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ABSTRACT
A full-fledged data exploration system must combine different ac-

cess modalities with a powerful concept of guiding the user in the

exploration process, by being reactive and anticipative both for data

discovery and for data linking. Such systems are a real opportunity

for our community to cater to users with different domain and data

science expertise.

We introduce INODE - an end-to-end data exploration system -

that leverages, on the one hand, Machine Learning and, on the other

hand, semantics for the purpose of Data Management (DM). Our

vision is to develop a classic unified, comprehensive platform that

provides extensive access to open datasets, and we demonstrate it

in three significant use cases in the fields of Cancer Biomarker Re-

search, Research and Innovation Policy Making, and Astrophysics.

INODE offers sustainable services in (a) data modeling and linking,

(b) integrated query processing using natural language, (c) guidance,

and (d) data exploration through visualization, thus facilitating the

user in discovering new insights. We demonstrate that our system

is uniquely accessible to a wide range of users from larger scientific

communities to the public. Finally, we briefly illustrate how this

work paves the way for new research opportunities in DM.

1 INTRODUCTION
The Data Management (DM) community has been actively catering

to Machine Learning (ML) research by developing systems and

algorithms that enable data preparation and flexible model learn-

ing. This has resulted in several major contributions in developing

ML pipelines, and formalizing algebras and languages to facilitate

and debug model learning, as well as designing and implementing

algorithms and systems to speed up ML routines [33]. Conversely,

existing work that leverages ML for DM [35] is nascent and covers

the use of ML for query optimization [18] or for database index-

ing [17]. This paper makes the case for democratizing Intelligent
Data Exploration by leveraging ML for DM.

Traditionally, database systems assume the user has a specific

query in mind, and can express it in the language the system under-

stands (e.g., SQL). However, today, users with different technical

backgrounds, roles, and tasks are accessing and leveraging volu-

minous and complex data sources. In many scenarios, they are

only partially familiar with the data and its structure, and their

user information needs are not well-formed. In such settings, ex-
panding traditional query answering to data exploration is a natural
consequence and requirement and with it comes the need to redesign
systems accordingly. This need translates to several challenges at

different levels.

(Interaction). Regarding interaction with the system, the biggest

challenge is to enable the user to express her needs through a

variety of access modalities, ranging from SQL and SPARQL to

natural language (NL) and visual query interfaces, that can be used

and intermingled depending on the user needs and expertise as

well as the data exploration scenario. The second challenge is that

of user guidance, i.e., users should be allowed to provide feedback
to the system, and the system should leverage that feedback to

improve subsequent exploration steps.

(Linking). Once a user need has been formulated and sent to

the system, a search is executed over a (fixed) data set. Users may

be aware which additional data sets could be of interest. However,

they do not always know how to correctly link, integrate, and

query more than one data source to generate rich information. This

introduces the challenges of data linking, so that new data sources

can be added to the system, as well as knowledge generation, so
that queries over unstructured data can be supported. Both of these

aim at enabling the continuous expansion of the “pool” of available

data sources, thus making more data available to users.

(Guidance). Traditionally, the system will return to the user a

set of tuples that concludes the search. There is a lot of work on

how to improve performance for query workloads (predict future

queries, build indices adaptively, etc.), but still the system has a

rather passive role: anticipating or at best trying to predict the

next query and then optimize its performance accordingly. Hence,

the challenge of system proactiveness arises. The output is not
only the set of results but also recommendations for subsequent

queries or exploration choices. In our vision, the system guides the

user to find interesting, relevant or unexpected data and actively

participates in shaping the query workload.

In a nutshell, a full-fledged data exploration system must com-
bine different access modalities with a powerful concept of guiding
the user in the exploration process. It must be reactive and anticipa-
tive; co-shaping with the user the data exploration process. Finally,

while data integration has been around for a while, the ability to
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Figure 1: Natural language query interface with user assistance. Step 1: User enters a natural language query. Step 2: System
parses query andmatches keywords against the available ontology to enable termdisambiguation; the user iterates the process.
Step 3: System visualizes various cancer types that are similar to lung cancer. The distance metric between the diseases can be
chosen by the user, e.g. by semantic distance.

tie together data discovery and linking is a central question in an
intelligent data exploration system.

(Evaluation). An essential part of our proposal is the development

of an evaluation framework to enable the end-to-end assessment of

an intelligent data exploration system. This requires to formalize

system metrics and human metrics that are necessary for data

linking and integration, multi-modal data access, guidance, and

visualization.

Related Work. Several systems address components of our vi-

sion. A number of them address interaction by enabling NL-to-

SQL [2], SQL-to-NL [16] or both [14] (see a summary in [1]). Rec-

ommendation strategies can be leveraged to guide users [21]. Work

on interactive data exploration aims at helping the user discover

interesting data patterns based on an integration of classification

algorithms and data management optimization techniques [6]. Each

of the above-mentioned systems tackles specific data management

challenges as so-called insular solutions. However, these insular

solutions have not been integrated to tackle the end-to-end aspect

of intelligent data exploration targeted at a wide range of different

end users.

Combining all the challenges above requires an elaborated sys-

tem whose multi-aspect behavior and functionality is the result of

a synergy between disjoint technologies, and integrates them into

a new ensemble. This gives rise to multiple approaches that vary

in computational complexity, and raises new challenges that can

benefit from recent advances in ML.

In summary, this paper makes the following contributions:

One-size-does-not-fit-all when building a full-fledged data explo-

ration system. For instance, the exploration operators are not all the

same across different domains since exploring health data requires

different semantics than exploring galaxies. Our aim is to encapsu-

late that semantics in higher level constructs, e.g. exploration by

example, by natural language and by recommendation. Similarly,

our aim is to build the components necessary for a full fledged

system. We illustrate the need for intelligent data exploration with

relevant use cases (Section 2). We describe INODE
1
, a system that

1
http://www.inode-project.eu/

we are currently building as part of a project funded by the Eu-

ropean commission (Section 3). To fully complete our vision, we

provide open research challenges to be addressed at the intersection

of DM and ML (Section 4).

2 USE CASES
In this section, we describe two of our three use cases - cancer

research and astrophysics - and show how INODE can tackle them.

The system is targeted for domain scientists as well as the general

public.

Use Case 1: Cancer Research (Natural Language and Visual Data

Exploration). Fred is a biologist who studies cancer. His goal is to

find which specific biomarkers are indicators for a certain type of

lung cancer. He needs natural language exploration.

INODE offers support for NL queries, query recommendations,

and interactive visualizations triggered by NL queries (see Figure 1).

For instance, Fred starts with a request in NL for the topics related

to lung cancer but is not sure how to continue after inspecting

the results. INODE steps up and recommends different options:
to expand the search using experimental drugs for treating lung

cancer, or to focus on a subset of lung cancer types associated with

a certain gene expression. Fred chooses to expand his search to

one of the recommended topics, and receives a new list of lung

cancers, drugs and genes. Additionally, INODE explains inNL how

results are related. That helps him in selecting experimental drugs

for certain gene expressions. After a few such queries, the system

visually analyzes the results for Fred to study. Fred learns about
the similarity between different types of cancer based on distance

metrics that he can choose. In order to enable such data exploration,

several different databases need to be integrated and potentially be

correlated with findings from research papers.

Use Case 2: Astrophysics (Exploration with SQL-Pipelines). In

the era of big data, astronomers need to analyze dozens of databases

at a time. With the ever increasing number of publicly available

astronomical databases from various astronomical surveys across

the globe, it is becoming increasingly challenging for scientists

to penetrate deep into the data structure and their metadata in

order to generate new scientific knowledge. Sri, an astrophysicist,



INODE: Building an End-to-End Data Exploration System in Practice
Authors’ Copy

Figure 2: Exploring astrophysics data.

explores astronomical objects in SDSS, a large sky survey database
2
.

Sri would like to examine Green Pea galaxies, first discovered in

a citizen science project called ’Galaxy zoo’, that recently gained

attention in astronomy as one of the potential sources that drove

cosmic reionization.

Figure 2 shows a sequence of three consecutive processes of ana-

lyzing astrophysics data. Sri relies on selected examples at each step

and requests to see comparable ones. In the first query, she asks to
find galaxies with similar colors as Green Pea galaxies. She then
requests objects with similar spectral properties, like emis-
sion line measurements, star formation rates etc., as those
returned in the first step. The last query finds similar galaxies in
terms of their relative ratios and strength of emission lines.
As a result, Sri discovers that green pea emission line ratios are

similar to high redshift galaxies.

INODE guides any user in making such new discoveries in an

intuitive simpler way, without having to write complicated SQL

queries or perform manual analysis of thousands of galaxies. For

instance, INODE helps a user choose among similarity dimen-
sions rather than rely on her ability to provide them. Additionally,

INODE shows to the user alternative queries to pay attention to,

thus increasing the chances of making new discoveries.

Crucially, INODE can be extended with additional resources

which requires close interaction with domain scientists. Detailed

user guides are in preparation.

3 CURRENT INODE ARCHITECTURE
The main novelty of INODE is bringing together different data

management solutions to enable intelligent data exploration (see

Figure 3). Although some of these solutions and research challenges

have been tackled previously, they have not been combined into

such an end-to-end intelligent data exploration system, which in

turn opens up new research challenges.

INODE’s major components are as follows: (1)DataModeling and
Linking enables integration of both structured and unstructured

data. (2) Integrated Query Processing enables efficient query pro-

cessing across federated databases leveraging ontologies. (3) Data
2
https://www.sdss.org/

Access and Exploration enables guided data exploration in various

modalities such as by natural language, by recommendation, by

example or visually. We refer to these as operators.3 Even though

INODE is an integrated system, each of the components can also be

used independently. A detailed description of each component is

given in the component release
4
. The system is targeted for domain

scientists as well as the general public.

3.1 Data Modeling and Linking
This component links loosely coupled collections of data sources

such as relational databases, graph databases or text documents

based on the well-established ontology-based data access (OBDA)
paradigm [37]. OBDA uses a global ontology (knowledge graph)

to model the domain of interest and provides a conceptual repre-

sentation of the information in the data sources. The sources are

linked to elements in the global ontology through declarative GAV
mappings [19]. It is well-known that designing OBDA mappings

manually is a time-consuming and error-prone task. The Data Mod-

eling and Linking component of INODE aims at automatizing this

task by providing two mechanisms: data-driven and task-driven
mapping generation.

Data-driven Mapping Generation. This mechanism deals with

linking novel data sources to the system. The idea is to rely on

mapping patterns that describe well-assessed and sound schema-

transformation rules usually applied in the design process of re-

lational databases. By analyzing (driven by the patterns) the data

sources, it is possible to automatically derive a so-called putative
ontology [30] describing both the explicit entities and relationships

constituting the schema and the implicit ones inferrable from the

data. From the mapping patterns, one can also automatically derive

mappings that link the data sources to the putative ontology.

Task-driven Mapping Generation. This mechanism is applied

whenever a task or a query is formulated that uses specific tar-
get ontology elements that are not yet aligned with the putative

ontology. In such scenario, the semantics of the query are used to

automatically generate mappings to align the target ontology with

the putative ontology.

Knowledge Graph (KG) Generation. This service transforms un-

structured information hidden in large quantities of text (e.g. repos-

itories of scientific papers) to an exploitable structured representa-

tion through an NLP pipeline. INODE follows an Open Information

Extraction (OIE) approach to convert each sentence of the corpus

into a set of relational triples, where each triple consists of a subject,

an object, and a predicate (relationship) linking them. We lever-

age a number of preprocessing techniques, including co-reference

resolution and extractive summarization to improve the quality of

the extracted relational triples. We combine different OIE methods

(rule-based, analytics-based and learning-based) to achieve both

high precision and high recall [25]. The relational triples are fur-

ther linked with domain-specific ontology concepts before being

integrated into the knowledge graph.

3
A prototype implementation of the major system components can be found at:

http://www.inode-project.eu/opendatadialog/

4
The INODE components as of September 2021 http://www.inode-project.eu/blog/

second-component-release/

http://www.inode-project.eu/blog/second-component-release/
http://www.inode-project.eu/blog/second-component-release/


INODE Project Partners

Figure 3: Major components of the INODE architecture.

Note that all tasks of the Data Modelling and Linking component

are executed offline and hence do not require interactivity.

3.2 Integrated Query Processing
This component is responsible for the execution of queries using

Ontop [39], a the state-of-the-art OBDA system. Ontop allows the

users to formulate queries in terms of concepts and properties of their
domain of expertise (represented in knowledge graphs), rather than
in terms of table and attribute names used in the actual data sources.

Hence, users do not have to be aware of the specific storage details

of the underlying data sources in order to satisfy their information

needs.

Query Execution. This service provides on-the-fly reformulation
of SPARQL queries over the domain ontology to SQL queries over

the data sources. An approach based on reformulation has the

advantage that the data available in the data sources does not need

to be duplicated in the query processing system, but can be kept in

the data sources as-is. This means that the Query Execution service

is guaranteed even in the common scenario where the user does

not own the data nor does have the right to copy them. To produce

reformulations that can efficiently be executed over the data, in

INODE we use optimization techniques such as self-join elimination
for denormalized data [39] and optimizations of left-joins [38].

Source Federation. The Source Federation service deals with dis-

tributing the processing of queries over the available data sources.

INODE provides seamless federation over the SQL data sources.

In seamless federation, users send queries against a unified view

of the remote endpoints without the need to be aware of the actual

vocabularies used in the federated endpoints. The challenge is to

automatically detect to which sources which components of the

query need to be dispatched, to collect the retrieved results, and to

combine them into a coherent answer. We address this challenge

by relying on the knowledge about the sources encoded in the

OBDA mappings. Note that in a seamless setting, the end-user in-

teracts with the endpoint as usual, and remains unaware of whether

the system will perform a federated query to retrieve the answers.

Given that efficiency is a crucial requirement, in this, mostly inter-

active setting, our approach requires a dedicated cost-model able to

minimize the number of distributed joins over the federation layer,

in order to favor more efficient joins at the level of the sources.

Data Analytics. The data analytics service exploits novel and

efficient query reformulation and optimization techniques [39] to

compute complex analytical functions. Such techniques are based

on algebraic transformations of the SPARQL algebra tree, rather

than on Datalog transformations as traditionally done in the OBDA

literature. This shift of paradigm allows for an efficient implementa-

tion of analytical functions such as SPARQL aggregates. It is worth

noting that INODE, through Ontop, provides the first open-source

reformulation-based system able to support SPARQL aggregates.

3.3 Data Access and Exploration Operators
We describe the set of operators currently available individually

within INODE.

Exploration by Natural Language. For translating a natural language

question into SQL or SPARQL, INODE uses pattern-based, graph-
based and neural network-based approaches. For translating from

NL to SQL, INODE extends the pattern-based system SODA [2]

with NLP techniques such as lemmatization, stemming and POS

tagging to allow both key word search queries as well as full natural

language questions. In addition, we use Bio-SODA [32], a graph-

based system to enable NL questions over RDF graph databases.

Finally, INODE integrates the neural network-based approach
ValueNet, which leverages transformer architectures to translate

NL to SQL [4]. The ultimate goal of INODE is to combine all these

techniques into an intelligent hybrid approach that improves on the

errors of each of the individual systems.

Exploration by Explanation. One of the biggest hurdles in today’s

exploration systems is that the system provides no explanations

of the results or system choices. Nor does the system trigger input

from the user, for example, by asking the user to provide more

information. In INODE, we enable a conversational setting, where

the system can (a) ask for clarifications and (b) explain results in

natural language. This interaction assumes that the system is capa-

ble of analyzing and understanding user requests and generating

its answers or questions in natural language.

One approach used in INODE builds on Template-based Synthesis
[16]. This approach considers the database schema as a graph and a

query as a subgraph. We use templates that tell us how to compose

sentences as we traverse the graph and we use different traversal

strategies that generate query descriptions as phrases in natural

language. Furthermore, to generate NL descriptions that use the

vocabulary of a particular database, INODE enriches its vocabulary

by leveraging ontologies built by the Data Modeling and Linking

components. To further improve INODE’s explanation capabilities,

we are working on an approach to automatically learn templates,

which is especially critical for databases with no descriptive meta-

data, such as SDSS. Essentially, we are using neural-based methods
to translate from SQL or SPARQL to natural language.

Exploration by Example and by Analytics. By example is a pow-

erful operator that encapsulates multiple semantics. It takes a set

of examples, such as galaxies or patients, and explores its different

facets, filters them, finds similar/dissimilar sets, finds overlapping

sets, joins them with other sets, finds a superset, etc. Additionally,
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by-example operators can be combined with by-analytics to find

sets that are similar/dissimilar wrt some value distributions.

By-example and by-analytics operators can be represented in the

Region Connection Calculus (RCC) [20] and are, in their general form,

computationally challenging. For instance, by-subset is akin to

solving a set cover problem, which has been extensively studied [5].

Similarly, by-join requires to have appropriate indices. In INODE,

we adopt two approaches. One is based on a relational backend in

which individual operators are translated into SQL. The other one is

an in-memory Python implementation that relies on pre-computing

and indexing sets.

Exploration by Recommendation. In a mixed-initiative setting,

the system actively guides the user in what possible actions to

perform or data to look at next. In INODE, we are interested in

recommendations in both cold-start (where the user has not given
any input) and warm-start settings (where the user has asked one

or more queries but may not know what to do next). In the former

case, the goal is to show a set of example or starter queries that

the users could use to get some initial answers from the dataset

(e.g. [12]). In the latter case, the system can leverage the user’s

interactions (queries) to show possible next queries (e.g., [11]).

A big differentiator is the availability of query logs. In case no

query logs are available, the system should still provide recom-

mendations. In INODE we are addressing the recommendation

problem from different angles, i.e., generating recommendations:

(a) based on data analysis [9] (b) by NL-based processing and query
augmentation techniques leveraging knowledge bases (c) by user log
analysis.

Exploration by Visualization. In information retrieval, search

queries result in a list of candidates ranked by their matching score

[22]. This also holds true for INODE, as most exploration operators

generate multiple potential answers. However, results are not indi-

vidual items such as documents, but data sets (i.e. sets of items) and

have to be communicated to the user differently to support their

goals. Not only do users have to decide, which data set contains

the answer they are looking for, but also to compare the results,

to assess redundancies, discrepancies and other surprising or in-

teresting differences in order to draw hints on how to continue

the exploration. The goals of the by-visualization data access and

exploration interface are two-fold: (1) Enable "explorers" to under-

stand, compare and decide based on the provided results and (2)

enable them to interact with the results by enabling indirect query

manipulation, identifying and highlighting parts that are of interest

for further analysis and guiding them towards interesting regions

[34].

Our processes for user requirements elicitation confirms our

goals stated above and is based on the User Centered Design stan-

dard [13]. In addition to that, users emphasized the importance to

compare differences as well as similarities of queries and results.

As a baseline, we enabled the visualization of multiple tables with

direct manipulation capabilities and currently work on an overview
visualization that spans the result data space.

4 OPEN RESEARCH CHALLENGES BEYOND
INODE

A full-fledged data exploration system should learn about data
sources, learn about users and queries, and leverage this knowledge

to facilitate and guide users. All these challenges constitute new
opportunities for ML research to contribute to DM.

4.1 Learning about Data Sources
There are several data integration challenges that can be tackled

with ML. The first one is to automate data integration [10], in the

spirit of existing work that improves entity matching using trans-

former architectures [3]. The second challenge is to automatically
generate knowledge graphs, in the spirit of neural-network systems

such as Snorkel [28]. Another powerful concept to automate knowl-

edge graph construction is to combine user dialogs with graph

construction [24]. The idea is to augment the knowledge graphs by

learning concepts that are commonly queried but do not exist in

the graph. In summary, there has been a large amount of research

on automatic knowledge base construction. However, the combina-

tion of knowledge base construction with natural language query

processing has been largely untapped.

4.2 Understanding Users and Queries
Understanding user interests and expertise is a vital component

for enabling intelligent data exploration. For instance, the general

public interested in black holes has different expectations from an

experienced astronomer with a vast knowledge of astrophysics. The

challenge is to avoid overwhelming a novice user while providing

interesting and relevant information to an expert user.

The system should constantly improve its behavior by learning

and adapting to the user from task to task. Our operators are a great

opportunity to learn and adapt to users, as they provide the ability

to choose between utility and novelty, two dimensions that have

not been explored together in the past. Additionally, they enable

collecting user feedback at the level of individual operators and of

a DEP. While ML methods for learning user profiles exist in the

context of individual systems for web search or recommendations,

they have not been studied before in the context of determining

which operator caters for which user in the next step. A simple

start is to use regression methods to determine the weight of utility

and novelty when exploring data.

The state-of-the-art NL-to-SQL systems use supervised ML [4,

15]. A new opportunity here is to train a neural network for

sequence-to-sequence prediction [4, 36] for translating from NL-

to-SQL and vice versa. The key research challenge is how to use

the feedback provided by users to disambiguate queries and feed

the gained knowledge back into ML models to improve learning

with semantic information for building ML models to tackle disam-

biguation and context modeling [31].

4.3 Generating Data Exploration Pipelines
Understanding queries and users helps to provide guidance in gen-

erating DEPs. This challenge can be approached in different ways

depending on the availability of logs and on the user’s expertise

and willingness to provide feedback. DEPs could be given either

partially or fully. In both cases, they are either provided by the user
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or learned. In a scenario where a DEP is given (see example in

Section 2), the problem could be cast as finding the right parameters

for each query in the DEP. In a scenario where the user is providing

the next query, it could be seen as a query completion problem. In

a scenario where the user does not write exploration queries and

only provides feedback on results, it could be seen as the problem

of learning the user’s DEP. All these cases result in partially-guided

or fully-guided exploration.

Furthermore, since DEPs bring together several data access

modalities, which may be initiated by the user (e.g. a user query)

or by the system (recommendations or explanations), the system

needs to learn how to use its options to help the user in meaningful

and unobtrusive ways. While there has been work on each of these

capabilities individually (e.g., recommendations or query explana-

tions), these efforts only focus on small parts of the problem lacking

a holistic understanding of the behavior and dynamics of a multi-

aspect system. ML approaches such as Active Learning (AL) and

Reinforcement Learning (RL) appear to be relevant to the question

of training models that represent DEPs.

Partial Guidance with AL. AL is claimed to be superior to faceted

search when the goal is to help users formulate queries. Systems like

AIDE [6] and REQUEST [8] assist users in constructing accurate

exploratory queries, while at the same time minimizing the number

of sample records presented to them for labeling. Both systems

rely on training a decision tree classifier to build a model that

classifies unlabeled records. A bigger challenge is to leverage AL in

generating and refining queries that go beyond SQL predicates.

Full-Guidance with RL. In exploratory data analysis, logs are

rarely available making RL and Deep RL [23] the methods of choice

for training DEPs based on a simulated agent experience [7, 29].

In [7], a Deep RL architecture is used for generating notebooks

that show diverse aspects of a data set in a coherent narrative.

In [29], we used RL to generate an end-to-end exploration policy

to find a set of users in a collection of groups. Both frameworks

accept a wide class of exploration actions and do not need to gather

exploration logs. In [26, 27], we developed dora the explorer,

a first prototype that addresses the problem of generating DEPs

by leveraging Deep Reinforcement Learning. An open question is

the applicability of this framework to specific data sets and the

transferability of learned policies across data sets.
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