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OPEN ACCESS 

ABSTRACT 

Semen infertility or sub-fertility, whether in humans or livestock species, remains a major concern 
for clinicians and technicians involved in reproduction. Indeed, they can cause tragedies in human 
relationships or have a dramatic overall negative impact on the sustainability of livestock breeding. 
Understanding and predicting semen fertility issues is therefore crucial and quality control 
procedures as well as biomarkers have been proposed to ensure sperm fertility. However, their 
predictive values appeared to be too limited and additional relevant biomarkers are still required 
to diagnose sub-fertility efficiently. During the last decade, the study of molecular mechanisms 
involved in spermatogenesis and sperm maturation highlighted the regulatory role of a variety of 
small non-coding RNAs (sncRNAs) and led to the discovery that sperm sncRNAs comprise both 
remnants from spermatogenesis and post-testicular sncRNAs acquired through interactions with 
extracellular vesicles along epididymis. This has led to the hypothesis that sncRNAs may be a 
source of relevant biomarkers, associated either with sperm functionality or embryo 
development. This review aims at providing a synthetic overview of the current state of 
knowledge regarding implication of sncRNA in spermatogenesis defects and their putative roles 
in sperm maturation and embryo development, as well as exploring their use as fertility biomarkers. 

Keywords: epididymosomes, epigenetic, fertility, fertility prediction, non-genetic sperm legacy, 
semen, sncRNAs, sperm-born sncRNAs. 

Introduction 

A fully mature sperm is the result of multiple processes, starting before birth in the testis, 
followed by several maturation steps during the epididymis transit or following interactions 
with seminal plasma and ending with final modifications in the female tract. Multiple 
hormones and intermediates are required to achieve all these steps, leading to a sperm 
capable of fertilising the oocyte and potentially driving the embryo early development. 
Disruption of any of these processes can lead to sperm abnormalities and potentially 
reduce semen fertility. In humans, about 50% of infertility cases are related to men issues, 
with no clear aetiology for 30–50% of these cases. (Hamada et al. 2012). Identification of 
the disturbance is the first step towards understanding the biological mechanisms involved 
and potential treatment. 

In livestock farming, since sub-fertile males or ejaculates decrease the breeding efficiency 
and induce economic losses, several semen quality control procedures have been proposed to 
ensure semen fertility (Vincent et al. 2014) and biomarkers have been searched for to 
establish effective fertility predictors. For instance, sperm characteristics, functionality 
and physiology have been assessed using computer analysis semen assessment (CASA) 
(Amann and Waberski 2014) or  flow cytometry (e.g. membrane integrity, mitochondrial 
potential, oxidation sensitivity, acrosome statue, DNA compaction and fragmentation). 

Due to the multifactorial nature of semen fertility, however, individual biomarkers remain 
insufficient to achieve reliable predictions. Even the combination of these biomarkers by 
‘stepwise’ or ‘logistic’ regression approaches have failed to explain more than 40% of the 
variability in fertility (Sellem et al. 2015). This has led to the hypothesis that additional 
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biomarkers are required to reach good fertility predictions, 
which should be unrelated to biological processes already 
included in routine semen quality assessment protocols. In this 
respect, the study of molecular mechanisms involved in 
spermatogenesis and sperm maturation have highlighted the 
role of a variety of sncRNAs (de Mateo and Sassone-Corsi 
2014). In addition, the discovery that mature sperm carry 
thousands of sncRNAs, which comprise both remnants from 
spermatogenesis and post-testicular sncRNAs acquired through 
interactions with extracellular vesicles along epididymis, has 
raised many questions about their putative role. Though their 
functional significance is still a matter of debate, growing 
evidence suggests that sperm RNAs are thus delivered 
to the oocyte at fertilisation (Sendler et al. 2013), providing 
resources for embryo development (Shi et al. 2020), and 
being involved in paternal epigenetic transgenerational 
inheritance (Sharma 2019; Le Blevec et al. 2020). Given their 
suggested roles both in spermatogenesis and embryo devel­
opment, sncRNAs have gained interest as relevant biomarkers 
of semen fertility. 

This review aims at providing a synthetic overview of the 
current state of knowledge regarding implication of sncRNA 
in spermatogenesis defects and their putative roles in sperm 
maturation and embryo development, as well as exploring 
their use as fertility biomarkers. 

Discovery, biogenesis and function of the 
main sncRNA classes 

SncRNAs are a broad and heterogeneous family of 18–200 
nucleotides-long RNAs, having mainly a regulatory function 
through either RNA interference, RNA modification or spliceo­
some regulation. Next-generation sequencing (NGS) has led to 
the discovery and quantification of a diversity of sncRNA 
classes (Hombach and Kretz 2016; Wei et al. 2017), 
including microRNAs (miRNAs), small nuclear RNAs 
(snRNAs), piwi-interacting RNAs (piRNAs), rRNA-derived 
small RNAs (rsRNAs) and tRNA-derived small RNAs (tsRNAs). 
Overall, regulatory sncRNAs are expressed at specific 
development stages or under particular stimuli and are 
involved in a growing number of important biological 
processes. sncRNAs which repress expression of messenger 
RNA (mRNA) at the post-transcriptional level provide a 
rapid and adaptive mechanism to modulate gene expression. 
Other sncRNAs such as piRNAs can modulate gene 
expression at the epigenetic level, being likely involved in 
establishing and maintaining long-term patterns of RNA 
expression. Furthermore, snRNAs can influence alternative 
splicing, guide specific proteins to apply RNA modifications 
at a given location and may be involved in translational 
regulation due to their essential role for the spliceosome and 
the ribosome function (Karijolich and Yu 2010; Jia et al. 2012). 

Advances in high-throughput sequencing technologies 
(NGS), which facilitated genome-wide determination and 
comparison of DNA and RNA sequences, have led to the 
discovery of a wealth of sncRNA variants produced by RNA 
editing. RNA editing is a core co- or post-transcriptional 
enzymatic modification process, through which a primary 
RNA sequence is altered by single-nucleotide substitutions, 
insertions, or deletions (Gott and Emeson 2000). In humans, 
the adenosine-to-inosine (A-to-I) RNA editing, mediated by 
adenosine deaminase acting on RNA (ADAR) family of 
enzymes, and the cytosine-to-uracil (C-to-U) RNA editing 
mediated by Apolipoprotein B mRNA Editing Complexes 
(APOBECs) are considered the canonical types, with the 
A-to-I type being the most prevalent form, accounting for 
millions of edits in both coding and noncoding transcripts 
(Zinshteyn and Nishikura 2009; Savva et al. 2012; Picardi 
et al. 2016). sncRNAs have been recognised as major 
targets for RNA editing enzymes and single-nucleotide 
changes through editing are thought to impact their 
biogenesis as well as their target specificity (Paris et al. 
2012; Yang et al. 2015; Penzo et al. 2016; Zheng et al. 
2016; Li et al. 2018a), but the large number of identified 
editing sites may also merely represent, to some extent, 
neutral transcriptional noise (Gommans et al. 2009). 

miRNAs 

miRNAs are a class of non-coding RNAs with an average of 22 
nucleotides in length, discovered in the 1990s through the 
interaction of Lin-4 and Lin-14 in Caenorhabditis elegans and 
then the discovery of Let-7 in multiple species (Wightman 
et al. 1993). Most miRNAs are transcribed by RNA polymerase 
II in long precursors called pri-miRNA (Hammond 2015). In 
human or bull, almost half of miRNA coding sequences are 
intergenic, while the others are mainly intronic or located 
inside UTR regions (Galatenko et al. 2018; Sellem et al. 
2020). They are separated from each other or organised 
within ‘miRNA clusters’ (ex: miR-323, -758, -329b and -329a 
on bovine chromosome 21). These sequences are then 
processed by DROSHA coupled to DGCR8, resulting in shorter 
sequences called pre-miRNA (Lee et al. 2003). The pre-miRNA 
are exported from nucleus to cytoplasm by Exportin 5 and 
processed by DICER to cleave the secondary structure (stem 
loop) and form mature miRNAs (Hutvágner et al. 2001) 
(Fig. 1). 

The mature 5 0 stand interacts with an Argonaut protein 
(Ago2) to form the RISC complex (RNA-induced silencing 
complex). The second strand is cleaved or can also interact 
with Ago2. 

In most cases, the RISC complex interact with the 3 0 

untranslated region (3 0 UTR) of target mRNAs to suppress 
expression through mRNA degradation or translational 
repression (O’Brien et al. 2018). However, interaction of 
miRNAs with 5 0 UTR of coding sequences have also been 
reported. Advances in high-throughput sequencing 
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Fig. 1. miRNAs biogenesis, maturation and function. Different forms of miRNAs exist, from precursor to mature strand. The native and 
newly transcribed form, called pri-miRNA (A), presents typical stem-loop structure. pri-miRNA will be processed by enzymes such as 
DROSHA or DGCR8 to form a shorter sequence called pre-miRNA (B). Exported in the cytoplasm, the sequence will be matured by 
DICER, forming a double strand (C) sequence. The strand separation will lead to the formation of mature 5p and/or 3p miRNA (D). 
Captured by AGO2, this complex, called RISC, manages the repression of protein formation due to the cleavage of the 
complementary mRNA or the translation repression. @Allice. 

technologies have led to the discovery of isomiRs, which are 
miRNA variants produced by editing, including substitutions 
(Li et al. 2018a), 3 0 or 5 0 additions (Katoh et al. 2009; Tan 
et al. 2014) and  deletions  (Lee et al. 2019). These isomiRs 
target distinct sets of mRNA, have been described in multiple 
species and are expressed constitutively in several tissues in a 
tissue-specific manner  (Fernandez-Valverde et al. 2010; 
Telonis et al. 2017) as well as according to sex and health 
status (Loher et al. 2014; Telonis et al. 2015b), suggesting 
distinct functional roles (Tan et al. 2014; Tan and Dibb 2015). 

Since they regulate almost 60% of genes (Friedman et al. 
2009), miRNAs are involved in a variety of biological 
processes and are critical for normal animal development, as 
exemplified by the constitutive or tissue-specific DICER  
knock-out in mice, leading to embryogenic lethality (Bernstein 
et al. 2003) or impairment of several tissues such as skin, 
heart, lungs, muscle (Andl et al. 2006; Krill et al. 2013). 
Likewise, aberrant expression of miRNAs is associated with 
many human diseases and miRNAs have been reported 
as potential biomarkers for a variety of diseases (Paul 
et al. 2018). 

piRNAs 

PIWI proteins, a subfamily of Argonaut proteins, were 
discovered in the late 1990s in Drosophila melanogaster and 
then in other species (Weick and Miska 2014; Russell et al. 
2016). They associate with a particular class of 26–33 nt 
sncRNAs called piRNAs. piRNAs are produced from long 
precursor transcripts, which are exported into the cytoplasm 
and cut every 25–35 nucleotides at an uracil by the endonucle­
ase ZUC (in association with cofactors such as VRET, MINO or 
GASZ). This biogenesis pathway generates piRNAs having a 
5 01U structure, called primary piRNAs’ (Czech et al. 2018). 
Primary piRNA can enter the ‘ping-pong cycle’, that  is  
initiated after interaction with argonaut protein AUB. The 
piRNA-AUB complexes cut active transposon transcripts at 
the nucleotide that pairs with the 10th nucleotide of piRNA, 
producing ‘secondary piRNA’ in sense orientation to trans­
posons and having no 1U bias but Adenosine at position 10. 
Secondary piRNA are loaded into Ago3 and Ago3-piRNA 
complexes in turn recognise and cleave precursor transcripts 
to generate more primary piRNAs and start yet another cycle 
(Czech and Hannon 2016) (Fig. 2). 
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Fig. 2. piRNA biogenesis. The biogenesis of piRNAs involves two distinct pathways: The production of 
so-called ‘primary’ piRNAs, having a 5 0 1U bias (a). This pathway mainly involves ZUC protein which 
cleaves every 25–35 nucleotides the long primary transcript of piRNAs. The ‘secondary’ piRNAs are 
generated during the ‘ping-pong’ cycle and exhibiting an A at position 10 (b). This second pathway 
involves mainly AGO3 and AUB which generate primary and secondary piRNA sequences by cleaving 
either transposons or long primary transcripts of piRNAs. @Allice. 

The piRNA pathway provides a powerful system to prevent 
transposon expression and propagation, through both direct 
slicing and transcriptional silencing via interaction with two 
other epigenetic mechanisms: piRNAs can recruit DNMT3L, 
3A and 3B, to locally induce DNA methylation and block 
their activity (LINE or LTR; Aravin et al. 2008; Pillai and 
Chuma 2012; Weick and Miska 2014) or  interact  with  
factors leading to post translational repressive modifications 
on histones aiming to locally close the chromatin, resulting 
in retrotransposons silencing (Czech et al. 2018). Moreover, 
analysis of pachytene piRNAs in elongating spermatids showed 
a catalytic activity, leading to the concerted degradation of the 
bulk of cellular mRNAs, illustrating a role in gene expression 
regulation (Gou et al. 2014). 

tRNAs derived fragments (tsRNAs) 

Transfer RNAs are a conserved and highly abundant RNA class 
with a well-defined role in protein translation. They are 
transcribed by RNA Pol III as a premature tRNA transcript, 
which undergoes processing by two endonucleases, namely 
RNase P (5 0 trimming) and RNaze Z (3 0 trimming). 

High-throughput sequencing has led to the discovery of a 
variety of abundant RNA fragments related to tRNAs, with a 
diversity of size suggesting the existence of multiple biogenesis 
mechanisms (Keam and Hutvagner 2015; Chen et al. 2021). 
Indeed, tsRNAs can be broadly classified into two main 
groups: tRNA-halves (5 0 and 3 0 tRHs) and tRNA-derived 
fragments (tRF5s, i-tRFs and tRF3s). tRNA-halves are 35–45 nt 
RNA species produced by ribonucleolytic cleavage of mature 
tRNAs by Angiogenin. They are referred to 5 0-halves or 
3 0-halves according to their mapping on the tRNA sequence: 
5 0-tRHs usually start at the first nucleotide of the tRNAs and 
typically terminate around the anticodon loop of the tRNA, 
while 3 0-tRHs usually encompass the anticodon region and 
they may extend into the CCA region of the mature tRNA 
(Fig. 3a). tRFs ranging from 18 to 35 nt can be processed 
from either the 5 0 or the 3 0 arm of the mature tRNA, 
resulting from a cleavage by DICER, RNase Z or other RNAses 
in the TψC-arm of mature tRNA or a cleavage in the D-arm, 
respectively. Internal tRFs (i-tRFs) are produced from a 
combination of cleavages in the anticodon loop and either 
D-arm or TψC-arm (Fig. 3a). 
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Fig. 3. Specific cleavages of tRNA into tRFs (a). The cloverleaf structure of a tRNA typically contains a D-Loop, an Anticodon-Loop, a 
variable loop, a T-loop, and an amino acid acceptor stem. Several endonucleases can cleave tRNAs at specific sites, generating tRFs of 
different categories: 5 0 or 3 tRH, tRF3s, tRF5s and i-tRFs. (b) Regulation of genome expression through tRFs. tRF3 and tRF5 by 
complexing Argonaut proteins, are able to target complementary mRNAs, leading to repress genome expression due to mRNA 
degradation or translation disturbance. @Allice. 

Until recently, tsRNA were considered as aberrant degra­
dation products of endonuclease activity and their functional 
potential remained overlooked until recently. Intriguingly, a 
growing amount of evidence suggests that tRF may harbour 
unanticipated biological activity and dynamically impact 
genome expression (Guzzi and Bellodi 2020). For instance, 
the processing of mature tRNA into tRFs appears to be site-
specific and restricted to specific isotypes of  tRNAs,  
generating tRFs with specific lengths among different cell 
types. In addition, no correlation was observed between tRFs 
expression and abundance of their precursor tRNAs (Telonis 
et al. 2015a). Multiple studies have shown that tRFs can 
repress the expression of endogenous targets and have a role 
in regulating the simplest to complex biological processes. In 
particular, tRF5s and tRF3s have been shown to target the 
3 0UTR of specific mRNAs and regulate gene expression post-
transcriptionally (Maute et al. 2013; Deng et al. 2015). This 
regulation seems to be Dicer-independent and Argonaute­
dependent (Kuscu et al. 2018; Chen et al. 2021). tRF5s and 
tRF3s interact with AGO1, AGO3 and AGO4 to form AGO 
complexes (Fig. 3b) which regulate target RNA expression 
based on seed sequences complementary to target mRNAs 
(Kumar et al. 2016). Accumulation of tRNA-halves has been 
associated with oxidative and metabolic stress (Emara et al. 
2010), leading to translational repression (Ivanov et al. 
2011). Abnormal tRFs expression levels in disease conditions 
have been observed, including cancer and neurological 
disorders, suggesting that tRFs could be relevant biomarkers 

(Raina and Ibba 2014; Krishna et al. 2021). Moreover, in 
mice embryos, tRF3 are involved in retrotransposons 
repression during the epigenetic reprogramming (Schorn 
et al. 2017). 

rRNAs derived fragments (rsRNAs) 

rRNAs are the most abundant RNA molecules in eukaryotic 
cells, including four rRNAs (5S, 5.8S, 18S, and 28S) being 
encoded by the nuclear genome and two (12S and 16S) by 
the mitochondrial genome. Similar to tsRNAs, short fragments 
derived from rRNAs have been discovered in several species, 
which are produced non-randomly by at least four biogenesis 
pathways (Lambert et al. 2019). All six rRNAs produce rRFs 
with unique features, from the 5 0-end (rRF5s), the interior 
(i-rRFs), and the 3 0-end (rRF3s) of the parental rRNA. 
Expression of rRFs appears to be influenced by multiple factors, 
including tissue, health status and sex (Chu et al. 2017; Locati 
et al. 2018; Cherlin et al. 2020). Similar to tRF, several rRFs 
have been shown to interact with AGO proteins suggesting a 
role in gene silencing (Guan and Grigoriev 2020). For instance, 
change in expression of several key metabolic enzymes was 
observed in mouse hepatoma cells after overexpression or 
inhibition of several rRFs, showing that rRFs can regulate 
metabolic processes in a similar manner to miRNAs (Wei 
et al. 2013). rRFs have also been shown to act as precursors 
for the production of miRNAs or piRNAs (Chak et al. 2015; 
Locati et al. 2018). 
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Ejaculated sperm contains abundant 
sncRNAs 

Several sncRNAs classes have been identified in ejaculated 
sperm, including miRNAs, piRNAs, tsRNAs, rsRNAs, snoRNAs 
or mtRNAs, with differences in terms of sequence diversity and 
expression levels according to species, sequencing technology 
and coverage, bioinformatic pipeline etc. Of note, even if most 
studies include technical steps to remove somatic cells (e.g. 
Percoll gradient or incubation in hypotonic somatic cell lysis 
buffer and washing steps), somatic cell contamination can’t be  
ruled out and may at least in part explain differences observed 
between studies. 

According to studies in humans (Hua et al. 2019; Nätt 
et al. 2019; Xu et al. 2020), bull (Fagerlind et al. 2015; 
Capra et al. 2017; Sellem et al. 2020; Sellem et al. 2021), 
swine (Li et al. 2018b; Gòdia et al. 2019; Alvarez-Rodriguez 
et al. 2020) and other species, about 85% of reads produced 
after NGS sequencing of ejaculated sperm small RNAs are 
annotated as sncRNAs, mainly piRNAs, rRFs, miRNAs and 
tRFs. For instance, 701 known miRNAs and about 2000 
putative miRNA sequences have been identified in bovine, 
producing about 200 000 isomiRs, with 70 isomiRs per 
miRNA on average. (Sellem et al. 2020). 

However, most publications agree on main sncRNAs classes 
and similarities were observed across species. For instance, 
based on SpermBase (www.spermbase.org), about 42% of 
human sperm miRNAs have been also identified in mouse. 
About 50% of rat sperm miRNAs were also described in 
humans and this inter species coverage reached 72% 
between rabbit and human sperm (Fig. 4). 

Focusing on bovine, about 45% of sperm miRNAs were also 
described in mouse, including several key miRNAs involved in 
cell differentiation, proliferation, spermatogenesis, or embryo 
development (miR-10, miR-29, miR-34, miR-100, miR-148, 
miR-191) (Nixon et al. 2015; Chu et al. 2019). Likewise, 
human and bovine ejaculated sperm were shown to share a 
subset of their 20 most expressed miRNAs (miR-100, miR­
34c, miR-191 and miR-30d) (Fagerlind et al. 2015; Capra 
et al. 2017; Hua et al. 2019; Sellem et al. 2020; Xu et al. 
2020). Likewise, tsRNAs0 originating from glycine and 
glutamate isoacceptors are the most expressed tsRNAs in 
both human and bovine ejaculated sperm, accounting 
altogether for about 70% of tsRNAs expression (Hua et al. 
2019; Sellem et al. 2020). Interestingly, while i-tRFs and 
tRF5s account altogether for about 75% of tRFs diversity in 
both species, they exhibit low expression levels. As a result, 
5 0-tRHs which represent only 10% of sequence diversity, 
account for a vast majority of tRFs expression in both 
species (52 and 82%, in bovine and human sperm, 
respectively). 

These studies revealed another striking feature of sperm 
sncRNAome, namely the impressive diversity of isoforms 
(isomiRs, isopiRs, variants of tsRNAs and rsRNAs) produced 
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Fig. 4. Number of miRNAs shared among species according to 
SpermBase. Human, mouse, rabbit and rat sperm share several 
known miRNAs. While 42–43% of human sperm miRNA content is 
shared with mouse and rabbit, respectively, only 29% is shared with 
rat. Rat and mouse share a higher number of miRNAs with 69% of 
the rat miRNA content retrieved in mouse sperm. Diagram made 
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by RNA editing, as for bovine where some miRNAs were 
composed by several thousand of isomiRs (Sellem et al. 2020). 

Since ejaculated sperm are transcriptionally silent, the 
sperm sncRNAome was initially considered as a legacy of 
spermatogenesis. However, several studies in mice (Sharma 
et al. 2016; Sharma et al. 2018; Chu et al. 2019) and bulls 
(Sellem et al. 2021) have shown a remarkable level of 
sncRNAome plasticity resulting from the combination of 
multiple factors, including interaction with epididymosomes. 
Indeed, beyond spermatogenesis, spermatozoa undergo 
several functional maturation steps to acquire their fertilising 
capacity. In particular, during epididymal transit, the sperm 
membrane is remodelled, with sequential attachment and 
shedding of various molecules provided by the epididymal 
lumen fluid (Zhou et al. 2018) and extracellular vesicles 
such as epididymosomes (Rejraji et al. 2006; Sullivan et al. 
2007; Girouard et al. 2011; Rowlison et al. 2018; Nixon 
et al. 2019b). Interestingly, sncRNA cargo are delivered to 
sperm by epididymosomes (Belleannee et al. 2013; Vojtech 
et al. 2014; Reilly et al. 2016; Sharma et al. 2018), whose 
contents vary along the epididymis whether in mice, humans 
or bulls (Nixon et al. 2015; Russell et al. 2016; Chu et al. 
2019; Nixon et al. 2019a; Trigg et al. 2019; Sellem et al. 2021). 
As a result, the payload of sperm sncRNAs is dramatically 
remodelled as sperm mature along the epididymis from caput 
to the cauda. 

One common finding across species is the observed 
enrichment of piRNAs within testis parenchyma relative to 
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the sperm fraction isolated from epididymis or ejaculated 
sperm. Conversely, an increase in miRNA, tsRNA and rsRNA 
content is observed from testis to ejaculated sperm, with 
distinct trends according to species. For instance, expression 
of rsRNA was shown to increase continuously in mouse (Chu 
et al. 2019), whereas a particular expression profile peaking 
at epididymis corpus was observed in bovine sperm (Sellem 
et al. 2021). As a result, rsRNA are the most expressed 
sncRNA species in mouse cauda sperm, whereas miRNA and 
tsRNA are the most prevalent sncRNA species in bovine cauda 
sperm. 

Unfortunately, data unavailability, methodological 
differences as well as the plethora of isoforms produced 
through RNA editing mechanisms preclude a detailed compar­
ison between species. Whether observed differences represent 
species specificities or technical artefacts warrants further 
study. 

It can be assumed that sncRNA acquired during epididymal 
transit or later may be related to sperm functionality, fertilising 
capacity and embryo development, while the others can be 
considered as remnant from spermatogenesis, maybe related 
for instance to sperm concentration or morphology. In this 
respect, sncRNA may represent relevant biomarkers associated 
with semen fertility. 

Deregulation of sncRNAs related to 
spermatogenesis impairs fertility 

Spermatogenesis is a tightly regulated stepwise process 
involving thousands of genes (Chalmel and Rolland 2015) as  
well as sncRNAs, especially microRNAs (miRNAs) and piwi­
interacting RNAs (piRNAs) as illustrated by the high 
concentration of DICER, AGO proteins and miRNAs in the 
chromatoid body in male germ cells (Kotaja et al. 2006; de 
Mateo and Sassone-Corsi 2014). Direct evidence for the 
involvement of sncRNA in spermatogenesis regulation has 
been provided in mice by several selective knock-out of 
genes involved in the sncRNA biogenesis pathway. For 
instance, the selective knock-out of Dicer1 in the male germ 
cell leads to a decrease in testis volume and sperm number 
as well as multiple cumulative defects at the spermatogenesis 
and spermiogenesis stages, leading to morphological 
abnormalities and infertility (Korhonen et al. 2011; Romero 
et al. 2011). Likewise, piRNAs are known to play roles in 
spermatogenesis, as evidenced by the mitosis, meiosis, 
chromatin compaction, flagella elongation and fertility defects 
in mutants lacking Piwi (Weick and Miska 2014). Knock-out of 
other key genes belonging to the piRNA pathway (Miwi, Mili, 
Tdrd1, Tdrd9, Mvh, Maelstrom, Pld6 or SPOCD1) results also in 
major spermatogenesis defects during meiosis or spermiogen­
esis (Aravin et al. 2008; Pillai and Chuma 2012; Chuma and 
Nakano 2013; de Mateo and Sassone-Corsi 2014; Russell 
et al. 2016) leading to sterility. 

Many studies in mouse have now identified key sncRNAs 
regulating spermatogenesis. For instance, miR-20, miR-21, 
miR-100, miR-106b, miR-146a, miR-182, miR-183, miR-222 
and miR-383 have been shown to be involved in the 
‘differentiation vs proliferation’ balance in spermatogonial 
stem cells: miR-20, miR-100 and miR-106a are critical for 
spermatogonial stem cell proliferation through their 
interactions with Stat3 and Ccnd1 (He et al. 2013; Huang 
et al. 2017); regulation of retinoic acid by miR-146a (Huszar 
and Payne 2013) and cKIT by miR-222 (Yang et al. 2013) 
maintain the undifferentiated status of spermatogonial cells; 
inhibition of miR-21, which accounts for 11% of total 
miRNA expression in spermatogonia, increases apoptosis 
leading to a loss of cells (Niu et al. 2011). Meiosis is also 
regulated by miRNAs, as exemplified by miR-34c, miR-29 
and miR-214 which target Nanos2, favouring the meiosis 
process (Yu et al. 2014; Hilz et al. 2017). Double knock out 
mice for miR-34b/c and miR-449 are infertile, due to a 
drastic reduction in sperm number, a motility loss and an 
increased proportion of decapitated sperm (oligoasthenoter­
atozoospermia) (Comazzetto et al. 2014; Yuan et al. 2015). 

In bovine, enriched GO terms and Kegg pathways associated 
with predicted targets of miRNA preferentially expressed in 
testicular parenchyma sperm highlighted biological processes 
such as cell proliferation as well as response to stress and 
protein ubiquitination (Sellem et al. 2021). Interestingly, ER 
stress and UPR signalling cascades are involved in 
spermatogenesis, (Karna et al. 2020). Likewise, the 
ubiquitin–proteasome pathway plays a key role at several 
stages of spermatogenesis (meiosis, histone–protamine 
transition, acrosome biogenesis, and spermatozoa maturation) 
to remove many proteins and organelles and help the formation 
of condensed sperm. Knock-out mice lacking ubiquitylation 
enzymes such as UBE2J1 suffer from male sterility 
associated with flagella and acrosomal defects (Koenig et al. 
2014). Interestingly, piRNAs are also involved in this pathway 
and have been shown to induce ubiquitination of MIWI, a 
process essential for maturation from late spermatid to 
sperm (Zhao et al. 2013). Of note, while silencing of 
retrotransposons in the germline during genome demethy­
lation is the unifying function of piRNAs in mammals, they 
have also been shown to be crucial for spermatogenesis by 
regulating meiotically expressed protein-coding genes. Indeed, 
as spermatocytes reach the pachytene stage of meiosis, a 
second wave of piRNA transcription starts, producing a 
particular class of piRNAs termed pachytene piRNAs (Girard 
et al. 2006). These pachytene piRNAs have been shown to 
form a silencing complex (pi-RISC) containing MIWI and 
deadenylase CAF1 to induce deadenylation and subsequent 
decay of spermatogenic mRNAs in elongating spermatids, via 
a mechanism similar to, but distinct from, the classical 
miRNA/siRNA machinery (Gou et al. 2014; Goh et al. 2015). 
Recently, CRISPR/Cas9 was used to knock-out the expression 
of a pachytene piRNA precursor locus on mouse chromo­
some 18, leading to male sterility due to sperm head 
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dysmorphology, acrosome dysgenesis, poor motility and 
defects in interactions with zona pellucida impairing 
penetration (Choi et al. 2021). 

Post testicular acquired sncRNAs: a role in 
embryo development? 

Since sperm RNAs can be delivered to the oocyte during 
fertilisation and remain stable until the onset of embryonic 
genome activation (Ostermeier et al. 2004), it has long been 
hypothesised that they may impact early embryo devel­
opment. Evidence of such a role has recently emerged, when 
Guo et al treated mouse mature spermatozoa with lysolecithin, 
pronase and RNases (RNase A and RNase H) to deplete sperm 
from RNAs and used treated sperm to perform intracytoplasmic 
sperm injection (ICSI). Reduced blastocyst formation rate and 
live birth rate of the embryos, as well as lower body weight of 
F1 mice were observed (Guo et al. 2017), suggesting that sperm 
RNAs, including sncRNAs, play critical roles in embryonic 
development and may act as an additional source of paternal 
hereditary information. 

Recently, sperm sncRNAs gained at epididymis cauda were 
shown to be crucial for normal embryonic development after 
the blastocyst stage in mice (Conine et al. 2018). Indeed, 
blastocysts produced by ICSI with spermatozoa obtained 
from epididymis caput showed a significant overexpression 
of multiple genes encoding RNA-binding proteins and 
chromatin-associated factors during the preimplantation 
period, including overexpression of SMARCA5, a key protein 
involved in chromatin remodelling. These caput-derived 
embryos then failed to efficiently implant and develop. These 
preimplantation molecular defects as well as the post-
implantation lethality could be rescued by microinjection of 
purified cauda-specific sncRNAs into caput-derived embryos, 
providing evidence that cauda sperm are epigenetically 
immature. Interestingly, microinjection of separate gel-
purified sncRNA population was performed, using either 
18–26 nt sncRNA fraction enriched with microRNAs or 
26–40 nt sncRNA faction primarily comprising tRFs. Gene 
expression was globally restored only for the 18–26 nt frac­
tion, suggesting that miRNA gained by sperm as they further 
transit the epididymis to cauda are required to support 
normal preimplantation gene regulation. In this respect, the 
dramatic increase in miR-100 expression observed from caput 
to cauda, at least in bovine sperm, may explain the observed 
SMARCA5 overexpression in caput-derived embryos compared 
to cauda-derived embryos, SMARCA5 being a target gene of 
miR-100. Of note, miR-100, is also highly expressed in bovine 
ejaculated sperm and has been proposed as one of the main 
factors associated with the initiation of pluripotency 
(Morikawa and Cserjesi 2004; Fei et al. 2010). Likewise, 
miRNA whose expression peak at epididymis cauda or 
ejaculated sperm in cattle were found to be associated with 

GO terms related to embryo development such as 
developmental process, embryonic morphogenesis as well as 
cell proliferation, differentiation, and migration (Sellem 
et al. 2021). In addition, miR-34c and miR-191, two highly 
expressed miRNA in bovine ejaculated sperm (Sellem et al. 
2020) have been associated with murine embryo early 
development (Liu et al. 2012; Donkin and Barrès 2018; 
Le Blevec et al. 2020) and fertilisation rate and embryo 
quality in humans (Xu et al. 2020), respectively. Of note, 
sncRNA in the range 18–26 nt also contain short piRNAs, 
rsRNAs and tsRNA, which may also be involved in the 
observed phenotype. In this respect, some tsRNA peaking at 
epididymis cauda or ejaculated sperm in cattle have also 
been shown to contribute to early cleavage of porcine 
preimplantation embryos (Chen et al. 2020) and injection of 
tRNA-Gly-GCC fragments into zygotes results in slowdown of 
embryo development (Sharma et al. 2016). 

Beyond their role in embryonic development, sncRNAs, 
especially tsRNAs, may have a role in trans-generational 
inheritance. A growing body of evidence published recently 
suggest that sperm sncRNA-encoded information is decoded 
in early embryos to control offspring phenotypes (Zhang 
et al. 2019). For instance, changes in sncRNA content was 
observed in sperm of F0 males subjected to a high-fat diet both 
in mouse (Grandjean et al. 2016) and  rat (de Castro Barbosa 
et al. 2016), including differentially expressed miRNAs, 
tsRNAs and piRNAs. These changes were associated in F1 
and F2 newborn offspring with reduced body weight and 
pancreatic beta-cell mass, as well as glucose intolerance, 
insulin resistance and type II diabetes. Sperm from F1 rat 
offspring also showed a modified sncRNAs expression profile. 
In particular, altered expression of sperm miRNA let-7c was 
observed in F0 rats and was transmitted to offspring, leading 
to a transcriptomic shift of let-7c targets, including AKT2, 
IGF2R and UCP2 which are involved in glucose metabolism 
and insulin-related biological processes. 

Molecular mechanisms underlying this trans-generational 
inheritance have yet to be ascertained and may probably 
result from the combination or cooperation of several 
sncRNA species, including at least miRNAs et tsRNAs. 
Indeed miR-19b was identified as overexpressed in male 
mice fed a high-fat diet and its microinjection into naive 
zygotes leads to metabolic alterations in the resulting 
progeny (Grandjean et al. 2016). Similarly, a high-fat diet 
was shown to disturb the expression of about 11% of mouse 
sperm tsRNAs. Injection of mouse sperm tsRNAs from males 
subjected to a high-fat diet was shown to alter metabolic 
pathways in early embryos and to induce metabolic 
disorders in the F1 offspring (Chen et al. 2016). 

Taken together, these results demonstrate that the dynamic 
remodelling of sperm sncRNA payload occurring during post 
testicular maturation has dramatic functional consequences 
on embryos preimplantation development, may downreg­
ulate a set of genes encoding RNA-binding proteins and 
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chromatin-associated factors, thus modifying the epigenetic 
program and have a global impact on offspring development. 

Sperm-borne sncRNAs as fertility 
biomarkers? 

Diagnosis of idiopathic diseases, as well as prediction of the 
disease course or monitoring the response to therapeutic 
approaches is a common challenge in the clinical field. In 
this respect, diagnostic, prognostic and predictive biomarkers 
have gained major interest. Proteins have long been suggested 
as biomarkers, however low sensitivity and specificity of 
detection, as well as the struggle in developing efficient 
detection methods, often limit their usefulness. 

Next to proteins, circulating miRNAs were previously 
shown to be relevant biomarkers in several pathologies such 
as cancer or cardiovascular disease. In the last decade, the 
search for miRNAs biomarkers related to various conditions 
was an impressive research field, including in sperm fertility 
assessment. Of note, various fertility definitions were used 
according to studies and species, based on either spermogram 
parameters (sperm quantity, motility and absence of 
morphological abnormalities) or fertilisation/pregnancy rates 
after artificial insemination (especially for cattle) or other 
assisted reproductive technologies. 

In humans, sperm miRNAs expression profiles were used to 
detect infertile patients, with or without morpho-functional 
sperm alterations (Alves et al. 2020; Momeni et al. 2020; 
Vashisht and Gahlay 2020). For instance, 50 and 42 
miRNAs including miR-15, miR-16a, miR-19a, miR-34b, 
miR-34c-5p, miR-122, miR-449 and miR-1973 were shown 
to be upregulated while 27 and 44 miRNA were found to be 
downregulated in asthenozoospermia and oligoastheno­
zoospermia, respectively (Abu-Halima et al. 2013). Reduced 
expression of miR-10b and miR-135b was observed in semen 
of asthenospermic patients (Tian et al. 2017). Likewise, 
decreased expression of miR-25, miR-34b, miR-34c-5p, miR­
122, miR-152, miR-192, miR-335, miR-449a was observed 
in oligozoospermic patients, while 12 miRNAs were 
significantly more abundant: Let-7b, let-7c, let-7g, miR-21, 
miR22, miR-30a, miR-148a, miR-221, miR-320a, miR-375, 
miR-423-3p and noz al. 2015). SixmiR-423-5p (Mu ˜ et 
miRNAs (miR-125a-3p, miR-132-5p miR-151-5p, miR-195­
5p, miR-320 and miR-935) were shown to be downregu­
lated in case of teratozoospermia (Salas-Huetos et al. 2015). 
However, usefulness of these biomarkers is unclear, as fast 
and inexpensive technologies such as spermograms are 
already used to efficiently detect these abnormalities in 
infertile patients. As a biomarker, miRNA would provide an 
added value in order to diagnose idiopathic infertility or, for 
instance, refine current diagnosis and differentiate between 
obstructive and nonobstructive azoospermia without require­
ment of testicular biopsy. In this respect, miR-34b, 

miR-34c-5p, miR-429 and miR-122 were suggested to 
improve diagnosis of patients with nonobstructive 
azoospermia along with traditional techniques (Abu-Halima 
et al. 2014). In addition, 57 miRNAs were identified 
as differentially expressed between two groups of 
normozoospermic men having contrasting fertility levels, 
highlighting biological processes such as embryonic 
morphogenesis and chromatin modification, and suggesting 
that subfertility of these patients may be related to the 
dysregulation in early embryo of key genes targeted by these 
sperm miRNAs (Salas-Huetos et al. 2016). Likewise, expres­
sion of sperm miRNA miR-101-3p, miR-132-3p and miR­
191-5p was shown to be associated with either fertilisation 
rate, blastocyst rate or high-quality embryo rate after in vitro 
fertilisation (Hua et al. 2019; Xu et al. 2020). Recently, 48 pairs 
of miRNAs, whose expression is strongly correlated in fertile 
men but disrupted in infertile patients, were identified 
(Corral-Vazquez et al. 2019). The most suitable diagnostic 
miRNA pairs were determined for asthenozoospermia 
(miR-942-5p/miR-1208), teratozoospermia (miR-296-5p/ 
miR-328-3p), normozoospermic infertility (miR-34b-3p/ 
miR-93-3p) and oligozoospermia (miR-139-5p/-miR-1260a). 

Regarding livestock species, several studies have been 
performed on bull and boar and specific sperm-borne miRNA 
expression profiles have been associated with semen 
functional parameters, in vitro embryo development or field 
fertility. For instance miR-93, miR-106b, miR-100, miR-122, 
miR-184, miR-486-5p and miR-2285n have been associated 
with sperm motility in cattle (Capra et al. 2017) and let-7d/e 
in porcine (Curry et al. 2011). Many miRNAs differentially 
expressed between fertile and sub-fertile bulls have also been 
identified, such as bta-miR-9-5p, bta-miR-10a-5p, bta-miR­
19b-3p, bta-miR-27a-5p, bta-miR-34c, bta-miR-98, bta­
miR126-5p, bta-miR-142-5p, bta-miR-148b-3p, bta-miR-182, 
bta-miR-320a, bta-miR-329a, bta-miR-449a, bta-miR-502-5p, 
bta-miR-1249-3p, bta-miR-1839, bta-miR-2284y (Fagerlind 
et al. 2015; Perkins et al. 2020). The expression level of 
nine miRNAs (miR-9-5p, miR-34c, miR-423-5p, miR-449a, 
miR-5193-5p, miR-1246, miR-2483-5p, miR-92a, miR-21-5p) 
were significantly correlated to non-return rate after 
insemination with sexed semen (Keles et al. 2021). Differential 
expression of 11 miRNAs was observed between high and low 
fertility bulls, including miR-33b, miR-126-5p, miR-205, 
miR-505, miR-532, miR-500 and miR-542-5p which 
were overexpressed in high fertility bulls and miR-15a, miR­
29, miR-216b and miR-339a which were downregulated in 
high fertility bulls (Alves et al. 2019; Menezes et al. 2020). 
In a recent study, two miRNAs (miR-221 and mir-621) 
were found to be down- and up-regulated in high-fertility 
relative to low-fertility boars, respectively (Alvarez-Rodriguez 
et al. 2020). 

More recently, evidence has been provided regarding the 
value of other sncRNA classes as fertility biomarkers. For 
instance, two groups of sperm samples, producing either 
high or low rates of good quality embryos, were compared 
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by sncRNA-Seq. Ten differentially expressed tsRNAs were 
identified, including three 5 0-tRNA halves, two 3 0-tRNA halves, 
four were 5 0-tRFs and one i-tRF. Among them, five were 
downregulated in the low-quality semen group (two GlyGCC 
derived tsRNAs, two ThrTGT and one GluTTC) and five were 
upregulated (two ProAGG, one ProTGG, one AsnATT and 
one ArgCCG). In addition, six differentially expressed 28S 
rsRNAs and one 18S rsRNAs were also identified between 
the two sperm quality groups (Hua et al. 2019). Likewise, 
sperm tsRNAGln-TTG has been suggested as a potential 
diagnostic biomarker based on its role in the first cleavage of 
a porcine embryo as well as development of human embryos 
(Chen et al. 2021). A more exhaustive list of sncRNAs related 
to semen quality, in vitro embryo development, fertility and 
human infertility (spermogram abnormalities) is provided in 
Supplementary Table S1. 

As already noticed, many biomarker studies were based on a 
small number of extreme samples due to the cost of NGS 
technology, leading likely to numerous false positives. Further 
studies, based on a larger set of samples, accounting for the 
diversity of the general population, will undoubtedly be 
required to identify robust and relevant fertility biomarkers. 

Similar to previous work done to improve the prediction 
using sperm functional assessment (Sellem et al. 2015), a 
combination of several sncRNAs biomarkers will undoubtedly 
be required to reach a good predictive value. Novel statistical 
approaches, based on deep learning, have also to be 
implemented to deal with hundreds of sncRNA biomarkers 
and to combine biomarkers with other functional parameters 
in order to improve diagnosis as well as fertility prediction. 

Conclusions 

Ejaculated sperm carry thousands of sncRNAs, including 
miRNAs, piRNAs, rsRNAs and tsRNAs, whose functions 
remain to be elucidated. Some are a legacy of spermato­
genesis and may be indicative of normal semen production. 
Some are gained along sperm maturation and may promote 
acquisition of sperm motility and fertilising capacity or may 
have a role in embryo development or paternal epigenetic 
inheritance. In line with these hypotheses, numerous studies 
in humans and livestock species have established a link 
between sperm-borne sncRNAs and spermatogenesis defects, 
embryo development in ART strategy and fertility. However, 
biological knowledge is still lacking, and further work is still 
needed to identify robust lists of biomarkers and combine 
the most relevant ones to improve diagnosis and treatment. 

Supplementary material 

Supplementary material is available online. 
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