SUPPORTING INFORMATION

Phosphate Adsorption on γ-Alumina: a Surface Complex Model based on Surface Characterization and Zeta Potential Measurements

Teddy Roy^a, Dorothea Wisser^a, Mickaël Rivallan^a, Manuel Corral Valero^a, Thibaut Corre^a, Olivier Delpoux^a, Gerhard D. Pirngruber^a, Grégory Lefèvre^{b*}

^a IFP Energies nouvelles, Direction Catalyse et Séparation, Rond-point de l'échangeur de Solaize, 69360 Solaize, France

^b Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), F-75005 Paris, France

*Corresponding author e-mail and phone number:

gregory.lefevre@chimieparistech.psl.eu / +33 (0)1 85 78 42 68

Figure S1 : Transmission FT-IR difference spectra between y-Al₂O₃ and phosphated alumina at different phosphorus content (from 0.5 to 4.5 at/nm²) after activation (A) at room temperature or (B) 450°C under vacuum (10⁻⁵ mbar), OH stretching region.

Figure S2 : (A) ATR-IR spectra of dried phosphated alumina at different coverage (from 0.5 to 4.5 at/nm²) subtracted by γ-Al₂O₃ spectra (B) Average location of the ATR-IR band at the different phosphorus coverage ((from 0.5 to 4.5 at/nm²) (line is used as guidance for the reader).

The average location of the band (FigureS2.B) has been calculated using the following formula :

$$\overline{\mathbf{n}} = \frac{\sum_{\mathbf{n}_i} \mathbf{n}_i \mathbf{A}(\mathbf{n}_i)}{\sum_{\mathbf{n}_i} \mathbf{A}(\mathbf{n}_i)}$$

Figure S3 : Evolution of the ζ potential as function of the phosphorus coverage at different pH (from 4 to 9) (lines are used as guidance for the reader).

	Surface density (nm ⁻²)	
Al involved	(100)	(110)
Al _{VI}	2.17	4.48
Al _{VI}	2.17	1.49
Al _{IV}	0	1.49
AI_{VI} and AI_{IV}	1.09	2.98
Only Al _{vi}	0	1.49
Only Al _{vi}	1.09	1.49
	Al involved Al _{VI} Al _{VI} Al _{IV} Al _{VI} and Al _{IV} Only Al _{VI} Only Al _{VI}	$\begin{tabular}{ c c c c } \hline Surface de \\ \hline Al involved & (100) \\ \hline Al_{Vl} & 2.17 \\ Al_{Vl} & 2.17 \\ Al_{IV} & 0 \\ Al_{Vl} and Al_{IV} & 1.09 \\ \hline Only Al_{Vl} & 0 \\ Only Al_{Vl} & 1.09 \\ \hline \end{array}$

Table S1 : Characteristics of γ -Al₂O₃ Surface -OH groups at water coverage of 0.17 and 0.18 OH/nm² for the (100) and (110) orientations¹.

OH site	Al involved	Protonation reaction	Log K	Nb of H bonds with the proton	
Surface (100)					
μ_1	Al _{vi}	$\mu_1 OH^{-0.5}$ + $H^+ \leftrightarrows \mu_1 OH_2^{+0.5}$	8.16	0.86	
μ_2	$AI_{VI} - AI_{IV}$	$\mu_2 O^{\text{-}0.75} + H^{\text{+}} \leftrightarrows \mu_2 O H^{\text{+}0.25}$	10.32	n.a.	
μ_3	Al _{vi}	$\mu_3 O^{-0.5}$ + H ⁺ \leftrightarrows $\mu_3 O H^{+0.5}$	5.94	n.a.	
Surface (110)					
μ1	Al _{IV}	$\mu_1 O H^{-0.25} + H^+ \leftrightarrows \mu_1 O H_2^{+0.75}$	0.12	0.75	
μ_1	Al _{IV}	$\mu_1 O^{\text{-}1.25} + H^{\text{+}} \leftrightarrows \mu_1 O H_2^{\text{-}0.25}$	12.97	n.a.	
μ_1	Al _{vi}	$\mu_1 O H^{-0.5} + H^+ \leftrightarrows \mu_1 O H_2^{+0.5}$	9.16	0.95	
μ_2	$AI_{VI} - AI_{IV}$	$\mu_2 O^{-1} + H^+ \leftrightarrows \mu_2 O H^0$	10.45	n.a.	
μ_2	$AI_{VI} - AI_{VI}$	$\mu_2 OH^0 + H^+ \leftrightarrows \mu_2 OH^{+1}$	0.29	0.57	
μ_2	$AI_{VI} - AI_{VI}$	$\mu_2 O^{-0.75} + H^+ \leftrightarrows \mu_2 O H^{+0.25}$	13.86	n.a.	
μ_3	AI_{VI}	μ₃O ^{−0.5} + H⁺ 与 μ₃OH⁺ ^{0.5}	4.75	n.a.	

 Table S2 : Calculation of Protonation Constants Using AIMD Simulations To Determine the Number of H Bonds around Oxygen Atoms in Hydroxyl Groups (a + d) and the number of H bonds around their respective protons (p)¹.

Supporting Reference

 Corral Valero, M.; Prelot, B.; Lefèvre, G. MUSIC Speciation of γ-Al₂O₃ at the Solid Liquid Interface: How DFT Calculations Can Help with Amorphous and Poorly Crystalline Materials. *Langmuir* 2019, *35*, 12986–12992.