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Energy-based Models in Earth Observation:
from Generation to Semi-supervised Learning

Javiera Castillo-Navarro, Student Member, IEEE, Bertrand Le Saux, Member, IEEE,
Alexandre Boulch, Member, IEEE, and Sébastien Lefèvre, Senior Member, IEEE

Abstract—Deep learning, together with the availability of large
amounts of data, have transformed the way we process Earth
observation tasks, like land cover mapping or image registration.
Yet, today new models are needed to push further the revolution
and enable new possibilities. This work focuses on a recent
framework for generative modeling and explore its applicability
to Earth observation images. The framework learns an energy-
based model to estimate the underlying joint-distribution of the
data and the categories, obtaining a neural network that is able to
classify and synthesize images. On these two tasks, we show that
energy-based models reach comparable or better performances
than convolutional networks on various public EO datasets, and
that they are naturally adapted to semi-supervised settings, with
very few labeled data. Moreover, models of this kind allow us
to address high-potential applications such as out-of-distribution
analysis and land cover mapping with confidence estimation.

Index Terms—Deep Learning, Energy-based Models, Genera-
tive Models, Semi-supervised Learning.

I. INTRODUCTION

EARTH observation (EO) data analysis has become an es-
sential component for global phenomena understanding.

In the past years, the large amount of data, available thanks to
recent sensors, have made possible the use of deep learning
for Earth observation in fields as various as ecology, urban
mapping, meteorology or natural disaster response, and will
certainly be crucial on the battle against climate change.

However, most of the recent learning-based approaches
rely heavily on labeled data. Data annotation for supervised
learning remains a challenge, being time consuming and often
requiring expert application knowledge. As a consequence,
current available EO datasets are partial and provide biased
samples of the global Earth land cover, since there is no
efficient way to deliver humanly annotated labels for the
immensity of EO data available.

On the other hand, the open remote sensing data streams
such as Copernicus, provide massive and open imagery data.
As of today, most of these data are not used for learning
purposes, essentially because proper labels are not procured.

In consequence, EO data analysis should not be confined to
supervised learning methods. On the contrary, we should ex-
plore less label-dependent approaches to leverage the diversity
of (unlabeled) data that is available. One way to exploit data
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S. Lefèvre is with Université Bretagne Sud, IRISA, Vannes, France.

Industrial

Residential

Annual
Crop

Permanent
Crop

River

Sea &
Lake

Herbaceous
Vegetation

Highway

Pastures

Forest

EuroSAT
Supervised Semi-supervised

JEM samples

Fig. 1. Class-conditional samples generated by Joint Energy-based Model
(JEM) trained on the EuroSAT dataset. First two columns contain real
EuroSAT samples. Third and fourth columns present JEM-generated samples
trained on all training samples. Last two columns show samples generated
following a semi-supervised learning strategy, with 100 labeled samples per
class.
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without the necessity of labels is using generative models [1],
which aim to model the data distribution. The objective is to
get a deeper understanding of data and their intrinsic features.
Some applications of generative models are super-resolution,
image desoising or image generation. Moreover, they can be
adapted to integrate some label information into the learning
process and perform semi-supervised learning.

Semi-supervised learning [2] refers to methods that leverage
unlabeled data together with (few) labeled samples to learn a
given task. In the last years, the interest for the development
of semi-supervised methods has been rising, because they
are essential for applications where –as for remote sensing–
labeled data are hard or costly to obtain. Thus, the development
of semi-supervised algorithms is one way to exploit unlabeled
data on the learning process and it is one of the main chal-
lenges of Earth observation to take part of this very complete,
global scale data [3].

This work establishes the potential of joint energy-based
models for supervised and semi-supervised learning in EO
images. Particularly it shows the interesting properties of
EBMs, including a good model calibration which is crucial
for prediction confidence estimation and the ability to perform
out-of-distribution detection, thanks to the data distribution
estimation. Our main contributions are:
• First energy-based models for Earth Observation, to the

best of our knowledge1, demonstrating the relevance of such
models and paving the way for their future dissemination
in the field.

• Robust classification performances of supervised and
semi-supervised models.

• Diversified and high-quality data generation from the
learned data distribution.

• Model calibration improved with respect to non-EBM
models.

• Out-of-distribution dataset analysis assessed on several
public EO datasets, including confidence estimation for land
cover mapping use cases.
This paper is organized as follows: Sec. II discusses some

related work, Sec. III recalls energy-based models, in par-
ticular, joint energy-based models and their semi-supervised
extension. We then report experimental results for several
applications in Sec. IV, including semi-supervision, calibration
and out-of-distribution analysis. Limitations of the proposed
method are discussed in Sec. V. Finally, conclusions and future
works are presented in Sec. VI.

II. RELATED WORK

A. Deep Learning in Earth Observation

Processing of EO data has greatly benefited from deep
learning techniques in the last decade [5]. Indeed, they cur-
rently represent the state-of-the-art in the field: classification,
semantic segmentation, change detection, building detection,
to name a few, are nowadays tackled using neural networks.
After seminal works for road detection [6], generic multi-
class segmentation and classification were soon tackled with

1Please note that a preliminary version of our study, limited to supervised
learning on EuroSAT data, has been published in [4].

Convolutional Neural Networks (CNNs) and Fully Convolu-
tional Networks (FCNs) [7], [8], [9], [10], [11], until latest
developments which result in global cover maps of a continent
or the entire planet [12].

Nowadays, deep learning research in remote sensing has
evolved and includes more specific applications, such as
interactive learning [13], visual question answering [14], do-
main adaptation [15], multimodal approaches [16] and semi-
supervised learning [3].

B. Deep Generative Models

Generative models [1] comprise a family of techniques
which aim to learn the instrinsic data distribution. Their
ultimate goal is essentially to get a deeper understanding of
data, by learning automatically the natural features of a dataset,
its categories or dimensions. They are also useful for many
real-life applications like super-resolution, image denoising,
inpainting or neural network pre-training.

Current research on deep generative models can be
grouped in different categories: Variational Auto-Encoders
(VAEs) [17], Generative Adversarial Networks (GANs) [18],
Autoregressive models [19], Normalizing flows [20], and
Energy-based models [21]. These categories differ on the
way they estimate data distribution. Some of them estimate
directly the likelihood function or a proxy of it, while others
approximate the distribution in an implicit way. This has a
direct impact on the trade-off to make between execution time,
architecture to use and the objective function to optimize.
Usually, learning the distribution implicitly comes with the
advantage of getting more realistic and sharper generated
images, while the explicit expression of the likelihood function
allows for other applications, like out-of-distribution detection.

In the remote sensing community, generative models and
more particularly, Generative Adversarial Networks, have been
used for different purposes [22], [23], [24], including scene
classification [25], [26], [27], yet the flaws of these models are
well known: difficulty or instability during training or mode
collapse. Moreover, GANs estimate the data distribution im-
plicitly, limiting their applications to synthetic data generation.
Other generative models –that estimate the data distribution
(or a proxy) in an explicit way– seem more appealing because
of their wide range of applications besides image generation,
however they have not been investigated in the EO field yet.

C. Energy-based Models

Inspired by statistical physics, Energy-Based Models
(EBMs) [21], [28] specify probability densities up to an
unknown normalizing constant. This family of models cap-
tures dependencies between variables only through a scalar
function, known as the energy function, and does not place
any restriction on the tractability of the normalizing constant.
Therefore, they are easy to parameterize and can model a very
wide family of probability distributions.

Recent works have shown that combined with the expressive
power of deep neural networks, EBMs can model data distri-
butions with impressive results in a wide range of applications,
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including image generation, simultaneous generation and clas-
sification, class-incremental classification, out-of-distribution
detection, etc [29], [30]. However, combination of EBMs and
deep learning have been scarcely used in remote sensing,
except for [31], and EBMs have never been used for joint
classification and generation nor (semi-)supervised learning in
this context.

D. Semi-supervised Learning

Semi-supervised learning [2] refers to methods that leverage
unlabeled data together with (few) labeled samples to learn a
task. The key idea behind semi-supervised learning is to learn
a representation function (that maps a data point to its target)
from labeled data as in the supervised approach, but using
the available unlabeled data to leverage information about
structure of these data to help the learning process.

In the last years, the interest for the development of semi-
supervised methods has been rising, because they are essential
for applications where labeled data are hard or costly to obtain.
This is the case of remote sensing imagery, since there is
no efficient way to provide humanly annotated labels for the
immensity of EO data available [32], [33], [3].

Semi-supervised methods in deep learning developed to date
exploit, in general, two principles: the first one is pseudo-
labeling [34], where a model is initially trained on the labeled
data and is used to make predictions on the unlabeled data,
then it selects the examples where the prediction is confident
and considers it as a pseudo-label to expand the labeled
training set; the second one is consistency regularization that
enforces the idea that realistic perturbations of data points
should not significantly change the output of the predictor [35],
[36], [37], [38].

Current state-of-the-art semi-supervised methods for clas-
sification, like MixMatch [39] or FixMatch [40], usually
combine these ideas, achieving impressive results. However,
they rely heavily on data augmentation, which works well on
the image domain, but can be hard to adapt to other use-cases.

On the contrary, the Joint Energy-based Model (JEM) [30]
relies on the capacity of generative models to estimate the
underlying data distribution and can be easily extended to
perform semi-supervised classification [41].

E. Semi-supervised learning in Earth observation

Semi-supervised learning techniques are especially appeal-
ing for the remote sensing community, since EO data are
naturally well-suited in this context. Indeed, labeled data are
hard to obtain, while raw (unlabeled) data are constantly
gathered through satellite or aerial missions. Thus, semi-
supervised methods are a feasible solution to improve the
classification performances and the generalization capacities
of our models.

In the last decades, several semi-supervised methods have
been proposed for Earth observation data applications. Before
the deep learning outbreak, different approaches have been
explored, including graph-based methods to integrate unla-
beled data into the learning process [42], [43]; use unlabeled

examples to achieve manifold alignment of data coming from
different modalities [44]; and factor analysis for hyperspectral
image classification [45]. More recently, deep semi-supervised
learning techniques have emerged, but most of them rely on
self-training and pseudo-labeling [32], combining them with
other techniques to build more robust models such as the use
of an ensemble of CNNs to assign pseudo-labels and prevent
error propagation [46]; using cross-modal data [33]; sample
selection schemes to train transferable deep models for land
use classification [47], [48]; or using stacked auto-encoders
and soft-label propagation to tackle the building detection
problem [49].

Other strategies that use semi-supervised learning in remote
sensing applications include: a center-based discriminative
adversarial learning framework for cross-domain land cover
classification of aerial images [50]; integrating CNNs and ac-
tive learning to better use unlabeled samples for hyperspectral
image classification [51]; the use of a semi-supervised shallow
network, self-organizing map framework, to classify and esti-
mate physical parameters from multispectral and hyperspectral
images [52]; using multi-attention and an adaptive kernel for
semi-supervised classification of multispectral images [53];
and using multi-task learning regularization to leverage un-
labeled data through unsupervised auxiliary tasks [3].

Fewer are the works that exploit generative models to
leverage unlabeled samples for training, GANs have been
used to extract features from hyperspectral images for
semi-supervised classification [54], or jointly with gated
attention and a discriminative network for scene classification
of aerial images [55]. A modified GAN, with a classifier as
discriminator, has been developed to tackle the multispectral
scene classification problem [56]. Ours is the first work
that focuses on EBMs to model the joint distribution of
images and labels and that can be used to address generation,
semi-supervised classification, out-of-distribution detection
and confidence estimation.

III. ENERGY-BASED MODELS AND SEMI-SUPERVISED
LEARNING

A. Energy-based Models

Energy-based models capture dependencies between vari-
ables, x ∈ X , through a scalar function E : X → R, known
as the energy function. Learning an EBM consists in finding an
energy function that associates low energy values to realistic
configurations of x, and higher energy values to unrealistic
ones. Then, the energy can be considered as a measure of
compatibility of different configurations of variables.

EBMs can be interpreted as normalized probabilistic models
using the Gibbs distribution, which expresses the density p(x)
as:

p(x) =
exp(−E(x))

Z
, (1)

where Z =
∫
X e
−E(x) is a normalization constant.

Training EBMs comes with the advantage that the energy
function parameterizes all the information about inputs. This
alleviates the burden of computing or estimating the nor-
malization constant Z, which is often intractable. Therefore,



SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 4

Fig. 2. JEM overview. In a nutshell, an input image x passes through a neural network fθ . Then, the pipeline splits into two modules: (i) a classification
module that applies a softmax function to fθ(x) to obtain class scores and computes the classification loss (cross-entropy), and (ii) a generation module that
computes the energy Eθ from Eq. (6) (LogSumExp), then runs a finite Stochastic Gradient Langevin Dynamics (SGLD) chain (Eq. (8)), drawing samples
from pθ(x) and uses them to compute the log-likelihood loss. The sum of both loss terms (Eq. (7)) is then optimized by backpropagation.

EBMs provide much more flexibility in the design –and thus
the expressiveness– of learning models.

In this regard, EBMs have recently benefited from the
expressive power of deep neural networks to model complex
energy functions, with impressive results in generation, hybrid
generation-classification and other applications [30], [29].

The standard way of learning EBMs with deep learning
today is by maximum likelihood training. Let pθ be the
probability density of an EBM, whose energy function, Eθ,
is parameterized by a neural network of parameters θ. The
density of the model, pθ(x), can be fit to the distribution
of data, pdata(x), by maximizing the expected log-likelihood
function over the data distribution:

LML(θ) :=Ex∼pdata [log pθ(x)] (2)
=Ex∼pdata [−Eθ(x)]− logZθ

The gradient of the log-likelihood can be expressed as:

∇θLML(θ) = Epθ(x̃)[∇θEθ(x̃)]− Epdata(x)[∇θEθ(x)] (3)

To compute the gradient expressed in Eq. (3), one needs
to be able to sample from the model distribution pθ, which
is not possible. Current approaches approximate pθ using
MCMC methods, like Langevin dynamics [57]. This allows
us to approximately optimize the log-likelihood objective and
generate samples from the model.

B. Joint Classification and Generation

Joint energy-based models (JEM) [30] have been recently
presented to extend a standard classification neural network
into an hybrid discriminative-generative model, by simply re-
interpreting the outputs of the classifier.

Let fθ : RD → RK be a classification neural network,
parameterized by θ, with K the number of classes and D the

input’s dimension. The fundamental idea of JEM is to express
the joint distribution of images (x) and labels (y) as a joint
energy-based model:

pθ(x, y) =
exp(fθ(x)[y])

Zθ
, (4)

where the joint-energy function is parameterized by the neural
network: Eθ(x, y) = −fθ(x)[y]. fθ(x)[y] is the y-th entry of
fθ(x) and Zθ the normalizing constant of the model.

By marginalizing Eq. (4) above, we obtain the distribution
pθ(x) expressed as:

pθ(x) =

K∑
y=1

pθ(x, y) =

∑K
y=1 exp(fθ(x)[y])

Zθ
. (5)

From Eq. (5), one may observe that the distribution pθ(x)
is also an energy-based model, with the energy given by:

Eθ(x) = − log

(
K∑
y=1

exp(fθ(x)[y])

)
. (6)

The JEM model is then trained to maximize the joint log-
likelihood, log pθ(x, y), which can be factorized as:

log pθ(x, y) = log pθ(x) + log pθ(y|x) (7)

As shown below, Eq. (7) is the key to obtain a joint
discriminative-generative model.

a) Generation: The first term in Eq. (7), log pθ(x),
corresponds to the generative part of the model. It is trained
as an energy-based model by approximating the gradient
∇θLML(θ) (Eq. (3)) using a sampler based on Stochastic
Gradient Langevin Dynamics (SGLD) [29] and thus, generates
samples following:

xi+1 = xi − α
2∇xEθ(xi) + ε, x0 ∼ p0(x), (8)

with ε ∼ N (0, α) and p0(x) usually a uniform distribution,
and α a step-size following a polynomial decaying.
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b) Classification: The second term is related to pθ(y|x),
which written as pθ(y|x) = pθ(x, y) / pθ(x) matches the
softmax output of a usual classifier. Thus it can be simply
optimized using the cross-entropy loss, as a standard classifi-
cation neural network.

Figure 2 illustrates how JEM works in practice. An input
image x passes through a neural network fθ, which outputs
fθ(x) ∈ RK . Then, the pipeline splits into two modules: (i)
a classification module (Fig. 2 top) that applies a softmax
function to fθ(x) to obtain class scores and computes the
classification loss (cross-entropy), and (ii) a generation module
(Fig. 2 bottom) that computes the energy Eθ from Eq. (6)
(LogSumExp), then runs a finite SGLD chain (Eq. (8)),
drawing samples from pθ(x) and uses them to compute the
log-likelihood loss. The sum of both loss terms (Eq. (7)) is
then optimized by backpropagation.

C. Semi-supervised Learning with JEM

Moreover, JEM, as described above, also allows to extend
a conventional classifier to semi-supervised learning in a very
natural way [41].

Indeed, if labels are available, one can optimize the main
objective log pθ(x, y) as in Eq. (7), otherwise one may simply
marginalize it out and optimize log pθ(x) only. In practice,
following the scheme in Fig. 2, this means that for labeled
samples the network is updated as decribed above (Sec. III-B),
but unlabeled samples only go through the generation module
(bottom section Fig. 2) to update the network.

We have recalled here the main concepts of JEM, a recent
energy-based model for joint generation and classification of
images. However, to the best of our knowledge, the relevance
of such energy-based models to deal with EO data has not been
studied yet. We report in the next section some experiments we
conducted with JEM to address various applications of high
interest in remote sensing.

IV. EXPERIMENTS

Since JEM is a multifaceted model, in this section we
explore its capacities in various tasks, including: classification,
generation, semi-supervised classification, out-of-distribution
detection and land cover mapping. In Table I, we compare
JEM to other models that perform well on each task, however
none of them is as versatile as JEM, being limited to one or
two tasks to perform simultaneously.

We perform experiments training our models on several
publicly available EO datasets for scene classification: the
EuroSAT Dataset [58], the So2Sat LCZ42 Dataset [59], the
Aerial Image Dataset [60] and the UCMerced Dataset [61].

The EuroSAT Dataset comprises patches from Sentinel-
2 images over 34 countries in Europe. Each patch is labeled
with one of 10 land cover/land use classes (e.g. industrial,
residential, highway, pasture, forest, etc.). Classes are well-
balanced, with 2,000 to 3,000 examples per class, 80% of
which are used for training. We use the EuroSAT RGB version.

The So2Sat LCZ42 Dataset is composed of Sentinel-
1 and Sentinel-2 image patches over 42 locations over the
globe. Patches are labeled according to the Local Climate

Model Classi-
fication

Gene-
ration

Semi-
supervision

OOD
detection

Wide-ResNet 3 7 7 7
VAE 7 3 7 7
GAN 7 3 7 7

BerundaNet 3 7 3 7
FixMatch 3 7 3 7

JEM 3 3 3 3

TABLE I
MODELS COMPARISON. JEM IS THE ONLY MODEL ABLE TO PERFORM ALL

THESE TASKS SIMULTANEOUSLY.

Zones scheme (LCZ), with 17 categories. It is worth to
mention that the training set and testing set are geographically
independent, containing images from different locations. This
makes this dataset particularly difficult, because models need
to be sufficiently robust to generalize well on the test data.
For our experiments, we only make use of the RGB Sentinel-
2 bands (B04, B03, B02), as in EuroSAT.

The Aerial Image Dataset (AID) consists of 10,000 opti-
cal aerial images from different countries around the world,
labeled within 30 scene classes. Original RGB tiles are of size
600px × 600px. Due to the computing time of JEM, we have
resized them to 64px × 64px during training.

The UCMerced Dataset is a small-size dataset and has been
widely used for the evaluation of aerial scene classification.
It contains 2,100 aerial ortho-images from different regions
of USA. Each image is labeled with one of the 21 land use
classes. Original 256px × 256px tiles have been resized to
64px × 64px for JEM training.

For evaluation in out-of-distribution detection and other
tasks of interest, we use in addition several public EO datasets:
ISPRS Potsdam [62], OSCD dataset [63], DFC2017 [64] and
BigEarthNet [65].

Implementation details. Following [30], we perform our
experiments using a Wide-ResNet-28-10 architecture [66],
with no batch normalization. We train our networks with the
Adam optimizer [67], during 200 epochs, following the JEM
training scheme.

Moreover, we adopt a hold-out evaluation method, defining
a training and a test set (80% and 20% of data, respectively,
for all datasets, except So2Sat LCZ42 where train and test
partitions are already defined). Additionally, 10% of the train-
ing set was used as validation partition during training. This
is especially important when training on very few labeled data
to adopt an early stopping strategy and avoid overfitting.

Pytorch [68] is used for all implementations.

A. Joint Classification and Generation with JEM

In this section we show that this new training paradigm
allows to get an hybrid model, with competitive performances
in both tasks, classification and generation.

Wide-ResNet is trained as a usual classifier (with cross-
entropy loss), while JEM is trained as described in Sec-
tion III-B. We compare the generative performance with a
standard VAE [69]. Results on the EuroSAT dataset are
summarized in Table II.
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Classification Generation
Type Model Accuracy (↑) FID (↓) KID (↓)

Discriminative Wide-ResNet 97.56± 0.52 % 7 7

Hybrid JEM 97.42± 0.19 % 122.1 0.06

Generative VAE 7 215.4 0.14

TABLE II
CLASSIFICATION AND GENERATION SCORES OF MODELS TRAINED ON

EUROSAT. COMPARISON OF JEM WITH RESPECT TO A PURELY
SUPERVISED MODEL (WIDE-RESNET-28-10) AND A PURELY GENERATIVE
MODEL (VAE). NOTE THAT JEM IS THE ONLY MODEL THAT CAN PROVIDE
BOTH CLASSIFICATION AND GENERATION SCORES. BEST SCORES IN BOLD.

Given uncertainty measured by standard deviation, JEM
results reach the same level of performances as classification-
only Wide-ResNet and previous reported classification results
on EuroSAT, namely ResNet-50 and GoogLeNet with 98.6%
and 98.2% of overall accuracy respectively [58]. The small
difference observed might be explained by the intrinsic reg-
ularization of the multi-task JEM model. Furthermore, [58]
does not specify a training and test partition, which might
also explain the discrepancy with our results. In terms of gen-
eration, we rely on the Fréchet Inception Distance (FID) [70]
and the Kernel Inception Distance (KID) [71] to evaluate the
quality of generated samples. According to these metrics, JEM
generated samples are superior to VAE samples.

Fig. 1 shows some class-conditional examples generated by
the network after being trained on the EuroSAT dataset, with
different settings. Each row represents a class in the dataset.
First two columns show real samples from the dataset, third
and fourth columns present JEM-generated samples trained
on the whole EuroSAT dataset and last two columns display
JEM-generated samples with the model trained in a semi-
supervised manner with 100 labeled samples per class (and the
rest of the dataset as unlabeled data, more details in Sec. IV-B).
From these examples, we observe that JEM captures the data
distribution properly, since generated samples are extremely
similar to real EuroSAT samples regardless of the fraction of
annotated examples available for training. Moreover, the model
is capable to produce samples for every class on the dataset,
with a large variety of images per class.

However, some classes remain difficult to apprehend, e.g.
forests or sea and lakes. This might be due to the lack of
texture on these images. Industrial buildings (first row in
Fig. 1) would require finer and more rectangular outlines to
correctly match industrial buildings in the EuroSAT dataset.
On the other hand, JEM is able to handle impressively images
of highways, rivers and different types of fields. Indeed,
generated samples of these classes are remarkably similar to
real images. This shows that the model is able to learn the
true distribution behind the dataset and leads to compelling
applications. Synthetic examples generated from the learned
data distribution may be used for simulation or even for
training new models.

B. Semi-supervised classification with JEM

In this section we perform semi-supervised classification
and show the potential of JEM in extreme settings when very

few labeled samples are available.
We train the JEM model with a small subset of labeled

examples and the entire dataset as unlabeled data, follow-
ing the approach described in Section III-C. We vary the
number of labeled samples per class on which the model is
trained, and compare our results with three baselines: the fully
supervised Wide-ResNet, BerundaNet [3], a semi-supervised
method based on multi-task learning, and FixMatch [40],
which is currently the state-of-the-art algorithm for semi-
supervised classification in computer vision. Wide-ResNet,
as a supervised method, is trained on labeled data only,
while BerundaNet, FixMatch and JEM are trained similarly
on the whole dataset, using labels when available. Table III
summarizes our results on the EuroSAT dataset.

First row in Table III presents completely supervised results
on the entire training set, as an upper bound for the semi-
supervised strategies. We observe that all methods are on
par in terms of performance, FixMatch being slightly better.
We observe from the following rows that FixMatch, being
especially designed to tackle the semi-supervised classification
problem, is superior to all methods and performs remarkably
well, even in extreme situations when very few labeled data is
available. In the case of BerundaNet and JEM, there is a point
where they perform considerably better than Wide-ResNet. In
the case of JEM, there is no significant difference with respect
to the Wide-ResNet performance in the 5% and 100% labeled
samples per class regime, however the advantage of JEM
becomes tangible as soon as the model is trained with 1% of
labeled samples or less, with a performance gap varying from
6.2% to 10.7% of accuracy. Moreover, in the semi-supervised
setting, JEM is always superior to BerundaNet. This differ-
ence might be explained by the way these methods leverage
unlabeled samples during training. Indeed, BerundaNet uses
them to compute a regularization term through a secondary
task (reconstruction), while JEM uses unlabeled samples to
estimate their underlying distribution, which might contain
valuable information for classification.

These results show that: first, the energy function can be
learned from unlabeled data as well as labeled data; and
second, if the image distribution pθ(x) is well estimated, it
is easier then to estimate the conditional distribution pθ(y|x)
from a small set of annotated training samples.

Furthermore, even if FixMatch has undeniably better per-
formances in the semi-supervised settings, it is worth to notice
that it was especially designed to perform semi-supervised
classification, and cannot perform other tasks like OOD de-
tection nor generation (see Table I). On the contrary, JEM is a
versatile model that can perform several tasks simultaneously.
Moreover, it could be optimized to achieve better results on
semi-supervised learning, for instance, by integrating Fix-
Match features such as massive data augmentation strategies
and consistency regularization.

Additionally, we compare JEM and Wide-ResNet on two
well-known benchmarks for scene classification, AID and
UCMerced. Results are summarized on Table IV. They con-
firm what we observed previously on EuroSAT: in the super-
vised setting, when all labels are available for the training
data, Wide-ResNet is slightly superior to JEM, because of
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Labeled
samples/class % of labels Wide-ResNet BerundaNet [3] FixMatch [40] JEM

2000 on avg. 100% 97.56 ±0.52 96.90 ±0.67 98.81 ±0.06 97.42 ±0.19

100 ∼ 5% 86.36 ±0.26 74.78 ±2.01 97.83 ±0.12 86.23 ±0.80
20 ∼ 1% 62.93 ±1.01 54.25 ±2.41 95.78 ±0.99 69.11 ±1.18
10 ∼ 0.5% 52.33 ±1.59 46.84 ±1.83 94.95 ±1.12 61.60 ±1.49
5 ∼ 0.25% 43.83 ±3.18 39.80 ±1.51 94.45 ±1.29 54.79 ±3.55
1 ∼ 0.05% 28.02 ±0.97 32.77 ±1.05 67.46 ±4.67 36.86 ±1.11

TABLE III
CLASSIFICATION RESULTS ON EUROSAT (ACCURACY [%] ↑). COMPARISON WITH A PURELY SUPERVISED METHOD (WIDE-RESNET), A MULTI-TASK

SEMI-SUPERVISED NETWORK (BERUNDANET) AND A PURELY SEMI-SUPERVISED METHOD (FIXMATCH), TRAINED ON THE SAME NUMBER OF LABELED
SAMPLES. GREY CELLS INDICATE MODEL LEVERAGING UNLABELED DATA. BEST SCORES IN BOLD, SECOND BEST UNDERLINED.

Dataset Labeled
samples/class

% of
labels Wide-ResNet JEM

So2Sat

∼ 20000 100% 50.93 ± 0.16 54.60 ±0.35

1000 ∼ 5% 44.17 ±0.40 48.59 ±0.58
200 ∼ 1% 35.45 ±0.17 42.43 ±0.47
100 ∼ 0.5% 30.90 ±0.35 38.71 ±0.64

AID

∼ 300 100% 78.71 ±0.08 74.11 ±0.24

20 ∼ 7% 41.07 ±1.87 50.23 ±0.69
13 ∼ 5% 34.46 ±0.59 44.49 ±0.65
3 ∼ 1% 17.38 ±0.32 25.68 ±0.65
1 ∼ 0.5% 9.98 ±0.36 16.21 ±0.58

UCMerced

80 100% 81.71 ±0.72 80.49 ±1.67

10 ∼ 12.5% 45.41 ±0.43 48.91 ±0.42
4 ∼ 5% 26.99 ±1.24 34.16 ±1.78
1 ∼ 1% 14.34 ±1.88 24.31 ±1.87

TABLE IV
CLASSIFICATION RESULTS ON DIFFERENT EO DATASETS (ACCURACY [%]
↑). GREY CELLS INDICATE MODEL LEVERAGING UNLABELED DATA. BEST

SCORES IN BOLD.

the intrinsic regularization of the latter. However, when few
labels are available, JEM has considerably better classification
performance.

Finally, we also perform experiments on the more realistic,
large-scale So2Sat dataset. Table IV summarizes the results.
Not only they confirm the tendency observed on EuroSAT
data, but the superiority of the JEM model over Wide-ResNet
is even more consistent, including the supervised setting. This
is explained by the existing domain gap between training data
and testing data in So2Sat, due to different geographic loca-
tions. Indeed, standard discriminative classifiers, like Wide-
ResNet, are prone to lack robustness to distribution shifts.
However, learning the underlying distribution of the data by
a generative model such as JEM helps to overcome this issue
and sets a starting point to bridge the performance gap when
dealing with domain shifts.

Model Calibration
Beyond classification scores, an important and desirable

feature of models is the calibration. A model is said to
be calibrated if its output confidence, usually measured as
maxy p(y|x)), coincides with its expected accuracy. Therefore,
a calibrated model is more informative, being able to provide
the uncertainty associated to a prediction.

We thus evaluate and compare the calibration of our super-

0.0 0.2 0.4 0.6 0.8 1.0

Confidence (max(p(y|x))

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE: 11.26%
ECE: 6.00%
ECE: 50.24%

100 labeled samples/class

JEM
Wide-ResNet
FixMatch
Perfectly calibrated

0.0 0.2 0.4 0.6 0.8 1.0

Confidence (max(p(y|x))

ECE: 43.72%
ECE: 10.30%
ECE: 49.24%

10 labeled samples/class

Fig. 3. Calibration curves for supervised Wide-ResNet and semi-supervised
JEM and FixMatch trained on EuroSAT dataset. Left: trained on 100 labeled
samples per class. Right: trained on 10 labeled samples per class. ECE:
Expected Calibration Error (↓).

vised (Wide-ResNet) and semi-supervised models (FixMatch
and JEM). In particular, we study the 100-labeled-samples-per-
class and the 10-labeled-samples-per-class settings. Figure 3
shows the calibration curves for both experiments. A perfectly
calibrated classifier should match the straight line y = x. We
can observe that, in both settings, JEM is the model with best
calibration, FixMatch being very underconfident and Wide-
ResNet being overconfident.

We quantitatively verify this by computing a usual metric
for calibration: the Expected Calibration Error [72] (ECE)
score, for both settings. The obtained ECE scores are 11.26%,
50.24% and 6.00% for Wide-ResNet, FixMatch and JEM,
respectively, in the case of 100-labeled-samples-per-class; and
43.73%, 49.24% and 10.22% in the extreme setting of 10-
labeled-samples-per-class. Since a perfect ECE is equal to
zero, these scores confirm that the semi-supervised JEM model
is better calibrated, the difference being flagrant in extreme
conditions (very few labels). FixMatch exhibits very poor cal-
ibration properties. Therefore, unlabeled data regularization,
by learning the data distribution, comes with the advantage of
allowing for more informative predictions.

C. Out-of-distribution Analysis

Out-of-distribution detection (OOD) refers to the task of
recognizing significantly different or anomalous examples,
with respect to the ones seen during training. Asserting the
capacity of a model to correctly classify a sample from a new
domain is a very important and desirable feature, especially
in applications which involve real-world decisions.
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Fig. 4. JEM log-likelihood (unnormalized) histograms for EuroSAT dataset. Stability of the estimated energy function. Supervised vs. Semi-supervised with
100 labeled samples and 10 labeled samples per class comparison. We observe that the values of the unnormalized log-likelihood are comparable, regardless
the amount of labeled data available during training.
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Fig. 5. Out-of-Distribution detection on different public EO datasets. Unnormalized log-likelihood values computed through the supervised model.

In this section, we assess the capacity of our model to
assess global out-of-distribution analysis, i.e. if an entire
dataset can be considered in-distribution with respect to the
learned distribution. In this regard, we compare the histograms
of the unnormalized log-likelihood (i.e. −E(x)) values of
the EuroSAT training set with the obtained histograms for
different public datasets.

1) Supervised vs. Semi-supervised Energy Function: Fig-
ure 4 presents the unnormalized log-likelihood histograms
for the EuroSAT dataset in the fully-supervised JEM setting
(left) and two semi-supervised settings: training with 100
labeled samples per class (center) and with 10 labeled samples
per class (right). In all cases, the histogram profiles of the
training and test partition match perfectly, which means that,
as expected, there is no shift of the estimated distribution from
EuroSAT train to EuroSAT test.

Moreover, we observe that the log-likelihood distribution
estimated by the models is very similar, showing that the
energy is not linked to the labels, but to the data.

2) Comparing Datasets: On the other hand, Figure 5 shows
the unnormalized log-likelihood histograms of 3 public EO
datasets: OSCD dataset, ISPRS Potsdam and BigEarthNet,
obtained after training the model on the whole EuroSAT
training set.

We observe that for these datasets, the histogram profile
does not exactly match the one of the EuroSAT training
data. Actually, values of the unnormalized log p(x) can be
extremely small, which can be interpreted as the samples from
these datasets are not likely to come from the distribution
learnt from EuroSAT. We can confirm this observation by com-
puting the Kullback-Leibler (KL) divergence with respect to
the distribution of the EuroSAT train histogram. Indeed, while
KL value for EuroSAT test data is 0.27; the other datasets

KL values are 28.2, 25.6 and 26.3 for Potsdam, OSCD and
BigEarthNet, respectively. In view of this, more information
would be needed for the model to correctly represent those
datasets that differ on location, resolution or appearance.

Finally, it is interesting to notice that the distribution that
differs the most is ISPRS Potsdam, the only dataset with a
different resolution. This might imply that resolution is an
important factor for domain adaptation.

D. Application to Land Cover Mapping

Land cover mapping is an interesting application of JEM
on new unseen domains as detailed in the following sections.

1) Patch-wise classification: We apply our EuroSAT-
trained models –including Wide-ResNet, supervised and semi-
supervised JEM– to unseen OSCD tiles. To do so, the tiles are
split into 64×64 patches which go through the already trained
network to obtain the corresponding class per patch, leading
to a patch-wise classification map.

We observe in Figure 6 the results on two locations from
OSCD: Beirut and Rio de Janeiro. The maps produced by
the classifier are, in general, globally correct and retrieve
various densities of urban and green areas. As expected, the
quality of predictions deteriorates as the number of labeled
samples decreases. Indeed, supervised Wide-ResNet and JEM
predictions are both plausible land cover maps for these
locations. The map of JEM semisup-100 is still trustworthy,
while 10 labeled samples per class seem not enough to train
an accurate model.

Similarly, we apply the So2Sat LZC42-trained models to
the unseen tile of Rome from DFC2017. Since So2Sat LZC42
is composed of 32×32 images, the Rome tile is also split in
32×32 patches to pass through the network. Figure 7 presents
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our patch-wise classification maps. As before, the maps are
reasonable, JEM being more accurate than Wide-ResNet to
recognize low plants, where Wide-ResNet over estimate heavy
industry.

Image Wide-ResNet
Supervised

JEM
Supervised

JEM
Semisup-100

JEM
Semisup-10

Fig. 6. Semantic maps on never-seen OSCD cities. Top: Beirut. Bottom:
Rio de Janeiro. Supervised indicates models trained on the entire EuroSAT
dataset. Semisup-x is JEM trained with a semi-supervised strategy with x
labeled samples per class. No semantic segmentation ground truth is provided
with this dataset. .

Image GT Wide-ResNet
Supervised

JEM
Supervised

JEM
Semisup-1000

JEM
Semisup-200

Fig. 7. Semantic maps on never-seen DFC 2017 tile of Rome. Supervised
indicates models trained on the entire So2Sat dataset. Semisup-x is JEM
trained with a semi-supervised strategy with x labeled samples per class..

Fig. 8. Confidence maps obtained by JEM on never-seen OSCD and DFC2017
tiles. Confidence is measured as the unnormalized log p(x)), From left to
right: Beirut, Rio de Janeiro and Rome.

2) Confidence maps: The major advantage of JEM over
a standard classifier such as Wide-ResNet is its capacity to
estimate the underlying data distribution through the energy
function. We can use the unnormalized log-likelihood value as
a proxy for the confidence of the model’s prediction. Indeed,
if the model assigns a high value of log-likelihood to an image
it could be considered as in-distribution, and thus the model’s
prediction should be pertinent. Conversely, if the model’s log-
likelihood on a sample is low, we could consider it as out-of-
distribution and be more cautious with respect to its prediction.

Figure 8 shows the confidence maps obtained by the su-
pervised JEM over the OSCD tiles (trained on EuroSAT)
and over Rome tile from DFC2017 (trained on So2Sat). We
observe that the confidence of the model varies accross the
patches. Indeed, on OSCD, the model is more confident on
scenes representing water or fields, while it is considerably
less confident in residential and industrial areas, which are
more likely to be different from training European cities from
the EuroSAT dataset. In the case of Rome, the model is less
confident in general, and in particular on the compact zones
(according to the ground-truth in Fig. 7).

V. LIMITATIONS

Training Energy-based Models by maximum likelihood can
be very challenging. Indeed, the gradient estimators used to
estimate log-likelihood are considerably unstable and prone to
diverging during training, this is why hyperparameters must
be chosen carefully. Moreover, MCMC-like iterative sampling
increases training time linearly with the image size. This
may be prohibitive when dealing with large images, which is
likely the case in remote sensing applications. This is why
we decided to resize AID and UCMerced images for our
experiments in Sec. IV-B.

Despite these limitations, we strongly believe that the
remote sensing community might deeply benefit from the
multiple applications of EBMs, that we tried to bring forward
in this article. We believe that there is still much progress to
make to improve and optimize EBMs’ training, just as the
community has achieved great progress on GANs’ training in
only a few years.

VI. CONCLUSIONS

We have considered a recent framework to train neural net-
works to jointly perform classification and generation of im-
ages and applied it to remote sensing data. By re-interpreting
the outputs of a classification neural network, the Joint Energy-
based Model (JEM) expresses the joint distribution of image-
label pairs as an energy-based model. In practice, it allows
us to train a robust classifier and estimate the underlying
distribution of data, simultaneously. Moreover, this hybrid
model is well suited and extends naturally to perform semi-
supervised learning.

This seminal application of JEM to EO data led to several
important conclusions. First, in small-scale datasets like Eu-
roSAT, we observe that JEM is a strong classifier with perfor-
mance on par to state-of-the-art methods. More interestingly,
in the semi-supervised setting when very few labeled exam-
ples are available, JEM is superior to a standard supervised
network, both in terms of classification scores and robustness
(i.e. better calibrated). Second, with more realistic, large-scale
datasets like So2Sat, JEM exhibits outstanding generalization
properties, with better performance than usual classifiers in
the supervised and semi-supervised settings. However, future
work could focus on the integration in JEM of FixMatch
mechanisms especially designed for semi-supervised learn-
ing, namely data augmentation techniques, pseudo-labeling
or consistency regularization strategies. The challenge lies in
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realistically augmenting the data, and the distribution estimate
given by JEM could be an asset here.

Finally, we have also demonstrated that JEM is able to
correctly estimate the data distribution, allowing us to generate
faithful and diverse images. Estimating the data distribution
enables the model to detect out-of-distribution samples and
thus to decide if it can be reliably used in a new domain.
This gives JEM the ability to classify unseen zones with a
confidence map based on the log-likelihood estimated by the
model.

In summary, we have shown through our experiments
several appealing applications in remote sensing for this
kind of hybrid discriminative-generative model, such as semi-
supervised learning, out-of-distribution detection or the gen-
eration of synthetic realistic new data. It is a starting point to
pave the way to tomorrow’s real-life applications.
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Université Paris-Saclay, France. Since 2019, she
is pursuing her Ph.D. degree from the Université
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