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Dynamics of Parallel Robots

Sébastien BRIOT and Wisama KHALIL

Synonyms

Dynamic modelling of Parallel Kinematic Manipulators

Definition

A parallel robot is a closed-loop multi-body system controlling the motion of its
end-effector (moving platform) by means of parallel kinematic chains going from
its base to the end-effector. The most important problems in the dynamics study are
the calculation of the inverse and direct dynamic models.

Extended Definition

The Inverse Dynamic Model (IDM) is used in the control applications, it calculates
the input joint efforts (torques and forces) to achieve a set of prescribed joint accel-
erations. The Direct Dynamic Model (DDM) is used in simulation applications, it
calculates the joint accelerations resulting from a set of input joint efforts.
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Theory & Application

1 Introduction

Dynamic modelling is essential for design specifications and advanced control of
parallel robots. Many works have been devoted for this topics using different me-
chanical formalisms. For example Lee and Shah (1988), Geng et al. (1992), Lebret
et al. (1993), Bhattacharya et al. (1998), Liu et al. (2000), Miller (2004) and Abdel-
latif and Heimann (2009) used Lagrange-Euler formalism. The principle of virtual
work has been used by Codourey and Burdet (1997) and Tsai (2000). On the other
hand, Newton-Euler equations have been used by Reboulet and Berthomieu (1991),
Ji (1993), Gosselin (1993), Dasgupta and Choudhury (1999). However, recently, Fu
et al. (2007), Vakil et al. (2008), Carricato and Gosselin (2009) and Afroun et al.
(2012) have pointed out common errors in many methods related to the kinematic
behavior of the legs. These errors may cause kinematic and dynamic miscalculation.

The aim of this article is to present a systematic procedure that provides the full
dynamics of any parallel robot, taking into account the whole dynamics of the legs
and the platform. This article is based on the works (Briot and Arakelian, 2008;
Briot and Khalil, 2015; Khalil and Guegan, 2004; Khalil and Ibrahim, 2007).

As an application in this article, the proposed method is used to calculate the
IDM of the Gough-Stewart (GS) robot.

2 Inverse dynamic modeling of parallel robots

In what follows, the number of legs is denoted by m and the number of degrees of
freedom (dof) of the platform is denoted by n. This paper deals with non-redundant
rigid-link robots. Thus the number of active joints is also equal to n. Each leg is
considered to be made with a serial architecture (for dealing with more complex
legs or with redundant robots, the reader is referred to (Briot and Khalil, 2015)).
The frame Fp, with origin Op, is defined to be fixed to the platform and the frame
F0, with origin O0, to the base. The state of the manipulator (position and velocity)
can be described using either

• qa, q̇a: vectors of active joint positions and velocities, respectively, or
• 0TP, VP: the homogeneous transformation matrix of the frame Fp into F0, and

the platform twist, respectively. VP groups the frame Fp rotational velocity ωP
and the translational velocity of its origin vP, i.e. VP = [vT

P ω
T
P ]

T . Usually these
quantities are expressed either in the world frame or the platform frame.

Note that, for robots whose number of dof is lower than six (n< 6), it is sufficient
to describe the platform velocity by using n independent coordinates of the vector
VP grouped into a vector Vr, defined by

VP =ΨVr (1)
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where Ψ is a (6×n) matrix typically composed of 0 and 1 only.

Usually, the IDM is defined as calculating, at a given state, the input efforts
(torques or forces) of the actuated joints, denoted as τa, corresponding to given
actuated joint accelerations q̈a. In other words, it computes the function:

τa = idmq(qa, q̇a, q̈a) (2)

For parallel robots, it may be more convenient to compute the IDM as a function of
a desired accelerations of the platform, denoted as V̇P:

τa = idm(0TP,VP, V̇P) (3)

Here, we assume that there is no external wrench applied on the robot. This is out of
the scope of this article. For introducing them into the models, the reader is referred
to (Briot and Khalil, 2015).

Classically the IDM of a closed-loop mechanical system can be computed by first
calculating the IDM of a (virtual) tree structure obtained by opening all the closed
loops and virtually actuating all joints. Then the input joint efforts of the real system
are obtained by taking into account the loop-closure constraint equations (Feather-
stone and Orin, 2016; Khalil and Dombre, 2002).

To exploit the special structure of parallel robots, the solution proposed in this
article is based on virtually separating the platform from the legs in order to ob-
tain two sub-systems: (i) the free platform and (ii) a tree structure composed of the
base and the legs in which all joints are considered to be virtually actuated. The
dynamics of the platform is computed using the Newton-Euler equation in terms of
its Cartesian (operational) coordinates (0TP,VP, V̇P), whereas the dynamics of the
legs is expressed in terms of the joint coordinates of the legs denoted as (qi, q̇i, q̈i)
(i = 1, . . . , m). Then, the joint efforts of the real system are obtained using the (geo-
metric and kinematic) loop-closure equations and the principle of virtual powers or
Lagrange equations with multipliers.

The relations between all parallel robot coordinates are found by writing the
closed-loop kinematic constraints equations on both sides of the opened joints con-
necting the platform with the legs, by using the following relations:

Vi = Ji q̇i (4)

Vi = JviVP = JviΨVr (5)

Vr = Jr q̇a (6)

where

• Vi is the reduced twist of the frame attached to the last link of the leg i and it
represents the velocity components transmitted from the leg to the platform (this
leg being composed of ni joints, Vi is of size ni),

• Ji is the (ni×ni) leg i kinematic Jacobian matrix,
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• Jvi is the (ni× 6) kinematic Jacobian matrix linking the reduced twist Vi to the
platform twist VP through the rigid body velocity relation,

• Jr is the (n×n) robot kinematic Jacobian matrix.

Introducing (1) into (6) leads to:

VP =ΨJr q̇a = JP q̇a (7)

while introducing (5) and (6) into (4) brings

q̇i = J−1
i JviΨJr q̇a = J−1

i Jvi JP q̇a = Gi q̇a (8)

It is to be noted that for most parallel robots the calculation of the inverse of Jr,
denoted by J−1

r , is easy to obtain symbolically, while Jr is obtained numerically by
inverting J−1

r (Briot and Khalil, 2015; Tsai, 2000). In the following, the matrix J−1
r

is denoted as Jinv. Consequently Jr is equal to J−1
inv .

Using the principle of virtual powers, or also the Lagrange equations with mul-
tipliers, the dynamics of the platform can be projected on the active joint space by
multiplying it by the transpose of the robot Jacobian matrix JP. Similarly, in order
to project the legs dynamics on the active joint space, it is necessary to use the Ja-
cobian between these two spaces, i.e. the matrix Gi. Thus the dynamic model of the
parallel structure is given by the following equation:

τa = JT
P wP +

m

∑
i=1

GT
i τi (9)

with:

• wP is the total wrench on the free platform,
• τi = idmq(qi, q̇i, q̈i) is the IDM of leg i considered virtually fully actuated and

separated from the robot platform.

The platform wrench (forces and moments) wP can be calculated using Newton-
Euler equation (Khalil and Dombre, 2002):

wP = IP

[
v̇P−g
ω̇P

]
+

[
ωP× (ωP×msP)
ωP× (IPωP)

]
(10)

where:

• v̇P is the translational acceleration of the origin of the frame FP and ω̇P is the
rotational acceleration of this frame,

• g is the acceleration of gravity,
• IP is the (6×6) generalized inertia matrix of the platform:

IP =

[
mP13 −m̂sP
m̂sP IP

]
(11)

• mP is the mass of the platform,
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• 13 is the (3×3) identity matrix,
• msP is the (3×1) vector of first moments of the platform around Op, the origin

of FP; msP = [mxP myP mzP]
T ,

• m̂sP is the (3×3) vector-product skew matrix associated with the vector msP,
• IP is the (3×3) inertia matrix of the platform around Op,

Finally, using (9) and (8), the IDM of the robot is given by the following compact
forms:

τa = JT
P

[
wP +

m

∑
i=1

JT
vi J−T

i τi

]
(12)

or also

τa = JT
r Ψ

T

[
wP +

m

∑
i=1

JT
vi J−T

i τi

]
(13)

It will be denoted by:
τa = idm(0TP,VP, V̇P) (14)

and can be obtained from (13) by replacing the variables (qi, q̇i, q̈i) in the expression
of τi = idmq(qi, q̇i, q̈i) as follows:

• the expression of qi as a function of 0TP can be found by using the inverse
geometric model of the leg i, considered as a serial leg connected to the plat-
form (Khalil and Dombre, 2002),

• by using Eqs. (4) and (5), we can find that q̇i = J−1
i JviVP, while q̈i can be found

by derivation of the previous expression with respect to time.

The effects of friction and of rotor inertia for actuators terms can be approximated
by simple functions provided in (Briot and Khalil, 2015; Khalil and Dombre, 2002).

The Cartesian dynamic model of the robot can be obtained from (13) as:

JT
invτa =ΨT

[
wP +

m

∑
i=1

JT
vi J−T

i τi

]
(15)

It will be denoted by:

JT
invτa = idmx(

0TP,VP, V̇P) (16)

Many methods can be used to calculate τi representing the IDM of a serial rigid
bodies structure (Angeles, 2003; Featherstone, 2008; Khalil and Dombre, 2002). To
reduce the computational cost, the recursive Newton-Euler algorithm (Luh et al.,
1980) and customized symbolic methods can be used (Featherstone, 2008; Khalil
and Dombre, 2002; Khalil and Kleinfinger, 1987).
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3 Direct dynamic model of parallel robots

The DDM of the robot gives the platform Cartesian acceleration as a function of the
state variables and the input of the motorized joint efforts:

V̇r = ddm(0TP,Vr,τa) (17)

In a simulation algorithm, V̇P can be obtained from V̇r through the formula

V̇P =ΨV̇r + Ψ̇Vr (18)

obtained by differentiating (1) with respect to time. Then by integration, VP and
0TP can be obtained.

The DDM can be derived from (15) by substituting τi by its Lagrangian form
τi = Miq̈i + ci, in which Mi is the generalized inertia matrix of the leg i and ci its
vector of Coriolis, centrifugal, gravitational effects and friction terms. Then, substi-
tuting q̈i in terms of V̇r by using the time derivative of the expressions (4) and (5),
the final result will be given as:

JT
invτa = MrobV̇r + crob (19)

Thus the desired Cartesian acceleration is given by:

V̇r = M−1
rob(J

T
invτa− crob) (20)

where:

Mrob =ΨT IPΨ+
m

∑
i=1

JT
viMxiJvi (21)

in which:

• Mrob is the generalized inertia matrix of the robot in the Cartesian space,
• Mxi is the generalized inertia matrix of leg i referred to the Cartesian space of the

terminal frame of leg i; it is equal to J−T
i MiJ−1

i ,
• crob is the wrench of Coriolis, centrifuge and gravity effects.

The expression of crob is complicated to use and will not be given here. However
identifying equations (16) and (19), it can be deduced that crob can be calculated
using the Cartesian IDM after setting in it V̇r = 0, thus

crob = idmx(
0TP,Vr, V̇r = 0) (22)

This procedure of calculation of crob is similar to what was proposed for serial
robots by Walker and Orin (1982). Similarly, the matrix Mrob can also be calculated
column per column by using the Cartesian IDM.
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Fig. 1 Gough-Stewart platform

4 Inverse dynamic model of the Gough-Stewart parallel robot

The 6-dof Gough-Stewart platform (Fig. 1) is composed of a moving platform con-
nected to a fixed base by six extendable legs (Merlet, 2006). The extremities of each
leg are fitted with a 2-dof passive universal joint (U) at the base and a 3-dof passive
spherical joint (S) at the platform. The lengths of the legs are actuated using pris-
matic joints (P). The Gough-Stewart platform is thus said to be a 6-UPS robot. For
this robot, Ψ= 16, thus JP = Jr.

4.1 Description of the robot

Let us assume that Bi is the point connecting leg i to the base and Pi is the point
connecting leg i to the platform. The frame F0 is fixed with respect to the base,
and the frame Fp is fixed with respect to the mobile platform. In this example, their
respective origins O0 and Op can be arbitrarily placed.

The notations of Khalil and Kleinfinger (1986) are used to describe the kine-
matics of the tree structure composed of the base and the legs after separating the
platform. The definition of the local link frames of leg i are given in Fig. 2, while
the corresponding geometric parameters are given in Table 1; p( j) denotes the frame
precedent to frame F j, σ j defines the type of joint, where σ j = 1 if joint j is pris-
matic and σ j = 0 if it is revolute.

The geometric parameters (γ j, b j, α j, d j, θ j, r j) are used to determine the (4×4)
homogeneous transformation matrix p( j)T j giving the location of frame F j with
respect to the frame Fp( j) of the body p( j), preceding the body j, see (Khalil and
Dombre, 2002; Khalil and Kleinfinger, 1986).
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Fig. 2 Link frames of the leg i

Table 1 Geometric parameters of the legs frames for i = 1, . . . , 6.

ji p ji σ ji γ ji b ji α ji d ji θ ji r ji
1i 0 0 γ1i b1i α1i d1i q1i 0
2i 1i 0 0 0 π/2 0 q2i 0
3i 2i 1 0 0 π/2 0 0 q3i

4.2 Calculation of the Jacobian matrices

The following notations are used:

• qa: vector of the active joint variables,

qa =
[
q31 q32 q33 q34 q35 q36

]T (23)

in which q ji denotes the position of joint j of leg i,
• qi: vector of the joint positions of leg i; it does not contain the variables of the

spherical joint between the leg and the platform, i.e.

qi =
[
q1i q2i q3i

]T (24)

The Jacobian matrices required to calculate the dynamic models are calculated in
what follows.

4.2.1 Calculation of the matrix Ji

The direct kinematic model of a leg corresponds to one of the RRP serial structure,
i.e.:

vi = Ji qi (25)
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in which vi is the velocity of point Pi.
The Jacobian matrix Ji of leg i is calculated with respect to frame F3i as fol-

lows (Khalil and Dombre, 2002):

3iJi =
[

3ia1i× 3i−−→BiPi
3ia2i× 3i−−→BiPi

3ia3i

]
=

 0 q3i 0
−q3iS2i 0 0

0 0 1

 (26)

with:

• a ji the unit vector along the joint axis j of leg i, corresponding to the z ji axis of
local frame,

•
−−→
BiPi position vector from Bi to Pi,

• Cα and Sα represent respectively cos(qα) and sin(qα) functions.

The matrix 3iJ−1
i is the inverse of the (3×3) Jacobian matrix of leg i. Its expres-

sion is

3iJ−1
i =

 0 −1/(q3iS2i) 0
1/q3i 0 0

0 0 1

 (27)

Note that 0Ji and pJi can be calculated by using the expressions 0R3i
3iJi and

pR3i
3iJi, where kRl is the (3×3) rotation matrix between frames Fk and Fl .

The singular configurations of equation (27) occur when q3i = 0 or sin(q2i) = 0,
which are outside the operating space of the robot.

4.2.2 Calculation of the matrix Jvi

The terminal velocity of leg i, denoted vi, which is also the linear velocity of point
Pi, is calculated in terms of the platform velocity as follows:

vi = vP +ωP×
−−→
OPPi =

[
13 −−̂−→OPPi

]
VP (28)

Thus:

Jvi =

[
∂vi

∂VP

]
=
[
13 −−̂−→OPPi

]
(29)

where
−̂−→
OPPi designates the (3× 3) skew matrix associated with the position vector

−−→
OPPi.

The joint velocities of leg i are obtained as:

q̇i = J−1
i JviVP (30)
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4.2.3 Inverse kinematic model of the robot

The inverse kinematic model of the robot is given by

q̇a = JinvVP (31)

in which the ith row of Jinv is given by (Merlet, 2006)

Jinv(i, :) =
[
aT

3i −aT
3i
−̂−→
OpPi

]
(32)

Using the components of the vectors appearing in Jinv and Jvi expressed in frame
Fp or F0 allows to give the expressions of these matrices in frame Fp or F0
respectively.

4.3 Inverse dynamic model of the Gough-Stewart platform

The dynamic model is obtained by applying (12). Expressing all the elements in
frame Fp gives:

τa =
pJ−T

inv

[
pwP +

6

∑
i=1

[
13

p−̂−→OPPi

]
pJ−T

i τi(qi, q̇i, q̈i)

]
(33)

τi(qi, q̇i, q̈i) is the IDM of leg i. Well-known methods and techniques, which have
already been applied to serial robots can be used for calculating it (Angeles, 2003;
Featherstone and Orin, 2016; Khalil and Dombre, 2002). One of the most efficient
methods for it is the recursive Newton-Euler algorithm (Luh et al., 1980). Giving
general geometric parameters to the first frame of each leg, see Table 1, makes it
possible to use a unique subroutine to calculate this model for all the legs.

5 Conclusion and further readings

This article has presented the calculation of the IDM and DDM of parallel robots.
The models are expressed in terms of the dynamic model of the legs and the dynam-
ics of the platform and some Jacobian matrices. The method is applied on a Gough-
Stewart platform. These models represent the most important problems in parallel
robots dynamics, however there are many topics in dynamics of parallel robots that
have not been mentioned in this article. For further readings the following subjects
are suggested.
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5.1 Dynamics of flexible parallel robots

In the present article, the joints are supposed to be perfect and the links are sup-
posed to be rigid. However, some structures may contain flexibility in the joints
or in the links that must be taken into account in order to obtain models with ac-
ceptable accuracy approaching the real response of the system. For instance, for the
Gough-Stewart robot, the effects of leg fexibility are examined in (Mahboubkhah
et al., 2009; Mukherjee et al., 2007). In general the joint flexibility is modelled us-
ing lumped elasticity (Khalil and Gautier, 2000; Kruszewski et al., 1975; Wittbrodt
et al., 2006). The link flexibility can be approximated by finite number of lumped
springs as done in (Stachera and Schumacher, 2008) where the calculation of the
IDM and DDM of parallel robots has been derived using Lagrange formulation and
the principle of virtual works on the flexible system. However, in order to obtain a
correct model accuracy, a higher number of elements may be required, thus increas-
ing the complexity of the computation.

To have good accuracy, the link distributed flexibility are treated using finite el-
ements techniques either with Lagrange equations (De Luca and Siciliano, 1996)
or with a Generalized Newton–Euler formulation as proposed in (Boyer and Khalil,
1998; Shabana, 1990; Sharf and Damaren, 1992) for serial robots. The work (Briot
and Khalil, 2014a) used this technique to compute the IDM and DDM of parallel
robots with leg flexibilities. The computation of the natural frequencies is proposed
in the work (Briot and Khalil, 2014b). The work of Long et al. (2014) presented
the dynamic models of GS robots with platform flexibility modelled using finite
elements method.

5.2 Identification of the dynamic parameters

To use the dynamic models in a real application, the numerical values of the inertial
parameters of the links (legs and platform) of the robot are needed. These values
can be obtained by identification techniques by collecting the state variables and
the input efforts of the joints along selected trajectories. The identification model
is obtained by expressing the IDM as a linear function of the inertial parameters.
Then the techniques developed for the identification of dynamic parameters of se-
rial structures (Hollerbach et al., 2016) can be generalized on this linear system.
Diaz-Rodriguez et al. (2010); Grotjahn et al. (2004); Guegan et al. (2003) show
first work on such applications. More advanced results are developed in (Briot and
Gautier, 2015) where the authors present the global identification of all robot dy-
namic parameters, including joint drive gains.
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5.3 Singularities of parallel robot dynamics

Parallel robots encounter several types of singularities. The most known are prob-
ably the Type 1 (or also serial) singularities for which the platform loses some dof
or the Type 2 (or also parallel) singularities (Gosselin and Angeles, 1990) for which
the robot inverse kinematic Jacobian matrix Jinv is singular and cannot be inverted,
leading to an uncontrollable motion of the end-effector.

Type 2 singularities also impact the dynamic model: near these configurations,
the joint reactions may increase with the possibility of mechanism break. Also the
controllers may send very high commands to the robot leading to controller instabil-
ity, higher tracking errors and impossibility of crossing these singularities. However,
it was shown in (Briot and Arakelian, 2008) that their crossing was possible if and
only if the trajectory for crossing respects a criterion based on the analysis of the de-
generacy of the dynamic model. Dedicated controllers for crossing the singularities
can also be found in (Six et al., 2017).

Cross-references

[Copy Editor: all cross references are marked in the source text with macro \xref.
The form ‘A⇒ B’ means that the phrase that has been marked is A, but the article
to which the reader is referred is B.]

• parallel robot⇒ Parallel Mechanisms
• homogeneous transformation matrix⇒ Homogeneous Transforms
• geometric parameters⇒ Kinematics Equations (DH Convention)
• twist⇒ Kinematics
• inverse geometric model⇒ Inverse Kinematics
• mechanical formalisms⇒ Dynamics calculation methods
• simulation algorithm⇒ Dynamics simulation
• closed-loop multi-body system⇒ Closed-loop Dynamics
• symbolic methods⇒ Symbolic dynamics
• The Recursive Newton-Euler Algorithm
• Inverse Dynamic Model⇒ Inverse Dynamics
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