsen & Wall, 2013) species. Projections 
of distributional range changes by an assemblage of vertebrate spe-
cies found on the Arctic tundra and possible implications for inter-
specific overlap are currently lacking. Such knowledge is crucial 
given that the Arctic tundra has low species richness with relatively 
few species interactions, where even small changes in inter-specific 
range overlap can have important implications for terrestrial food-
web dynamics (Schmidt et  al.,  2017). Estimating climate-induced 
shifts in distributions of Arctic species is therefore urgently needed 
to facilitate assessments of potential implications for ecosystem 
functioning (Pecl et al., 2017) and to inform possible conservation 
strategies (Elsen et al., 2020).

Here, we estimated changes in distribution ranges as well as 
inter-specific overlap over time and space for eight Arctic vertebrate 
species from different trophic levels (Figure 1) that are resident to 
the world's largest land-based protected area (Northeast Greenland 
National Park). Specifically, we contrasted species-specific distribu-
tion ranges and overlap based on recent climatic conditions (1979–
2013) with projected estimates under future climatic conditions 
(2061–2080) using multiple global circulation models (GCMs) and 
scenarios of representative concentration pathways (RCPs 2.6, 4.5 
and 8.5) that were part of the collection of model runs used in the 
IPCC’s 5th Assessment Report (IPCC, 2013). As such, our study is fo-
cussed on investigating potential impacts of changes in large-scale, 
abiotic conditions on species distributions as put forward under 
the Eltonian noise hypothesis (ENH: Soberón & Nakamura,  2009). 

Following the general notion that climate change impacts are more 
pronounced in areas with higher levels of warming, such as the Arctic 
(Chen et  al.,  2011; IPCC,  2013), we expected species distribution 
ranges to expand northwards in latitude and up the elevation gra-
dient over time (P1). We also expected the speed of northward and 
upward shift to depend on the severity of climate change (i.e. RCP 
scenarios) (P2). Moreover, we expected species-specific responses 
to climate change to alter inter-specific range overlaps in space and 
time (P3).

2  | METHODS

2.1 | Study area and location data

Data for this study were collected in the Northeast Greenland 
National Park (Figure  1). The size of the park is 972,000  km2 in-
cluding the interior ice sheet (ca 70% of the area). Apart from a few 
permanent, small meteorological and military outposts, the national 
park has no permanent human residents. Only researchers and few 
tourists visit the park during summer months, and anthropogenic 
disturbance is thus considered low. Large areas of the ice-free part 
of the national park are patrolled by the Sirius Dog Sled Patrol, a 
special unit within the Danish defence. The patrol consists of 6 dog 
sled teams, each conducting one reconnaissance trip in spring and 
one in autumn of each year. The exact routes are classified, but trips 
cover the same geographical areas, each covering over a thousand 
kilometres across several months. During reconnaissance trips, ver-
tebrate wildlife encounters are registered, specifying date, species, 
location and group size.

Here, we used species observation data collected during 1979–
2013. Observations collected during 2001–2013 were available in a 
digital format while observations from 1979 to 2000 were available 
on paper only. We first digitized these observations, considering 
only records with known species identity, date and location. The lo-
cations of most observations were provided in lat/long, but in some 
cases, only local place names were given, which were subsequently 
converted into lat/long using GIS (https://data.geus.dk/geusm​apmor​
e/stedn​avned​b/lista​ll.jsp). We could not quantitatively assess the ac-
curacy of the location data, but we assume location error of most 
observations to be <20 km, which is smaller than the resolution of 
the bioclimatic variables used in the analyses (see next section). We 
disregarded information of group size, as this was inconsistently reg-
istered for most species.

For our analyses, we focussed on location data of eight verte-
brate species that were easily identified by Sirius Dog Sled Patrol 
personnel due to their size, conservation status or charismatic na-
ture: Arctic fox (Vulpes lagopus, Linnaeus, 1758), Arctic hare (Lepus 

K E Y W O R D S

Arctic vertebrates, climate change, Eltonian Noise Hypothesis, inter-specific range overlap, 
MaxEnt, species distribution models
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arcticus, Ross, 1819), Arctic wolf (Canis lupus arctos, Pocoock, 1935), 
muskox (Ovibos moschatus, Zimmermann, 1780), polar bear (Ursus 
maritimus, Phipps, 1774), rock ptarmigan (Lagopus muta, Montin, 
1776), snow bunting (Plectrophenax nivalis, Linnaeus, 1758) and 
snowy owl (Bubo scandiacus, Linnaeus, 1758). Smaller species, such 
as lemming, were not considered for the analyses as they were less 
likely to be observed and recorded, even though they may be im-
portant to tundra ecosystem functioning (Schmidt et al., 2012). The 
location data reflect species presences only, as there was no data re-
corded for true absences of species over time and space. We there-
fore also considered observations of animal tracks (<1% of location 
data) in the analyses. Part of the muskox location data collected by 

the Sirius Dog Sled Patrol has been used previously to assess biotic 
and abiotic effects on temporal population trends (Forchhammer & 
Boertmann, 1993).

2.2 | Species distribution modelling

Species distribution ranges were estimated using the maximum 
entropy machine learning algorithm (MaxEnt; Phillips et al., 2006). 
MaxEnt relates location data with environmental or climatic back-
ground data to produce spatially explicit predictions of species’ oc-
currence probability (Elith & Leathwick, 2009). Although a wide range 

F I G U R E  1   Map of Greenland with the Northeast Greenland National Park outlined in green and the Greenland ice sheet in blue. 
Also shown are the study species: Arctic fox (Vulpes lagopus), Arctic hare (Lepus arcticus), Arctic wolf (Canis lupus arctos), muskox (Ovibos 
moschatus), polar bear (Ursus maritimus), rock ptarmigan (Lagopus muta), snow bunting (Plectrophenax nivalis) and snowy owl (Bubo scandiacus) 
and their respective sample sizes (N is the number of observations over the period 1979–2013) as used in the species distribution models. 
Arrows indicate the most common, but not exclusive, interactions between carnivorous and herbivorous species. Note that arrows and 
artwork are for descriptive purposes only and are thus not to scale
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of species distribution modelling (SDM) techniques exists, which can 
be combined into a single ensemble modelling framework (Forester 
et al., 2013; Naimi & Araújo, 2016), we opted for MaxEnt as the pre-
ferred modelling approach as it is particularly suited for presence-
only data with relatively small sample sizes (Elith et al., 2006; Phillips 
et  al.,  2017; Wisz et  al.,  2008), which was the case in our study 
(Figure 1, Figure S1.1 in Appendix S1). We fitted separate models for 
each species using the procedure outlined below. For more details, 
we refer to the Overview, Data, Model, Assessment and Prediction 
(ODMAP) protocol (sensu Zurell et al., 2020) on model development, 
testing and evaluation in Appendix S1.

Presence data in the MaxEnt models were species’ locations col-
lected in the study area during 1979–2013 (Figure S1.2 in Appendix S1). 
Background points (10,000) were randomly sampled for each species 
from within the vegetated areas in the Northeast Greenland National 
Park (Figure S1.3 in Appendix S1), effectively removing all areas with 
land ice. Moreover, we constructed spatial sampling bias files for each 
species separately by computing Gaussian kernel density rasters of 
all sampling locations (Brown et al., 2017). Sampling bias files (Figure 
S1.4 in Appendix  S1) were subsequently included in the species-
specific MaxEnt models to up-weight presence-only data points with 
fewer neighbours in the geographic landscape and to restrict back-
ground points to geographic areas where species occurrences were 
found (Merow et al., 2013; Phillips et al., 2009).

Environmental data considered were bioclimatic variables 
(n = 19) freely available through the CHELSA database (https://chels​
a-clima​te.org/) at a 1 km resolution (Karger et  al., 2017). The bio-
climatic raster data were downloaded for the periods 1979–2013 
(current period) and 2061–2080 (future period). For the latter, we 
considered data produced by three global circulation models (GCMs) 
using three scenarios of representative concentration pathways 
(RCPs). Specifically, the three selected GCMs are part of the CMIP5 
collection of model runs used in IPCC’s 5th Assessment Report 
(IPCC, 2013) and were CM5A-LR (Persechino et al., 2013), ESM-MR 
(Giorgetta et al., 2013) and MIROC5 (Watanabe et al., 2010). Each 
GCM provides data for scenarios of RCP 2.6, 4.5 and 8.5 (see 
Appendix S1 for a description of each RCP scenario). All bioclimatic 
raster data were upscaled to 20 km resolution to minimize possible 
effects of location inaccuracy and clipped to the vegetated areas in 
Northeast Greenland National Park (Figure S1.3 in Appendix S1).

Because multicollinearity among bioclimatic predictors was high 
(variance inflation factor>100 for some variables), and we had no 
a priori knowledge of which predictor variables were most influen-
tial in explaining species-specific probability of occurrence, we em-
ployed a completely data-driven variable selection approach through 
the “SDMtune” package in R (Vignali et al., 2020). This approach se-
lects the variable that best fits the data (using Akaike information 
criterion value corrected for small sample sizes: AICc) among those 
that are highly correlated. Starting from a trained model with all vari-
ables included, the function checks if the variable ranked as the most 
important (i.e. highest per cent contribution) is correlated with any 
of the other variables, here using a threshold of Spearman's rho ≥0.7. 
If this was the case, a leave-one-out jackknife test was performed, 

starting with the full model, and among all correlated variables, the 
one variable that decreased model fit on the training data set the 
most was discarded. A new model was then trained without this 
variable, which was again checked for highly correlated variables. 
The process was repeated until the pairwise correlations among all 
retained variables had Spearman's rho <0.7. Through this iterative 
procedure, 8 of the initial 19 predictor variables were (in different 
combinations) retained in the final species-specific models (Figure 
S1.5 in Appendix S1): BIO2: Mean diurnal range (mean of monthly 
(max temp–min temp)°C*10), BIO7: Temperature annual range 
(°C*10), BIO8: Mean temperature (°C*10) of wettest quarter, BIO10: 
Mean temperature (°C*10) of warmest quarter, BIO14: Precipitation 
(mm) of driest month, BIO15: Precipitation seasonality (Coefficient 
of Variation), BIO17: Precipitation (mm) of driest quarter and BIO18: 
Precipitation (mm) of warmest quarter.

To protect against overfitting and to reduce model complexity, 
MaxEnt uses regularization multipliers (RM) (Phillips et  al.,  2006). 
RMs give a penalty for each term included in the model and for 
higher weights given to a term. Here, we tested different settings of 
RM using the range of 0.5–5.0 in increments of 0.5 for each feature 
class through the “ENMeval” package in R (Muscarella et al., 2014). 
Moreover, we restricted all features to “linear” and “quadratic” func-
tions to avoid overly complex response curves that would be hard 
to explain ecologically. For each species, the optimal model was se-
lected based on goodness of fit by identifying the candidate model 
with the lowest AICc. Predictive performance of each species-
specific optimal model was evaluated by calculating the area under 
the curve (AUC) of the receiver operating characteristic (ROC) value. 
AUC values typically range from 0.5 for a model that shows no bet-
ter than random discriminatory ability, to a theoretical value of 1 for 
perfect discriminatory ability (Elith et al., 2006). Autocorrelation of 
location data was considered low (Figure S1.6 in Appendix S1).

Species-specific distribution maps were created by stacking the 
bioclimatic raster layers into a multi-layered raster and predicting, 
from the optimal MaxEnt models, the probability of occurrence in 
each grid cell under both current and future bioclimatic conditions. 
To ensure that model predictions did not include areas with novel 
bioclimatic conditions in the future (i.e. conditions for which the 
model has no training data, thus making predictions unreliable), a 
multivariate environmental similarity surfaces (MESS) analysis was 
performed. Following Elith et al. (2010), we used presence locations 
with associated bioclimatic values under current conditions (1979–
2013) as input points and then estimated (dis)similarities in biocli-
matic conditions across the study area extent (i.e. vegetated part of 
the Northeast Greenland National Park) by comparing to the data on 
future bioclimatic conditions. The MESS analysis was done for each 
species separately, and we used future conditions from the most 
stringent RCP 8.5 scenario throughout. Based on the MESS output, 
we only retained those areas where bioclimatic conditions were sim-
ilar over time (Figure S1.7 in Appendix S1). Importantly, areas with 
dissimilar bioclimatic conditions were also removed for model pre-
dictions under current climatic conditions to ensure comparability of 
changes in predicted area sizes over time (see Section 2.3).

https://chelsa-climate.org/
https://chelsa-climate.org/
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2.3 | Shifts in distribution ranges and inter-
specific overlap

In order to investigate how changes in bioclimatic conditions might 
shift distributional ranges, we contrasted the predicted probability 
of occurrence, as derived from the complimentary log–log (cloglog) 
output produced by the optimal MaxEnt model, between the current 
and future periods. To do so, we considered three complementary 
SDM thresholds (Liu et al., 2013) including Kappa (the value of the 
probability of occurrence at which Kappa is highest), MSSS (the value 
of the probability of occurrence at which the sum of the sensitivity 
(true positive rate) and specificity (true negative rate) is maximized) 
and P10 (the value of the probability of occurrence for the lowest 10% 
of occurrence records). In general, the Kappa threshold was most re-
strictive as it identified areas with relatively high probability of occur-
rence (i.e. core distribution area). The MSSS threshold identified areas 
above a moderate probability of occurrence, while the P10 threshold 
included most areas above a relatively low probability of occurrence 
across species distributions (Table S1.1 in Appendix S1).

Directional shifts under recent and future climatic conditions 
(considering the three RCP scenarios) were then assessed quanti-
tatively by calculating the difference in latitude (using the geomet-
ric mean, with 1° corresponding to 111.6 km) and elevation (mean 
m.a.s.l.) between periods (a difference of five decades) and for each 
SDM threshold. Elevation was extracted from a digital elevation 
model (20 km resolution) developed by the Shuttle Radar Topography 
Mission, which is freely available through the WorldClim2 database 
(http://www.world​clim.com/). Moreover, we computed the absolute 
change in total area size (km2) of species ranges and the level of clus-
tering (unitless) (Clark & Evans,  1954). For the latter, we followed 
Beumer et  al.,  (2019) by calculating the nearest neighbour index 
(NNI) as a measure of clustering or dispersion. NNI <1 indicates a 
clustered pattern, and NNI >1 suggests dispersion of probability of 
occurrence.

For each range shift metric, we used a paired sample t test to 
detect significant (p < .05) differences in mean species distributions 
between the current and future period (normality of data confirmed 
with Shapiro–Wilk test: p >  .05) with a separate test for each RCP 
and SDM threshold considered. Finally, we calculated the propor-
tion of inter-specific overlap, and the changes therein between re-
cent and future species distributions, based on Schoener's D niche 
overlap index (Schoener, 1968), again separating each RCP and SDM 
threshold considered.

3  | RESULTS

3.1 | Predictive performance and variable 
importance

Predictive performance of the species-specific MaxEnt models was 
considered high with a mean AUC >0.75 for all optimal models (Table 
S2.1 in Appendix S2). The importance of bioclimatic variables in the 

models and their influence on the probability of occurrence differed 
between species (see Figure S2.1 for variable importance and Figure 
S2.2 for response curves). The most consistent and important predictor 
influencing the probability of occurrence across all species was mean 
temperature (°C) of the warmest quarter (summer) with the probability 
of occurrence typically increasing with increasing temperature.

3.2 | Current and future species distribution maps

Spatial mapping of the MaxEnt models’ output highlighted that prob-
abilities of species occurrences during 1979–2013 (Figure  2) were 
highest in the mid-eastern section of the Northeast Greenland 
National Park (especially for rock ptarmigan) and lowest in the 
northern parts of the study area. The distribution range of snowy 
owls during this period was most uniform with a consistent prob-
ability of occurrence across the entire area (Figure 2).

Projections of the MaxEnt model results based on bioclimatic 
conditions for the period 2061–2080 are provided for each species, 
GCM and RCP combination in Figures 2.3–2.10 in Appendix  S2. 
These forecast maps suggest that the probability of species occur-
rences will increase and expand geographically and particularly with 
severity of RCP scenario, a pattern that applied to all species. The 
maps also suggest that some GCMs produced more spatially restric-
tive distribution ranges under the same RCP scenario than did oth-
ers. To accommodate this variance in further analyses, we calculated 
the mean and standard deviation of the probability of species occur-
rence for each RCP by aggregating data from the GCM- and species-
specific MaxEnt models (Figures S2.11–S2.12 in Appendix S2).

3.3 | Shifts in species distributions

Contrasting species distribution maps for 1979–2013 and for 2061–
2080 (using three RCP scenarios), distributions were projected to 
change markedly (Figure  3). For some species (Arctic fox, Arctic 
wolf and polar bear), the change in probability of occurrence over 
time was mostly positive, which became more pronounced with 
the severity of RCP scenarios considered. In contrast, the change in 
probability of occurrence over time and space was mainly negative 
for rock ptarmigans (most pronounced under scenario RCP 2.6 and 
less so under scenario RCP 8.5). For snowy owls and snow bunting, 
probability of occurrences remained rather constant over time and 
space, especially when contrasting current distributions with future 
distributions under scenarios RCP 2.6 and 4.5 but only a slight posi-
tive change in the probability of occurrence under scenario RCP 8.5. 
For muskoxen and Arctic hares, the change in probability of occur-
rence over time was positive in some parts of their distribution range 
and negative in others, a pattern that also became more pronounced 
with the severity of the RCP scenarios considered (Figure 3).

Quantitative analyses of the above spatiotemporal changes in 
probability of occurrence revealed significant northward shifts in 
species distributions over time, a pattern that was evident for all RCP 

http://www.worldclim.com/
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scenarios and thresholds considered (Figure 4a, Table S2.2). While 
some species were projected to shift their distribution range faster 
and further north than others, we quantified an average rate in lat-
itudinal range shifts of 65.8 km/decade (t = 5.43, df = 7, p =  .001) 
when contrasting current (1979–2013) with future (2061–2080) 
core ranges (Kappa threshold) under scenario RCP 8.5. In compari-
son, the average rate was 37.4 and 24.3 km/decade under scenarios 
RCP 4.5 (t = 3.68, df = 7, p =  .008) and RCP 2.6 (t = 3.04, df = 7, 
p  =  .019), respectively. Rates in latitudinal shifts were lowest for 
the P10 threshold (i.e. including most of the species ranges) yet re-
mained statistically significant with average rates of 17.7, 16.1 and 
14.4 km/decade under scenarios RCP 8.5 (t = 3.53, df = 7, p = .010), 
RCP 4.5 (t = 3.82, df = 7, p =  .007) and RCP 2.6 (t = 3.50, df = 7, 
p =  .010), respectively (Table S2.2b in Appendix S2). Similarly, pro-
jected distribution ranges also shifted up the elevational gradient 
over time for all RCPs and thresholds considered (Figure  4b). The 
elevational change over time was greatest when considering the 
core range (Kappa threshold) under scenario RCP 8.5 with an av-
erage rate of 34.3 m/decade (t = 11.95, df = 7, p <  .001) across all 
species. The elevational shifts were projected to be less strong and 

rapid when considering the remaining thresholds and RCP scenarios 
(Table S2.2b in Appendix S2). The total area size of projected core 
ranges more than doubled over time for nearly all species and RCP 
scenarios (Figure 4c, Table S2.2c in Appendix S2), with an average in-
crease of 18,700 km2/decade across species under RCP 8.5 (t = 7.47, 
df = 7, p < .001). While we found a general tendency for predicted 
distribution ranges to become less clustered (i.e. more dispersed) 
compared with the current situation (Figure 4d), a statistical differ-
ence was only found for the MSSS threshold under the scenario RCP 
8.5 and for the P10 threshold across RCP scenarios (Table S2.2d in 
Appendix S2). As such, predicted core ranges were found to largely 
maintain their current degree of clustering (Figure 4d, Table S2.2d in 
Appendix S2).

3.4 | Changes in inter-specific range overlap

The projected shifts in species-specific distributions over time led to 
distinct changes in inter-specific range overlap, though patterns var-
ied between the RCP scenarios and thresholds considered (Figure 5). 

F I G U R E  2   Maps of species-specific probability of occurrence for the period 1979–2013 based on the optimal MaxEnt models using 
location data collected in the Northeast Greenland National Park during the same period. Predicted values are the cloglog output of the 
species-specific MaxEnt model with values ranging from 0 to 1 depicted by a blue to green scale. Note that values are only provided for 
vegetated areas in the park, excluding land ice and areas with novel bioclimatic conditions as identified through species-specific multivariate 
environmental similarity surfaces analyses using data from 1979–2013 and 2061–2080
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In general, proportional range overlap between most species’ com-
binations increased with severity of the climate change scenarios. 
However, the increase was most pronounced for the threshold P10. 
Proportional range overlap for the thresholds Kappa and MSSS was 
projected to decrease or remain stable between most species’ com-
binations under scenario RCP 2.6 and 4.5 and increase under RCP 
8.5 only (Figure 5).

4  | DISCUSSION

This study provides a comprehensive overview of how projected cli-
mate change scenarios for north-east Greenland may shift species’ 
distributions and subsequently inter-specific overlap of eight Arctic 
vertebrate species within the world's largest land-based national 
park. Following our expectation (P1), we found strong indications for 
northwards range shifts by all species when contrasting probabil-
ity of occurrences between recent (1979–2013) and future (2061–
2080) bioclimatic conditions. Similarly, projected distribution ranges 
were found to move up the elevational gradient (also supporting P1). 
Both of these directional shifts were apparent across SDM thresh-
olds considered, and clearly accelerated with the severity of the 
RCP scenarios (supporting P2). In fact, the range shifts across RCP 
scenarios found here were all greater than reported in a previous 
meta-analysis (16.9  km/decade over the latitudinal gradient) that 
was based on a wider array of taxa and ecosystems from across the 
globe (Chen et al., 2011). As such, our Arctic case study underlines 

the notion that climate change impacts are most pronounced in 
areas with higher levels of warming, leading to accelerated shifts in 
species’ ranges towards the poles (Chen et al., 2011; IPCC, 2013). 
Importantly, we also found a clear expansion of species’ distribution 
ranges under future conditions, with core ranges more than doubling 
in size for nearly all species and RCP scenarios. Together with a gen-
eral tendency for less clustered distribution ranges under the RCP 
scenarios considered, we conclude that future climatic conditions in 
vast areas in north Greenland may not have such a destressing im-
pact on the distribution of cold-adapted species than perhaps previ-
ously suspected, at least not within this century.

Species-specific responses to changing climatic conditions 
are often detected and likely driven by differences in physio-
logical traits (e.g. thermal tolerance), which can culminate into a 
restructuring of biotic communities over large areas (Lavergne 
et al., 2010). In agreement, the importance of bioclimatic variables 
included in our MaxEnt models and their influence on the prob-
ability of occurrence differed between species, driving species-
specific changes between current and projected distributions. The 
projected climate-induced shifts in species distributions resulted 
in altered inter-specific overlap over time and space (as expected 
under P3); yet, the direction and strength of changes in overlap 
varied between the SDM thresholds and RCP scenarios considered 
and were largely independent of species-pair combinations. For ex-
ample, we found a decline in overlap of core distribution ranges be-
tween all species combinations under the so-called “peak” scenario 
that would keep global temperature rise below 2°C by 2100 (RCP 

F I G U R E  3   Maps of the spatiotemporal change in probability of occurrence for the eight studied vertebrate species in the Northeast 
Greenland National Park between periods 1979–2013 and 2061–2080 using three RCP scenarios and the mean of three GCMs (see Figures 
2.3–2.10 in Appendix S2 for individual GCMs). Areas where probability of occurrences decreased over time (values < 0) are depicted in red, 
areas with no change (values = 0) are indicated in grey, while areas where probability of occurrences increased over time (values > 0) are 
depicted in blue
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F I G U R E  4   Species-specific shifts in distribution ranges across the (a) latitudinal and (b) elevational gradient as well as (c) changes in total 
area size and (d) clustering of distribution ranges within the Northeast Greenland National Park between the periods 1979–2013 (current) 
and 2061–2080 (depicted by RCPs 2.6, 4.5 and 8.5). Species are indicated with different colours and symbols as explained in the legend on 
top. Results are provided for three SDM thresholds: Kappa, MSSS and P10. Significant differences between current and future values, as 
determined by paired sample t tests, are indicated with brackets and stars where * indicates p < .05, ** indicates p < .01 and *** indicates 
p < .001 (see Table S2.2 in Appendix S2 for full test outputs). Nearest neighbour index values closer to 1 indicate reduced clustering and 
more evenly dispersion of occurrence. Values were derived based on the species-specific optimal maximum entropy (the complimentary log–
log output) models as identified by the Akaike information criterion value corrected for small sample sizes
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2.6). In contrast, we found an increase in overlap between all spe-
cies combinations under the most severe scenario that would limit 
global temperature rise to 4°C in year 2100 (RCP 8.5). Overall, our 
findings do not lend much support to the notion that that future cli-
mate change in this region will lead to a complete rearrangement of 
trophic interactions and food-web dynamics, as hypothesized else-
where (Legagneux et al., 2014), though further studies are required 
to fully address this issue.

Efforts to predict shifts in species distribution ranges and over-
lap are critical to inform management and conservation initiatives 
(Elsen et al., 2020), but estimating climate change effects with SDMs 
alone remains challenging (White et al., 2018). Our correlative anal-
yses focus purely on estimating possible shifts in distribution ranges 
based on gradual changes in climatic conditions and ignore possible 
biotic interactions. Indeed, our approach follows the Eltonian noise 
hypothesis (ENH), which proposes that although biotic interactions 

F I G U R E  5   Proportional change in inter-specific overlap of distributional ranges as determined by the difference in Schoener's D niche 
overlap index between the periods 1979–2013 (current) and 2061–2080 (depicted by RCPs 2.6, 4.5 and 8.5) for the eight studied Arctic 
species found in the Northeast Greenland National Park. Results are provided for three SDM thresholds (TH): Kappa, MSSS and P10. 
Negative values (in salmon colour) indicate a decrease in range overlap between species over time, and zero values (in white) indicate no 
change, while positive values (in blue) indicate an increase in range overlap between species over time
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may be a major driver of species abundance and distribution at rela-
tively small spatial resolutions, their effects are averaged out in large-
scale SDMs with coarse resolutions (Soberón & Nakamura, 2009). 
However, several studies have now uncovered direct effects of bi-
otic factors/interactions on species distributions using large-scale 
SDMs (de Araújo et al., 2014; Jenkins et al., 2020). Importantly, these 
studies aimed to quantify current species distributions and did not 
use forecasting under changing environmental conditions. Although 
we adopted a purely bioclimatic approach here, we do not dispute 
the importance of biotic and other factors (e.g. vegetation and ice-
melt dynamics) in determining species distributions in the Arctic. We 
do stress, however, that incorporating interactions between climatic 
and biotic factors is particularly complex when the aim is to project 
distribution patterns into the future. For example, including vegeta-
tion layers into our SDMs would likely increase confidence in model 
output for herbivorous species under current conditions. Yet, fore-
casting changes in high-Arctic vegetation communities under climate 
change is still in its infancy and currently possible at relatively small 
spatial scales only (Stewart et al., 2018). Doing so at the landscape 
scale, as would be required in our forecasting analyses, remains a 
complicated task (Franklin et al., 2020). This is due to the multitude 
of biotic and abiotic interactions that vary over space, as well as time 
lag effects involved between loss of snow/ice cover and the build-up 
of soil depth and quality that is needed for vegetation growth 
(Jobbágy & Jackson, 2000). Using bioclimatic variables as surrogates 
for actual limiting resources, such as forage availability and quality, 
is often the only reliable alternative to assess possible changes in 
species ranges under future global warming. We thus interpret our 
results under the assumption that biotic factors can correlate closely 
with abiotic variables and that our SDMs capture an important part 
of the biotic processes involved in species distributions.

Systematically collecting long-term location data of wildlife 
across large areas in the high-Arctic is extremely challenging and 
expensive, and thus rare. The here analysed data set is likely the 
most extensive that is currently available for within Greenland, pos-
sibly even within the Arctic region. Nonetheless, some challenges 
in the data set required consideration so as to reduce prediction 
uncertainty, which is often neglected in large-scale SDM studies 
investigating climate change impacts (Beale & Lennon, 2012). First, 
location accuracy of the presence data was unknown, yet likely 
poor in comparison with, for example GPS tracking or camera trap 
data. We attempted to minimize this uncertainty related to location 
error by using coarse grid cells of bioclimatic raster data (20 km2). 
Next, an important assumption of SDM studies is that sampling of 
location data is adequate and representative, which we could not 
quantify here given the rather opportunistic nature of how species 
observations were collected using unknown routes of the Sirius 
Dog Sled Patrol. To account for this issue as much as possible, we in-
corporated spatial sampling bias files in the species-specific MaxEnt 
models, which is an established method to restrict background 
points to geographic areas where species occurrences were found, 
leading to more realistic predictions (Phillips et al., 2009). We also 
tailored the entire analytical procedure to increase reliability of 

model output as much as possible by, for example incorporating a 
wide range of emission scenarios, excluding areas with novel bio-
climatic conditions in the future and limiting overparameterization 
through extensive MaxEnt model pruning (Santini et  al.,  2021). 
We also explicitly quantified a known source of uncertainty in cli-
mate change studies, namely the GCMs considered in forecasting 
(Thuiller et  al.,  2019). Finally, it is important to reiterate that our 
study system is a remote and protected area, currently unaffected 
by human disturbance. Anthropogenic influences on contemporary 
species distributions can therefore be considered low, which elim-
inates an otherwise known bias in forecasting climate change im-
pacts on species ranges (Faurby & Araújo, 2018). However, as the 
Arctic climate warms and the ice continues to melt, human activity 
in the region (e.g. oil and mineral extraction) is steadily growing and 
will likely play an increasingly important role in shaping future dis-
tribution ranges of wildlife species resident to the Arctic (Johnson 
et al., 2005). Despite these caveats, and based on a purely biocli-
matic assessment of species-specific shifts in distribution and over-
lap under future climate change scenarios, our results clearly show 
that ongoing climate warming is likely to have a strong impact in 
the Arctic, with rapid and directional shifts in species’ distribution 
ranges towards higher latitudes and elevations. To what extent 
associated changes in inter-specific overlap of distribution ranges 
under future conditions will impact local food-web dynamics and 
ultimately ecosystem functioning remains to be studied in more 
detail. Our results therefore emphasize that understanding cli-
mate change effects on terrestrial food-web dynamics in the Arctic 
should remain a research priority.
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