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Abstract

This study presents a new methodology for estimating the effective properties of solids con-
taining cracks along the inter-granular boundaries, using analytical developments and nu-
merical simulations. The latter are based on the generation of virtual microstructures of
such type obtained by superimposing a Voronöı tessellation modeling the granular network
with a random dispersion of overlapping spheres in 3-D, or disks in 2-D, which serve to
locate the cracks at the inter-granular boundaries. The different features of this microstruc-
ture model are studied herein, especially the morphological effects induced by varying the
size ratio between grains and spheres/disks. By means of full-field simulations, the effective
thermal conductivities of the generated microstructures are estimated and compared with
those of uniformly weakened solids (presenting uniform crack dispersion). For the latter
microstructures, the Ponte-Castañeda & Willis (1995) upper bound turns out to be close
to the full-field results. In addition, the full-field computations show that the spatial dis-
tribution of inter-granular cracks induces a dramatic degradation of the effective thermal
conductivity. Modifying only the cut-off crack density in the mathematical expression of the
Ponte Castañeda and Willis bound provides a relevant analytical estimate of the effective
conductivity of solids weakened by inter-granular cracks. This cut-off crack density only
depends on the microstructural parameters. This new estimate is shown to improve the one
derived by Sevostianov & Kachanov (2019) and based on the differential scheme at least for
the microstructures considered herein. Finally, new estimates of the moduli of elasticity for
isotropic cracked solids weakened at inter-granular boundaries are also provided. The effec-
tive bulk modulus thus estimated for 3-D solids is shown to remain below the upper bound
which can also be generated by injecting the effective conductivity predicted by full-field
computations into the classical cross-property relations.
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1 Introduction

Inter-granular boundaries play an important role in the mechanical and physical properties of
solids. Here, the inter-granular boundaries represent weak zones where micro-cracks preferen-
tially appear as the result of the manufacturing process or more generally due to mechanical
or even chemical solicitations. Therefore, these cracks may deeply affect the considered solids
and their properties because of their specific locations. In this article, we aim at modeling
by homogenization the effective properties of such isotropic solid weakened by micro-cracks
located at the inter-granular boundaries.

Various homogenization models have been proposed in the past to estimate the effective
properties of micro-cracked solids. Some of these models are presented herein for the ther-
mal conduction problem but equivalent results exist of course for other effective properties
such as elasticity. By neglecting the effect of crack interactions, the “non-interacting crack”
model can be used to simply derive the effective conductivity of a solid as a function of the
crack concentration. The case of circular (or ribbon) cracks was firstly investigated by Bris-
tow (1960). When the crack concentration is low, this model coincides with the “dilute
scheme” which was extended by Shafiro & Kachanov (2000) to cover more general elliptical
shapes and angular distributions. For non dilute concentrations, Budiansky & O’Connell
(1976) proposed improved estimates based on the self-consistent approach in the case of
elliptical cracks randomly oriented and distributed. To deliver Hashin-Shtrikman-like esti-
mates of the effective conductivity taking into account the effects of the shape/orientation
and the spatial distribution of cracks in a separate manner, Duan et al. (2006) extended
the theory initially proposed by Ponte-Castañeda & Willis (1995) for elasticity and applied
it to different heterogeneous microstructures in thermal conduction problems including the
case of cracks randomly distributed in a solid. Starting from the differential scheme Hashin
(1988), Sevostianov & Kachanov (2019) very recently proposed an estimate of the effective
conductivity of polycrystalline material weakened by inter-granular cracks.

Full-field computations are nowadays intensively used to compute the effective properties
of representative volume elements (RVE) of heterogeneous solids. In Grechka et al. (2006),
RVE computations with the finite-element method were used to study the influence of the
shape of randomly oriented cracks on the effective thermal conductivity. Pouya & Ghoreychi
(2001) also used this finite-element method to compute the strength of micro-cracked solids.
As the Fast-Fourier Transform technique (FFT, Moulinec & Suquet (1998)) has been proved
to be particularly efficient to perform RVE computations, this method has been increasingly
used to compute the effective properties of heterogeneous materials including the case of
micro-cracked solids (Li et al. (2012b), Li et al. (2012a)). However, with this FFT technique,
surface objects like cracks have to be modeled by albeit small but non zero volumes so
that particular attention must be paid to such computations. Gasnier et al. (2018) recently
proposed a general method to assess the bias induced by FFT computations in the case of
micro-cracked solids. For three-dimensional elasticity problems, these authors showed that
with the backward-and-forward finite-difference Fourier scheme (BF-FFT, Willot & Pellegrini
(2008)), relevant estimates of the effective properties are yielded with a crack thickness larger
than 1.5 voxels.

RVE computations have proved to be very interesting for studying the effect of the spatial
distribution of phases in a solid (inclusions, voids, . . . ) on the effective properties. For
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example, considering a voided matrix, Bilger et al. (2005) studied the effect of the spatial
distribution of voids on the simulated effective properties by modeling microstructures with
spherical-void clustering where either connected or disconnected clusters are deliberately
introduced. These clusters were obtained by superimposing two sets of spheres randomly
distributed with very different radii and retaining only those small voids whose centers either
belong to the larger spheres for the non-connected clusters case, or do not belong to these
spheres for the dual connected case. In this manner, the larger spheres played as limits
of the clustering areas. This last superimposition technique is well-suited to represent the
preferential location of cracks along inter-granular boundaries (IGB) in a given solid.

In line with the superimposition technique, we generated microstructures weakened at
their inter-granular boundaries in order to evaluate the impact of the crack location on the
effective properties. The effective properties of those microstructures can be compared with
those of solids with randomly distributed cracks (hereinafter referred to as “uniformly weak-
ened solids”). For these uniformly weakened solids, some theoretical bounds and estimates
proposed in the past to model their effective conductivity and moduli are reviewed in sec-
tion 2. Section 3 details the principles used for generating the synthetic microstructures of
solids weakened uniformly or at their inter-granular boundaries. Two-dimensional (2-D) and
three-dimensional (3-D) microstructures have been generated. In section 4, the effective ther-
mal conductivity of these microstructures is estimated using FFT computations. The effect
of the crack location on the effective conductivity is especially studied. Comparisons with an-
alytical predictions including the original and recent work of Sevostianov & Kachanov (2019)
led us to propose a new estimate of the effective conductivity of solids with inter-granular
cracks. Morphological effects related to the grain and crack sizes are also investigated in
this section. Finally, theoretical results related to the prediction of the effective moduli of
elastic solids weakened at inter-granular boundaries are inferred from the results related to
the thermal conduction issue, which are reported in section 5.

2 Effective properties of cracked media

Next results are given for 3-D and 2-D micro-cracked microstructures with V and S being the
Representative Volume and Surface Element respectively. Hereinafter, the spatial dimension
is denoted d with d = 2 for 2-D cases and d = 3 for 3-D cases. Data related to the solid
phase is written using an upper index (1) while the upper index (2) is related to cracks. The
behavior of the solid phase is isotropic with σ(1) denoting its conductivity while (µ(1), k(1))
denote its shear and bulk moduli of elasticity, respectively.

This section is organized as follows: the commonly used crack density parameter is defined
in section 2.1, then some classical results related to bounds and estimates of the effective
conductivity and elastic moduli of cracked solids are given in section 2.2. The estimate
proposed by Sevostianov & Kachanov (2019) in the case of solids weakened at their inter-
granular boundaries is also reported in section 2.2. Finally, comparisons of these different
approaches are reported in section 2.3.
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2.1 Crack density parameter
Cracks can be viewed as the limiting case of voided inclusions distributed in a matrix, with
vanishing thermal conductivity σ(2) or moduli (µ(2), k(2)), when some aspect ratio tends to
a limit such that their volume fraction tends to zero. For 3-D microstructures, the penny-
shaped cracks considered hereafter are defined as disks with an aspect ratio ω(2) = e/(2Rc)
approaching 0 where (2Rc) and e represent the disk diameter and thickness respectively.
For 2-D microstructures, cracks (also called ribbon-cracks) are defined as rectangles with an
aspect ratio ω(2) = e/(2Rc) approaching 0 where (2Rc) and e represent the length and the
width respectively. When Nc denotes the number of cracks in V in 3-D (or in S in 2-D), the
crack concentration c(2) (i.e. the volume fraction for 3-D cases or the surface fraction in 2-D
cases) equals Nc e π R

2
c/V in 3-D (or 2Nc eRc/S in 2-D) and will tend toward zero as the

crack thickness e decreases.
Based on this limit, the conventional bounds on the effective property of a heterogeneous

solid yield little information. For instance the effective conductivity σ̃ must be larger than the
lower bounds provided by Wiener (1912) and Hashin & Shtrikman (1962) (here equivalent
to the Maxwell lower bound Maxwell (1873)) and given by:

σ̃ ≥ σ(2)

(
(d− 1)σ(2) + σ(1) + (1− c(2)) (d− 1)(σ(1) − σ(2))

(d− 1)σ(2) + σ(1) + (1− c(2)) (σ(2) − σ(1))

)
(Maxwell-) (1)

≥ 1

(1− c(2))/σ(1) + c(2)/σ(2)
(Wiener-) (2)

However and as previously remarked by Gibiansky & Torquato (1996b) for the bulk modulus,
these two lower bounds are indeterminate1 when both c(2) and σ(2) tend toward zero.

Of course, even if the number Nc of cracks in V is known, more needs to be known about
their shape and spatial distribution. For a 3-D case with Nc isolated cracks of diameter
2Rc embedded in a volume V , their density can be evaluated with the dimensionless crack
density ρ introduced by Bristow (1960) and defined as:

ρ =
NcRc

3

V
=

1

2π

c(2)

ω(2)
(3)

In addition, by defining the crack area per unit of volume A
(2)
V as:

A
(2)
V =

π NcRc
2

V
(4)

the penny-shaped crack density reads equivalently as:

ρ =
Rc

π
A

(2)
V (5)

1The Wiener and Hashin-Shtrikman upper bounds coincide in that particular case and yields the trivial
result σ̃ ≤ σ(1).
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In 2-D cases, the concentration of Nc ribbon-cracks of length (2Rc) in a surface S can also
be evaluated with the dimensionless ribbon-crack density ρ used by Sevostianov et al. (2004)
and defined as:

ρ =
NcRc

2

S
=

1

4

c(2)

ω(2)
(6)

Using the definition of the ribbon-crack length per unit of area (L
(2)
A = 2NcRc/S), the

ribbon-crack density can also be expressed as:

ρ =
Rc

2
L
(2)
A (7)

At this stage, it is worth remarking that the definitions presented above are valid for
isolated cracks. Therefore, as soon as cracks are interconnected, they cannot be considered
as isolated and no longer present a uniform length. However, the crack area per unit of volume
A

(2)
V can still be defined and measured. The expression of A

(2)
V (equation (4)) can then be

used to define in a conventional manner the number Nc of equivalent penny-shaped isolated
cracks of an arbitrarily chosen diameter lc. Equation (3) applied with this new definition of
Nc and substitution of Rc with (lc/2) therefore leads to an expression of the crack density
for solids with interconnected cracks. By making similar modifications to equation (7), an
expression of the crack-density for overlapping cracks in 2-D cases can also be obtained, once
the length of the equivalent ribbon cracks is chosen.

2.2 Existing models to predict the effective thermal
and elastic properties

Some useful theoretical models are presented below for an isotropic spatial distribution of iso-
lated and randomly oriented ribbon-cracks (d = 2) and penny-shaped cracks (d = 3). Apart
from the Ponte-Castañeda & Willis (1995) bounds, different approximations can be found in
the literature. In Gibiansky & Torquato (1996b), the self-consistent (Budiansky & O’Connell
(1976)), the differential (Hashin (1988)) and the non-interacting approximations (Bristow
(1960)) are detailed for both the effective conductivity and the effective moduli.

Sevostianov & Kachanov (2019) were able to derive new estimates based on the differ-
ential approximation for cracks no longer uniformly distributed in the solid but located at
their inter-granular boundaries. To the best of our knowledge, these are the only estimates
proposed so far that predict the effective properties of solids weakened at their inter-granular
boundaries. This recent contribution is also reported at the end of this section.

2.2.1. PCW upper bounds

As mentioned in the introduction, Ponte-Castañeda & Willis (1995) extended the Hashin-
Shtrikman bound by taking into account the effects of the cracks shape and spatial distribu-
tion separately. For non-overlapping penny-shaped cracks randomly oriented and distributed
in an isotropic manner, the upper bound for the effective bulk modulus k̃PCW+(ρ) reads:

k̃PCW+(ρ)

k(1)
=

1− ρ/ρPCW+
k(d)

1 +
(
βk(d) − 1/ρPCW+

k(d)

)
ρ

(8)
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where the effective bulk modulus becomes zero when ρ = ρPCW+
k(d) . Following Kachanov (1992),

this critical crack density value is called the cut-off crack density. It will depend on the space
dimension (d), the model (here the PCW upper bound), the crack shape and the considered
property (here the bulk modulus). For 3-D media (d = 3) with penny-shaped cracks, the two
scalar coefficients (βk(3), ρ

PCW+
k(3) ) read:

βk(3) =
16

9

1−
(
ν(1)
)2

1− 2 ν(1)
and ρPCW+

k(3) =
27

32

(
1

1 + ν(1)

)
(9)

where ν(1) is the Poisson ratio of the solid phase and is given by (3 k(1)−2µ(1))/(6 k(1)+2µ(1))
or equivalently k(1)/µ(1) = 2 (1 + ν(1))/(3 (1 − 2 ν(1))). When the crack density is low, the
effective bulk modulus can be approximated fairly well by:

k̃PCW+(ρ)/k(1) ≈ 1− βk(d) ρ (10)

which shows that the coefficient βk(d) drives the variation of the effective bulk modulus with
the crack density near zero. This coefficient depends on the space dimension, the moduli and
the crack shape (here penny-shaped cracks).

At this stage, it is worth recalling that the PCW bound is a rigorous bound for a specific
class of cracked isotropic media such that the two-point correlation functions characterizing
the spatial distribution of the crack centers exhibit an isotropic symmetry. This condition
limits the maximal crack density, namely ρ ≤ δd/π with δ2 = 1 for 2-D media while δ3 = 3/4
for 3-D media. This maximum value corresponds to the onset of overlapping of the so-called
“security spheres” (see Ponte-Castañeda & Willis (1995)) surrounding cracks and is much
lower than the cut-off point ρPCW+

k(d) . Therefore, this upper bound is only an estimate beyond
these critical values and more generally can not be considered as a bound for any isotropic
cracked media.

This PCW bound was later applied to determine the effective conductivity (see Duan
et al. (2006)) and reads:

σ̃PCW+(ρ)

σ(1)
=

1− ρ/ρPCW+
(d)

1 +
(
βd − 1/ρPCW+

(d)

)
ρ

(11)

where ρPCW+
(d) is the cut-off point predicted by the model in a d-D case and that is such as

1/ρPCW+
(d) = βd (d − 1)/d. The additional constant βd equals π/2 (for d = 2) and 8/9 (for

d = 3). It is remarked that the slope at ρ = 0 for the effective bulk modulus (−βk(d)) is
related to the slope (−βd) associated with the effective conductivity:

βk(d) = 2 βd

(
1−

(
ν(1)
)2

1− 2 ν(1)

)
(12)

2.2.2. Self-consistent estimate

For 2-D and 3-D media, the self-consistent estimate of the effective conductivity was first
established by Hoenig (1983) and is given by:

σ̃SC(ρ)/σ(1) = 1− βd ρ (13)

6



It is worth remarking that this expression coincides with the PCW upper bound for low crack
density values. In addition, the same relation (13) applies to the dilute scheme. This sur-
prising result (also reported for instance in Gibiansky & Torquato (1996a)) is closely related
to the fact that the thermal gradient within the inclusion does not depend on the conductiv-
ity of the isotropic infinite medium when considering a fully insulating ellipsoidal inclusion
embedded in an infinite volume submitted to a given thermal gradient at infinity.

For 3-D media, the self-consistent estimate of the bulk modulus2 is given by:

k̃SC(ρ)

k(1)
= 1− 16

9

1− ν2
1− 2 ν

ρ (14)

(see Budiansky & O’Connell (1976), relations (36)) where ν is solution of the following
equation (see Budiansky & O’Connell (1976), relation (42′)):

ρ =
45

16

(
ν(1) − ν

)
(2− ν)

(1− ν2) (10 ν(1) − ν (1 + 3 ν(1)))
(15)

As ν ≈ ν(1) when the crack density ρ is close to zero, a direct expression of the self-consistent
estimate of the bulk modulus for small values of the crack density is:

k̃SC(ρ)/k(1) ≈ 1− βk(3) ρ (16)

which coincides with the first-order expansion of the PCW upper bound. Hereafter, we will
no longer use the expressions of the effective bulk and shear moduli for 2-D cases, but these
expressions can be easily found in several papers (e.g. Gibiansky & Torquato (1996b)).

2.2.3. Non-interacting approximation

The non-interacting approximation for the effective conductivity was initially proposed
by Bristow (1960). For randomly oriented cracks in an isotropic solid, this approximation
denoted by σ̃NI(ρ) reads:

σ̃NI(ρ)

σ(1)
=

1

1 + βd ρ
(17)

General expressions of the effective moduli as predicted by this non-interaction approximation
are reported in Gibiansky & Torquato (1996b). Moreover, this model coincides with the
estimates delivered by the Mori & Tanaka (1973) model applied to cracked solids. Here
below, we only recall the expression of the effective bulk modulus for 2-D or 3-D cases:

k̃NI(ρ)

k(1)
=

1

1 + βk(d) ρ
(18)

Once again, these approximations of the effective conductivity and bulk modulus coincide
with the self-consistent estimate and the PCW bound when the crack density tends to zero,
as expected with such situations with vanishing interactions between cracks.

2A similar expression of the effective shear modulus is reported in Budiansky & O’Connell (1976) (see
relation (44′) in this reference).
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2.2.4. Differential scheme

The differential model is derived incrementally by gradual addition of infinitesimal amounts
of inclusions (here the cracks), the effect of a crack density increment on the effective prop-
erty being given by the dilute model described above. For the effective conductivity and a
given crack density interval [u; u+ du], this differential relation is simply:

σ̃DS(u+ du) = σ̃DS(u) (1− βd du)

for wich it is recalled that βd do not depend on σ̃DS(u) (see section 2.2.2) so that by integration
on u, the final effective conductivity up to a given crack density ρ reads:

σ̃DS(ρ)/σ(1) = e−βd ρ (19)

Similar expressions have been derived for the moduli Hashin (1988). For the effective bulk
modulus, it reads:

k̃DS(ρ)

k(1)
=

1− 2 ν(1)

1− 2 ν

(
ν

ν(1)

)10/9(
3− ν(1)
3− ν

)1/9

(20)

where ν depends on the crack density, the Poisson coefficient of the solid and is the solution
of the nonlinear equation:

5

8
ln
(
ν(1)/ν

)
+

15

64
ln

(
1− ν

1− ν(1)
)

+
45

128
ln

(
1 + ν

1 + ν(1)

)
+

5

128
ln

(
3− ν

3− ν(1)
)

= ρ

2.2.5. Solids weakened at their inter-granular boundaries

Recently, Sevostianov & Kachanov (2019) proposed a model to derive the effective prop-
erties of a solid weakened by inter-granular cracks. This model is derived from the differential
scheme. It has only been formulated for 3-D cases but the corresponding estimate for the
effective conductivity can be easily formulated for 2-D and 3-D cases such as:

σ̃(ρ)/σ(1) =
(
1− ρ/ρIGBsat(d)

)βd ρIGB
sat(d) (21)

In this last expression, ρIGBsat(d) denotes the crack density for which all the inter-granular bound-
aries are cracked. As expected, the effective conductivity is zero when the crack density
reaches this limit value. We will see in the next sections that this microstructural param-
eter can be estimated for synthetic microstructures (section 3) and plays a key role in the
effective properties (sections 4 and 5). In addition and as reported by the authors, the initial
slope equals (−βd) and is consistent not only with the one of the PCW bound but also with
the estimates presented above. Although less convenient to implement, similar estimates of
the bulk and shear moduli are also proposed by these authors (see Sevostianov & Kachanov
(2019) for more details). Explicit expressions of the Poisson ratio and the Young modulus
are also provided in this work. As this model predicts the behavior of solids weakened at
their inter-granular boundaries (and the others focus on uniformly weakened solids), we do
not consider this model in the comparisons presented below in 2.3, but we do consider the
estimates delivered by this model in section 4.
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2.3 Effective properties of solids uniformly weakened
by cracks: comparisons of the different theoretical
predictions

The PCW bound and the different approximations presented in section 2.2 to model the
effective conductivity of solids uniformly weakened by cracks were used in Figure 1 to plot
the evolution of the effective conductivity normalized by the conductivity of the solid phase
as a function of the crack density. Similar trends are observed for the 2-D (Figure 1(a)) and
3-D cases (Figure 1(b)).
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(a)
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DS
SC

PCW
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Figure 1: Normalized effective conductivity as a function of the crack density in 2-D (Figure (a)) and 3-D
cases (Figure (b)). Comparison between analytical estimates given by the non-interacting crack model (NI,
continuous line), the differential scheme (DS, loosely dotted curve), the self-consistent estimate(SC, loosely
dashed curve)identical to the dilute model and the PCW upper bound Ponte-Castañeda & Willis (1995)
(PCW, dot-dashed line).

First, the curve for the self-consistent approximation lies below the PCW curve. For larger
crack density values, the self-consistent, the differential and the non-interacting estimates
deviate significantly and the curve corresponding to the non-interacting crack approximation
lies above that for the PCW bound even for a crack density lower than ρ = 1/π ≈ 0.32 (in
2-D) or ρ = 3 /(4π) ≈ 0.24 (in 3-D), for which this model yields a rigorous upper bound
at least for the specific class of microstructures defined in 2.2.1. Beyond this value, this
upper bound is only an estimate. Furthermore, the non-interacting crack approximation and
the differential scheme model do not predict any cut-off and therefore lead to much higher
predictions for the effective conductivity than the other two models.

In Figure 2, these estimates and the PCW bound of the effective bulk modulus of 3-D
media are plotted as a function of the crack density (for ν(1) = 0.3). Results as provided
by the self-consistent estimate are slightly lower as compared to that for the PCW upper
bound. This trend is similar to that already reported in Ponte-Castañeda & Willis (1995).
The results delivered by the two approximations are also very close to those given by the
PCW upper bound if the crack density remains below 0.1. However and as remarked for
the effective conductivity, the predictions yielded by the non-interacting approximation and
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the differential scheme violate the PCW bound (for ρ ≥ 0.1 and ρ ≤ 0.24). This deficiency
of the non-interacting crack approximation (or equivalently the Mori-Tanaka estimate) and
the differential scheme is also reported in Ponte-Castañeda & Willis (1995) for a non dilute
dispersion of randomly oriented cracks.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

Crack density (-)

k̃/k(1)

NI
DS
SC

PCW

Figure 2: Normalized effective bulk modulus as a function of the crack density (for 3-D solids with ν(1) = 0.3):
comparison of the analytical results given by the non-interacting crack approximation (NI, continuous line),
the differential scheme (DS, loosely dotted curve), the self-consistent estimate (SC, loosely dashed line) and
the PCW upper bound (PCW, dot-dashed line).

2.4 Final remarks
The PCW upper bound and several approximations were developed to estimate the effective
conductivity and moduli of cracked media. Those presented in this section have been com-
pared for an isotropic spatial distribution of isolated and randomly oriented ribbon-cracks
(d = 2) and penny-shaped cracks (d = 3). Under these conditions, the non-interacting ap-
proximation seems to overestimate the effective conductivity or the moduli; for this reason,
it will not be used hereafter. The self-consistent estimate and the PCW upper bound deliver
consistent results.

Note that the above discussed estimates and bounds address microstructures in which
cracks can be located in any position within the solid which will not be the case for the solids
considered hereafter where cracks are prescribed to be located at inter-granular boundaries.
In addition with these models, there are no explicit constraints, apart from global isotropy,
on the spatial distribution of cracks with the exception of the PCW estimate which is a
rigorous bound only for a specific class of microstructures as explained in section 2.2.1. As
reported above, Sevostianov & Kachanov (2019) recently proposed a model to derive the
effective properties of a solid weakened by inter-granular cracks. This estimate as defined
by relation (21) will be compared against full-field FFT computations in section 4, once
its microstructural parameter ρIGBsat(d) has been estimated for the synthetic microstructures
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considered in the next section 3. Moreover, a new estimate of the impact of inter-granular
cracks on the effective conductivity is also developed in section 4 of this paper by modifying
the PCW bound. This new estimate is compared to both relation (21) and the PCW upper
bound defined by relation (11).

3 Generation of synthetic microstructures

The method used to generate synthetic microstructures representing uniformly weakened
solids, as well as the method used to generate solids weakened at their inter-granular bound-
aries, are described in the following sections.

3.1 Uniformly weakened solids
Uniformly weakened 3-D microstructures are generated in two steps. First, Nl seeds are
randomly generated in the volume of interest V . These seeds are used as centers of disks
with a radius Rl, representing the cracks. Each disk is itself inscribed in a sphere of the
same radius Rl. In the rest of the article, these spheres are called “localization spheres” as
they are used to “delimit” the crack location in order to control their spatial distribution (as
explained in the following section). We introduce their density dsph as the total volume of
the spheres divided by V :

dsph =
Nl

(
4
3
π Rl

3
)

V
(22)

For 2-D microstructures, these seeds are the centers of the Nl segments of length 2Rl, rep-
resenting the 2-D cracks, with each segment being inscribed in disks of radius Rl. The disks
density ddsk is the total surface of the disks divided by S:

ddsk =
Nl

(
π Rl

2
)

S
(23)

Each crack orientation is chosen randomly for both 2-D and 3-D solids. In order to meet the
constraint of periodicity, if a crack and its associated sphere in 3-D cases (and its associated
disk in 2-D cases) intersect a boundary of the RVE (and RSE respectively), it is duplicated
on the opposite face.

Two methods for generating these spheres can be used depending whether the cracks can
overlap or not:

1. Non-overlapping cracks
The non-overlapping cracks are generated with a random sequential addition process
(RSA, Torquato et al. (2006)). In 3-D cases, Nl seeds are generated sequentially to
cover the volume V as long as possible with hard spheres of radius Rl. During the
process, a seed location is modified and re-examined when the associated sphere of
radius Rl overlaps existing spheres until there is no more overlap. In 2-D cases, Nl

non-overlapping seed positions are obtained sequentially to cover the surface S as long
as possible with hard disks of diameter 2Rl. With this RSA process, the volume frac-
tion of spheres coincides with their density dsph and its maximal value attached to the
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RSA packing is approximately 0.38 (this limit is equal to 0.54 in 2-D cases). At the
end of this process, the solid is weakened by Nc = Nl penny-shaped cracks of diameter
2Rl. It is worth remarking that the generated microstructures belong to the subclass
of isotropic cracked media for which the PCW bound applies.

2. Overlapping cracks
Overlapping cracks are generated with a Poisson Boolean process. Nl seed locations
are added randomly and independently with respect to each other in a volume V in 3-D
cases (and in a surface S in 2-D cases) leading to possible overlaps of the associated
spheres (or disks). In these conditions, the density of the overlapping localization
spheres dsph or disks ddsk deviates from the final concentration of the phase made of
these spheres or disks denoted respectively csph or cdsk. Indeed, these densities dsph

and ddsk can exceed 100 %. For a sufficiently large number Nl of spheres (or disks
in 2-D cases), the volume/surface fraction csph and cdsk can be well estimated by the
theoretical expression relative to the Boolean model (see Lantuéjoul (2002) for more
details):

csph = 1− exp

(
−4 π

3

NlRl
3

V

)
(24)

cdsk = 1− exp

(
−Nl π Rl

2

S

)
(25)

As full-field computations are performed using the FFT method (see further), cracks
need to be given an thickness, denoted by e. This is performed in the second step of the
microstructure generation. For a given disk defined by its position and its orientation, the
Euclidean distance between the center of each voxel in the sphere and its projection on the
disk in question is evaluated. A crack with a thickness e is defined as the set of voxels in the
overlapping sphere of radius Rl whose center is at a distance to the disk of at most e/2. In
2-D cases, the Euclidean distance between each pixel in the localization disk and its projec-
tion on the segment, corresponding to the crack, is also used to assign a thickness e to cracks.

The resulting microstructure can be described as a solid phase weakened by randomly
distributed cracks of thickness e and size 2Rl. As the generated cracks have a finite thick-
ness, their volume fraction is nonzero. In the following, we only consider distributions of
overlapping cracks when modeling the crack distribution in uniformly weakened solids. In
these conditions and in the case where all cracks have the same thickness e and size 2Rl, the
volume fraction related to cracks c(2) can still be given by a relation similar to (24) by substi-
tuting the volume of the spheres by the one of the cracks because the obtained microstructure
is a Boolean model of randomly oriented crack, so that:

c(2) = 1− exp

(
−Nl e π Rl

2

V

)
(26)

The number of localization spheres Nl needed to reach a given crack density ρ can then be
estimated as follows:

Nl = − V

e π R2
l

ln

(
1− π e

Rl

ρ

)
(27)
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For a given crack density target ρ and a choice of crack diameter 2Rl and thickness e, equa-
tion (27) is used to provide the discrete number of localization seeds Nl. The microstructure
is then generated using the overlapping crack scheme and c(2) is measured through a voxel
count from which A

(2)
V can be deduced (as c(2) = A

(2)
V e). Then, the actual crack density

of the generated microstructure, penny-shaped cracks of radius lc = 2Rl, is computed from
equation (5). Similar relations can of course be derived for 2-D cases.

Finally, let us note that, in this work, cracks are defined as planar disks in 3-D or as
segments in 2-D. However, in the case of overlapping cracks, the crack geometry can be more
complex and result from one or many disk or segment intersections. Hence, for instance,
cracks with a polygonal line shape (in 2-D) can occur but their length will rarely exceed
two or three segments. Also, without increasing the difficulty of the computations, the disks
(or segments) inside the localization spheres could be replaced by more complex surfaces or
curves like spherical shells or elliptical arcs.

3.2 Solids weakened at their inter-granular boundaries
The method for generating solids weakened at their inter-granular boundaries is composed
of three steps which are presented below and illustrated in Figure 3.

(a) (b) (c)

Figure 3: 3-D illustration of a solid weakened at inter-granular boundaries. Figure (a): Randomly distributed
spheres (in grey) in a 3-D matrix (in blue). Figure (b): Grains (in blue) surrounded by an IGB phase (in
orange). Figure 3(c): Example of 3-D microstructure obtained with the intersection of Figures (a) and (b)
with a solid phase (in blue) and cracks located at inter-granular boundaries (in green).

The first step has already been described in section 3.1: the volume V is packed with
Nl monodisperse spheres of radius Rl using a Poisson Boolean process (see Figure 3(a)). In
this manner, the generated spheres show a random distribution.

Second, a Voronöı tesselation with a desired monodisperse granulometric distribution is
produced using an RSA process, which generates randomly-distributed seeds with mutual
distances greater than or equal to 2R in a cubic volume V in 3-D or a squared surface S in
2-D of size L (see Figure 3(b)). When the saturation limit associated with the RSA process
is reached (i.e. 0.38 in 3-D and 0.54 in 2-D, see section 3.1), the diameter of the targeted
grains is close to 2R.The length R and L are chosen such that the grain size is much smaller

13



than the size of the generated microstructure in order to obtain an RVE in 3-D or RSE in
2-D at the end of the process with a sufficiently large number of grains. In practice, the
saturation limit reached at the end of this RSA process is very close to the theoretical one:
0.52 instead of 0.54 for 2-D cases and 0.36 instead of 0.38 for 3-D cases. The Voronöı cell
walls are determined by finding each median plane between two neighboring seeds.

The obtained microstructure can then be considered as a two-phase solid composed of
grains whose size is slightly larger than 2R (since the saturation limit is not reached exactly)
and surrounded by an inter-granular boundary phase. The proportion of the IGB phase in
the medium is evaluated via its area per unit of volume A

(IGB)
V (the equivalent in 2-D cases

is the IGB length per unit of area L
(IGB)
A ). Next, all the voxels which are at most e/2 away

from the Voronöı sides, are assigned to the IGB phase in order to generate microstructures
with an IGB phase of thickness e. The volume fraction of the IGB phase can be estimated
by (A

(IGB)
V e). Note in Figure 3(b) that the IGB phase is totally interconnected.

In the final third step, solids weakened by cracks located at inter-granular boundaries can
be generated in two different ways:

1. Cracks are defined as the intersection set between the localization spheres and the
inter-granular boundaries. The rest of the inter-granular phase is allocated to the solid
phase along with the grains in the volume. Hereinafter, this approach is referred to as
the IGB approach.

2. The intersection of the localization spheres and the inter-granular boundaries is now
defined as part of the solid phase along with the grains in the volume. The rest of
the inter-granular phase is considered as cracks. As this approach is dual to the IGB
approach, it is hereinafter referred to as the IGB-D approach.

Figure 3(c) shows the final IGB-D microstructure generated with the intersection of Fig-
ures 3(b) and 3(a). As shown in Figure 3(c), the developed numerical process makes it
possible to generate interconnected crack networks distributed around the grains and ran-
domly located. Periodic geometric conditions are applied to each step of the generation to
ensure the periodicity of the final microstructure.

Note that a direct descriptor of the crack concentration is the crack area per unit of
volume and is denoted by A

(2)
V . In 2-D cases, the descriptor is L

(2)
A , the ribbon-crack length

per unit of area. Once the crack sizes have been chosen conventionally (hereafter lc = 2Rl),
the crack density defined by relation (3) (relation (6) in 2-D cases) can also be used. An

alternative way to quantify the crack concentration is the inter-granular coverage ratio c
(2)
cov,

defined in 3-D (and in 2-D respectively) as the ratio between the surfaces (or lengths) of the

cracks and the IGB phase, namely A
(2)
V /A

(IGB)
V (or L

(2)
A /L

(IGB)
A in 2D-cases). In practice, these

quantities are evaluated through voxel or pixel count taking into account crack or interface
thickness e.

Finally, note that, whatever approach is used (IGB or IGB-D), the geometrical supports
of the cracks are planes (in 3-D) and straight lines (in 2-D) since they are at inter-granular
boundaries and the grains obtained by the Voronöı tessellation are convex polyhedra. More
complex cracks geometrical supports could be obtained by using a different grain generation
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process such as, for example, the Johnson & Mehl (1939) tessellation, which leads to grains
that are not necessarily convex neither of polyhedral shape.

3.3 Simulated microstructures and morphological ef-
fects

Table 1 shows the geometrical data used to generate the set of grains at the boundaries of
which the cracks are distributed. The unit length in use is expressed in voxels or pixels and
is denoted Ud. The parameters R and L as defined in previous sections are chosen to define
the granular microstructures while N is the resulting number of seeds after the saturation of
the RSA process. The radius Rl of the localization spheres (disks in 2-D cases) and the crack
thickness e are also reported. The choice of crack thickness e is detailed in section 4.1.2.

R N e L L
(IGB)
A A

(IGB)
V Rl ρIGBsat(d)

(units) (Ud) (−) (Ud) (Ud) (Ud
−1) (Ud

−1) (Ud) (−)

2-D 50 157
√

2 1501 0.016 - 20 0.16

3-D 75 216
√

2 1000 - 0.017 30 0.16

Table 1: Data used for the simulated microstructures (with Ud = pixels in 2-D cases and Ud = voxels in
3-D cases)

The area per unit of volume of the inter-granular boundaries A
(IGB)
V in 3-D or its equivalent

length per unit of area L
(IGB)
A in 2-D are also reported in Table 1. These microstructural

parameters depend on the prescribed grain size. More systematic simulations of granular
microstructures made it possible to establish that L

(IGB)
A and A

(IGB)
V scale well with 0.82/R

and 1.26/R respectively (with R expressed in Ud, L
(IGB)
A and A

(IGB)
V in U−1d , see Table 1).

The mean deviation between these correlations and the simulated data tends to be less than
1 % for a radius R varying from 15Ud to 100Ud. For the following simulations, the radius R
has been fixed to the values reported in Table 1 for 2-D and 3-D solids.

Moreover, whatever the choice of initial positions for the Voronöı seeds, only variations
up to the fifth decimal place were observed on A

(IGB)
V (and L

(IGB)
A respectively) which can

be considered as negligible. Accordingly, the positions of Voronöı seeds for each type of
synthetic microstructures will be kept fixed in the following simulations; this makes it easier
to study the impact of crack location on the effective properties.

With the data reported in Table 1, Figure 4 shows the correlations between the inter-
granular coverage ratio and the density of localization spheres for the 3-D IGB and IGB-D
microstructures generated. Note that, for a given density of localization spheres, the inter-
granular coverage ratio c

(2)
cov is well estimated by the volume fraction of spheres csph as given

by relation (24) for the IGB approach and by (1 − csph) for the IGB-D approach which
suggests that the number of the localization spheres in the studied volume V is large enough.
It is then possible to quite accurately determine the volume fraction of cracks by multiplying
the inter-granular coverage ratio by the volume fraction of the IGB phase. For 2-D solids,
similar results were obtained and showed that the inter-granular coverage ratio c

(2)
cov can be

well approximated by cdsk (IGB) or (1 − cdsk) (IGB-D), with cdsk being defined by relation
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Figure 4: Comparison of the the simulated inter-granular coverage ratio c
(2)
cov for IGB and IGB-D 3-D mi-

crostructures (circles and triangles respectively) with analytical expressions in straight lines ((1−e− 4π
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V for respectively each approach)

As explained above, the crack density herein has been defined with the convention lc =
2Rl. Thus, once Rl and the size of the RVE fixed, the crack density only depends on the
number Nl of localization spheres (or disks in 2-D cases) which can be expressed as a function

of A
(2)
V (= A

(IGB)
V c

(2)
cov using relation (4)) or L

(2)
A in 2-D (see section 2.1), namely:

ρ =
Rl

π
A

(IGB)
V c(2)cov (in 3-D cases) and ρ =

Rl

2
L
(IGB)
A c(2)cov (in 2-D cases) (28)

Furthermore, the crack density at saturation, denoted by ρIGBsat(d), corresponding to the case

where all the inter-granular boundaries are covered by cracks (i.e. c
(2)
cov = 1) is given by:

ρ
(IGB)
sat(3) =

Rl

π
A

(IGB)
V (in 3-D cases) and ρ

(IGB)
sat(2) =

Rl

2
L
(IGB)
A (in 2-D cases) (29)

We chose Rl in 2-D or 3-D cases in order to obtain the same crack density at saturation,
namely ρIGBsat(2) = ρIGBsat(3) ≈ 0.16 (see Table 1).

For a given crack density (ρ ≈ 0.05) lower than its saturation value, Figure 5 shows
an example of two 2-D microstructures with the same ribbon-crack density obtained by
simulation: a solid weakened at their inter-granular boundaries (left) and a uniformly weak-
ened solid (right). For both simulated microstructures, cracks can overlap but as expected,
crack coalescence seems more pronounced as shown in Figure 5(a) when cracks are located at
inter-granular boundaries. We show further on that this point plays a key role in the effective
properties.

To understand the influence of the radius Rl of the localization spheres (or disks in 2-D
cases) when the grain size 2R is kept fixed, we considered two extreme situations correspond-
ing to a very high or low R/Rl ratio. Figure 6 depicts two 2-D microstructures obtained this
way.
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(a) (b)

Figure 5: Two random distributions of ribbon-cracks for a crack density of ρ ≈ 0.05. Figure (a): Cracks
located at inter-granular boundaries. Figure (b): Cracks dispersed over the whole surface. The cracks
thickness has been enlarged to e = 4 to enhance the contrast of these images.

On the one hand, when the ratio is high (R/Rl � 1, Figure 6(a)), the localization spheres
in 3-D cases (or disks in 2-D cases) are small compared with the grain size. In this way, the
cracks are randomly distributed along inter-granular boundaries and are not connected. On
the other hand, when this ratio is low (R/Rl � 1, Figure 6(b)), the cracks are spatially
located in clusters whose centers and radii are given by those of the spheres in 3-D or disks
in 2-D. In these spherical zones (circular for 2-D solids), the grains are entirely isolated
which means these areas can be assimilated to perfectly insulating spherical (or circular)
clusters. Therefore, by adjusting this ratio (R/Rl), we can simulate very different types of
crack morphologies located on inter-granular boundaries.

For most of the simulated microstructures studied in section 4, the ratio R/Rl is set to
2.5 (see data in Table 1). The effect of this ratio on the effective conductivity is specifically
studied in section 4.3.

4 Effect of the spatial distribution of cracks on the ef-
fective thermal conductivity of solids

Let us now consider the RVE of a solid weakened by cracks and evaluate its effective thermal
conductivity by full-field computations based on the FFT method that is briefly introduced
in section 4.1. In particular, the choice of the ribbon-crack thickness is explained in this sec-
tion. The impact of the cracks density and spatial distribution on the effective conductivity
is studied in section 4.2, the crack density being determined by the number Nl of localization
spheres (or disks in 2-D) as explained in section 3.3. In section 4.3, the impact of morpholog-
ical effects on IGB microstructures is studied by modifying the radius Rl of the localization
disks. Apart from this modification of Rl in this section, all characteristics of the considered
IGB microstructures are fixed and are those reported in Table 1 above.
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(a) (b)

Figure 6: Two extreme 2-D cases in terms of their morphology for the same surface fraction of localization

disks (0.3) and the same inter-granular coverage ratio (c
(2)
cov = 0.3). Figure (a): R/Rl = 10, cracks are

randomly distributed along the whole inter-granular boundaries of the solid. Figure (b): R/Rl = 0.1, cracks
are still inter-granular but now located in preferential zones (clusters) corresponding to the localization disks.
The cracks thickness is enlarged to e = 4 to enhance the contrast of these images.

4.1 Full-field computations

4.1.1. FFT resolution

In steady-state conditions with no source terms, the thermal field T (x) and the heat flux
field j (x) are solutions of (x ∈ V ):

∇ · j (x) = 0 with j(x) = −σ (x) (∇T (x)) (30)

where ∇ is the gradient operator. For an isotropically cracked solid, the effective thermal
conductivity is a scalar denoted by σ̃ and defined as:

〈j〉 = −σ̃ 〈∇T 〉 (31)

where 〈.〉 denotes the volume average over the RVE V .
In order to solve the boundary value problem (relation (30)), we used the fast Fourier

transform (FFT) method originally proposed by Moulinec & Suquet (1998). Periodic bound-
ary conditions were considered to solve (30) and the macroscopic temperature gradient is
prescribed on average over the volume V . The considered RVE V in 3-D cases (RSE S in
2-D cases) is discretized on a regular grid with a spatial resolution of 1 length unit/voxel
(1 length unit/pixel). An Anderson extrapolation method (see Anderson (1965); Toth et al.
(2015); Ramière & Helfer (2015)) was also used in the FFT based algorithm to increase
the convergence rate with a storage depth parameter of 5. The convergence ratio is taken
as 10−5. For 2-D and 3-D cases, the number of pixels and voxels are about (2× 106) and 109,
respectively.

The work detailed in Gasnier et al. (2018) shows that the use of FFT filters can improve
the numerical results and best results can be expected with the backward-and-forward finite-
difference Fourier scheme (BF-FFT, Willot & Pellegrini (2008)). In this scheme, the flux
and temperature gradient fields are known along a discrete set of voxel corners in 3-D (or
pixel corners in 2-D). Based on Gasnier et al. (2018) the efficiency of the BF-FFT filter is
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evaluated in the section below while estimating the necessary crack thickness for the FFT
resolution of cracked microstructures.

4.1.2. Choice of crack thickness

In line with Gasnier et al. (2018), Figure 7 shows the effect of the crack thickness on the
apparent thermal conductivity 1

c(1)
σ̃
σ(1) . The contrast ratio is σ(2)/σ(1) = 10−4 for the results

reported in this Figure. The effect of the BF-FFT scheme Willot & Pellegrini (2008) is also
studied in this Figure. Note that the correction (1/c(1)) related to the apparent thermal
conductivity is consistent with the limit where the cracks have no volume in 3-D cases and
no surface in 2-D cases, i.e. c(1) = 1.
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Figure 7: Influence of the crack thickness on the normalized apparent conductivity of the IGB microstructure
and comparison between the basic FFT and the BF-FFT schemes. Figure (a): 2-D case with Nl = 200.
Figure (b): 3-D case with Nl = 900.

As shown in Figure 7 when the crack thickness equals one voxel in 3-D cases (and one
pixel in 2-D cases) the results clearly differ from those obtained with larger values. For 2-D
cases and a crack thickness larger than

√
2 pixels, a linear trend is observed for FFT estimates

as derived with the BF-FFT scheme (Figure 7(a)). The same linear trend is also observed
with FFT estimates derived without filtering but in a much smaller interval (only for a crack
thickness larger than 3 pixels). This linear trend reads: 1

c(1)
σ̃
σ(1) ≈ −(3.2 × 10−3) e + 0.97.

The use of the BF-FFT scheme enables the generation of the thinnest cracks with a better
estimation of the y-intercept of the regression line as the interpolation interval is wider: we
obtain σ̃/σ(1) ≈ 0.97 at e = 0 (c(1) = 1). This extrapolated value is close to that given for
e =
√

2 pixels and the BF-FFT scheme.
A similar sensitivity study is reported in Figure 7(b) for 3-D cases and the same contrast

ratio. Here, the number of localization spheres Nl equals 900. The reported trends are similar
to that resulting for the 2-D case in Figure 7(a) with a change in slope at

√
2 voxels with the

BF-FFT scheme. It is worth pointing out that a crack thickness of 1.5 voxels (close to
√

2)
for the change in slope was chosen by Gasnier et al. (2018) for randomly weakened solids by
penny-shaped cracks. These results are then consistent with Gasnier et al. (2018). With a
crack thickness greater than or equal to

√
2 (as 1.5), the generated cracks are thick enough
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to be considered as thermal barriers in FFT.

Based on these results, the BF-FFT scheme and a crack thickness e =
√

2 will be used in
the following 2-D and 3-D FFT computations.

4.2 Effect of the spatial distribution of perfectly insu-
lated cracks on the effective conductivity

4.2.1. Contrast effects at saturation

We investigated the saturation limit for cracks distributed along inter-granular bound-
aries. The saturation limit is reached for an inter-granular coverage ratio c

(2)
cov of 100 %. At

this limit, the generated microstructure is no longer a solid but a granular medium.
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Figure 8: Normalized effective conductivity as a function of the contrast ratio between phases for the solid
weakened by cracks covering the whole IGB phase. Figure (a): the 2-D case. Figure (b): the 3-D case.

Concerning first the 2-D solid, changes in the normalized effective conductivity with the
contrast ratio (σ(2)/σ(1)) are reported in Figure 8(a). As expected, the normalized effective
conductivity tends to zero when the contrast ratio tends to zero as the grains are perfectly
insulated by the connected network of cracks. Concerning the 3-D medium, the results are
reported in Figure 8(b) and show similar trends.

Figure 8 also shows the two lower bounds, i.e. the Wiener lower bound (relation (2)) and
the Maxwell lower bound (relation (1)). Remarkably, the Maxwell lower bound yields results
slightly lower than those given by FFT computations.

To obtain a normalized effective conductivity lower than (5 × 10−3), the contrast ratio
has to be at least equal to 10−4 for both studied cases. For this reason, we decided to adopt
a very low but non-zero contrast ratio to model fully insulating cracks.

4.2.2. Impact of the crack density on the thermal conductivity of the different microstructures

Figures 9(a) and 9(b) show the evolutions of the normalized effective conductivity (σ̃/σ(1))
with the crack density of perfectly insulating cracks for 2-D and 3-D cases respectively. The
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results for solids weakened by uniformly distributed cracks (U) differ significantly from those
related to solids weakened at their inter-granular boundaries (IGB). These results are also
compared with the PCW upper bound (relation (11)) in Figures 9, right.
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Figure 9: Normalized effective conductivity as a function of the crack density in 2-D cases (Figure (a)) and in
3-D cases (Figure (b)). FFT computations (solid lines) for different crack distributions: uniformly distributed
overlapping cracks “U-OC” and cracks located at inter-granular boundaries with both “IGB” and “IGB-D”
approaches. Left figure: zoom on the interval [0; 0.16] of crack density, FFT results are compared with
the “DS estimate” derived by Sevostianov & Kachanov (2019) (loosely dotted line) and with the new “IGB”
estimate (dot-dashed line) defined by relation (32). Right figure: overall evolution, FFT results are compared
with the PCW upper bound (PCW, dot-dashed line) and the differential scheme (DS, loosely dotted line).

For 2-D and 3-D uniformly weakened cases with overlapping cracks (U), the normalized
effective conductivity is close to that predicted with the PCW upper bound (PCW) at low
crack density despite the fact that a non-zero crack thickness is adopted. This result once
again underlines that the fixed crack thickness e =

√
2 is small enough to ensure a relevant

crack representation for the FFT computations. For larger crack densities, FFT results re-
lated to uniformly weakened solids deviate slightly from those of the PCW upper bound. As
explained in section 2.2, this bound is only an estimate for crack densities larger than 0.24
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in 3-D (and 0.32 in 2-D). Despite this limitation, we observe that the PCW estimate delivers
predictions that are consistent yet slightly higher than the FFT ones for uniformly weakened
2-D solids. For uniformly weakened 3-D solids, the PCW estimate fits fairly well FFT results
even for large crack density values. However, it yields a lower cut-off crack density (approxi-
mately 1.4 and 1.6 for 2-D and 3-D cases respectively). The fact that the differential scheme
underestimates the effect of the crack density on the effective conductivity with respect to
the PCW predictions suggests that cracks interactions are apparently better captured with
the PCW approach even for the limit situation of overlapping cracks. This might derive from
the construction of the DS model in which cracks interactions are essentially modeled by an
isolated crack surrounded by an infinite medium while in the Hashin-Shtrikman approach on
which PCW bounds rely, pair-wise interactions are more explicitly accounted for.

The drop of the effective conductivity of microstructures weakened at their inter-granular
boundaries occurs at much lower crack density values than for uniformly weakened ones:
ρIGBsat(d) ≈ 0.16 for both IGB and IGB-D microstructures in 2-D and 3-D (see Table 1).

As suggested in section 3.3, the crack distribution along inter-granular boundaries leads
to fewer crack locations possibilities which induces crack interactions at lower crack densities
compared with solids with uniformly distributed cracks. Of course, both IGB and IGB-D
approaches coincide in the two limiting conditions, i.e. ρ = 0 (no cracks) and ρ = ρIGBsat(d)

(cracks covering the whole IGB phase). However, as the IGB-D microstructure displays
connected cracks along the inter-granular boundaries (because localization spheres in 3-D or
disks in 2-D yield isolated thermal bridges in this type of microstructures), the corresponding
effective conductivity is lower than the IGB conductivity (in which the localization spheres
in 3-D or disks in 2-D yield isolated thermal insulators).

4.2.3. A new estimate of the effective conductivity for solids weakened at IGB inferred by
full-field simulated results

Once the radius of localization spheres in 3-D cases (or disks 2-D cases) has been ar-
bitrarily fixed, the cut-off crack density only depends on the spatial distribution of cracks.
Therefore, the expression of the upper bound (11) can be used to provide new relevant
estimates with the following constraints:

• the slope at ρ = 0 coincides with the non-interacting crack model one (= −βd) ;

• the effective conductivity vanishes when the crack density tends to the cut-off crack
density, this last constraint depending on the considered microstructure.

Therefore, the new estimate for the IGB and IGB-D microstructures is given by substi-
tuting ρPCW+

(d) by ρIGBsat(d) in the expression of the upper PCW bound (relation (11)):

σ̃IGB(ρ) = σ(1)

 1− ρ/ρIGBsat(d)

1 +
(
βd − 1/ρIGBsat(d)

)
ρ

 (32)

For the considered 2-D and 3-D microstructures of solids weakened at their inter-granular
boundaries, we have already explained (see section 3.3) that the sizes of the localization
spheres for 3-D cases (and disks for 2-D cases) were chosen so that the crack density at
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saturation ρIGBsat(d) does not depend on the spatial dimension (d) (here, ρIGBsat ≈ 0.16, see Ta-

ble 1). The results of this new estimate are close to those given by the FFT computations for
2-D (Figure 9(a), left) and 3-D cases (Figure 9(b), left)). Remarkably, the FFT results for
solids weakened at their inter-granular boundaries simulated with the IGB approach are well
estimated with the new IGB estimate with a quasi overlap of both curves in 3-D (see Fig-
ure 9(b)). However, the effective properties of the solids weakened with the IGB-D approach
remain over-predicted by the proposed estimate.

The predictions of the model proposed recently by Sevostianov & Kachanov (2019) to
estimate the effective conductivity of solids weakened at their inter-granular boundaries (see
relation (21), section 2.4) have been reported for 2-D (see Figure 9(a), left) and 3-D cases
(see Figure 9(b), left). As this last model also complies with the two constraints defined
above, the initial slope and the cut-off crack density are as expected perfectly estimated.
However, the drop in the effective conductivity seems to be under-predicted by this model.
Therefore and at least for the microstructures considered herein, the estimates derived from
the PCW upper bound give more accurate results than those provided by the model derived
from the differential approximation and proposed by Sevostianov & Kachanov (2019). For
this reason, the only estimate considered in the following for solids weakened at their inter-
granular boundaries is the one proposed in this paper and defined by relation (32).

4.3 Morphological effects
Hereinafter, only the IGB approach is considered to model solids weakened at their inter-
granular boundaries. As explained in section 3.3, different microstructures can be generated
by adjusting the grain size R to the localization disk radius Rl ratio, R/Rl. These microstruc-
tures range from crack clusters uniformly distributed in the solid (R/Rl � 1) to un-connected
small cracks randomly distributed along the IGB phase (R/Rl � 1). Figure 10 shows the
influence of this ratio on the normalized effective conductivity of the studied 2-D and 3-D
cases.

Note that all the curves in the Figure 10 (for a given d-case) converge at the same values

(σ̃/σ(1)) for the two extremes (no cracks along inter-granular boundaries - c
(2)
cov = 0 - and

cracks covering the whole IGB - c
(2)
cov = 1). .

As explained in section 3.3, when the ratio of radii is high (R/Rl � 1), the cracks are
randomly distributed along inter-granular boundaries and are not connected (see the example
of RSE reported in Figure 6(a)). As a result, the heat flux can pass through the inter-granular
boundaries which leads to the highest possible value of the effective conductivity for a given
inter-granular coverage ratio. In the limit (R/Rl � 1), inter-granular boundaries can be
viewed as homogeneous at the grain scale but heterogeneous at a much smaller scale related
to the cracks size so that two homogenization models can be applied at two separated scales.
At the smallest scale, the effective conductivity of the inter-granular boundaries is estimated
as a function of the given inter-granular coverage ratio c

(2)
cov with the help of specific unit-cell

FFT computations. Once this effective conductivity known, previous results (Figure 8) can
be used to estimate the effective conductivity of the solid at the largest scale. More details
are given about this specific model in Appendix A. This upper estimate is reported in
Figure 10 for 2-D and 3-D cases. For 2-D cases, this estimate delivers consistent predictions
when compared with FFT results related to the largest ratio R/Rl = 10.
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Figure 10: Normalized effective conductivity as a function of the inter-granular coverage ratio in 2-D (Fig-
ure (a)) and 3-D cases (Figure (b)) weakened at the IGB: effect of the R/Rl ratio (FFT computations
indicated in solid lines and dashed line for the IGB estimate, star-shaped dots for anterior results obtained
by Kim & Torquato (1992)), open pink circles for the upper estimates defined in Appendix A.

On the other hand, when this ratio of radii is low (R/Rl � 1), the cracks are spatially
located in circular zones where grains are entirely isolated. Therefore, these areas can be
assimilated to perfectly insulating circular clusters (see an example of RSE Figure 6(b)).
These isolated voids significantly decrease the effective conductivity so that, for a given
inter-granular coverage ratio, this type of microstructures shows lower effective conductivity
compared with microstructures with no crack clusters. The limit R/Rl → 0 corresponds
to a medium weakened by a dispersion of overlapping voided spheres or disks in 2-D (the
inter-granular coverage ratio being respectively the volume fraction or the surface fraction of
the voids). This lower bound has been computed by FFT and is reported in Figure 10.

Between these two extreme types of microstructures with regard to their morphology for
a given inter-granular coverage ratio, the effective conductivity is an increasing function of
the R/Rl ratio.

Note that, as c
(2)
cov = ρ/ρIGBsat(d), the estimate (32) can be easily expressed as a function of

the inter-granular coverage ratio c
(2)
cov, namely:

σ̃IGB
(
c(2)cov
)

= σ(1)

 1− c(2)cov
1 +

(
βd ρIGBsat(d) − 1

)
c
(2)
cov

 (33)

As a result, the slope of this curve near c
(2)
cov = 0 equals (−βd ρIGBsat(d)) and, as the crack

density at saturation depends on Rl (relation (29)), this slope also depends on Rl (with

R and L
(IGB)
A kept fixed for these simulations as indicated above). For 2-D computations (as

shown in Figure 10(a)), this initial slope as well as the decrease of the effective conductivity
with the coverage ratio are well captured by the estimate (32) at least when the R/Rl ratio
is within [0.5; 2]. This is no longer the case for lower or larger values of this ratio. For
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instance, the initial slope as predicted by full-field computations is no longer consistent with
that corresponding to the dilute dispersion of cracks in 2-D cases as the cracks are either
concentrated in clusters (R/Rl � 1) or at inter-granular boundaries (R/Rl � 1). Therefore,
estimate (32) significantly deviates from full-field results when the R/Rl ratio equals 0.1 or
10 as in the cases of the 2-D microstructures shown in Figure 6.

Due to computational constraints, the effect of the ratio R/Rl on the effective conductiv-
ity has been less extensively studied for 3-D cases. Figure 10(b), however, shows the evolution
of the effective conductivity as a function of the inter-granular coverage ratio of perfectly in-
sulating cracks for different R/Rl values ranging from 0.8 to 2.5 (remember that R/Rl = 2.5
is the ratio considered in previous computations, e.g. Figure 9(b)). Consistently with the
2-D results and as expected, the effective conductivity does not depend on the R/Rl ratio
for the two limit values of the inter-granular coverage ratio: no cracks along inter-granular
boundaries (c

(2)
cov = 0) and entirely voided inter-granular boundaries (c

(2)
cov = 1). In addition,

the conclusions drawn from 2-D computations remain true: for a given inter-granular cov-
erage ratio c

(2)
cov, the effective conductivity is still an increasing function of the R/Rl ratio

and lies above results related to a solid weakened by overlapping perfectly insulating spheres
(continuous line). It is worth remarking that these last results are very close to past results
obtained by Brownian motion simulation (Kim & Torquato (1992)) for the random distribu-
tion of overlapping spheres (star-shaped dots). Finally, the effective conductivity computed
by FFT computations lies below the upper estimate defined in Appendix A and reported in
Figure 10(b) (open pink circles).

5 New bounds and estimates of the elastic properties of
an isotropic solid weakened by micro-cracks located
at inter-granular boundaries

The estimate defined by relation (32) can be directly used to compute the effective dielectric
constant or the magnetic permeability or even the diffusion coefficient by substituting the
conductivity of the two phases by one of these physical properties. Considering the elastic
properties, the FFT computation methodology presented in the previous sections could be
used to compute the effective bulk and shear moduli of 2-D or 3-D media. This extension
is however left for future works to the benefit of the purely analytical results presented below.

First of all, we propose estimates of the effective moduli by direct extension of the heuristic
method developed previously to derive the aforementioned analytic estimate (32) for the
effective conductivity. Let us consider the PCW upper bound (relation (8)) for the effective
bulk modulus. When cracks are located at inter-granular boundaries, the bulk modulus will
vanish when the crack density tends to its saturation value ρIGBsat(d). This limit value does
not depend on the considered physical property but on the microstructure features only.
Therefore, when cracks are located at inter-granular boundaries, a relevant estimate of the

25



effective bulk modulus would be:

k̃IGB(ρ) = k(1)

 1− ρ/ρIGBsat(d)

1 +
(
βk(d) − 1/ρIGBsat(d)

)
ρ

 (34)

Starting from the expression of the upper bound on the effective PCW shear modulus µ̃HS+(ρ)
(see Ponte-Castañeda & Willis (1995)), a similar estimate can be derived for the effective
shear modulus:

µ̃IGB(ρ) = µ(1)

 1− ρ/ρIGBsat(d)

1 +
(
βµ(d) − 1/ρIGBsat(d)

)
ρ

 (35)

The crack density at saturation ρ
(IGB)
sat(d) is given by relation (29). It depends on the size Rl

of the elementary cracks covering the inter-granular boundaries as well as the area per unit
volume related to the inter-granular boundaries -A

(IGB)
V - (or the length per unit surface re-

lated to the inter-granular boundaries in 2-D -L
(IGB)
A ). In addition to this unique microstruc-

tural parameter ρsat(d) (for a given dimension d ∈ {2, 3}), the expressions of the coefficients
(βµ(d), βk(d)) are explicitly reported in Table 2 as a function of the elasticity coefficients of
the solid. These coefficients and the microstructural parameter also depend on the shape
of the elementary cracks covering inter-granular boundaries (respectively penny-shaped and
ribbon-cracks for 3-D and 2-D cases).

βµ(d) βk(d)

d = 2 (2-D) (k(1)+µ(1))

2µ(1)
π

d = 3 (3-D) 32 (1−ν(1)) (5−ν(1))
45π (2−ν(1))

16
9

(1−(ν(1))2)
1−2 ν(1)

Table 2: Expressions of the coefficients (βµ(d), βk(d)) involved in the proposed estimations (34) and (35) of
the effective moduli when cracks are located at inter-granular boundaries.

Alternatively, we can follow the so-called cross-property relations (see Torquato (2013))
to derive an upper bound of the effective bulk modulus from the estimates of the effective
conductivity. For cracked media, these cross-property relations have been given by Gibiansky
& Torquato (1996a). For a given microstructure, the effective bulk modulus k̃(ρ) is bounded
by any estimate of the effective conductivity σ̃(ρ) of the same microstructure:

1

k̃(ρ)
− 1

k(1)
≥ γd

σ(1)

k(1)

(
1

σ̃(ρ)
− 1

σ(1)

)
(36)

where the coefficient γd depends on the spatial dimension d ∈ {2, 3} and is given by:

γ2 =
(k(1) + µ(1))

2µ(1)
or γ3 =

3 k(1)

2µ(1)
min

{
1,

1− ν(1)
1 + ν(1)

}
(37)

For the effective shear modulus, similar relations only exist for 2D-solids (see Gibiansky &
Torquato (1996b)).
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To go further, we first remark that relation (32) for the effective conductivity is equivalent
to:

1

σ̃IGB(ρ)
− 1

σ(1)
=

1

σ(1)

(
ρ βd

1− ρ/ρIGBsat(d)

)
(38)

As reported in Figures 9(b) and 10(b), the analytical estimate (32) for 3-D cases matches
the simulated FFT results fairly well so that it can be considered as an exact result, at
least for the studied microstructures. Therefore, injecting this analytic expression in the
cross-property relation yields a bound. For 2-D cases, as the estimate (32) does not perfectly
match FFT results, the tabulated numerical data related to FFT results should be used
instead of relation (32) in the cross-property relation to derive a numerical upper bound of
the 2-D effective bulk modulus.

Assuming that this last relation is an exact result for 3-D cases, we can inject it in
equation (36) to derive the following expression of the new upper bound k̃+(ρ) (for d = 3):

k̃(ρ) ≤ k̃+(ρ) = k(1)

 1− ρ/ρIGBsat(3)

1 +
(
γ3 β3 − 1/ρIGBsat(3)

)
ρ

 (39)

Remarkably, this upper bound for the bulk modulus vanishes for ρ = ρIGBsat(3) coinciding with
the aforementioned estimate in that limit. However, the slope at ρ = 0 differs from the slope
related to this estimate and is given by:(

dk̃+

dρ

)
ρ=0

= −γ3 β3 (40)

This slope is higher than
(
−βk(3)

)
corresponding to the heuristic estimate as defined by

relation (34).3 As a result, the estimate (34) lies below the upper bound k̃+(ρ) as given by
relation (39).

To derive expressions of the effective moduli from the effective conductivity consistent
with the initial slope, the cross-property relations proposed by Bristow (1960) can be used as
an alternative. Starting from the “non-interacting” approximations of the effective properties,
these cross-property relations have been obtained by substituting the crack density parameter
by the effective conductivity. For instance for the bulk modulus (see Kachanov & Sevostianov
(2018) for a review), it yields:

k(1) − k̃NI(ρ)

k̃NI(ρ)
= 2

1−
(
ν(1)
)2

1− 2 ν(1)

(
σ(1) − σ̃NI(ρ)

σ̃NI(ρ)

)
(42)

3For a 3-D media, denoting by |ν(1)| the absolute value of the Poisson ratio ν(1):(
dk̃+

dρ

)
ρ=0

−
(
dk̃

dρ

)
ρ=0

=

2
(

1−
(
ν(1)

)2)
1− 2 ν(1)

− γ3

 β3 =

(
1− |ν(1)|

) (
1 + 2 ν(1)

)
1− 2 |ν(1)| β3 (41)

is always positive when −1 ≤ ν(1) ≤ 1
2 .
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Figure 11: Normalized effective bulk modulus as a function of the crack density in 3-D cases with ν(1) = 0.3:
comparison with analytical results given by the PCW upper bound (PCW, dot-dashed line), the self-consistent
estimate (SC, loosely dashed line), the new “IGB” estimate defined by the relation (34) (IGB, densely dot-
dashed) and the bound defined by the cross-property relation (39) (solid line).

where the multiplicative coefficient equals the βk(d)/βd ratio (relation (12) in section 2.2.1)
which ensures that the initial slope of the bulk modulus is consistent with that of the dilute
model when the slope of the effective conductivity satisfies this condition. In fact, starting
from the more convenient expression (38) conjugated with the following expression of the
effective bulk modulus,

1

k̃IGB(ρ)
− 1

k(1)
=

1

k(1)

(
ρ βk(d)

1− ρ/ρIGBsat(d)

)
(43)

which is equivalent to (34), it is straightforward to demonstrate that the estimates (32) and
(34) of the effective conductivity and bulk modulus (when cracks are located at inter-granular
boundaries) satisfy also the cross-property relation (42) proposed by Bristow. This remark
remains also true for the estimate of the effective shear modulus.

In Figure 11, these estimates and bounds of the effective bulk modulus of 3-D solids
are plotted as a function of the crack density for a Poisson ratio of 0.3. The PCW upper
bound and the self-consistent estimate (see section 2.2) are also reported in the same figure.
As observed for the effective conductivity, the effective bulk modulus drops rapidly when
cracks are located at inter-granular boundaries. In addition, the estimate (34) yields results
consistent with the bound (39) obtained from the cross-property relation (36).

6 Conclusion

A new methodology has been presented to model 2-D or 3-D cracked solids weakened at their
inter-granular boundaries. The intersection of the inter-granular boundaries and localization

28



disks in 2-D or spheres in 3-D leads to modeling randomly oriented cracks distributed along
inter-granular boundaries. The coverage ratio of the inter-granular boundaries can be directly
controlled by the density of the localization disks (or spheres).

Morphological effects have been highlighted in 2-D and in 3-D by studying the effect
of the grains size to localization disks/spheres diameter ratio on the effective conductivity.
For a given size of localization disks or spheres (regulating the size of elementary cracks)
and a fixed inter-granular coverage ratio, increasing the grain size induces an increase in
the effective conductivity by multiplying the number of thermal bridges between grains and
therefore the possible paths for the heat flux.

In order to study the impact of the crack spatial distribution, the effective thermal con-
ductivities of the 2-D and 3-D generated microstructures were compared against those of
uniformly weakened solids. For uniform crack dispersions, the known PCW upper bound
(applied to the conduction problem in this work) proves to be close to the full-field results
while the differential scheme underestimates the effect of the cracks density on the effec-
tive conductivity when the crack density exceeds 0.5. The properties of solids weakened at
their inter-granular boundaries drop at much lower crack densities than those of solids with
randomly distributed ribbon-cracks. The spatial distribution of cracks along inter-granular
boundaries therefore induces a dramatic reduction in the effective thermal conductivity.

An analytical estimate of the effective conductivity of a solid weakened by micro-cracks
located at inter-granular boundaries has also been proposed. It is based on an idea similar
to that used by Sevostianov & Kachanov (2019) which consists in restricting the possible
location for inter-granular cracks in a conventional model but makes use of the PCW upper
bound instead of the differential scheme. This new estimate agrees well with the simulated
data for 2-D and 3-D media and it also improves on the model proposed by Sevostianov &
Kachanov (2019). This estimate can be directly used to compute effective properties such as
electrical conduction and magnetic permeability. In addition, related theoretical results have
also been provided to deliver estimates of the effective moduli of 2-D or 3-D elastic solids.
These new estimates for the effective conductivity and elastic properties only depend on the
size, the shape and the density of the elementary cracks, as well as the area per unit volume
in 3-D (or the length per unit surface in 2-D) of the inter-granular network. In addition,
these estimates yield results consistent with classical results when the crack density is low.

In a near future, these results will be used to model the effect of the cracks spatial distri-
bution on the thermal properties of nuclear oxide fuels Meynard (2020). Still in the nuclear
field, these results will also be used to model the improved thermal conductivity of enhanced
accident tolerant fuels (such as micro-cell UO2–Mo pellets Kim et al. (2015)) but the insu-
lated cracks along inter-granular boundaries considered in this work will be replaced with
highly conducting (metallic) materials.

From a theoretical viewpoint, the potential effect of some physical features of the inter-
granular network itself has to be more deeply studied in the future. Real microstructures
often display a grain size distribution. In addition, the grain size may also be reduced or
elongated in specific directions in connection with the fabrication process. Another aspect
that influences the inter-granular network is the grain geometry. In real media the grains
often have a more complex shape than polyhedral ones. Such a microstructure can be better

29



approximated by a Johnson-Mehl tessellation, for instance, which leads to grains that are
not necessarily convex and whose faces are not necessarily flat. Thereafter, the preliminary
results related to the impact of the spatial distribution of inter-granular cracks on the effec-
tive mechanical properties would deserve to be consolidated by full-field computations and
extended to properties related to nonlinear behaviors (plastic yield surface, . . . ).
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Appendices

Appendix A Derivation of the upper estimate in Fig-
ure 10 for Rl/R→ 0

When cracks are located at inter-granular boundaries and when their size is very smallwith
respect to the grain size (see an illustration for 2-D solids in Figure 5(a)), an upper estimate of
the effective conductivity can be derived as detailed in this appendix.Its results are reported
in Figure 10. The underlying idea is to replace a multi-cracked boundary by an equivalent
homogeneous one. More precisely, the aim is to provide an effective thermal conductivity for
a heat transfer across the interface, which describes the overall transfer through the numerous
thermal bridges and isolating cracks, assuming there is a separation of length scale between
these local heat flux fluctuations and the overall heat flux from a grain to its neighbor.
Conductivity along directions parallel to the interface is not considered because, owing to
the small thickness of the interfaces, heat flux along the essentially isolating interfaces is
negligible with respect to the heat flux in the nearby solid. The required effective normal
properties of the cracked interface are obtained by numerical periodic homogenization of the
heterogeneous interface.

First we denote by σ̃sat
(
σ(2)/σ(1)

)
the effective conductivity of a solid where the conduc-

tivity of the inter-granular boundaries denoted by σ(2) differs from the one of the solid σ(1).
For the microstructures considered in this paper and when σ(2) ≤ σ(1), the tabulated function
σ̃sat

(
σ(2)/σ(1)

)
is reported in Figure 8.

When the crack size is much smaller than the grain size (i.e Rl/R � 1), this function
can be used to evaluate the effective conductivity of a granular material cracked at its inter-
granular boundaries by setting σ(2) to be the local effective conductivity of the inter-granular
boundaries weakened by micro-cracks. Obviously, this effective conductivity depends on the
inter-granular coverage ratio c

(2)
cov and ranges from σ(1) (c

(2)
cov = 0) to zero (c

(2)
cov = 1). To

estimate σ(2) between these two extreme values, we consider a periodic unit cell. For 2-D
cases, overlapping cracks are randomly located on a horizontal inter-granular boundary as
shown in Figure 12(a). The crack thickness e is small compared with the size of the unit
cell Luc while the inter-granular coverage ratio is given by the ratio between the total length
covered by the cracks and the size of the unit cell. Similar microstructures are generated in
3-D cases by considering a periodic dispersion of penny-shaped cracks on horizontal planes
(see Figure 12(b)). In this way, we can account for the inter-granular coverage ratio and the
morphology of the dispersion of small cracks over the interface in the numerical determination
of the effective conductivity in the direction normal to the cracks, corresponding to the
vertical direction in Figure 12(a), and the normal direction to the cracked interface plane
shown in Figure 12(b).

The simulated effective normal conductivities in 2-D and 3-D cases denoted σ̃⊥uc(d)

(
c
(2)
cov

)
are reported in Figure A.13. The size of the square or cubic unit cell is chosen large with
respect to the cracks size, approximately 150 and 40 times larger for 2-D and 3-D cases
respectively.

As expected, the effective conductivity of the unit cell decreases when the inter-granular
coverage ratio increases. This decrease is slightly less marked for 2-D solids, probably due
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(a) (b)

Figure A.12: The periodic unit cells used to compute σ̃⊥uc(2) in 2-D cases (Figure (a)) and 3-D cases (plane

of the aligned cracks, Figure (b)). c
(2)
cov ≈ 0.4 for both microstructures.
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Figure A.13: The effective normal conductivity along a direction perpendicular to the cracks as a function
of the inter-granular coverage ratio for 2-D solids (Figure (a)) and 3-D solids (Figure (b)).

to the lower ratio between the length of the unit cell and the crack size adopted for 3-D
computations.

The obtained conductivity is relative to a periodic body of finite size. We still need to
convert it into the effective conductivity σ(2) of the inter-granular boundary with thickness
e. To do so, we consider the same unit cell but substitute the horizontal surface containing
the aligned cracks with a homogeneous material of conductivity σ(2), defined in such a way
that both unit cells exhibit the same normal effective conductivity. The solution of this last
problem is straightforward as the heat flux is actually uniform so that the effective thermal
conductivity coincides with the lower Wiener bound and reads:

1

σ̃⊥uc(d)

(
c
(2)
cov

) =
1− c(IGB)

σ(1)
+
c(IGB)

σ(2)
(A.1)
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where c(IGB) is the volume fraction of the interface in the unit cell, computed as the ratio
between the crack thickness e and the length of the unit-cell.

This relation can be easily inverted to obtain the effective conductivity σ(2) of the interface
as a function of the inter-granular coverage ratio c

(2)
cov:

σ(2)
(
c(IGB), c(2)cov, σ

(1)
)

=
c(IGB) σ(1) σ̃⊥uc(d)

(
c
(2)
cov

)
σ(1) − (1− c(IGB)) σ̃⊥uc(d)

(
c
(2)
cov

) (A.2)

Finally, for a given inter-granular coverage ratio c
(2)
cov, once the conductivity σ(2) of the IGB

is estimated by relation (A.2), the upper estimate is obtained from the tabulated function
σ̃sat

(
σ(2)/σ(1)

)
(random dispersion of cracks along inter-granular boundaries).

Note that the thickness of the interface in the unit cell could have been different from
that used in the FFT computations of the granular microstructure. The quantity actually
under interest is the normal thermal conductance of the interface c

(2)
cov/e. If another interface

thickness e′ would be used, the conductivity would need to be adjusted such that c
(2)′
cov /e′ =

c
(2)
cov/e. Relation (A.1) would still hold as long as e and e′ are small with respect to the

unit-cell length Luc. Note also that this approach could be enriched by the evaluation of
the in-plane conductivity of the homogenized interface, which would then be attributed
anisotropic properties. This would however require FFT computations much more complex
to implement, as local anisotropic properties of the interface would then need to be defined
in connection with its local orientation, for a presumably limited improvement.
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