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(n ≥ 1) is

H n (a) = a 0 a 1 • • • a n-1 a 1 a 2 • • • a n . . . . . . . . . . . . a n-1 a n • • • a 2n-2
= det(a i+j ) 0≤i,j≤n-1 .

Finding rational approximations for f (z) is strongly related to the Hankel determinants of f . Let p and q be nonnegative integers. The Padé approximant [p/q] f (z) of f (z) is a rational function P (z)/Q(z) with P (z), Q(z) ∈ F[z], Q(0) = 1 and deg P (z) ≤ p, deg Q(z) ≤ q such that f (z) -

P (z) Q(z) = O(z p+q+1 ).
Actually, the non-vanishing of H n (a) guarantees the existence of the Padé approximant [(n -1)/n] f (z) (see [8, p. 34-36]) and

f (z) -[(n -1)/n] f (z) = H n+1 (a) H n (a) z 2n + O(z 2n+1 ).
Let b be a non-zero integer such that f (1/b) converges. Then [(n -1)/n] f (1/b) yields a rational approximation for the real number f (1/b), i.e.

f (1/b) -[(n -1)/n] f (1/b) ≤ c(n) b 2n
. However, sometimes c(n) may become even bigger than b 2n . Therefore Padé approximants of f (z) do not automatically give us good approximations of f (1/b). But in some case (like in the case of infinite products, see for example [START_REF] Badziahin | Continued fractions of certain Mahler functions[END_REF][START_REF] Bugeaud | On the rational approximation to the Thue-Morse-Mahler numbers[END_REF][START_REF] Bugeaud | Hankel determinants, Padé approximations, and irrationality Exponents[END_REF]) they do.

When f (z) satisfies certain algebraic equations, in a sequence of works, the Hankel determinants of f (z) have been shown to be an efficient tool in estimating the irrationality exponent of f (1/b). Based on several Padé approximants, Adamczewski and Rivoal [START_REF] Adamczewski | Irrationality measures for some automatic real numbers[END_REF] estimated the irrationality exponents for some automatic real numbers using Mahler's method. In 2011, Bugeaud [START_REF] Bugeaud | On the rational approximation to the Thue-Morse-Mahler numbers[END_REF] proved that the irrationality exponent of the Thue-Morse number is equal to 2. In his proof, one important requirement is that all the Hankel determinants of the Thue-Morse sequence on {-1, 1} are non-vanishing. This result was obtained in 1998 by Allouche, Peyrière, Wen and Wen [START_REF] Allouche | Hankel determinants of the Thue-Morse sequence[END_REF]. Bugeaud's method works well for degree 2 Mahler functions. The remaining difficulty is to calculate the Hankel determinants. Coons [START_REF] Coons | On the rational approximation of the sum of the reciprocals of the Fermat numbers[END_REF] proved that the irrationality exponent of the sum of the reciprocals of the Fermat numbers is 2. Guo, Wen and Wu [START_REF] Guo | On the irrationality exponent of the regular paperfolding numbers[END_REF] verified that the irrationality exponents of the regular paper-folding numbers are 2. Wen and Wu [START_REF] Wen | Hankel determinant of the Cantor sequence[END_REF] showed that the irrationality exponents of the Cantor numbers are also 2. The idea of evaluating the Hankel determinants in these works are the same as in [START_REF] Allouche | Hankel determinants of the Thue-Morse sequence[END_REF]. Han [START_REF] Han | Hankel continued fraction and its applications[END_REF] proved that the Hankel determinants of a large family of sequences are non-zero by using the Hankel continued fractions. Using Han's result, Bugeaud, Han, Wen and Yao [START_REF] Bugeaud | Hankel determinants, Padé approximations, and irrationality Exponents[END_REF] estimated irrationality exponents of f (1/b) for a large class of Mahler functions f (z), provided that the distribution of indices at which Hankel determinants of f (z) do not vanish is known. For a class of Mahler functions f (z), Badziahin [START_REF] Badziahin | On the spectrum of irrationality exponents of Mahler numbers[END_REF] developed a useful theorem which can be used to compute the exact value of the irrationality exponent for f (b) as soon as the continued fraction for the corresponding Mahler function is known. This improved the result of Bugeaud, Han, Wen and Yao [START_REF] Bugeaud | Hankel determinants, Padé approximations, and irrationality Exponents[END_REF].

1.1. ±1 apwenian sequences. In the seminal work [START_REF] Allouche | Hankel determinants of the Thue-Morse sequence[END_REF], Allouche, Peyrière, Wen and Wen showed that the Hankel determinants of the Thue-Morse sequence t over {-1, 1} satisfy for all n ≥ 1,

H n (t)/2 n-1 ≡ 1 (mod 2).

Definition (±1 Apwenian sequence). A sequence d

= d 0 d 1 d 2 • • • ∈ {-1, 1}
∞ is called an apwenian sequence if for all n ≥ 1, H n (d) 2 n-1 ≡ 1 (mod 2). When d ∈ {-1, 1} ∞ is apwenian, then we also say that its generating function f (z) is apwenian.

Remark. The apwenian sequences occur in pairs. Namely, if d is apwenian, then apparently, -d is also apwenian. In the sequel, we only focus on the apwenian sequences starting with 1.

Fu and Han [START_REF] Fu | Computer assisted proof for Apwenian sequences[END_REF] introduced the above apwenian sequences in honour of the authors of [START_REF] Allouche | Hankel determinants of the Thue-Morse sequence[END_REF], and investigated Hankel determinants for the formal power series

f p (z) = ∞ i=0 P (z p i ) (1.1)
where p ≥ 2 is an integer, P (z

) = v 0 + v 1 z + • • • v p-1 z p-1
, v 0 = 1 and v i ∈ {-1, 1} for all i = 1, . . . , p -1. They checked for prime numbers p ≤ 17 with computer assistance and found that the apwenian series satisfying (1.1) are quite rare: p 2 3 5 7 11 [START_REF] Ellis | Computing the cycles in the perfect shuffle permutation[END_REF] 17

N p 1 1 1 0 1 1 2
where N p is the number of apwenian series satisfying (1.1) and v 1 = -1. They conjectured in [START_REF] Fu | Computer assisted proof for Apwenian sequences[END_REF] that N 19 = 1. In this paper, we obtain an easy to check criterion for apwenian sequences, which allows us to determine all apwenian sequences that are fixed points of substitutions of constant length.

Theorem 1.1 (±1 Criterion). Let d = d 0 d 1 d 2 • • • ∈ {-1, 1} ∞ . Then d is apwenian if and only if ∀ n ≥ 0, d n + d n+1 -d 2n+1 -d 2n+2 2 ≡ 1 (mod 2). (1.2) Let d ∈ {-1, 1} ∞ and f (z) = ∞ n=0 d n z n .
In fact, if f (z) satisfies (1.1), then d is the fixed point of the following substitution of length p:

1 → v 0 v 1 • • • v p-1 , -1 → v0 v1 • • • vp-1 (1.3)
where v 0 = 1, v i ∈ {-1, 1} for i = 1, . . . , p -1 and x := -x for all x ∈ {-1, 1}. In general, we study the fixed point d = lim n→+∞ σ n (1) of substitution σ of constant length p (not necessarily prime numbers):

σ : 1 → v 0 v 1 • • • v p-1 , -1 → w 0 w 1 • • • w p-1
(1.4) where v i , w i ∈ {-1, 1} for all i = 0, 1, . . . , p -1. By using the ±1 criterion, we are able to show that

Theorem 1.2. Let d = lim n→∞ σ n (1) where σ is given in (1.4) with v 0 = 1 and f (z) = ∞ n=0 d n z n . If d is apwenian, then f (z) satisfies (1.1).
In Theorem 5.2 we establish a criterion on the substitution itself to tell when the series f p (z) is apwenian for all p ≥ 2. This result can be applied to the calculation of irrationality exponents. Let ξ be an irrational number. Its irrationality exponent is the supremum of the real numbers ν such that ξ -r s < 1 s ν holds for infinitely many pairs of (r, s) ∈ Z×N. For the series f p (z) satisfying (1.1), Badziahin [START_REF] Badziahin | On the spectrum of irrationality exponents of Mahler numbers[END_REF] showed that the irrationality exponent of f p (1/b) is rational, where b ≥ 2 is an integer with P (1/b p m ) = 0 for all integers m ≥ 0. When the coefficient sequence of f p (z) is apwenian, the Hankel determinants of f (z) are all non-vanishing. Then a combination of Badziahin's results [6, Corollary 1] and [START_REF] Badziahin | On the spectrum of irrationality exponents of Mahler numbers[END_REF]Theorem 1.2] yields that the irrationality exponent of f p (1/b) is equal to 2. We can also apply Bugeaud, Han, Wen and Yao's result [START_REF] Bugeaud | Hankel determinants, Padé approximations, and irrationality Exponents[END_REF]Theorem 2.1] to determine the irrationality exponent exactly. Further efforts and new methods are needed to examine the irrationality exponents of values of f (z) at rational points. A consequence of [START_REF] Badziahin | On the spectrum of irrationality exponents of Mahler numbers[END_REF]Theorem 1.2] (or [10, Theorem 2.1]) and Theorem 5.2 is the following Theorem 1.3. Let p ≥ 3 be an odd number, v 0 = 1 and v i ∈ {-1, 1} for i = 1, . . . , p -1. Let f p (z) be the formal power series given in (1.1). Assume that b ≥ 2 is an integer such that P ( 1 b p i ) = 0 for all integers i ≥ 0. For m ≥ p, define v m := v i with m ≡ i (mod p) and 0 ≤ i < p.

If v j + v j+1 -v 2j+1 -v 2j+2 2 ≡ 1 (mod 2), 0 ≤ j ≤ p -2,
then the real number f p (1/b) is transcendental and its irrationality exponent is equal to 2.

The next natural question is to determine the number of apwenian sequences (starting with 1) which satisfy (1.3) for a given p. Let N p be the number of apwenian series f p (z) with f p (0) = 1. We remark that when p is odd, N p = 2N p . The first values of N p are the following: p 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 N p 1 2 1 2 0 0 1 4 0 2 0 2 0 16 1 4 0 2 .

Theorem 5.2 shows that when p is even, the sequence is apwenian if and only if it is the Thue-Morse sequence. When p is odd, the number is given by the next theorem which is a consequence of Propositions 5.4 and 5.6. For this, we need some notation. Denote by τ the permutation

τ : 0 1 • • • p-3 2 p-1 2 p+1 2 • • • p -2 1 3 • • • p -2 0 2 • • • p -3 .
Let p ≥ 3 be an odd number and set

µ(p) := ord p (2) = min{j ∈ [1, p -1] : p|(2 j -1)},
where [s, t] denotes the set of integers j such that s ≤ j ≤ t.

Theorem 1.4. Let p ≥ 3 be an odd number. If there exists an odd cycle in the cycle decomposition of τ , then

N p = 0; otherwise N p = 2 k , where k = 1 µ(p) µ(p)-1 j=0
gcd(2 j -1, p) -1 is the number of cycles of τ .

In fact, our method does not only give the number of apwenian sequences, but it also provides a way to find those apwenian sequences (see Remark 5.5).

0-1 apwenian sequences. While we consider the Hankel determinants modulo 2 of a sequence

c = c 0 c 1 c 2 • • • , the natural alphabet that c lives on is {0, 1}. One could project a sequence d ∈ {-1, 1} ∞ to {0, 1} ∞ by considering the sequence d := d i -d i+2 2 mod 2 i≥0 .
Our Lemma 3.4 shows that d is ±1 apwenian if and only if H n ( d) ≡ 1 (mod 2) for all n ≥ 1.

For this reason, we introduce the 0-1 apwenian sequences. Throughout the paper, 0-1 apwenian sequences and ±1 apwenian sequences are both called apwenian sequences without any ambiguous.

Definition (0-1 Apwenian sequence). A sequence c = c 0 c 1 c 2 • • • ∈ {0, 1} ∞ is called an apwenian sequence if for all n ≥ 1, H n (c) ≡ 1 (mod 2).
A criterion for the 0-1 apwenian sequences is also available.

Theorem 1.5 (0-1 Criterion). Let c = c 0 c 1 c 2 • • • ∈ {0, 1} ∞ such that c 0 = 1.
Then c is apwenian if and only if for all n ≥ 0, c n ≡ c 2n+1 + c 2n+2 (mod 2).

(1.5)

We ask the same question on the number of 0-1 apwenian sequences that are fixed points of substitutions of constant lengths. We have seen that there are not so many ±1 apwenian sequences. It is amazing that the 0-1 apwenian sequences are even rarer. In detail, we study the fixed point c = lim n→+∞ σ n 0 (1) of substitution σ 0 of constant length p (not necessarily prime):

σ 0 : 1 → v 0 v 1 • • • v p-1 , 0 → w 0 w 1 • • • w p-1 (1.6) 
where v 0 = 1, v i , w i ∈ {0, 1} for all i = 0, 1, . . . , p -1. Denote by

O := {c ∈ {0, 1} ∞ : c = σ 0 (c)
for some σ 0 given by (1.6)} the set of all the fixed points of substitutions of constant length.

Theorem 1.6. The only apwenian sequence in O is the period-doubling sequence given by the substitution 1 → 10 and 0 → 11.

1.3. Organization. In section 2, we list some notation and basic properties of substitutions and Jacobi continued fractions. In section 3, we prove Theorems 1.1 and 1.5 which give criteria for 0-1 and ±1 sequences to be apwenian. In section 4, we prove Theorem 1.6. In section 5, we study a special class of ±1 sequences and prove Theorems 5.2 and 1.4. In section 6, we investigate all substitutions of constant length on {-1, 1} and prove Theorem 1.2. In section 7, we give some examples. In the last section, we give some remarks on the permutation τ and apwenian sequences.

Preliminary

2.1. Substitutions. The basic notation of words and substitutions can be found in [START_REF] Allouche | Automatic sequences: theory, applications, generalizations[END_REF][START_REF] Fogg | Substitutions in dynamics, arithmetics and combinatorics[END_REF]. Let A = {a, b} be an alphabet of two letters. For n ≥ 1, the elements w ∈ A n are called words. The length of a word w is denoted by |w|. That is for any w ∈ A n , we have |w| = n. The set of all finite words on A is written A * = ∪ n≥0 A n where A 0 = {ε} and ε is the empty word. Let |w| a be the number of occurrences of the letter a in w. The conjugate of the letter a (resp. b) is b (resp. a), denoted by ā (resp. b). For any finite word w ∈ A * , we define by w = w1 • • • w|w| the conjugate of w.

For any two words w, v ∈ A * , their concatenation, denoted by wv, is the word

w 1 w 2 . . . w |w| v 1 v 2 . . . v |v| .
For u, v, w ∈ A * , if u = wv, then w (resp. v) is a prefix (resp. suffix ) of u. For any w, v ∈ A * , the longest common prefix of w and v is written w ∧ v. The set A * with the operation concatenation is a free monoid. A substitution σ on the alphabet A is a mapping from A to A * and it can be extended to a morphism on A * . Namely, for any w, v ∈ A * , σ(wv) = σ(w)σ(v).

A substitution σ is said of constant length, if there exists ∈ N such that |σ(a)| = for all a ∈ A.

The elements a = a 0 a 1 a 2 • • • ∈ A ∞ are infinite words or sequences. For a ∈ A ∞ and w ∈ A * , if a = vwa where v ∈ A * and a ∈ A ∞ , then w is a subword (or a factor ) of a. A sequence a ∈ A ∞ is uniformly recurrent if for any subword w of a, there exists an integer such that every subword of length of a contains w as a subword.

An infinite sequence a ∈ A ∞ is called a fixed point of a substitution σ if σ(a) = a. There is a natural metric on A

∞ : for a, b ∈ A ∞ , dist(a, b) = 2 -|a∧b| .
A substitution σ on A is prolongable if there exists an a ∈ A such that a is a prefix of σ(a) and |σ(a)| ≥ 2. A prolongable substitution has a fixed point

a = lim n→+∞ σ n (a)
where the limit is taken under the natural metric and σ n represents the n times composition σ • • • • • σ. If, in addition, the substitution σ is primitive, i.e. there exists k ∈ N such that for all a, b ∈ A, b occurs in σ k (a), then a is uniformly recurrent (see [START_REF] Allouche | Automatic sequences: theory, applications, generalizations[END_REF]Theorem 10.9.5]).

A sequence is Sturmian if for all n ≥ 1, it has exactly n + 1 different subwords of lenght n. A sequence a over the alphabet {a, b} is balanced if for any subwords u, v of a with the same length, we have ||u| a -|v| a | ≤ 1. It is known that a sequence is Sturmian if and only if it is a non-eventually periodic balanced sequence over two letters. Note that, if a is Sturmian on the alphabet {a, b}, then exactly one of the words aa, bb is not a subword of a. We say that a Sturmian sequence a is of type a if aa is a subword of a. For more details on Sturmian sequences, see for example [START_REF] Fogg | Substitutions in dynamics, arithmetics and combinatorics[END_REF]Chapter 6].

2.2. Jacobi continued fraction. Let F be a field and x be an indeterminate. For a nonzero formal power series f (x) = n≥0 a n x n , its order f is the minimal n such that a n = 0; the order of zero series is +∞. Then F[[x]] is the ring of formal power series with the metric

d(f, g) = 2 -f -g for f, g ∈ F[[x]]. Let u = u 1 u 2 . . . and v = v 0 v 1 v 2 .
. . be two sequences of elements in F, where v i = 0 for all i. Consider the finite continued fraction

J n := J v 0 v 1 . . . v n-1 u 1 u 2 . . . u n := v 0 1 + u 1 x - v 1 x 2 1 + u 2 x - . . . 1 + u n-1 x - v n-1 x 2 1 + u n x ∈ F[[x]].
The sequence (J n ) always converges in F[[x]]; see for example [14, Theorem 1]. Its limit defines the infinite continued fraction

J v 0 v 1 v 2 . . . u 1 u 2 u 3 . . . := v 0 1 + u 1 x - v 1 x 2 1 + u 2 x - v 2 x 2 1 + u 3 x - v 3 x 2 . . .
which is called the Jacobi continued fraction (or J-fraction) attached to (u, v). The finite con-

tinued fraction J n is called the n-th approximant of J v 0 v 1 v 2 . . . u 1 u 2 u 3 . . . .
The following basic properties of J-fractions are obtained by Heilermann [START_REF] Heilermann | Über die Verwandlung der Reihen in Kettenbrüche[END_REF]; see also [START_REF] Wall | Analytic theory of continued fractions[END_REF]Chapter IX & XI]. A formal power series f (x) yields a J-fraction expansion if its Hankel determinants are all non-vanishing, i.e. for all n ≥ 1, H n (f ) = 0. A closer relation between the Hankel determinants and J-fraction expansion of a formal power series is the following: if

f (x) = J v 0 v 1 v 2 . . . u 1 u 2 u 3 . . . , then for all n ≥ 1, H n (f ) = v n 0 v n-1 1 v n-2 2 • • • v 2 n-2 v n-1 .
Moreover, the order of the n-th approximant is 2n + 1, namely,

f (x) -J v 0 v 1 . . . v n-1 u 1 u 2 . . . u n = O(z 2n+1 ).
The power series expansion (in ascending order) of f (x) and its n-th approximant agree on just the first 2n terms.

Criteria for apwenian sequences

In this section, we first prove a criterion for 0-1 sequences to be apwenian. Then by studying the relation between 0-1 sequences and ±1 sequences, we transfer the 0-1 criterion to the ±1 criterion.

3.1. 0-1 Criterion. Let c = c 0 c 1 c 2 • • • ∈ {0, 1} ∞ . Recall that c is apwenian if for all n ≥ 1, its Hankel determinants H n (c) = c 0 c 1 • • • c n-1 c 1 c 2 • • • c n . . . . . . . . . . . . c n-1 c n • • • c 2n-2 ≡ 1 (mod 2).
Theorem 1.5 gives a sufficient and necessary condition for a 0-1 sequence to be apwenian. To prove the result, we need some preparation.

Lemma 3.1. Let f (x) = i≥0 c i x i where c 0 = 1. Then, the condition (1.5) is equivalent to

1 + x 2 f (x 2 ) ≡ xf odd (x) + f even (x) (mod 2), (3.1) 
where

f odd (x) = i≥0 c 2i+1 x 2i+1 and f even (x) = i≥0 c 2i x 2i . Proof. Let b = b 0 b 1 b 2 • • • ∈ {0, 1}
∞ be a sequence satisfying (1.5). Write its generating function by g(x) = i≥0 b i x i and let g odd (x) = i≥0 b 2i+1 x 2i+1 and g even (x) = i≥0 b 2i x 2i . For any g one has b

0 + x 2 g(x 2 ) = b 0 + x 2 i≥0 b i x 2i and xg odd (x) + g even (x) = i≥0 b 2i+1 x 2i+2 +   b 0 + i≥0 b 2i+2 x 2i+2   = b 0 + i≥0 (b 2i+1 + b 2i+2 )x 2i+2 . Thus b 0 + x 2 g(x 2 ) ≡ xg odd (x) + g even (x) (mod 2) if and only if b i ≡ b 2i+1 + b 2i+2 (mod 2) for all i ≥ 0. Lemma 3.2. Let u 1 ∈ {0, 1} and g(x) = i≥0 b i x i where b 0 = 1 and b i ∈ {0, 1} for all i ≥ 1. Define f (x) := 1 1 + u 1 x -x 2 g(x)
.

Then f (x) satisfies (3.1) if and only if g(x) satisfies (3.1).

Proof. Write h(x) := f (x)(1 + u 1 x -x 2 g(x)). Then h(x) = 1 means that h odd (x) = 0 and h even (x) = 1. Note that h(x) = f (x)(1 + u 1 x -x 2 g(x)) = (f odd (x) + f even (x)) u 1 x -x 2 g odd (x) + 1 -x 2 g even (x) . So 0 = h odd (x) = f odd (x) 1 -x 2 g even (x) + f even (x) u 1 x -x 2 g odd (x) , 1 = h even (x) = f even (x) 1 -x 2 g even (x) + f odd (x) u 1 x -x 2 g odd (x) . (3.2)
Solving the linear system (3.2) in variables f odd and f even , one obtains

f even (x) = f (x)f (-x) 1 -x 2 g even (x) and f odd (x) = f (x)f (-x) x 2 g odd (x) -u 1 x .
Consequently,

f odd (x) ≡ (u 1 x + x 2 g odd (x))f (x 2 ) and f even (x) ≡ (1 + x 2 g even (x))f (x 2 ) (mod 2). (3.3)
If g(x) satisfies (3.1), then

xf odd (x) + f even (x) ≡ x(u 1 x + x 2 g odd (x))f (x 2 ) + (1 + x 2 g even (x))f (x 2 ) ≡ f (x 2 ) u 1 x 2 + x 3 g odd (x) + 1 + x 2 g even (x) ≡ f (x 2 ) 1 + u 1 x 2 + x 2 1 + x 2 g(x 2
) by (3.1) for g(x)

≡ f (x 2 ) 1 f (x 2 ) + x 2 ≡ 1 + x 2 f (x 2 ) (mod 2) which is (3.1) for f (x). Conversely, if f (x) satisfies (3.1), then noticing that 1 f (x 2 ) = 1 + u 1 x 2 - x 4 g(x 2 ), we have 1 + (1 + u 1 )x 2 -x 4 g(x 2 ) ≡ 1 f (x 2 ) 1 + x 2 f (x 2 ) ≡ 1 f (x 2 )
xf odd (x) + f even (x) (mod 2) by (3.1) for f (x)

≡ u 1 x 2 + x 3 g odd (x) + 1 + x 2 g even (x) (mod 2). by (3.3)
Therefore,

x 2 -x 4 g(x 2 ) ≡ x 2 xg odd (x) + g even (x) (mod 2)
which implies that g(x) satisfies (3.1).

Lemma 3.3. Let (t n ) n≥0 be the 0-1 Thue-Morse sequence given by t 0 = 1, t 2n = t n and

t 2n+1 ≡ 1 + t n (mod 2) for all n ≥ 0. Then g(x) = i≥0 (t n + t n+2 )x n satisfies (3.1). Proof. Write h(x) := i≥0 t i x i . Then g(x) = h(x) + 1 x 2 h(x) -1 . Note that g odd (x) = i≥0 (t 2i+1 + t 2i+3 )x 2i+1 ≡ i≥0 (t i + t i+1 )x 2i+1 ≡ xh(x 2 ) + 1 x h(x 2 ) -1 (mod 2)
and

g even (x) = i≥0 (t 2i + t 2i+2 )x 2i ≡ i≥0 (t i + t i+1 )x 2i ≡ h(x 2 ) + 1 x 2 h(x 2 ) -1 (mod 2).
Therefore,

xg odd (x) + g even (x) ≡ x 2 h(x 2 ) + h(x 2 ) -1 + h(x 2 ) + 1 x 2 h(x 2 ) -1 ≡ 1 + x 2 h(x 2 ) + 1 x 2 h(x 2 ) -1 ≡ 1 + x 2 g(x 2 ) (mod 2).
So g(x) satisfies (3.1). Now we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. The 'only if ' part. Let f (x) = i≥0 c i x i . We can check directly that H 1 (f ) ≡ 1 (mod 2) implies c 0 ≡ 1 (mod 2), and

H 1 (f ) ≡ H 2 (f ) ≡ 1 (mod 2) implies c 0 ≡ 1 (mod 2) and c 1 + c 2 ≡ c 0 (mod 2). For any k ≥ 2, suppose H n (f ) ≡ 1 (mod 2) for all n ∈ [1, k]. Then f yields a J-fraction expansion f (x) = 1 1 + u 1 x - x 2 1 + u 2 x - x 2 . . . 1 + u k-1 x -x 2 f k (x) . (3.4) 
Replace f k (x) in (3.4) by g(x) in Lemma 3.3, and denote the resulting series by f (x) = i≥0 c i x i . Since f (x) and f (x) have the same (k -1)-th approximant, and the order of the (k -1)-th approximant is 2(k -1) + 1, we have c i = c i for i = 0, 1, . . . , 2k -2. It follows from Lemmas 3.3 and 3.2 that f (x) satisfies (3.1). Then by Lemma 3.1, c 0 = 1 and

c i ≡ c 2i+1 + c 2i+2 (mod 2) holds for all i ∈ [0, k -2].
The 'if ' part. For the converse, suppose that c 0 = 1 and c i ≡ c 2i+1 + c 2i+2 (mod 2) holds for all i ≥ 0. It follows from c 0 ≡ 1 (mod 2) that H 1 (f ) ≡ 1 (mod 2). Consequently, f (x) yields a J-fraction expansion

f (x) = 1 1 + u 1 x -x 2 f 1 (x)
.

Since f (x) satisfies (3.1), by Lemma 3.2, f 1 (x) also satisfies (3.1). So f 1 (x) has a J-fraction expansion

f 1 (x) = 1 1 + u 2 x -x 2 f 2 (x)
. Now f 1 (x) satisfies (3.1). This yields that H 1 (f 1 ) ≡ 1 (mod 2) and f 2 (x) satisfies (3.1). In summary,

f (x) = 1 1 + u 1 x - x 2 1 + u 2 x -x 2 f 2 (x)
and f 2 (x) satisfies (3.1). Repeating the previous argument, we find the J-fraction expansion of f (x):

J 1 1 1 • • • u 1 u 2 u 3 • • • where u i ∈ {0, 1} for all i ≥ 1. Hence H i (f ) ≡ 1 (mod 2) for all i ≥ 1. 3.2. ±1 Criterion. Let d = d 0 d 1 d 2 • • • ∈ {-1, 1} ∞ . Recall that d is apwenian if for all n ≥ 1, H n (d)/2 n-1 ≡ 1 (mod 2).
Our criterion for a ±1 sequence to be apwenian is stated in Theorem 1.1. Before we prove Theorem 1.1, we need a relation between 0-1 apwenian sequences and ±1 apwenian sequences.

Lemma 3.4. Let d = d 0 d 1 d 2 • • • ∈ {-1, 1} ∞ and let c = c 0 c 1 c 2 • • • ∈ {0, 1} ∞ where c i ≡ di-di+2 2 (mod 2) for all i ≥ 0. Then d is ±1 apwenian if and only if c is 0-1 apwenian. Proof. Let b i = 1-di 2
for all i ≥ 0. Then

H n (d) = 1 -2b 0 1 -2b 1 • • • 1 -2b n-1 1 -2b 1 1 -2b 2 • • • 1 -2b n . . . . . . . . . . . . 1 -2b n-1 1 -2b n • • • 1 -2b 2n-2 = 2 n-1 1 -2b 0 b 0 -b 1 • • • b n-2 -b n-1 1 -2b 1 b 1 -b 2 • • • b n-1 -b n . . . . . . . . . . . . 1 -2b n-1 b n-1 -b n • • • b 2n-3 -b 2n-2 = 2 n-1 1 b 0 -b 1 • • • b n-2 -b n-1 1 b 1 -b 2 • • • b n-1 -b n . . . . . . . . . . . . 1 b n-1 -b n • • • b 2n-3 -b 2n-2 -2 n b 0 b 0 -b 1 • • • b n-2 -b n-1 b 1 b 1 -b 2 • • • b n-1 -b n . . . . . . . . . . . . b n-1 b n-1 -b n • • • b 2n-3 -b 2n-2 = 2 n-1 1 b 0 -b 1 • • • b n-2 -b n-1 2 b 0 -b 2 • • • b n-2 -b n . . . . . . . . . . . . 2 b n-2 -b n • • • b 2n-4 -b 2n-2 -2 n b 0 -b 1 • • • -b n-1 b 1 -b 2 • • • -b n . . . . . . . . . . . . b n-1 -b n • • • -b 2n-2 .
Dividing both sides by 2 n-1 , we have

H n (d) 2 n-1 = 1 b 0 -b 1 • • • b n-2 -b n-1 2 b 0 -b 2 • • • b n-2 -b n . . . . . . . . . . . . 2 b n-2 -b n • • • b 2n-4 -b 2n-2 -2 b 0 -b 1 • • • -b n-1 b 1 -b 2 • • • -b n . . . . . . . . . . . . b n-1 -b n • • • -b 2n-2 ≡ 1 b 0 -b 1 • • • b n-2 -b n-1 0 b 0 -b 2 • • • b n-2 -b n . . . . . . . . . . . . 0 b n-2 -b n • • • b 2n-4 -b 2n-2 (mod 2) ≡ c 0 • • • c n-2 . . . . . . . . . c n-2 • • • c 2n-4
(mod 2)

≡ H n-1 (c) (mod 2).
Lemma 3.4 allows us to transfer Theorem 1.5 to be a criterion for ±1 apwenian sequences.

Proof of Theorem 1.1. By Theorem 1.5 and Lemma 3.4, the ±1 sequence d is apwenian if and only if d 0 = -d 2 and

∀ n ≥ 0, d n -d n+2 2 ≡ d 2n+1 -d 2n+3 2 + d 2n+2 -d 2n+4 2 (mod 2). (3.5)
Adding up the equation (3.5), we obtain its equivalent form:

∀ n ≥ 0, n i=0 d i -d i+2 2 ≡ n i=0 d 2i+1 -d 2i+3 2 + d 2i+2 -d 2i+4 2 (mod 2)
which reduces to In this section, we focus on sequences generated by substitutions of constant length p ≥ 2 on {0, 1} such that

∀ n ≥ 0, d 0 + d 1 2 - d n+1 + d n+2 2 ≡ d 1 + d 2 2 - d 2n+3 + d 2n+4 2 (mod 2). ( 3 
σ : 1 → 1w 1 • • • w p-1 , 0 → v 0 v 1 • • • v p-1 ,
where w i , v i ∈ {0, 1} for all i. These substitutions are called of type I.

Let c = c 0 c 1 c 2 • • • be the fixed point of σ starting with 1.
Remark. If σ is a substitution such that σ(1) is not starting with 1, then either the substitution does not have a fixed point or the fixed point is starting with 0 and it is not apwenian. is the well known period-doubling sequence; see for example [START_REF] Damanik | Local symmetries in the period-doubling sequence[END_REF]. The sequence c satisfies the recurrence relations c 2n = 1 and c 2n+1 = 1 -c n (n ≥ 0). Hence, by Theorem 1.5, c is apwenian.

It is interesting to see that substitutions of constant length actually give only one 0-1 apwenian sequence, namely, the period-doubling sequence. Theorem 4.2. Let c ∈ {0, 1} ∞ be the fixed point of a type I substitution of length p such that c is starting with 1. Then c is 0-1 apwenian if and only if c is the period-doubling sequence.

Proof. Let c be the fixed point of σ. Then it is also the fixed point of σ m for all m ≥ 1. Hence, we always assume that the length of σ is p with p ≥ 3. By Example 4.1, we only have to prove the necessity. Since

c 0 c 1 c 2 • • • = c = σ(c) = σ(c 0 )σ(c 1 )σ(c 2 ) • • • , we have for all i ≥ 0, σ(c i ) = c ip c ip+1 • • • c (i+1)p-1 . (4.1) 
Suppose that c satisfies (1.5). Then c 0 = 1 and c 1 + c 2 ≡ 1 (mod 2). There are only two cases to be considered. ). This implies that both σ(0) and σ(1) are starting with 1. By (4.1), we have for all i ≥ 0,

c ip = 1. (4.2)
Using (1.5) and (4.2), for i ≥ 0, we have

c (i+1)p-1 ≡ c 2(i+1)p-1 + c 2(i+1)p = c 2(i+1)p-1 + 1 (mod 2)
which implies that the last letter of σ(c i ) and σ(c 2i+1 ) are different by (4.1). So c i = c 2i+1 . In the other words, for all i ≥ 0,

c 2i+1 ≡ c i + 1 (mod 2). (4.
3)

It follows from (1.5) and (4.3) that for all i ≥ 0,

c 2i+2 ≡ c i + c 2i+1 ≡ c i + c i + 1 ≡ 1 (mod 2). (4.4)
The recurrence relations (4.3) and (4.4) with the initial value c 0 = 1 show that c is the period doubling sequence.

The ±1 apwenian sequences generated by type II substitutions

In this section, we focus on a particular class of substitutions of constant length on the alphabet {-1, 1}. Based on Theorem 1.1, we give a detailed criterion (Theorem 5.2) on the substitution itself to tell whether its fixed point is apwenian or not. This detailed criterion not only allows us to give the exact formula for the number of apwenian sequences (see Propositions 5.4 and 5.6), but also provides a way to write down these apwenian sequences (see Remark 5.5). We call this particular class of substitutions of type II.

Definition 5.1 (Type II substitution). We say a substitution σ on

A = {-1, 1} is of type II if it satisfies 1 → v 0 v 1 • • • v p-1 , -1 → v0 v1 • • • vp-1
where p ≥ 2, v 0 = 1 and vi := -v i for i = 0, 1, . . . , p -1. The length of the substitution σ is p.

Let d = d 0 d 1 d 2 • • • ∈ {-1, 1} +∞ be the fixed point of a type II substitution starting with 1. It follows from d = σ(d) that for all n ≥ 0, σ(d n ) = d np d np+1 • • • d np+p-1 .
Then for all n ≥ 0 and j = 0, 1, . . . , p -1,

d np+j = v j d n .
(5.1)

Here v j d n represents the product of integers v j and d n . Moreover, from (5.1), we find that the generating function

f p (x) = +∞ n=0 d n x n satisfies f p (x) = (v 0 + v 1 x + • • • + v p-1 x p-1 )f p (x p ) (5.2)
where v i ∈ {-1, 1}. Now we introduce our criterion for ±1 apwenian sequences generated by type II substitutions.

Theorem 5.2. Let d ∈ {-1, 1} +∞ be the fixed point of a type II substitution of length p ≥ 2 and d is starting with 1. For m ≥ p, define v m := v j where m = np + j with n ≥ 0 and j = 0, 1, . . . , p -1.

(1) When p is odd, d is ±1 apwenian if and only if 

v j + v j+1 -v 2j+1 -v 2j+2 2 ≡ 1 (mod 2), 0 ≤ j ≤ p -2. ( 5 
d np+j + d np+j+1 -d 2(np+j)+1 -d 2(np+j)+2 2 = d np+j + d np+j+1 -d 2np+2j+1 -d 2np+2j+2 2 = v j d n + v j+1 d n -v 2j+1 d 2n -v 2j+2 d 2n 2 by (5.1) = v j + v j+1 2 d n - v 2j+1 + v 2j+2 2 d 2n ≡ v j + v j+1 2 - v 2j+1 + v 2j+2 2 (mod 2).
(5.4)

When p-1 2 ≤ j ≤ p -2, we have p ≤ 2j + 1 < 2j + 2 ≤ 2p -2. For all n ≥ 0,

d np+j + d np+j+1 -d 2(np+j)+1 -d 2(np+j)+2 2 = d np+j + d np+j+1 -d (2n+1)p+2j+1-p -d (2n+1)p+2j+2-p 2 = v j d n + v j+1 d n -v 2j+1-p d 2n+1 -v 2j+2-p d 2n+1 2 by (5.1) = v j + v j+1 2 d n - v 2j+1-p + v 2j+2-p 2 d 2n+1 ≡ v j + v j+1 2 - v 2j+1 + v 2j+2 2 (mod 2).
(5.5)

When j = p -1, we have for all n ≥ 0,

d np+j + d np+j+1 -d 2(np+j)+1 -d 2(np+j)+2 2 = d np+p-1 + d np+p -d 2np+2p-1 -d 2np+2p 2 = v p-1 d n + v 0 d n+1 -v p-1 d 2n+1 -v 0 d 2n+2 2 by (5.1) = v p-1 d n -d 2n+1 2 + v 0 d n+1 -d 2n+2 2 ≡ d n -d 2n+1 2 + d n+1 -d 2n+2 2 (mod 2).
(5.6)

(1) If p is odd, then p-3 2 and p-1 2 are two consecutive integers. If d is ±1 apwenian, then by Theorem 1.1, we obtain (5.3) from (5.4) and (5.5). Conversely, if (5.3) holds, then (5.4), (5.5) and (5.6) yield (1.2) by induction on n. It follows from Theorem 1.1 that d is ±1 apwenian.

(2) Suppose p is even and p = 2q with q ≥ 1. If d is ±1 apwenian, then by Theorem 1.1, (5.4) and (5.5), we have

v j + v j+1 -v 2j+1 -v 2j+2 2 ≡ 1 (mod 2), 0 ≤ j ≤ p -2 and j = q -1.
Hence,

0≤j≤p-2 j =q-1 v j + v j+1 -v 2j+1 -v 2j+2 2 ≡ p -2 ≡ 0 (mod 2). It follows that v q-1 + v q ≡ v 0 + v p-1 2 (mod 2).
(5.7) Thus,

d np+q-1 + d np+q -d 2(np+q-1)+1 -d 2(np+q-1)+2 2 = d np+q-1 + d np+q -d 2np+p-1 -d (2n+1)p 2 = v q-1 d n + v q d n -v p-1 d 2n -v 0 d 2n+1 2 by (5.1) = v q-1 + v q 2 d n - v p-1 d 2n + v 0 d 2n+1 2 ≡ v 0 + v p-1 2 d n - v p-1 d 2n + v 0 d 2n+1 2 (mod 2) by (5.7) = d n -d 2n+1 2 v 0 + d n -d 2n 2 v p-1 ≡ d n -d 2n+1 2 + d n -d 2n 2 (mod 2) ≡ 1 + d 2n + d 2n+1 2 (mod 2). (5.8)
If d is ±1 apwenian, then by (1.2) and (5.8), we have for all n ≥ 0, d2n+d2n+1 2 ≡ 0 (mod 2). This implies that ∀ n ≥ 0, d 2n+1 = -d 2n .

(5.9)

By Theorem 1.1 and (5.9), we obtain that for all n ≥ 0,

d n + d n+1 -d 2n+1 -d 2n+2 2 ≡ d n + d n+1 + d 2n -d 2n+2 2 ≡ 1 (mod 2).
Hence,

n-1 i=0 d i + d i+1 + d 2i -d 2i+2 2 ≡ n (mod 2)
which reduces to ∀ n ≥ 0, d 2n = d n .

(5.10)

It follows from (5.9) and (5.10) that d is the Thue-Morse sequence.

5.1. The ±1 apwenian sequences when p is odd. Let p ≥ 3 be an odd number and let σ :

1 → v 0 v 1 , • • • v p-1 , 0 → v0 v1 • • • vp-1 be
a type II substitution of length p. The mapping j → 2j + 1 (mod p) defined on N induces the permutation

τ : 0 1 • • • p-3 2 p-1 2 p+1 2 • • • p -2 1 3 • • • p -2 0 2 • • • p -3 .
For j = 0, 1, . . . , p -2, write

δ(j) := v j -v j+1 2 .
Then δ(j) ∈ {0, 1} and (5.3) is equivalent to the linear system

   δ(0) . . . δ(p -2)    +    δ(τ (0)) . . . δ(τ (p -2))    ≡    1 . . . 1    (mod 2).
(5.11)

Note that (5.11) is a linear system on the F 2 -vector space F p-1

2

.

Then it has either no solution or 2 k solutions for some k ≥ 0.

By Theorem 5.2, searching for ±1 apwenian sequences that are fixed points of type II substitutions turns out to be solving the linear system (5.11). The following result shows that the solutions of (5.11) can be characterized by the cycle decomposition of the permutation τ . Proposition 5.4. Let p ≥ 3 be an odd number.

(1) The linear system (5.11) has no solution if and only if there is an odd cycle in the cycle decomposition of τ .

(2) The linear system (5.11) has 2 k solutions if and only if τ can be decomposed into k cycles of even length and τ contains no cycles of odd length.

Proof. Let h be the number of cycles in the cycle decomposition of τ . Write the cycle decomposition of τ as x where r i ≥ 1 (i = 1, . . . , h) and r 1 + • • • + r h = p -1. We reorder the linear system (5.11) into h subsystems according to the cycles. For = 1, 2, . . . , h, the -th cycle yields the -th subsystem

         δ(x ( ) 1 ) + δ(τ (x ( ) 1 )) ≡ 1, . . . δ(x ( ) r ) + δ(τ (x ( ) r )) ≡ 1, that is          δ(x ( ) 1 ) + δ(x ( ) 2 ) ≡ 1, . . . δ(x ( ) r ) + δ(x ( ) 1 ) ≡ 1.
(mod 2) (5.13)

Denote by C and (C | 1) the coefficient matrix and the augmented matrix of the -th subsystem, where 1 is the column vector (of suitable size) with all entries equal 1, i.e.,

C =        1 1 1 1 . . . . . . 1 1 1 1        r ×r and (C |1) =        1 1 1 1 1 1 . . . . . . . . . 1 1 1 1 1 1        .
Working over F 2 , the row echelon forms of C and (C | 1) indicate that for = 1, . . . , h,

rank(C ) = r -1 and rank(C | 1) = r -1, if r is even, r , if r is odd. (5.14)
(1) Now we prove the 'if' part. Suppose that τ contains a cycle of odd length, i.e., there exist j ∈ {1, . . . , h} such that r j is odd. By (5.14), rank(C j ) = rank(C j | 1). So the j-th subsystem is inconsistent. This implies that the linear system (5.11) has no solution.

For the 'only if' part, see the proof of the 'if' part of Proposition 5.4(2).

(2) Recall that we write the cycle decomposition of τ as in (5.12) and reorder the linear system (5.11) into h subsystems as in (5.13). The coefficient matrix of the reordered linear system (5.11) with variables arranged in the order δ(x (1) 1 ), . . . , δ(x (1) r1 ), δ(x

(2)
1 ), . . . , δ(x (2) r2 ), . . . , δ(x

(h) 1 ), . . . , δ(x (h) r h ) is the block diagonal matrix C = diag(C 1 , C 2 , . . . , C h ). Note that rank(C) = h i=1 rank(C i ) = h i=1 (r i -1) = p -1 -h.
(5.15)

The 'if ' part. Assume that h = k and r is even for all = 1, . . . , k. Then, by (5.14), rank(C ) = rank(C | 1) = r -1 for = 1, . . . , k. So the -th subsystem is consistent and it has one free variable. Precisely, for = 1, . . . , k, the solutions of the -th subsystem are δ(x

( ) j ) ≡ 1 + j + δ(x ( )
1 ) (mod 2), j = 1, . . . , r .

(

In total the linear system (5.11) has k free variables and it has exactly 2 k solutions.

The 'only if ' part. Assume that the linear system (5.11) has 2 k solutions. Then all the h subsystems have to be consistent. So for = 1, . . . , h, rank(C ) = rank(C | 1) and r is even by (5.14). Namely, all the cycles in the cycle decomposition of τ are of even length. Moreover, when the linear system (5.11) has 2 k solutions, there are k free variables in (5.11) and rank(C) = p -1 -k. Then it follows from (5.15) that h = k. So, in the cycle decomposition of τ , there are exactly k even cycles and no odd cycles. Remark 5.5. Once we have the cycle decomposition of τ , we can read all type II apwenian substitutions from (5.16). For example, when p = 9, τ = (1, 3, 5, 7, 0, 2, 4, 6, 8) = (0, 1, 3, 7, 6, 4)(2, 5).

Write (δ(0), δ(2)) = (x, y) ∈ {0, 1} 2 . By (5.16),

δ = (x, 1 -x, y, x, 1 -x, 1 -y, x, 1 -x).
Recall that δ(j) = vj -vj+1 2

. While the initial value is v 0 = 1, there are only four type II apwenian substitutions: Recall that τ is the permutation on {0, 1, 2, . . . , p -2} induced by j → 2j + 1 (mod p) :

(x, y) v 0 v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 (0, 0) 1 1 -1 -1 -1 1 -1 -1 1 (0, 1) 1 1 -1 1 1 -1 -1 -1 1 (1, 0) 1 -1 -1 -1 1 1 -1 1 1 (1, 1) 1 -1 -1 1 -1 -1 -1 1 
τ : 0 1 • • • p-3 2 p-1 2 p+1 2 • • • p -2 1 3 • • • p -2 0 2 • • • p -3 .
We obtain the following explicit formula for the number of cycles in the cycle decomposition of τ .

Proposition 5.6. Let p ≥ 3 be an odd number. There are k cycles in the cycle decomposition of τ , where

k = 1 µ(p) µ(p)-1 j=0 #{n ∈ [0, p -2] : (2 j -1)(n + 1) ≡ 0 (mod p)} = 1 µ(p) µ(p)-1 j=0 gcd(2 j -1, p) -1.
(5.17)

Proof. Since 2 µ(p) ≡ 1 (mod p), we have for any m ∈ N, 2 µ(p) m ≡ m (mod p). Note that τ j (n) ≡ 2 j n + 2 j -1 (mod p) for any j ≥ 0. Hence τ µ(p) = id. The subgroup generated by τ is

G := {τ 0 , τ, τ 2 , . . . , τ µ(p)-1 }.
The number of orbits of the mapping

G × {0, 1, 2, . . . , p -2} → {0, 1, 2, . . . , p -2} g × x → g(x)
is equal to the number of cycles in the cycle decomposition of τ . Denote by Fix(τ j ) the set of fixed points of τ j . By Pólya's enumeration theorem or its special case -Burnside's lemma [START_REF] Rotman | An introduction to the theory of groups[END_REF]Theorem 3.22],

k = 1 µ(p) µ(p)-1 j=0 #Fix(τ j ) = 1 µ(p) µ(p)-1 j=0 #{n ∈ [0, p -2] : (2 j -1)(n + 1) ≡ 0 (mod p)}.
(

For any fixed j, let gcd(2 j -1, p) =: d. Then

2 j -1 = s • d and p = t • d
where gcd(s, t) = 1. For n ∈ [0, p -2], we have

(n + 1) • (2 j -1) ≡ 0 (mod p) =⇒ (n + 1) • (s • d) ≡ 0 (mod p) =⇒ n + 1 = m • t. While 1 ≤ n + 1 ≤ p -1 and n + 1 = mt, we have 1 ≤ m ≤ d -1. So #{n ∈ [0, p -2] : (n + 1)(2 j -1) ≡ 0 (mod p)} =#{m ∈ [1, d -1] : (m • t) • (s • d) ≡ 0 (mod p)} =d -1 = gcd(2 j -1, p) -1.
By (5.18), we derive

k = 1 µ(p) µ(p)-1 j=0 (gcd(2 j -1, p) -1) = 1 µ(p) µ(p)-1 j=0 gcd(2 j -1, p) -1.
It follows from (5.17) that

k = 1 µ(p) d | p d × # j ∈ [0, µ(p) -1] : gcd(2 j -1, p) = d -1.
(5.

For example, when p = 9, we have µ(9) = 6 and j 0 1 2 3 4 5 2 j (mod 9) 1 2 4 8 7 5 2 j -1 (mod 9) 0 1 3 7 6 4

d 9 1 3 1 3 1 So k = 1 6 (1 × 3 + 3 × 2 + 9 × 1) -1 = 2
. Now, we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. According to Theorem 5.2 (1), N p is equal to the number of solutions of (5.3) which is equivalent to the linear system (5.11). If τ contains an odd cycle, then by Proposition 5.4(1), N p = 0. The remaining case follows from Propositions 5.4(2) and 5.6.

Corollary 5.7. Let p ≥ 3 be an odd number and the cycle decomposition of τ has k cycles.

(1) If p = p 1 , where p 1 is prime with µ(p 2 1 ) = µ(p 1 )p 1 and ≥ 1 is an integer, then k = p1-1 µ(p1) .

(2) If p = p 1 p 2 , where p 1 , p 2 are prime and p 1 = p 2 , then k = (p1-1)(p2-1) lcm(µ(p1),µ(p2

)) + p1-1 µ(p1) + p2-1 µ(p2)
where lcm(a, b) is the least common multiple of a and b.

We remark that some primes p do not satisfy µ(p 2 ) = µ(p)p, for example, the Wieferich primes [START_REF] Wieferich | Zum letzten Fermatschen Theorem[END_REF]. To prove Corollary 5.7, we need the following lemma.

Lemma 5.8. Let p ≥ 3 be prime with µ(p s ) = µ(p s-1 )p for some integer s ≥ 2. Let p 1 and p 2 be prime with p 1 = p 2 .

(1) µ(p ) = µ(p -1 )p for all ≥ s.

(2) µ(p 1 p 2 ) = lcm(µ(p 1 ), µ(p 2 )).

Proof.

(1) The conclusion holds for = s. Assume that the conclusion holds for = k where k ≥ s, we prove the case = k + 1. We first show that p k+1 (2 µ(p k ) -1). By the inductive assumption, µ(p k ) = µ(p k-1 )p. Then p k (2 µ(p k-1 ) -1) and 2 µ(p k ) -1 = 2 µ(p k-1 )p -1 = (2 µ(p k-1 ) -1)P (k),

where P (k) = (p + 2 µ(p k-1 ) -1 + • • • + 2 (p-1)µ(p k-1 ) -1). When k = 2, since p|(2 µ(p) -1) and p 2 (2 µ(p) -1), we can write 2 µ(p) = hp + 1 with p h. Then

P (2) = p + hp + hp(1 + 2 µ(p) ) + • • • + hp(1 + 2 µ(p) + • • • + 2 (p-2)µ(p) ) = p + hp + hp(2 + 2 µ(p) -1) + • • • + hp(p -1 + 2 µ(p) -1 + • • • + 2 (p-2)µ(p) -1) = p + p -1 2 p 2 h + hp(2 µ(p) -1) + • • • + hp(2 µ(p) -1 + • • • + 2 (p-2)µ(p) -1) .
Note that p|(2 mµ(p) -1) for all m ≥ 1. We have p 2 P (2). So p 3 (2 µ(p 2 ) -1). When k ≥ 3, we have p 2 |(2 mµ(p k-1 ) -1) for all m ≥ 1. Hence, p 2 P (k). Consequently, p k+1 (2 µ(p k ) -1). Since p k |p k+1 , we have µ(p k )|µ(p k+1 ). Suppose that µ(p k+1 ) = µ(p k )x with x ≥ 1. Note that

2 µ(p k )x -1 = (2 µ(p k ) -1)(1 + 2 µ(p k ) + 2 µ(p k )2 + • • • + 2 µ(p k )(x-1) ) = (2 µ(p k ) -1)(x + 2 µ(p k ) -1 + 2 µ(p k )2 -1 + • • • + 2 µ(p k )(x-1) -1). Since p k+1 |(2 µ(p k )x -1), p k |(2 µ(p k ) -1) and p k+1 (2 µ(p k ) -1), then p|(x + 2 µ(p k-1 ) -1 + 2 µ(p k-1 )2 -1 + • • • + 2 µ(p k-1 )(x-1) -1).
Since p|(2 µ(p k-1 )m -1) for all m ≥ 1, we have p|x. Hence, by the definition of µ(p k+1 ), we have x = p. Finally µ(p k+1 ) = µ(p k )p.

(2) Let L = lcm(µ(p 1 ), µ(p 2 )) and suppose L = µ(p 1 )x = µ(p 2 )y where x, y ∈ N. Then 

2 L -1 = (2 µ(p1) -1)(1 + 2 µ(p1) + • • • + 2 (x-1)µ(p1) ) = (2 µ(p2) -1)(1 + 2 µ(p2) + • • • + 2 (y-1)µ(p2)
i ∈ [0, -1], if p i 1 |(2 j -1), then j = kµ(p i 1 ) for some k. It follows that # j ∈ [0, µ(p) -1] : p i 1 |(2 j -1) = µ(p) µ(p i 1 )
.

For any fixed i ∈ [0, -1], by the fact that gcd(2 j -1, p) = p i 1 if and only if p i 1 |(2 j -1) and p i+1 1 (2 j -1), we have

# j ∈ [0, µ(p) -1] : gcd(2 j -1, p) = p i 1 = µ(p) µ(p i 1 ) - µ(p) µ(p i+1
1 ) where µ(1) = 1. By Lemma 5.8, for any fixed i ∈ [1, -1], we have Note that # j ∈ [0, µ(p) -1] : gcd(2 j -1, p) = p = 1. We have

# j ∈ [0, µ(p) -1] : gcd(2 j -1, p) = p i 1 = p -i-1 1 (p 1 -1). Note that # j ∈ [0, µ(p) -1] : gcd(2 j -1, p) = p = 1 and # j ∈ [0, µ(p) -1] : gcd(2 j -1, p) = 1 = µ(p) -p -1 1 . By (5.19), we have k = p1-1 µ(p1) . ( 2 
# j ∈ [0, µ(p) -1] : gcd(2 j -1, p) = 1 = µ(p) -1 - µ(p) µ(p 1 ) -1 - µ(p) µ(p 2 ) -1 .
By (5.19) and Lemma 5.8, we have k = (p1-1)(p2-1) lcm(µ(p1),µ(p2)) + p1-1 µ(p1) + p2-1 µ(p2) . The following proposition gives a description of p when there is an odd cycle in the cycle decomposition of τ . Proposition 5.9. Let p ≥ 3 be an odd number. There is an odd cycle in the cycle decomposition of τ if and only if p = mp 1 for some m ≥ 1, where µ(p 1 ) is odd.

Proof. The 'if ' part. If p = mp 1 for some m ≥ 1, then p|m(2 µ(p1) -1). Hence, τ µ(p1) (m -1) = m -1. Since µ(p 1 ) is odd, there is an odd cycle in the cycle decomposition of τ .

The 'only if ' part. If there is an odd cycle in the cycle decomposition of τ , then there exist m ≥ 1 and n ∈ {0, 1, . . . , p-2} such that τ m (n) = n. So p|(n+1)(2 m -1). Note that n+1 ≤ p-1. Hence, there exist p 1 ≥ 2 and p 2 ≥ 1 such that p = p 1 p 2 and p 1 |(2 m -1). Since p 1 |(2 µ(p1) -1), we have µ(p 1 )|m. Hence, µ(p 1 ) is odd which completes this proof.

(1) If 2j + 1 < p -1, then 2j + 2 ≤ p -1. There are four sub-cases. Case 1: 2j + 1 ∈ A and 2j + 2 ∈ A. In this case, d 2np+2j+1 = v 2j+1 and d 2np+2j+2 = v 2j+2 . By (6.2), for all n ≥ 0,

1 ≡ v j d n + v j+1 -v 2j+1 -v 2j+2 2 (mod 2).
So d is a constant sequence which is not apwenian. Case 2: 2j + 1 ∈ A and 2j + 2 / ∈ A. In this case, d 2np+2j+1 = v 2j+1 and d 2np+2j+2 = v 2j+2 d 2n . By (6.2), for all n ≥ 0,

1 ≡ v j d n + v j+1 -v 2j+1 -v 2j+2 d 2n 2 (mod 2).
We 

≥ 0, 1 ≡ v j d n + v j+1 -v 2j+1 d 2n -v 2j+2 d 2n 2 ≡ v j d n + v j+1 -v 2j+1 -v 2j+2 2 (mod 2).
We see that d is a constant sequence which is not apwenian.

(2) If 2j + 1 ≥ p, we will consider whether 2j + 1 -p, 2j + 2 -p belong to A or not. In this case, we have similar four cases. We omit the proof here. Lemma 6.5. Let d ∈ {-1, 1} ∞ be given by (6.1). If d is apwenian, then j / ∈ A and j = p 2 imply j -1 / ∈ A.

Proof. Suppose j / ∈ A. If j -1 ∈ A, then by Theorem 1.1, d is apwenian yields that for all n ≥ 0,

1 ≡ v j-1 + v j d n -d 2np+2j-1 -d 2np+2j 2 
(mod 2). (6.3)

Note that j = p 2 implies either 2j -1 < p -1 or 2j -1 ≥ p. Hence, there are two cases. (1) If 2j -1 < p -1, then 2j ≤ p -1. There are four sub-cases. Case 1: 2j -1 ∈ A and 2j ∈ A. By (6.2), for all n ≥ 0,

1 ≡ v j-1 + v j d n -v 2j-1 -v 2j 2 (mod 2).
So d is a constant sequence which is not apwenian. Case 2: 2j -1 ∈ A and 2j / ∈ A. By (6.2), for all n ≥ 0,

1 ≡ v j-1 + v j d n -v 2j-1 -v 2j d 2n 2 (mod 2).
We have d 2n = xd n for all n ≥ 0 where x ∈ {-1, 1}. By Lemma 6.2, d is not apwenian. Case 3: 2j -1 / ∈ A and 2j ∈ A. The same proof as in Case 2 works. Case 4: 2j -1 / ∈ A and 2j / ∈ A. By (6.2), for all n ≥ 0,

1 ≡ v j-1 + v j d n -v 2j-1 d 2n -v 2j d 2n 2 ≡ v j-1 + v j d n -v 2j-1 -v 2j 2 (mod 2).
We see that d is a constant sequence which is not apwenian.

(2) If 2j + 1 ≥ p, we have similar discussion. We omit the details here. Now we are ready to prove Theorems 6.1 and 1.2.

Proof of Theorem 6.1. Suppose that d is apwenian. By Lemma 6.3, we have 0 / ∈ A and p-1 / ∈ A. Then by Lemma 6.4, 0 / ∈ A gives that j / ∈ A for all j < p 2 . On the other hand, by Lemma 6.5, it follows from p -1 / ∈ A that j / ∈ A for all j > p 2 -1. Proof of Theorem 1.2. According to Theorem 6.1, if d is apwenian, then d satisfies the recurrence relations for all n ≥ 0 and for all j = 0, 1, . . . , p -1, Hence, by Theorem 1.1, d is ±1 apwenian. Then it follows from Theorem 5.2(2) that d can not be the fixed point of a type II substitution of even length. In the following, we show that d also can not be the fixed point of a type II substitution of odd length. Suppose on the contrary that d is the fixed point of a type II substitution of odd length. Then there exist p ≥ 2, v 0 , v 1 , . . . , v p-1 ∈ {-1, 1} such that for all n ≥ 0 and j = 0, 1, . . . , p -1, Although it has no fixed point, it yields an apwenian sequence in the following way. Let ι be a substitution on {a, 1, -1} given by a → a1, 1 → 11, 1 → 1 1

d np+j = v j d n . Therefore, f (z) = ∞ n=0 d np + d np+1 z + • • • + d np+(p-1) z p-1 z np = ∞ n=0 v 0 d n + v 1 d n z + • • • + v p-1 d n z p-1 z np = v 0 + v 1 z + • • • + v p-1 z p-1 f (z p ),
d np+j = v j d n . ( 7 
and ρ be a coding 

a → 1, 1 → 1, 1 → 1.

Concluding remarks

After we uploaded the first version of this paper to arXiv, J.-P. Allouche kindly informed us that the permutation τ (defined in subsection 5.2) has already been considered up to a small change of notation (see [START_REF] Allouche | Suites infinies à répétitions bornées[END_REF]Proposition 3] and [START_REF] Ellis | Computing the cycles in the perfect shuffle permutation[END_REF]Eq. 5]). In [START_REF] Allouche | Suites infinies à répétitions bornées[END_REF] and [START_REF] Ellis | Computing the cycles in the perfect shuffle permutation[END_REF], the authors studied the permutation τ :

1 2

• • • n n + 1 n + 2 • • • 2n 2 4 • • • 2n 1 3 • • • 2n -1
and they showed that the number of cycles of τ is (2) which is equal to k in Theorem 1.4.

d|(2n+1), d =1 φ(d) ord d
Quite recently, Allouche, Han and Niederreiter [START_REF] Allouche | Perfect linear complexity profile and Apwenian sequences[END_REF] found a connection between 0-1 apwenian sequences and sequences with perfect linear complexity profile (PLCP) which were defined more that thirty years ago in the study of measures of randomness for binary sequences. For details of PLCP sequences, see for example [START_REF] Allouche | Perfect linear complexity profile and Apwenian sequences[END_REF][START_REF] Niederreiter | Sequences with almost perfect linear complexity profile[END_REF][START_REF] Wang | The characterization of all binary sequences with a perfect linear complexity profile[END_REF] and references therein.

. 6 ) 4 .

 64 So(3.5) is equivalent to(3.6). It follows from the initial conditiond 0 = -d 2 that (3.6) is exactly (1.2) for n ≥ 1. Since d 0 = -d 2 is just (1.2) for n = 0, we conclude that (3.6) and (1.2) are equivalent. This completes the proof. The 0-1 apwenian sequences generated by type I substitutions

Example 4 . 1 .

 41 Let σ be the substitution 1 → 10 and 0 → 11. Its fixed point c = 101110101011101 • • •

Case 1 :

 1 c 1 = 1 and c 2 = 0. By (4.1), σ(c 0 ) = σ(c 1 ) = σ(1) implies c p-1 = c 2p-1 and c p = c 0 = 1. By (1.5), c p-1 ≡ c 2p-1 + c 2p (mod 2) and c 2p ≡ c 4p+1 + c 4p+2 (mod 2). Hence, 0 ≡ c 2p ≡ c 4p+1 + c 4p+2 (mod 2). Since σ(1) = 110 • • • c p-1 and σ(c 4 ) = c 4p c 4p+1 c 4p+2 • • • c 5p-1 , we have c 4 = 0. It follows from (4.1) and c 2 = c 4 = 0 that c 2p+1 c 2p+2 = c 4p+1 c 4p+2 . So c p ≡ c 2p+1 + c 2p+2 = c 4p+1 + c 4p+2 ≡ c 2p = 0 (mod 2) which is a contradiction. Case 2: c 1 = 0 and c 2 = 1. By (4.1), c 2p = c 2p+2 = 1 and c 2p+1 = 0. Then, by (1.5), c p ≡ c 2p+1 + c 2p+2 = 1 (mod 2

1 5. 2 .

 12 The cycle decomposition of τ when p is odd. Let p ≥ 3 be an odd number. Recall that µ(p) := ord p (2) = min{j ∈ [1, p -1] : p|(2 j -1)}. By the minimality of µ(p), we know that µ(p)|m if p|(2 m -1). Hence, by Euler's theorem, µ(p)|φ(p), where φ(p) is the Euler function. In particular, µ(p)|(p -1) if p is prime.

  ) If d|p 1 p 2 , where p 1 = p 2 are prime, then d ∈ {1, p 1 , p 2 , p}. Similarly, we have # j ∈ [0, µ(p) -1] : gcd(2 j -1, p) = p 1 = µ(p) µ(p 1 ) -1, # j ∈ [0, µ(p) -1] : gcd(2 j -1, p) = p 2 = µ(p) µ(p 2 ) -1.

7 .Proposition 7 . 1 . 2 ≡ 1 + d2n+1+d2n+2 2 (

 771212 which implies that f (z) satisfies(1.1). Discussion and more examples 7.1. Substitutions of non-constant length. The question of finding apwenian sequences in fixed points of substitutions of constants length have been settled in the previous sections. It is natural to ask the same question for fixed points of substitutions of non-constant length. A countable class of fixed points of substitutions of non-constant length are Sturmian. Actually, there are uncountably many Sturmian sequences. The next result shows that they are not apwenian. All Sturmian sequences on {-1, 1} or {0, 1} are not apwenian.Proof. Let d be a Sturmian sequence on {a, b} and F be the set of all subwords of d. Case 1: {a, b} = {1, -1}. Let d be of type a. That is aa ∈ F and bb / ∈ F. If d is apwenian, then by Theorem 1.1, we have dn+dn+1 mod 2) for all n ≥ 0. So d n d n+1 = aa for some n =⇒ d 2n+1 d 2n+2 ∈ {ab, ba}, (7.1) d n d n+1 ∈ {ab, ba} for some n =⇒ d 2n+1 d 2n+2 = aa. (7.2) Since bb / ∈ F, we see aba ∈ F. Therefore, d j d j+1 d j+2 = aba for some j ≥ 0. By (7.2), we have d 2j+1 d 2j+2 d 2j+3 d 2j+4 = aaaa. By (7.1), we have d 4j+3 d 4j+4 ∈ {ab, ba} and d 4j+5 d 4j+6 ∈ {ab, ba}. Hence, |d 2j+1 d 2j+2 d 2j+3 d 2j+4 | a -|d 4j+3 d 4j+4 d 4j+5 d 4j+6 | a = 2 which contradicts the fact that d is balanced. So d cannot be apwenian. Case 2: {a, b} = {0, 1}. If d is apwenian, then d 0 = 1 and by Theorem 1.5, for all n ≥ 0, d n ≡ d 2n+1 + d 2n+2 (mod 2). (7.3) When d is of type 0, by (7.3), d n = 0 implies that d 2n+1 d 2n+2 = 00. Consequently, 0 m ∈ F for any m ≥ 1. Since d is not (eventually) periodic and 11 / ∈ F, there exists an n 0 ≥ 1 such that 10 n0 1 ∈ F. Therefore, 0 n0+2 , 10 n0 1 ∈ F which contradicts the fact that d is balanced. When d is of type 1, applying (7.3) for n = 0 and n = 1, we obtain that d 0 d 1 d 2 d 3 d 4 ∈ {11010, 10111} which implies 010 ∈ F or 111 ∈ F. If 010 ∈ F, then there exists n ≥ 0 such that d n d n+1 d n+2 = 010. By (7.3), this implies that (d 2n+i ) 6 i=1 ∈ {111011, 110111}. That is to say if 010 ∈ F then 111 ∈ F which contradicts the fact that d is balanced. Hence, 010 / ∈ F. Similarly, 111 / ∈ F. Therefore, d cannot be apwenian.where 1 := -1. Its fixed point starting with 1 is the Thue-Morse sequence t. Now, we apply the morphism 1 → 11, 1 → 11 to t, and obtain the sequenced = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . ).Then d is a ±1 apwenian sequence and it can not be generated by a type II substitution.Proof. By the definition of d, we know that for all n ≥ 0,d4n = d 4n+1 = d 2n and d 4n+2 = d 4n+3 = -d 2n . (7.4) Since d n ∈ {-1, 1}, using (7.4), one can check that d satisfies (1.2). For instance, when n = 4k, d 4k + d 4k+1 -d 8k+1 -d 8k+2 2 = d 4k + d 4k+1 -d 4k + d 4k 2 = d 2k + d 2k 2 = d 2k ≡ 1 (mod 2).

. 5 )

 5 Since d 0 = d 1 = 1, by using (7.5), a direct computation shows that v 0 = v 1 = 1. Set p = 2q + 1. Then by (7.5),d p 2 = v 0 d p = v 2 0 d 1 = 1 and d p 2 +1 = v 1 d p = v 1 v 0 d 1 = 1. By (7.4), we have 1 = d p 2 +1 = d 4(q 2 +q)+2 = -d 2(q 2 +q) = -d 4(q 2 +q)+1 = -d p 2 = -1,which is a contradiction. Example 7.6. Consider the substitution 1 → 11, 1 → 1 1.

Thend

  = ρ(ι ∞ (a)) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . )is apwenian. In fact, d 0 = 1 and for all n ≥ 0, d 2n+1 = d n , d 2n+2 = -d n+1 which fulfill the criterion in Theorem 1.1.

  When p is even, d is ±1 apwenian if and only if d is the Thue-Morse sequence. Proof of Theorem 5.2. If d ∈ {-1, 1} +∞ is the fixed point of a type II substitution of length p ≥ 2 and d is starting with 1, then d satisfies (5.1). To apply Theorem 1.1, we need to check the relation between (1.2) and (5.3).

		.3)
	(2) Remark 5.3. Let p be even and N p be the number of apwenian series satisfying (5.2). Then,
	Theorem 5.2 implies that	
	N p =	1, if p = 2 k for some k ≥ 1, 0, otherwise.

When 0 ≤ j ≤ p-3 2 , we have 0 ≤ 2j + 1 < 2j + 2 ≤ p -1. For all n ≥ 0,

  ).Since p 1 |(2 µ(p1) -1), p 2 |(2 µ(p2) -1) and p 1 = p 2 , we have p 1 p 2 |(2 L -1). Therefore, µ(p 1 p 2 )|L. On the other hand, since p 1 |p 1 p 2 and p 2 |p 1 p 2 , we have µ(p 1 )|µ(p 1 p 2 ) and µ(p 2 )|µ(p 1 p 2 ). Hence, L|µ(p 1 p 2 ). So that L = µ(p 1 p 2 ).Proof of Corollary 5.7. (1) If d|p 1 , where p 1 is prime, then d = p i 1 with 0 ≤ i ≤ . Note that for every odd number p ≥ 3, if p |(2 m -1), then there exists an integer k such that m = kµ(p ). Hence, for any fixed

  have d 2n = xd n for all n ≥ 0 where x ∈ {-1, 1}. By Lemma 6.2, d is not apwenian. Case 3: 2j + 1 / ∈ A and 2j + 2 ∈ A. The same proof as in Case 2 works. Case 4: 2j + 1 / ∈ A and 2j + 2 / ∈ A. In this case, d 2np+2j+1 = v 2j+1 d 2n and d 2np+2j+2 = v 2j+2 d 2n . By (6.2), for all n
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Remark 5.10. Let p be odd and N p be the number of apwenian series satisfying (5.2). Then, Propositions 5.6 and 5.9 imply that N p = 0, if p = mp 1 for some m ≥ 1 and p 1 ≥ 3 with µ(p 1 ) odd , 2 k , otherwise,

where k = 1 µ(p) µ(p)-1 j=0

gcd(2 j -1, p) -1.

6. The ±1 apwenian sequences generated by substitutions of constant length

In this section, we consider all substitutions of constant length. We show that the only substitutions that have a chance to generate ±1 apwenian sequences are type II substitutions (see Theorem 6.1).

A substitution σ (of constant length) on {-1, 1} is of the form

where p ≥ 2 is an integer, and v i , w i ∈ {-1, 1} for i = 0, 1, . . . , p -1. To ensure that σ has a fixed point, we need v 0 = 1 or

. In addition, we can assume that d 0 = 1 (which also means v 0 = 1). Otherwise, we investigate -d. Define

Then d satisfies the recurrence relations

Note that

In fact, our next result shows that substitutions of constant length, which are not type II, have no apwenian fixed point.

Theorem 6.1. Let d ∈ {-1, 1} ∞ be given by (6.1). If d is apwenian, then #A = 0.

Our strategy to prove Theorem 6.1 is the following:

(1) Show that 0 / ∈ A and (p -1) / ∈ A (Lemma 6.3); (2) Show by induction that every j / ∈ A. In the following diagrams, both i → j and j ← i mean that i / ∈ A implies j / ∈ A. When p is odd, we prove the relation

Then it is reduced to prove 0 / ∈ A. When p is even, we prove the relation

Then, in this case, we only need to show 0 / ∈ A and p -1 / ∈ A.

To achieve this, we need some preparation.

Lemma 6.2. Let d ∈ {-1, 1} ∞ be given by (6.1) and x ∈ {-1, 1} is a constant. If d is apwenian and it is not the Thue-Morse sequence, then none of the following holds:

Hence, 

So v 1 = -v 0 = -1. Using (6.1) again, we obtain

1} ∞ be given by (6.1). If d is apwenian, then 0 / ∈ A and p -1 / ∈ A.

Proof. Note that for the Thue-Morse sequence A = ∅. Therefore we may assume that d is not the Thue-Morse sequence. If 0 ∈ A, then by Theorem 1.1, d is apwenian means for all n ≥ 0,

When p -1 ∈ A, we have a contradiction 1 ≡ 0. In the latter case, we have d 2n+1 = -d n for all n ≥ 0. By Lemma 6.2, d is not apwenian which is also a contradiction. So 0 / ∈ A. The same kind of argument as above shows that p -1 / ∈ A.

Lemma 6.4. Let d ∈ {-1, 1} ∞ be given by (6.1). If d is apwenian, then j / ∈ A and j = p 2 -1 imply j + 1 / ∈ A.

Proof. Suppose j / ∈ A. If j + 1 ∈ A, then by Theorem 1.1, d is apwenian yields that for all n ≥ 0,

Note that j = p 2 -1 implies either 2j + 1 < p -1 or 2j + 1 ≥ p. Hence, there are two cases.

The numerical experiment suggests that the fixed points of substitutions of non-constant length (on {0, 1} or {-1, 1}) can not be apwenian. We propose the following conjecture.

Conjecture 7.2. The fixed points of substitutions of non-constant length on {0, 1} or {-1, 1} can not be apwenian. 

) for all i ≥ 0. The Hankel determinant of c and its conjugate are related in the following way: for all n ≥ 2,

In fact, applying certain column operations and row operations, we have

7.3. Examples. We end this section by some examples, which contain sequences given by substitutions of non-constant length or sequences given by substitutions with projection. From Theorem 1.5, one can easily obtain 0-1 apwenian sequences which are not of type I.

Example 7.4. Assume that c satisfies (1.5). If we take (c 2n+1 ) n≥0 = (1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, . . . ) to be the Fibonacci sequence given by 1 → 10, 0 → 1, then by Theorem 1.5, we see that c = (1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, . . . ) is an apwenian sequence. Further, by Theorem 1.5, any 0-1 sequence (c 2n+1 ) n≥0 can be uniquely extended to an apwenian sequence c.

Certainly, there are apwenian sequences generated by substitutions with projections.