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ABSTRACT:

As the majority of the earth population is living in urban environments, cities are continuously evolving and efficient monitoring
tools are needed to retrieve and classify their evolution. In this context, analysing changes between two dates is a crucial point. In
urban environments, most changes occur along the vertical axis (with new construction or demolition of buildings) and the use of
3D data is therefore mandatory. Among them, LiDAR constitutes a valuable source of information. However, With the difficulty of
processing sparse and unordered 3D point clouds, most of existing methods start by rasterizing point clouds (for example to Digital
Surface Models) before using more conventional image processing tools. This implies a significant loss of information. Among
existing studies dealing directly with point clouds, and to the best of our knowledge, no deep neural network-based method has been
explored yet. Thus, in order to fill this gap and to test the ability of deep methods to deal with change detection and characterization
of 3D point clouds, we propose a Siamese network with Kernel Point Convolution inspired by Siamese architectures that have
already shown their performances on change detection in 2D images and on KPConv network which achieves high-quality results
for semantic segmentation of raw 3D point clouds. We show quantitatively and qualitatively that our method outperforms by
more than 25% (in terms of average Intersection over Union for classes of change) existing machine learning methods based on

hand-crafted features.

1. INTRODUCTION

Due to anthropogenic activities and natural disasters, cities are
continuously evolving, yielding critical environmental problems
(e.g. air pollution and heat waves). United Nations report that
more than 50% of the earth population is currently living in
urban areas. Monitoring their evolution is therefore critical and
can be achieved with change detection from remote sensing
data.

3D Point Clouds (PCs) constitute a relevant source of remote
sensing data. Indeed, unlike 2D images, they provide supple-
mentary information related to the height which is especially
important in urban areas where most of permanent changes oc-
cur on vertical axis. Moreover, urban environments are mostly
composed of 3D objects involving geometrical changes (e.g.

new building construction), unlike for example land cover changes

that are visible through radiometric measures at meter scale.
Whether coming from LiDAR sensor or a photogrammetric pro-
cess, 3D PCs are particularly interesting in urban environments
as they provide 3D geometric information on objects.

However, change detection in 3D PCs remains a difficult task
because of the unstructured nature of data that prevents stand-
ard tools for 2D images from being straightforwardly applied.
While rasterization of 3D data into 2D matrices of elevation,
called Digital Surface Models (DSM) can be seen as a valuable
solution, this rasterization process implies some loss of inform-
ation since only highest points are taken into account (thus lead-
ing to removing information on the facades). Rasterization of
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the 3D PCs into 3D voxels is somehow better, such a strategy
is constrained by the resolution and faces both loss of inform-
ation and management of sparse voluminous data. This calls
for methodologies able to cope with 3D PCs directly, and to
distinguish between real changes from those induced by 3D ac-
quisition. Indeed, multiple 3D scans of the same scene lead to
different point distributions.

Existing studies dealing with this problem relied on hand-crafted
features or distance computation. To the best of our know-
ledge, deep learning has not been used to address the problem
of change detection and characterization directly on raw PCs
yet. Nevertheless, a recent study performed change detection
with deep neural networks on 3D data (Zhang et al., 2019). In
practice, the authors first rasterized their PCs into DSMs and
then applied Feed Forward or Siamese networks on those 2D
matrices of elevation. A binary result is obtained for each patch
of the DSM. As we believe that 3D data could bring much
more information to retrieve and classify changes, our goal is
to design a deep network able to directly process PCs.

Thus, we build in this paper upon deep learning developments
in change detection and PCs semantic segmentation to propose
a 3D point cloud change detection technique for monitoring
urban areas at the point level. After a presentation of related
works on 3D point cloud change detection in urban environ-
ments in Sec.2, we detail our proposed framework in Sec. 3.
Then, experimental settings and results are reported in Sec. 4.
Finally we provide discussion and conclusion in Sec. 5 and 6,
respectively.
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2. RELATED WORKS

In this section, we briefly review existing change detection and
characterization methods in urban environment which rely on
3D PCs. Despite the availability of numerous methods that con-
vert PCs into DSMs, we will not focus on these studies since
they are not directly related to the scope of our paper.

Several techniques have already been proposed to highlight and
characterize changes in 3D PCs. One can roughly classify them
into three different families. The first one consists in segment-
ing independently the scenes acquired at the two dates and then
characterizing changes based on these two classified PCs. There
are few studies using this so-called post-classification method
especially for urban environments. For example, after generat-
ing a building mask from LiDAR data, (Awrangjeb et al., 2015)
manually extract building boundaries from aerial images. Then,
resulted footprints are compared in order to highlight changes
in a 2D map. Following this study, the approach in (Siddiqui
and Awrangjeb, 2017) relies on the same idea: after retriev-
ing 3D buildings roof planes at each date, 3D building models
are cross-correlated using size and height information of build-
ing planes in order to classify them into categories of change.
Among methods that use only PCs information, (Roynard et al.,
2016) extracts ground points and applies a region growing al-
gorithm to retrieve each separated object. A classification of
each remaining object is then made through using a Random
Forest (RF) algorithm with several geometric and histogram-
based features. The authors suggested comparing small seg-
mented sub-clouds at each date in order to identify and classify
changes. The study in (Xu et al., 2015b) also suggests to seg-
ment each PC in order to extract buildings. Then, a 3D surface
difference map is created by computing a point-to-plane dis-
tance between a point in the first set and the nearest plane in the
second set. A classification is finally performed to identify vari-
ous kind of changes (e.g. new dormer, addition of a floor, ...).
This last study shows that errors in the classification part are
propagated in the change detection part. As a consequence, the
final results highly depend on the scene classification accuracy.

Conversely, pre-classification methods consist in first highlight-
ing changes before characterizing them. As an example in urban
environment, (Xu et al., 2015a) first establish an octree from
one of the two PCs, and then directly extract changes in the
other PC by identifying corresponding missing leaf nodes. A
clustering of changed points is made to remove noise and sep-
arate the various changes. Finally, remaining clusters are clas-
sified according to fixed rules concerning the area, height or
roughness. Here again, pre-classification methods embed errors
coming from the change detection step in the characterization
step. More generally, the more steps there are in the method,
the more errors can be propagated to the final results.

This leads us to the last category of methods aiming to perform
change detection and characterisation in one single step. For
example in (Tran et al., 2018), authors trained a RF algorithm
with hand-crafted features to directly obtain a classification of
their PCs according to the changes. To do so, the authors extract
features related to points distribution, terrain elevation, multi-
target capability of LiDAR at one date and between dates. The
stability is computed for each point based on the distribution of
the neighboring points in both PCs. More precisely, it is defined
as the ratio of the number of points in a spherical neighborhood
in the other PC and a vertical cylindrical z-oriented neighbor-
hood of the point in the current PC. Then, a RF algorithm is
applied to obtain a supervised classification of changes.

To the best of our knowledge, there is no deep learning method
able to directly take as input two PCs and classify changes at
point level, despite the important progress made recently in the
processing of spatial data.

3. METHOD
3.1 Background

To tackle change detection and characterization in 2D images,
recent studies proposed to use a deep Siamese Fully Convolu-
tionnal Network (FCN). It consists in a usual encoder-decoder
network with skip connections. To extract features, both im-
ages will pass through the encoder part which is made of two
branches for both images. Each branch is a succession of tradi-
tional convolution and pooling layers in order to extract inform-
ation on data at several scales. The particularity of Siamese net-
work is that, at each step of pooling, the difference of extracted
features of the two branches is kept and concatenated in the cor-
responding scale in the decoder part (Daudt et al., 2018). The
two branches of the encoder part may have shared weights if
data are quite similar in order to extract features in the same
way. When data are significantly different, for example if im-
ages are coming from two types of sensors (e.g. optical and
radar sensors) weights could be independent, leading to the so-
called pseudo-Siamese network (Zhan et al., 2017).

In order to address the 3D part of the problem, we suggest to
rely on deep networks able to perform semantic segmentation
directly on PCs. To this end, we consider the recent Kernel
Point Convolution (KPConv) (Thomas et al., 2019) network
that achieved very good results on segmentation and classific-
ation tasks even on large urban Aerial LiDAR Survey (ALS)
dataset (Varney et al., 2020). In a spirit similar to 2D image
encoders, its principle is to apply successive convolutions at
various scales. However, unlike images where the selection of
pixels involved in a kernel convolution is trivial, KPConv ad-
apts this operation to 3D PCs by selecting kernel-points, i.e.
points embedded in the specific neighborhood of each convo-
lution operation. KPConv authors implemented different kinds
of networks inspired by traditional ones in 2D images, repla-
cing the convolution by the Kernel Point Convolution and the
max-pooling operation by down-sampling of PCs using strided
Kernel Point convolution. Thus they were able to implement a
convolutional network KP-CNN for PCs classification and FCN
with skip links (KP-FCNN) for PC segmentation.

We build upon these two principles to build our novel frame-
work that we are detailing now.

3.2 Our framework

To extend the Siamese principle to 3D PCs, we propose here
to embed the KPConv architecture in a deep Siamese network
where both PCs will pass through the same encoder with shared
weights. Similarly to an usual encoder-decoder with skip con-
nections, at each scale of the decoding part, we concatenate the
difference of extracted features associated with the correspond-
ing encoding scale (see Figure 1). In practice, the computation
of this feature difference is not obvious since PCs do not contain
the same number of points and are not defined at the same pos-
itions, even in non-changed areas. We suggest to compute this
difference in each point of the second PC by retrieving features
of the corresponding nearest spatial point in the first PC.
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In our study case, both data are PCs acquired by quite sim-
ilar sensors, thus we chose to use a real Siamese network with

shared weight between both encoder branches instead of a pseudo-

Siamese architecture.

4. EXPERIMENTS
4.1 Urban change detection dataset

In order to train and test our method, we have developed a PC
simulator for urban datasets. Given a 3D model of a city, one
can introduce random changes and the simulator generates a
synthetic ALS above the city. Then, by adding or removing
buildings in the model, we can simulate their construction or
demolition. Our simulator allows us to generate unlimited sets
of 3D PCs annotated according to these two change classes, and
to conduct experimental evaluation in a well-controlled scen-
ario. Besides, this is particularly interesting for training deep
networks that usually require a large amount of labelled data.
Besides, the simulator makes possible to tune PC acquisition
condition, a flight plan being defined according to predefined
parameters such as resolution, overlapping between swaths and
scan angle. Finally, Gaussian noise can be added to simulate er-
rors and lack of precision in LiDAR range measuring and scan
direction. Our resulted PCs have been checked by LiDAR ex-
perts and seem similar to real acquisition.

We report in Table 1 all parameters used in our experiment
for the acquisition of PCs. We ran a simulation over the city
of Lyon, France at a challenging low spatial resolution of 0.5
points/m2. To mimic real conditions, we added a Gaussian
noise of 5 cm in range measurement and 0.01° in scan direc-
tion across track.

Parameter Value
Resolution 0.5 points/m?
Noise (range) 5cm
Noise (scan direction) 0.01°
Scan angle —20° to 20°
Overlapping 10%
Height of flight 700 m

Table 1. Configuration of acquisition simulation.

Figure 2 presents a vertical view of the 3D model of Lyon where
all available buildings are shown (elevation is shown in color
with a color range relative to each subset). We used several PC
pairs for each area, and randomly simulated building construc-
tion and destruction between the two dates by either selecting
or filtering out each building from the reference 3D model. It
could be seen as a data augmentation process especially useful
for supervised learning. In particular, we generated 10 differ-
ent pairs of PCs over the training part, 1 for the validation part,
and 3 for the testing part (see Table 2). The flight plan is set
randomly, so the swath will not be the same between pairs of
PCs, and each acquisition may not have exactly the same vis-
ible or invisible parts. Notice that no registration errors were
considered here. Figure 3 shows three PCs acquired by the
simulator over exactly the same district, and extracted from the
three simulations composing the testing set. Finally, we gener-
ate for each simulation a pair of PCs with different initial and
final states (i.e. different buildings are put into the city model
from one pair to another thanks to the simulator), and a different
flight plan is set implying various positions of points even on a
same building. Indeed, we can see in the three simulations of
Figure 3 that LiDAR scanning is not achieved in the same way,

so scan lines are not oriented similarly and various facades are
visible.

Set # simulated pairs  # points per date
Training 10 =~ 1,600,000
Validation 1 =~ 335,000

Test 3 =~ 912,000

Table 2. Dataset description.

In order to test the ability of detecting and classifying changes
from 3D PCs only, our method does not require any additional
input beyond the 3D coordinates.

4.2 Experimental settings

Similarly to the segmentation task in KPConv experiments, we
do not feed the network on entire PCs. Indeed, the PCs are
too large to be segmented as a whole. Thus, KPConv authors
divided their dataset into small spherical sub-clouds (Thomas
et al., 2019). In our context of urban ALS PCs change detec-
tion, we prefer to use cylinders aligned to the vertical axis over
spheres to cope with the privileged vertical direction of ALS
data. By doing so, we avoid empty sub-clouds and therefore
dealing with complicated change pairs in the training set (note
that centers of cylinders are the same for both dates). Indeed,
if a sphere is centered at the top of a building that does not in-
clude any ground point, and if this building is demolished, then
the sphere obtained in the second point cloud will be free of
points and will disturb the training of the network. To illus-
trate, examples of two input cylinders are given in Figure 4. Let
us consider a point in the center of the building roof (center of
Figure 4b). In this case, the corresponding sphere at the other
date could have been empty. Indeed, depending on the radius
no ground points would have been visible. With taking cylin-
ders we ensure that each of the sub-clouds contain ground. At
testing, cylinders are chosen regularly with an overlapping to
be sure that all points are seen at least once by the network. For
points seen several times, predicted probabilities are averaged
to decide the final label, similarly to voting schemes. It should
be outlined that classes are largely unbalanced. Thus during
training, centers of cylinders are chosen thanks to a weighted
random drawing. The weight is set as a function of dataset bal-
ance, in order to set the probability higher for smaller classes.
This allows our network to often see classes of change during
the training. Moreover, we perform data augmentation through
both random rotation around vertical axis for each selected cyl-
inder and random Gaussian noise at point scale.

At each layer of the network, PCs are subsampled via strided

KPConv to mimic strided convolution operations with 2D matrices.

The cell size of each subsampling depends on the initial cell size
dlo which is fixed according to the dataset. With our PCs res-
olution of 0.5 points/m?, we have empirically observed that dlo
set to 1 m allowed us to take all available points into account at
the first layer. Then, we set dl; = 2 x dl;_, for the following
layers j. Experiments were conducted with rigid kernels of 15
points. We have empirically set the radius of cylinders to 50 m,
following the recommendation of KPConv authors who fixed
the radius to 50 x dlo.

Parameters settings have been largely influenced by original
KPConv parameters. We thus use a Stochastic Gradient Des-
cent with momentum to minimize a point-wise negative log
likelihood loss, with a batch size of 10, a momentum of 0.98 and
an initial learning rate of 10™2. Our learning rate is scheduled
to decrease exponentially. Unlike KP-FCNN, we included a
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Figure 2. Lyon dataset split into 3 distinct parts: training,
validation and test sets. Elevation is shown in color and is
relative to each subset.

probability dropout of 0.5 in the last classification layers. Also,
in order to prevent from over-fitting, we set a L2 loss regular-
isation with a factor of 10, For this experiment, 325 epochs
were required to train the network. Finally, and as already in-
dicated, input cylinders are randomly chosen in training. Thus,
the number of input cylinders is another hyper-parameter to
set. After experimenting with a few configurations, best results
where obtained when 6000 pairs of cylinders were seen by the
network by epoch, which corresponds to 600 optimizing steps
with a batch size of 10.

The whole development is made with PyTorch and rely on KP-
Conv implementation available in Torch-Points3D (Chaton et
al., 2020).

4.3 Results

We recall that, to the best of our knowledge, no deep learning
method has been proposed for change detection and character-
isation at point scale yet. So we decided to compare our results
with those provided by (Tran et al., 2018) where changes are
retrieved and classified in one single step also, but using su-
pervised classification of hand-crafted features. A total of ten
features have been re-implemented in python, including the sta-
bility feature that greatly helps to detection changes. We kept
all features presented by the authors except those concerning
multi-target capability of LIDAR because our dataset does not
contain such information. While in the original work, authors
have used a neighborhood radius of 1 m, we have observed that
best results were obtained with a value of 5 m (this is due to a
different resolution between the datasets). Finally, we use the
same training set as for our Siamese KPConv network.

Let us remark that change detection problems are usually strongly
unbalanced. Indeed, the huge majority of points or pixels are
labeled as unchanged. Thus, precision or accuracy scores do
not seem to be fair measures to evaluate performances. We thus
report global results in Table 3 using the balanced mean accur-
acy (mAcc) and the mean of Intersection over Union (mloU).
Besides, since most difficult classes to classify are classes of
change, we also averaged the IoU over the change classes (mIoU
change). As both methods give pointwise results, metrics are
calculated at each point of the testing dataset. Our method over-
passes the ML method for all metrics. Especially, if we focus
on change classes, we get an improvement of about 15 points of
ToU over classes of change in the same training conditions and
over the same testing dataset.

Maetric (%) \ Ours (Tran et al., 2018)
mAcc 96.24 91.14
mloU 93.27 74.53
mloU Change | 90.22 63.41

Table 3. Quantitative results (best in bold) of our Siamese
KPConv network compared to RF + hand-crafted features.

We also measured the IoU for each class. As explained in
Sec. 4.1, three different pairs have been used for generating the
testing set. Table 4 reports the results of both methods over
the three pairs of PCs and the overall results for the testing set.
Notice that most interesting results are visible in IoU of new
building or destruction classes. As expected, results on the un-
changed class are excellent. As for changed classes, the net-
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Simulation 1

Simulation 2

Simulation 3

Figure 3. Variability of PCs generated by the simulator over the same district of Lyon. Elevation is shown in a relative color range.

(a) First cylinder

(b) Second cylinder

Figure 4. Example of input cylinders: the two input point clouds
(a-b) are colorized based on relative elevation.

work is able to retrieve and correctly classify changes in both
classes even if a lower score is obtained for the destruction
class. We can observe both that (Tran et al., 2018) leads to
results of lower quality, but also of high variability among the
sets. Conversely, our Siamese KPConv provides stable results,
no matter the configuration of acquisition of the two PCs, high-
lighting the capacity of generalizing results to different pairs of
PCs.

Per class IoU (%)

Area  Method | Unchanged New building Destruction
1 Ours 99.32 96.21 82.97
RF 98.29 80.08 70.81
2 Ours 99.47 96.37 85.57
RF 95.54 52.99 61.35
3 Ours 99.31 95.04 85.18
RF 96.46 64.57 58.37
Total Ours 99.37 95.87 84.57
RF 96.76 65.71 63.51

Table 4. Per area IoU scores (best in bold) of our Siamese
KPConv network compared to RF + hand-crafted features.

As shown in Figure 5 and Figure 6, applying our method on
two PCs (a) and (b) leads to changes (d) in accordance with the

ground truth (c), e.g. the main new building and the destruc-
tion are well identified by the network. While the RF method
shown in (e) leads to numerous misclassifications, our results
seem more in accordance with the ground truth, as confirmed
by numerical measures. We also remark that there is almost no
confusion between changed class, thus when a change is detec-
ted it is most of the time well classified. One can see that the
RF method with hand-crafted features has difficulties to pre-
dict changes on facade: on Figure 5, most of visible facades
are identified as new buildings; the same remark holds for the
background facade in Figure 6. Looking at PCs (a) and (b) of
Figure 5, we observe that underlying LiDAR flights were dif-
ferent between the two acquisitions, which induces hidden parts
in the first PCs. Thus, on the second PC, some points appeared
on facade of unchanged building because of the different view-
points of the LiDAR during the acquisition. This specificity
of LiDAR acquisition constitutes a challenge for change de-
tection methods since the building has to be seen as a whole.
Based on our experiments, our method is more robust and able
to understand more globally changes whatever the scale. This is
especially true in hidden facades or at the ground with building
shadows that generate wrong classification as shown in Figure 5
(e). Table 4 confirms this trend with per area results. Indeed,
higher results are obtained in the first pair of PCs where the
flight plan is almost the same between the two acquisitions. The
RF method faces a much stronger gap of performance than our
method.

Main differences with ground truth remain at boundaries of
change objects or in some difficult situations as shown in the
close-up view of Figure 6. Indeed, in our dataset, ground con-
tains small hills. When a building at the bottom of the hill
is low, its roof can be near the ground level of higher ground
points (see Figure 6) which implies confusion between ground
and building roof. Our method considers there is a new building
but the dividing line between new construction and unchanged
part is not totally exact. Moreover there is a deconstruction just
near this place which makes the task even more difficult. Un-
surprisingly, the labels returned by the RF method are all mixed

up.

5. DISCUSSION

Looking at figures in Table 4, one can observe that the class of
deconstruction has worse results than the new building class.
This might be due to the dataset itself. Indeed, deconstruction
parts are labeled according to the convex hull of the demol-
ished building at the ground level. Thus, when building ground
footprint is not convex, some unchanged ground points are pos-
sibly labeled as changed in concavity of buildings. This could
leads to some difficulties during the training to understand well
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what is deconstruction. By exploring visual results of destruc-
ted buildings, we notice that prediction were sometimes closer
to building boundaries than the annotations. Despite this, most
of points are well annotated.

The dataset challenges the methods with the chosen low resol-
ution for the LIDAR (0.5 points/m?). Notice that in their pub-
lication, (Tran et al., 2018) tested their method on LiDAR with
a high resolution of 12 to 16 points/m?. This could explain the
lower results obtained with their method. In such acquisition
conditions, our method seem to be a better solution.

However the dataset has a challenging low resolution. It is
still a bit simplistic as only ground and buildings are present
in the area. Even if buildings may have a complex form (e.g.
churches), there is no vegetation or mobile objects in our data-
set. Similarly, there is only two classes of change (construction
or destruction). Conversely (Tran et al., 2018) consider about
eight classes of changed or unchanged labels.

Finally the better results achieved with our method come with
a more complex training process. In our case, it took about
approximately 30 hours to train the network from scratch on a
Titan RTX Graphical Processing Unit (GPU). Whereas training
the RF algorithm takes only 19 min on a CPU. These results are
not specific to our network and are systematic when considering
using deep methods. Since the dataset is quite large, the whole
test set (900,000 points per date) cannot be given to the network.
Indeed, we need to divide it into 5567 cylinders, leading to an
inference time of 20 minutes. To compare, the inference time
for the RF algorithm is about 4 minutes.

6. CONCLUSION

In this paper, we tackle change detection and characterisation in
urban environment. To do so, we proposed a novel deep learn-
ing method which takes as input bi-temporal raw PCs and gives
final results at the 3D point level. Our method is inspired by
2D change detection deep networks using Siamese architecture
and deep network used for semantic segmentation in 3D PCs, in
particular Kernel Point Convolutions. To the best of our know-
ledge, this is the first deep network able to cope with change de-
tection and characterisation in 3D PCs. We have compared our
Siamese KPConv network to a more traditional existing method
relying on RF algorithm with hand-crafted features. An im-
provement of about 27 points of IoU over classes of change has
been observed. The main advantage of our network seems to lie
in its ability to understand structured objects at a global scale,
thus leading to a correct classification of hidden part and shad-
ows. Indeed, such a problem remain challenging when dealing
with 3D PCs data because the point distribution could highly
change even on unchanged parts of a scene.

Our simulated dataset remains quite simplistic. So it would be
interesting to test our method on more complex data and es-
pecially on real data. However, only a few multi-temporal 3D
PCs dataset are publicly available and none of them contain an-
notations related to the changes. Still, we plan to consider the
Actueel Hoogtebestand Nederland (AHN) dataset that provides
a semantic labeling per date at the point level and comes with
three dates. We thus plan to update the labels according to the
changes and to further assess our method on this updated data-
set. Besides, it would be interesting to vary acquisition condi-
tions thanks to our simulator in order to test our method on even
more challenging conditions such as noisy PCs.
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Figure 5. Visual change detection results. (a-b) the two input point clouds ; (c) simulated changes (purple: no change, blue: new
construction, yellow: destruction) ; (d) our results; (e) results with (Tran et al., 2018) method; (*) denote close-up views.
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Figure 6. Visual change detection results. (a-b) the two input point clouds ; (c) simulated changes (purple: no change, blue: new
construction, yellow: destruction) ; (d) our results; (e) results with (Tran et al., 2018) method; (*) denote close-up views.
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