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Theory & Application 1 Introduction

Dynamic modelling is essential for design specifications and advanced control of parallel robots. Many works have been devoted for this topics using different mechanical formalisms. For example [START_REF] Lee | Dynamic analysis of a three-degrees-of-freedom inparallel actuated manipulator[END_REF], [START_REF] Geng | On the dynamic model and kinematic analysis of a class of Stewart platforms[END_REF], [START_REF] Lebret | Dynamic analysis and control of a Stewart platform manipulator[END_REF], [START_REF] Bhattacharya | A recursive formula for the inverse of the inertia matrix of a parallel manipulator[END_REF], [START_REF] Liu | Dynamics analysis of the Gough-Stewart platform manipulator[END_REF], [START_REF] Miller | Optimal design and modeling of spatial parallel manipulators[END_REF] and [START_REF] Abdellatif | Computational efficient inverse dynamics of 6-dof fully parallel manipulators by using the lagrangian formalism[END_REF] used Lagrange-Euler formalism. The principle of virtual work has been used by [START_REF] Codourey | A body oriented method for finding a linear form of the dynamic equations of fully parallel robot[END_REF] and [START_REF] Tsai | Solving the inverse dynamics of a Stewart-Gough manipulator by the principle of virtual work[END_REF]. On the other hand, Newton-Euler equations have been used by [START_REF] Reboulet | Dynamic models of a six degree of freedom parallel manipulators[END_REF], [START_REF] Ji | Study of the effect of leg inertia in Stewart platform[END_REF], [START_REF] Gosselin | Parallel computational algorithms for the kinematics and dynamics of parallel manipulators[END_REF], [START_REF] Dasgupta | A general strategy based on the Newton-Euler approach for the dynamic formulation of parallel manipulators[END_REF]. However, recently, [START_REF] Fu | Comments on "a Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator[END_REF], [START_REF] Vakil | Comments on "closed-form dynamic equations of the general Stewart platform through the Newton-Euler approach" and "a Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator[END_REF], [START_REF] Carricato | On the modeling of leg constraints in the dynamic analysis of Gough/Stewart-type platforms[END_REF] and [START_REF] Afroun | Revisiting the inverse dynamics of the Gough-Stewart platform manipulator with special emphasis on universal-prismatic-spherical leg and internal singularity[END_REF] have pointed out common errors in many methods related to the kinematic behavior of the legs. These errors may cause kinematic and dynamic miscalculation.

The aim of this article is to present a systematic procedure that provides the full dynamics of any parallel robot, taking into account the whole dynamics of the legs and the platform. This article is based on the works [START_REF] Briot | Optimal force generation of parallel manipulators for passing through the singular positions[END_REF][START_REF] Briot | Dynamics of Parallel Robots: From Rigid Bodies to Flexible Elements[END_REF][START_REF] Khalil | Inverse and direct dynamic modeling of Gough-Stewart robots[END_REF][START_REF] Khalil | General solution for the dynamic modeling of parallel robots[END_REF].

As an application in this article, the proposed method is used to calculate the IDM of the Gough-Stewart (GS) robot.

Inverse dynamic modeling of parallel robots

In what follows, the number of legs is denoted by m and the number of degrees of freedom (dof) of the platform is denoted by n. This paper deals with non-redundant rigid-link robots. Thus the number of active joints is also equal to n. Each leg is considered to be made with a serial architecture (for dealing with more complex legs or with redundant robots, the reader is referred to [START_REF] Briot | Dynamics of Parallel Robots: From Rigid Bodies to Flexible Elements[END_REF]). The frame F p , with origin O p , is defined to be fixed to the platform and the frame F 0 , with origin O 0 , to the base. The state of the manipulator (position and velocity) can be described using either • q a , qa : vectors of active joint positions and velocities, respectively, or • 0 T P , V P : the homogeneous transformation matrix of the frame F p into F 0 , and the platform twist, respectively. V P groups the frame F p rotational velocity ω P and the translational velocity of its origin v P , i.e. V P = [v T P ω T P ] T . Usually these quantities are expressed either in the world frame or the platform frame.

Note that, for robots whose number of dof is lower than six (n < 6), it is sufficient to describe the platform velocity by using n independent coordinates of the vector V P grouped into a vector V r , defined by

V P = Ψ V r (1)
where Ψ is a (6 × n) matrix typically composed of 0 and 1 only.

Usually, the IDM is defined as calculating, at a given state, the input efforts (torques or forces) of the actuated joints, denoted as τ a , corresponding to given actuated joint accelerations qa . In other words, it computes the function:

τ a = idm q (q a , qa , qa ) (2) 
For parallel robots, it may be more convenient to compute the IDM as a function of a desired accelerations of the platform, denoted as VP :

τ a = idm( 0 T P , V P , VP ) (3) 
Here, we assume that there is no external wrench applied on the robot. This is out of the scope of this article. For introducing them into the models, the reader is referred to [START_REF] Briot | Dynamics of Parallel Robots: From Rigid Bodies to Flexible Elements[END_REF].

Classically the IDM of a closed-loop mechanical system can be computed by first calculating the IDM of a (virtual) tree structure obtained by opening all the closed loops and virtually actuating all joints. Then the input joint efforts of the real system are obtained by taking into account the loop-closure constraint equations [START_REF] Featherstone | Handbook of Robotics, chap. 3: Dynamics[END_REF][START_REF] Khalil | Modeling, Identification and Control of Robots[END_REF].

To exploit the special structure of parallel robots, the solution proposed in this article is based on virtually separating the platform from the legs in order to obtain two sub-systems: (i) the free platform and (ii) a tree structure composed of the base and the legs in which all joints are considered to be virtually actuated. The dynamics of the platform is computed using the Newton-Euler equation in terms of its Cartesian (operational) coordinates ( 0 T P , V P , VP ), whereas the dynamics of the legs is expressed in terms of the joint coordinates of the legs denoted as (q i , qi , qi ) (i = 1, . . . , m). Then, the joint efforts of the real system are obtained using the (geometric and kinematic) loop-closure equations and the principle of virtual powers or Lagrange equations with multipliers.

The relations between all parallel robot coordinates are found by writing the closed-loop kinematic constraints equations on both sides of the opened joints connecting the platform with the legs, by using the following relations:

V i = J i qi (4) V i = J vi V P = J vi Ψ V r (5) V r = J r qa (6)
where • V i is the reduced twist of the frame attached to the last link of the leg i and it represents the velocity components transmitted from the leg to the platform (this leg being composed of n i joints, V i is of size n i ), • J i is the (n i × n i ) leg i kinematic Jacobian matrix,

• J vi is the (n i × 6) kinematic Jacobian matrix linking the reduced twist V i to the platform twist V P through the rigid body velocity relation, • J r is the (n × n) robot kinematic Jacobian matrix.

Introducing (1) into (6) leads to:

V P = Ψ J r qa = J P qa (7)
while introducing ( 5) and ( 6) into (4) brings

qi = J -1 i J vi Ψ J r qa = J -1 i J vi J P qa = G i qa (8)
It is to be noted that for most parallel robots the calculation of the inverse of J r , denoted by J -1 r , is easy to obtain symbolically, while J r is obtained numerically by inverting J -1 r [START_REF] Briot | Dynamics of Parallel Robots: From Rigid Bodies to Flexible Elements[END_REF][START_REF] Tsai | Solving the inverse dynamics of a Stewart-Gough manipulator by the principle of virtual work[END_REF]. In the following, the matrix J -1 r is denoted as J inv . Consequently J r is equal to J -1 inv . Using the principle of virtual powers, or also the Lagrange equations with multipliers, the dynamics of the platform can be projected on the active joint space by multiplying it by the transpose of the robot Jacobian matrix J P . Similarly, in order to project the legs dynamics on the active joint space, it is necessary to use the Jacobian between these two spaces, i.e. the matrix G i . Thus the dynamic model of the parallel structure is given by the following equation:

τ a = J T P w P + m ∑ i=1 G T i τ i (9) 
with:

• w P is the total wrench on the free platform,

• τ i = idm q (q i , qi , qi ) is the IDM of leg i considered virtually fully actuated and separated from the robot platform.

The platform wrench (forces and moments) w P can be calculated using Newton-Euler equation [START_REF] Khalil | Modeling, Identification and Control of Robots[END_REF]:

w P = I P vP -g ωP + ω P × (ω P × ms P ) ω P × (I P ω P ) (10) 
where:

• vP is the translational acceleration of the origin of the frame F P and ωP is the rotational acceleration of this frame, • g is the acceleration of gravity, • I P is the (6 × 6) generalized inertia matrix of the platform:

I P = m P 1 3 -ms P ms P I P (11) 
• m P is the mass of the platform,

• 1 3 is the (3 × 3) identity matrix,

• ms P is the (3 × 1) vector of first moments of the platform around O p , the origin of F P ; ms P = [mx P my P mz P ] T , • ms P is the (3 × 3) vector-product skew matrix associated with the vector ms P , • I P is the (3 × 3) inertia matrix of the platform around O p , Finally, using ( 9) and ( 8), the IDM of the robot is given by the following compact forms:

τ a = J T P w P + m ∑ i=1 J T vi J -T i τ i (12)
or also

τ a = J T r Ψ T w P + m ∑ i=1 J T vi J -T i τ i (13)
It will be denoted by:

τ a = idm( 0 T P , V P , VP ) (14) 
and can be obtained from ( 13) by replacing the variables (q i , qi , qi ) in the expression of τ i = idm q (q i , qi , qi ) as follows:

• the expression of q i as a function of 0 T P can be found by using the inverse geometric model of the leg i, considered as a serial leg connected to the platform [START_REF] Khalil | Modeling, Identification and Control of Robots[END_REF]), • by using Eqs. ( 4) and ( 5), we can find that qi = J -1 i J vi V P , while qi can be found by derivation of the previous expression with respect to time.

The effects of friction and of rotor inertia for actuators terms can be approximated by simple functions provided in [START_REF] Briot | Dynamics of Parallel Robots: From Rigid Bodies to Flexible Elements[END_REF][START_REF] Khalil | Modeling, Identification and Control of Robots[END_REF].

The Cartesian dynamic model of the robot can be obtained from (13) as:

J T inv τ a = Ψ T w P + m ∑ i=1 J T vi J -T i τ i (15)
It will be denoted by:

J T inv τ a = idm x ( 0 T P , V P , VP ) (16) 
Many methods can be used to calculate τ i representing the IDM of a serial rigid bodies structure [START_REF] Angeles | Fundamentals of Robotic Mechanical Systems -Theory, Methods, and Algorithms[END_REF][START_REF] Featherstone | Rigid Body Dynamics Algorithms[END_REF][START_REF] Khalil | Modeling, Identification and Control of Robots[END_REF]. To reduce the computational cost, the recursive Newton-Euler algorithm [START_REF] Luh | On-line computational scheme for mechanical manipulators[END_REF] and customized symbolic methods can be used [START_REF] Featherstone | Rigid Body Dynamics Algorithms[END_REF][START_REF] Khalil | Modeling, Identification and Control of Robots[END_REF][START_REF] Khalil | Minimum operations and minimum parameters of the dynamic model of tree structure robots[END_REF].

Direct dynamic model of parallel robots

The DDM of the robot gives the platform Cartesian acceleration as a function of the state variables and the input of the motorized joint efforts:

Vr = ddm( 0 T P , V r , τ a ) (17) 
In a simulation algorithm, VP can be obtained from Vr through the formula

VP = Ψ Vr + ΨV r (18) 
obtained by differentiating (1) with respect to time. Then by integration, V P and 0 T P can be obtained.

The DDM can be derived from ( 15) by substituting τ i by its Lagrangian form τ i = M i qi + c i , in which M i is the generalized inertia matrix of the leg i and c i its vector of Coriolis, centrifugal, gravitational effects and friction terms. Then, substituting qi in terms of Vr by using the time derivative of the expressions (4) and ( 5), the final result will be given as:

J T inv τ a = M rob Vr + c rob (19) 
Thus the desired Cartesian acceleration is given by:

Vr = M -1 rob (J T inv τ a -c rob ) (20) 
where:

M rob = Ψ T I P Ψ + m ∑ i=1 J T vi M xi J vi (21)
in which:

• M rob is the generalized inertia matrix of the robot in the Cartesian space,

• M xi is the generalized inertia matrix of leg i referred to the Cartesian space of the terminal frame of leg i; it is equal to J -T i M i J -1 i , • c rob is the wrench of Coriolis, centrifuge and gravity effects.

The expression of c rob is complicated to use and will not be given here. However identifying equations ( 16) and ( 19), it can be deduced that c rob can be calculated using the Cartesian IDM after setting in it Vr = 0, thus

c rob = idm x ( 0 T P , V r , Vr = 0) (22)
This procedure of calculation of c rob is similar to what was proposed for serial robots by [START_REF] Walker | Efficient dynamic computer simulation of robotics mechanism[END_REF]. Similarly, the matrix M rob can also be calculated column per column by using the Cartesian IDM. The 6-dof Gough-Stewart platform (Fig. 1) is composed of a moving platform connected to a fixed base by six extendable legs [START_REF] Merlet | Parallel Robots[END_REF]. The extremities of each leg are fitted with a 2-dof passive universal joint (U) at the base and a 3-dof passive spherical joint (S) at the platform. The lengths of the legs are actuated using prismatic joints (P). The Gough-Stewart platform is thus said to be a 6-UPS robot. For this robot, Ψ = 1 6 , thus J P = J r .

Description of the robot

Let us assume that B i is the point connecting leg i to the base and P i is the point connecting leg i to the platform. The frame F 0 is fixed with respect to the base, and the frame F p is fixed with respect to the mobile platform. In this example, their respective origins O 0 and O p can be arbitrarily placed.

The notations of [START_REF] Khalil | A new geometric notation for open and closedloop robots[END_REF] are used to describe the kinematics of the tree structure composed of the base and the legs after separating the platform. The definition of the local link frames of leg i are given in Fig. 2, while the corresponding geometric parameters are given in Table 1; p( j) denotes the frame precedent to frame F j , σ j defines the type of joint, where σ j = 1 if joint j is prismatic and σ j = 0 if it is revolute.

The geometric parameters (γ j , b j , α j , d j , θ j , r j ) are used to determine the (4 × 4) homogeneous transformation matrix p( j) T j giving the location of frame F j with respect to the frame F p( j) of the body p( j), preceding the body j, see [START_REF] Khalil | Modeling, Identification and Control of Robots[END_REF][START_REF] Khalil | A new geometric notation for open and closedloop robots[END_REF].

B i P i q 2i q 1i x 3i z 3i u 1i z 0i , x 1i q 3i z 2i z 1i , x 2i
Fig. 2 Link frames of the leg i

Table 1 Geometric parameters of the legs frames for i = 1, . . . , 6.

ji p ji σ ji γ ji b ji α ji d ji θ ji r ji 1i 0 0 γ 1i b 1i α 1i d 1i q 1i 0 2i 1i 0 0 0 π/2 0 q 2i 0 3i 2i 1 0 0 π/2 0 0 q 3i

Calculation of the Jacobian matrices

The following notations are used:

• q a : vector of the active joint variables, q a q q 32 q 33 q 34 q 35 q 36 T (23) in which q ji denotes the position of joint j of leg i, • q i : vector of the joint positions of leg i; it does not contain the variables of the spherical joint between the leg and the platform, i.e.

q i = q 1i q 2i q 3i T ( 24 
)
The Jacobian matrices required to calculate the dynamic models are calculated in what follows.

Calculation of the matrix J i

The direct kinematic model of a leg corresponds to one of the RRP serial structure, i.e.:

v i = J i q i (25)
in which v i is the velocity of point P i . The Jacobian matrix J i of leg i is calculated with respect to frame F 3i as follows [START_REF] Khalil | Modeling, Identification and Control of Robots[END_REF]:

3i J i = 3i a 1i × 3i --→ B i P i 3i a 2i × 3i --→ B i P i 3i a 3i =   0 q 3i 0 -q 3i S 2i 0 0 0 0 1   (26)
with:

• a ji the unit vector along the joint axis j of leg i, corresponding to the z ji axis of local frame, • --→ B i P i position vector from B i to P i , • C α and S α represent respectively cos(q α ) and sin(q α ) functions.

The matrix 3i J -1 i is the inverse of the (3 × 3) Jacobian matrix of leg i. Its expression is

3i J -1 i =   0 -1/(q 3i S 2i ) 0 1/q 3i 0 0 0 0 1   (27) 
Note that 0 J i and p J i can be calculated by using the expressions 0 R 3i 3i J i and p R 3i 3i J i , R l is the (3 × 3) rotation matrix between frames F k and F l . The singular configurations of equation ( 27) occur when q 3i = 0 or sin(q 2i ) = 0, which are outside the operating space of the robot.

Calculation of the matrix J vi

The terminal velocity of leg i, denoted v i , which is also the linear velocity of point P i , is calculated in terms of the platform velocity as follows:

v i = v P + ω P × --→ O P P i = 1 3 - --→ O P P i V P (28) 
Thus:

J vi = ∂ v i ∂ V P = 1 3 - --→ O P P i (29) 
where --→ O P P i designates the (3 × 3) skew matrix associated with the position vector --→ O P P i .

The joint velocities of leg i are obtained as:

qi = J -1 i J vi V P (30)

Inverse kinematic model of the robot

The inverse kinematic model of the robot is given by qa

= J inv V P (31) 
in which the ith row of J inv is given by [START_REF] Merlet | Parallel Robots[END_REF])

J inv (i, :) = a T 3i -a T 3i --→ O p P i (32) 
Using the components of the vectors appearing in J inv and J vi expressed in frame F p or F 0 allows to give the expressions of these matrices in frame F p or F 0 respectively.

Inverse dynamic model of the Gough-Stewart platform

The dynamic model is obtained by applying ( 12). Expressing all the elements in frame F p gives:

τ a = p J -T inv p w P + 6 ∑ i=1 1 3 p --→ O P P i p J -T i τ i (q i , qi , qi ) (33) 
τ i (q i , qi , qi ) is the IDM of leg i. Well-known methods and techniques, which have already been applied to serial robots can be used for calculating it [START_REF] Angeles | Fundamentals of Robotic Mechanical Systems -Theory, Methods, and Algorithms[END_REF][START_REF] Featherstone | Handbook of Robotics, chap. 3: Dynamics[END_REF][START_REF] Khalil | Modeling, Identification and Control of Robots[END_REF]. One of the most efficient methods for it is the recursive Newton-Euler algorithm [START_REF] Luh | On-line computational scheme for mechanical manipulators[END_REF]. Giving general geometric parameters to the first frame of each leg, see Table 1, makes it possible to use a unique subroutine to calculate this model for all the legs.

Conclusion and further readings

This article has presented the calculation of the IDM and DDM of parallel robots.

The models are expressed in terms of the dynamic model of the legs and the dynamics of the platform and some Jacobian matrices. The method is applied on a Gough-Stewart platform. These models represent the most important problems in parallel robots dynamics, however there are many topics in dynamics of parallel robots that have not been mentioned in this article. For further readings the following subjects are suggested.

Dynamics of flexible parallel robots

In the present article, the joints are supposed to be perfect and the links are supposed to be rigid. However, some structures may contain flexibility in the joints or in the links that must be taken into account in order to obtain models with acceptable accuracy approaching the real response of the system. For instance, for the Gough-Stewart robot, the effects of leg fexibility are examined in [START_REF] Mahboubkhah | A comprehensive study on the free vibration of machine tools hexapod table[END_REF][START_REF] Mukherjee | Dynamic stability index and vibration analysis of a flexible Stewart platform[END_REF]. In general the joint flexibility is modelled using lumped elasticity [START_REF] Khalil | Modeling of mechanical systems with lumped elasticity[END_REF][START_REF] Kruszewski | The rigid finite element method[END_REF][START_REF] Wittbrodt | Dynamics of Flexible Multibody Systems[END_REF]. The link flexibility can be approximated by finite number of lumped springs as done in [START_REF] Stachera | Automation and Robotics, chap. 15: Derivation and Calculation of the Dynamics of Elastic Parallel Manipulators[END_REF] where the calculation of the IDM and DDM of parallel robots has been derived using Lagrange formulation and the principle of virtual works on the flexible system. However, in order to obtain a correct model accuracy, a higher number of elements may be required, thus increasing the complexity of the computation.

To have good accuracy, the link distributed flexibility are treated using finite elements techniques either with Lagrange equations [START_REF] De Luca | Theory of Robot Control[END_REF] or with a Generalized Newton-Euler formulation as proposed in [START_REF] Boyer | An efficient calculation of the flexible manipulator inverse dynamics[END_REF][START_REF] Shabana | Dynamics of flexible bodies using generalized newton-euler equations[END_REF][START_REF] Sharf | Simulation of flexible-link manipulators: basis functions and non-linear terms in the motion equations[END_REF] for serial robots. The work (Briot and Khalil, 2014a) used this technique to compute the IDM and DDM of parallel robots with leg flexibilities. The computation of the natural frequencies is proposed in the work [START_REF] Briot | Recursive and symbolic calculation of the stiffness and mass matrices of parallel robots[END_REF]. The work of [START_REF] Long | Dynamic modeling of parallel robots with flexible platforms[END_REF] presented the dynamic models of GS robots with platform flexibility modelled using finite elements method.

Identification of the dynamic parameters

To use the dynamic models in a real application, the numerical values of the inertial parameters of the links (legs and platform) of the robot are needed. These values can be obtained by identification techniques by collecting the state variables and the input efforts of the joints along selected trajectories. The identification model is obtained by expressing the IDM as a linear function of the inertial parameters. Then the techniques developed for the identification of dynamic parameters of serial structures [START_REF] Hollerbach | Handbook of Robotics, chap. 6: Model Identification[END_REF] can be generalized on this linear system. Diaz-Rodriguez et al. (2010); [START_REF] Grotjahn | Identification of friction and rigid-body dynamics of parallel kinematic structures for model-based control[END_REF]; [START_REF] Guegan | Identification of the dynamic parameters of the Orthoglide[END_REF] show first work on such applications. More advanced results are developed in [START_REF] Briot | Global identification of joint drive gains and dynamic parameters of parallel robots[END_REF] where the authors present the global identification of all robot dynamic parameters, including joint drive gains.

Singularities of parallel robot dynamics

Parallel robots encounter several types of singularities. The most known are probably the Type 1 (or also serial) singularities for which the platform loses some dof or the Type 2 (or also parallel) singularities [START_REF] Gosselin | Singularity analysis of closed-loop kinematic chains[END_REF] for which the robot inverse kinematic Jacobian matrix J inv is singular and cannot be inverted, leading to an uncontrollable motion of the end-effector.

Type 2 singularities also impact the dynamic model: near these configurations, the joint reactions may increase with the possibility of mechanism break. Also the controllers may send very high commands to the robot leading to controller instability, higher tracking errors and impossibility of crossing these singularities. However, it was shown in [START_REF] Briot | Optimal force generation of parallel manipulators for passing through the singular positions[END_REF] that their crossing was possible if and only if the trajectory for crossing respects a criterion based on the analysis of the degeneracy of the dynamic model. Dedicated controllers for crossing the singularities can also be found in [START_REF] Six | A controller avoiding dynamic model degeneracy of parallel robots during singularity crossing[END_REF].
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