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Abstract
The article deals with the existence of solutions of an integro-differential equation
in the case of anomalous diffusion with the negative Laplace operator in a fractional
power in the presence of the transport term. The proof of existence of solutions is based
on a fixed point technique. Solvability conditions for elliptic operators without the
Fredholm property in unbounded domains are used. We discuss how the introduction
of the transport term impacts the regularity of solutions.
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1 Introduction

The present article is devoted to the existence of stationary solutions of the following

nonlocal reaction-diffusion equation for 0 < s <
1

4
and the nontrivial constant b ∈ R

∂u

∂t
= −D

(
− ∂2

∂x2

)s

u + b
∂u

∂x
+

∫ ∞

−∞
K (x − y)g(u(y, t))dy + f (x), (1.1)
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which appears in the cell population dynamics. Note that the solvability of the equation
analogous to (1.1) without the transport term was addressed in [36]. Emergence and
propagation of patterns in nonlocal reaction–diffusion equations arising in the theory
of speciation and containing the drift termwere discussed in [26]. The space variable x
here corresponds to the cell genotype, u(x, t) denotes the cell density as a function of
their genotype and time. The right side of this equation describes the evolution of cell
density via cell proliferation, mutations, transport and cell influx/efflux. The anoma-
lous diffusion term here corresponds to the change of genotype due to small random
mutations, and the integral term describes large mutations. Function g(u) stands for
the rate of cell birth which depends on u (density dependent proliferation), and the
kernel K (x − y) gives the proportion of newly born cells changing their genotype
from y to x . Let us assume that it depends on the distance between the genotypes.
Finally, the last term in the right side of this problem designates the influx/efflux of
cells for different genotypes.

The operator

(
− ∂2

∂x2

)s

in Eq. (1.1) describes a particular case of the anomalous

diffusion actively studied in the context of different applications in: plasma physics
and turbulence [8,23], surface diffusion [17,21], semiconductors [22] and so on. It
is largely used in the works on the nonlocal diffusive processes. The probabilistic

realization of the anomalous diffusion was discussed in [20]. The operator

(
− ∂2

∂x2

)s

is defined by means of the spectral calculus. This is the pseudo-differential operator
with symbol |p|2s , namely

(
− d2

dx2

)s

φ(x) = 1√
2π

∫ ∞

−∞
|p|2s φ̂(p)eipxdp, φ(x) ∈ H2s(R)

with the standard Fourier transform defined in (2.1). In the present work we will
consider the case of 0 < s < 1/4.

Let us set D = 1 and establish the existence of solutions of the problem

−
(

− d2

dx2

)s

u + b
du

dx
+

∫ ∞

−∞
K (x − y)g(u(y))dy + f (x) = 0 (1.2)

with 0 < s <
1

4
, considering the case where the linear part of this operator fails to

satisfy the Fredholm property. As a consequence, the conventional methods of the
nonlinear analysis may not be applicable. We use the solvability conditions for non
Fredholm operators alongwith themethod of the contractionmappings. Equation (1.2)
is the stationary case of problem (1.1), and we solve it using (1.8), (1.9) and (1.11).
Since our model describes the distribution of a population density with respect to the
genotype, the existence of stationary solutions of (1.1) corresponds to the existence
of biological species.

To introduce the concept of the non Fredholm operators, we consider the equation

− �u + V (x)u − au = f , (1.3)
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where u ∈ E = H2(Rd) and f ∈ F = L2(Rd), d ∈ N, a is a constant and the scalar
potential function V (x) is either zero identically or tends to 0 at infinity. If a ≥ 0,
the origin belongs to the essential spectrum of the operator A: E → F corresponding
to the left side of problem (1.3). Consequently, such an operator fails to satisfy the
Fredholm property. Its image is not closed, for d > 1 the dimension of its kernel and
the codimension of its image are not finite. The present work is devoted to the studies
of certain properties of the operators of this kind. Note that for the Fredholm property
we consider bounded but not H2(Rd) solutions of the corresponding homogeneous
adjoint problem. If V (x) ≡ 0, Eq. (1.3) has constant coefficients and we can apply
the Fourier transform to solve it explicitly. If f ∈ L2(Rd) and x f ∈ L1(Rd), then it
has a unique solution in H2(Rd) if and only if

(
f (x),

eipx

(2π)
d
2

)
L2(Rd )

= 0, p ∈ Sd√a a.e. (1.4)

(see Lemmas 5 and 6 of [35]). Here Sd√
a
stands for the sphere inRd of radius

√
a cen-

tered at the origin. Hence, though our operator fails to satisfy the Fredholm property,
the solvability relations are formulated similarly. However, this similarity is only for-
mal since the range of the operator is not closed. The orthogonality conditions (1.4) are
with respect to the standard Fourier harmonics, which solve the homogeneous adjoint
problem for (1.3) when the scalar potential function vanishes, belong to L∞(Rd) but
they are not square integrable.

Note that elliptic problems with non Fredholm operators were studied actively in
recent years. Approaches in weighted Sobolev and Hölder spaces were developed
in [3–7]. In particular, when a = 0 the operator A is Fredholm in some properly
chosen weighted spaces (see [3–7]). However, the case of a �= 0 is considerably
different and the method developed in these articles is not applicable. The non Fred-
holm Schrödinger type operators were treated with the methods of the spectral and
the scattering theory in [14,24,31]. The Laplace operator with drift from the point of
view of non Fredholm operators was considered in [33] and linearized Cahn–Hilliard
problems in [25,34]. Fredholm structures, topological invariants and applications were
covered in [12]. Fredholm and properness properties of quasilinear elliptic systems
of second order were discussed in [15]. Nonlinear non Fredholm elliptic equations
were studied in [13,32,35]. Important applications to the theory of reaction–diffusion
equations were developed in [10,11]. Non Fredholm operators arise also in the context
of the wave systems with an infinite number of localized traveling waves (see [1]).
Standing lattice solitons in the discrete NLS equation with saturation were studied in
[2].Weak solutions of the Dirichlet and Neumann problemswith drift were considered
in [18]. Work [19] deals with the imbedding theorems and the spectrum of a certain
pseudodifferential operator. Front propagation equations with anomalous diffusion
were studied actively in recent years (see e.g. [28,29]).

We set K (x) = εK(x), where ε ≥ 0. The small, nonnegative parameter ε has the
biological meaning that the integral production term is small with respect to the others,
that is, the frequency of large mutations is sufficiently small. Let us suppose that the
assumption below is fulfilled.



  135 Page 4 of 26 V. Vougalter, V. Volpert

Assumption 1 Consider 0 < s <
1

4
. The constant b ∈ R, b �= 0. Let f (x):R → R

be nontrivial, such that f (x) ∈ L1(R) ∩ L2(R). Assume also that K(x):R → R is
nontrivial and K(x) ∈ L1(R) ∩ L2(R).

Note that as distinct from Assumption 1.1 of [36] we do not need to assume here

that

(
− d2

dx2

) 1
2−s

f (x) ∈ L2(R), which is the advantage of introducing the trans-

port term into our equation. We also do not need to impose the regularity condition(
− d2

dx2

) 1
2−s

K(x) ∈ L2(R) on the integral kernel of our problem. From the point

of view of applications, the space dimension is not restricted to d = 1 since the space
variable corresponds to the cell genotype but not to the usual physical space. We use
the Sobolev spaces

H2s(R) :=
{
u(x):R → R | u(x) ∈ L2(R),

(
− d2

dx2

)s

u ∈ L2(R)

}
, 0 < s ≤ 1

equipped with the norm

‖u‖2H2s (R)
:= ‖u‖2L2(R)

+
∥∥∥∥
(

− d2

dx2

)s

u

∥∥∥∥
2

L2(R)

. (1.5)

Evidently, in the particular case of s = 1

2
we have

‖u‖2H1(R)
:= ‖u‖2L2(R)

+
∥∥∥∥dudx

∥∥∥∥
2

L2(R)

. (1.6)

The standard Sobolev inequality in one dimension (see e.g. Section 8.5 of [16]) yields

‖u‖L∞(R) ≤ 1√
2
‖u‖H1(R). (1.7)

When our nonnegative parameter ε = 0, we obtain the linear equation (4.1) with a = 0

and 0 < s <
1

4
. By virtue of assertion (3) of Lemma 6 below along with Assumption

1 in this case Eq. (4.1) possesses a unique solution

u0(x) ∈ H1(R), 0 < s <
1

4
,

so that no orthogonality conditions are required. According to assertions (4) and (5)
of Lemma 6, when a = 0, a certain orthogonality relation (4.5) is needed to be able to

solve problem (4.1) in H1(R) for
1

4
≤ s ≤ 1

2
and in H2s(R) if

1

2
< s < 1. Clearly,
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u0(x) does not vanish identically on the real line since our influx/efflux term f (x) is
nontrivial as assumed.

Note that in the analogous situation in the absence of the transport term discussed
in [36] the corresponding Poisson type equation with the negative Laplacian raised to
a fractional power admits a unique solution

u0(x) ∈ H2s(R), 0 < s <
1

4
,

which belongs to H1(R) under the extra regularity assumption on the influx/efflux

term. The inequality 0 < s <
1

4
is also needed to obtain the finite upper bounds on

the integral terms throughout the article.
Let us look for the resulting solution of nonlinear problem (1.2) as

u(x) = u0(x) + u p(x). (1.8)

Obviously, we arrive at the perturbative equation

(
− d2

dx2

)s

u p − b
du p

dx
= ε

∫ ∞

−∞
K(x − y)g(u0(y) + u p(y))dy, 0 < s <

1

4
.

(1.9)

For technical purposes we introduce a closed ball in the Sobolev space

Bρ := {u(x) ∈ H1(R) | ‖u‖H1(R) ≤ ρ}, 0 < ρ ≤ 1. (1.10)

Let us seek the solution of Eq. (1.9) as the fixed point of the auxiliary nonlinear
problem

(
− d2

dx2

)s

u − b
du

dx
= ε

∫ ∞

−∞
K(x − y)g(u0(y) + v(y))dy, 0 < s <

1

4
(1.11)

in the ball (1.10). For a given function v(y) this is an equation to be solved for u(x).
The left side of (1.11) contains the non Fredholm operator

L0, b, s : H1(R) → L2(R), 0 < s <
1

4
,

defined in (4.2) which has no bounded inverse. The spectral properties of such oper-
ator are discussed in the final section of the work. A similar situation appeared in
earlier articles [32,35] but as distinct from the present case, the problems discussed
there required orthogonality relations. The fixed point technique was used in [30] to
evaluate the perturbation to the standing solitary wave of the Nonlinear Schrödinger
(NLS) equation when either the external potential or the nonlinear term in the NLS
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were perturbed but the Schrödinger operator involved in the nonlinear problem there
possessed the Fredholm property (seeAssumption 1 of [30], also [9]). For the technical
purposes we introduce the interval on the real line

I :=
[

− 1√
2
‖u0‖H1(R) − 1√

2
,

1√
2
‖u0‖H1(R) + 1√

2

]
(1.12)

along with the closed ball in the space of C2(I ) functions, namely

DM := {g(z) ∈ C2(I ) | ‖g‖C2(I ) ≤ M}, M > 0. (1.13)

We will use the norm

‖g‖C2(I ) := ‖g‖C(I ) + ‖g′‖C(I ) + ‖g′′‖C(I ), (1.14)

where ‖g‖C(I ) := maxz∈I |g(z)|. Let us make the following assumption on the non-
linear part of problem (1.2).

Assumption 2 Let g(z):R → R, such that g(0) = 0 and g′(0) = 0. In addition to
that g(z) ∈ DM and it does not vanish identically on the interval I .

Let us explain why we impose the condition g′(0) = 0. If g′(0) �= 0 and the Fourier
image of our integral kernel does not vanish at zero, then the essential spectrum of the
corresponding linearized operator does not contain the origin. The operator satisfies
the Fredholm property, and the conventional methods of the nonlinear analysis are
applicable here. If g′(0) = 0, then the operator fails to satisfy the Fredholm property,
and the goal of this article is to establish the existence of solutions in such case where
usual methods are not applicable. Thus we impose this condition on the nonlinearity.
From the point of view of the applications to the Mathematical Biology, it means
that we keep in mind, for instance the quadratic function g(z), such that the cell
proliferation rate depends on the cell-cell interaction.

Let us introduce the operator Tg , such that u = Tgv, where u is a solution of
problem (1.11). Our first main result is as follows.

Theorem 3 Let Assumptions 1 and 2 hold. Then problem (1.11) defines the map
Tg: Bρ → Bρ , which is a strict contraction for all

0 < ε ≤ ρ

2M(‖u0‖H1(R) + 1)2

×
{‖K‖2

L1(R)
(‖u0‖H1(R) + 1)8s−2

(1 − 4s)(16πs)4s
+

‖K‖2
L2(R)

4b2

}− 1
2

. (1.15)

The unique fixed point u p(x) of this map Tg is the only solution of Eq. (1.9) in Bρ .
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Note that condition (1.15) can be easily reformulated in terms of the original kernel
K appearing in our Eq. (1.2), namely

4M2(‖u0‖H1(R) + 1)4
{‖K‖2

L1(R)
(‖u0‖H1(R) + 1)8s−2

(1 − 4s)(16πs)4s
+

‖K‖2
L2(R)

4b2

}
≤ ρ2

for some ρ ∈ (0, 1]. Evidently, the cumulative solution of problem (1.2) given by (1.8)
will be nontrivial since the influx/efflux term f (x) is nontrivial and g(0) vanishes as
assumed. Let us make use of the following elementary lemma.

Lemma 4 For R ∈ (0,+∞) consider the function

ϕ(R) := αR1−4s + β

R4s , 0 < s <
1

4
, α, β > 0.

It achieves the minimal value at R∗ := 4βs

α(1 − 4s)
, which is given by

ϕ(R∗) = (1 − 4s)4s−1

(4s)4s
α4sβ1−4s .

Our second main result is about the continuity of the resulting solution of Eq. (1.2)
given by (1.8) with respect to the nonlinear function g. The continuity of such solution
with respect to the transport parameter b will be studied in our consecutive work. Let
us introduce the following positive, auxiliary expression

σ := M(‖u0‖H1(R) + 1)

{‖K‖2
L1(R)

(‖u0‖H1(R) + 1)8s−2

(1 − 4s)(4πs)4s
+

‖K‖2
L2(R)

b2

} 1
2

.

(1.16)

Theorem 5 Let j = 1, 2, the assumptions of Theorem 3 including inequality (1.15) are
valid, such that u p, j (x) is the unique fixed point of the map Tg j : Bρ → Bρ , which is a
strict contraction for all the values of ε satisfying (1.15) and the cumulative solution
of Eq. (1.2) with g(z) = g j (z) is given by

u j (x) := u0(x) + u p, j (x). (1.17)

Then for all ε, which satisfy estimate (1.15) the upper bound

‖u1(x) − u2(x)‖H1(R) ≤ ε

1 − εσ
(‖u0‖H1(R) + 1)2

×
[‖K‖2

L1(R)
(‖u0‖H1(R) + 1)8s−2

(1 − 4s)(16πs)4s
+

‖K‖2
L2(R)

4b2

] 1
2

‖g1 − g2‖C2(I )

(1.18)

holds.
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Let us proceed to the proof of our first main statement.

2 The existence of the perturbed solution

Proof of Theorem 3 We choose an arbitrary v(x) ∈ Bρ and designate the term involved
in the integral expression in the right side of Eq. (1.11) as

G(x) := g(u0(x) + v(x)).

Throughout the article we will use the standard Fourier transform

φ̂(p) := 1√
2π

∫ ∞

−∞
φ(x)e−i pxdx . (2.1)

Evidently, we have the inequality

‖φ̂(p)‖L∞(R) ≤ 1√
2π

‖φ(x)‖L1(R). (2.2)

Let us apply (2.1) to both sides of Eq. (1.11). This yields

û(p) = ε
√
2π

K̂(p)Ĝ(p)

|p|2s − ibp
. (2.3)

Then for the norm we arrive at

‖u‖2L2(R)
= 2πε2

∫ ∞

−∞
|K̂(p)|2|Ĝ(p)|2
|p|4s + b2 p2

dp ≤ 2πε2
∫ ∞

−∞
|K̂(p)|2|Ĝ(p)|2

|p|4s dp.

(2.4)

As distinct from articles [32,35] involving the standard Laplacian in the diffusion term,
here we do not try to control the norm

∥∥∥∥ K̂(p)

|p|2s
∥∥∥∥
L∞(R)

.

Instead, we estimate the right side of (2.4) using the analog of bound (2.2) applied to
functions K and G with R ∈ (0,+∞) as

2πε2
∫

|p|≤R

|K̂(p)|2|Ĝ(p)|2
|p|4s dp + 2πε2

∫
|p|>R

|K̂(p)|2|Ĝ(p)|2
|p|4s dp

≤ ε2‖K‖2L1(R)

{
1

π
‖G(x)‖2L1(R)

R1−4s

1 − 4s
+ 1

R4s ‖G(x)‖2L2(R)

}
. (2.5)
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Because v(x) ∈ Bρ , we have

‖u0 + v‖L2(R) ≤ ‖u0‖H1(R) + 1.

Sobolev inequality (1.7) gives us

‖u0 + v‖L∞(R) ≤ 1√
2
(‖u0‖H1(R) + 1).

Let us use the formula

G(x) =
∫ u0+v

0
g′(z)dz.

Hence

|G(x)| ≤ maxz∈I |g′(z)||u0 + v| ≤ M |u0 + v|,

where the interval I is defined in (1.12). Then

‖G(x)‖L2(R) ≤ M‖u0 + v‖L2(R) ≤ M(‖u0‖H1(R) + 1).

Since

G(x) =
∫ u0+v

0
dy

[ ∫ y

0
g′′(z)dz

]
,

we derive

|G(x)| ≤ 1

2
maxz∈I |g′′(z)||u0 + v|2 ≤ M

2
|u0 + v|2,

so that

‖G(x)‖L1(R) ≤ M

2
‖u0 + v‖2L2(R)

≤ M

2
(‖u0‖H1(R) + 1)2. (2.6)

Therefore, we arrive at the upper bound for the right side of (2.5) given by

ε2‖K‖2L1(R)
M2(‖u0‖H1(R) + 1)2

{
(‖u0‖H1(R) + 1)2R1−4s

4π(1 − 4s)
+ 1

R4s

}
,

with R ∈ (0,+∞). By virtue of Lemma 4 we evaluate the minimal value of the
expression above. Therefore,

‖u‖2L2(R)
≤ ε2‖K‖2L1(R)

(‖u0‖H1(R) + 1)2+8s M2

(1 − 4s)(16πs)4s
. (2.7)
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Using (2.3) we obtain

∫ ∞

−∞
p2 |̂u(p)|2dp ≤ 2πε2

b2

∫ ∞

−∞
|K̂(p)|2|Ĝ(p)|2dp.

By means of the analog of inequality (2.2) applied to function G along with bound
(2.6) we derive

∥∥∥du
dx

∥∥∥2
L2(R)

≤ ε2

b2
‖G‖2L1(R)

‖K‖2L2(R)
≤ ε2M2

4b2
(‖u0‖H1(R) + 1)4‖K‖2L2(R)

.

(2.8)

Let us apply the definition of the norm (1.6) along with inequalities (2.7) and (2.8) to
arrive at the estimate from above for ‖u‖H1(R) given by

ε(‖u0‖H1(R) + 1)2M

[‖K‖2
L1(R)

(‖u0‖H1(R) + 1)8s−2

(1 − 4s)(16πs)4s
+

‖K‖2
L2(R)

4b2

] 1
2

≤ ρ

2
(2.9)

for all values of the parameter ε satisfying inequality (1.15), so that u(x) ∈ Bρ as well.
Let us suppose that for a certain v(x) ∈ Bρ there exist two solutions u1,2(x) ∈ Bρ of
Eq. (1.11). Then their difference w(x) := u1(x) − u2(x) ∈ H1(R) solves

(
− d2

dx2

)s

w − b
dw

dx
= 0, 0 < s <

1

4
. (2.10)

Clearly, the operator L0, b, s : H1(R) → L2(R) in the left side of (2.10) defined in
(4.2) does not have any nontrivial zero modes, such that w(x) ≡ 0 on the real line.
Thus, Eq. (1.11) defines a map Tg: Bρ → Bρ for all ε satisfying bound (1.15).

Let us demonstrate that this map is a strict contraction. We choose arbitrarily
v1,2(x) ∈ Bρ . By virtue of the argument above u1,2 := Tgv1,2 ∈ Bρ as well when ε

satisfies (1.15). According to (1.11) we have

(
− d2

dx2

)s

u1 − b
du1
dx

= ε

∫ ∞

−∞
K(x − y)g(u0(y) + v1(y))dy, (2.11)

(
− d2

dx2

)s

u2 − b
du2
dx

= ε

∫ ∞

−∞
K(x − y)g(u0(y) + v2(y))dy (2.12)

with 0 < s <
1

4
. Let us define

G1(x) := g(u0(x) + v1(x)), G2(x) := g(u0(x) + v2(x))
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and apply the standard Fourier transform (2.1) to both sides of Eqs. (2.11) and (2.12).
This yields

û1(p) = ε
√
2π

K̂(p)Ĝ1(p)

|p|2s − ibp
, û2(p) = ε

√
2π

K̂(p)Ĝ2(p)

|p|2s − ibp
. (2.13)

Obviously,

‖u1 − u2‖2L2(R)
= ε22π

∫ ∞

−∞
|K̂(p)|2|Ĝ1(p) − Ĝ2(p)|2

|p|4s + b2 p2
dp

≤ ε22π
∫ ∞

−∞
|K̂(p)|2|Ĝ1(p) − Ĝ2(p)|2

|p|4s dp. (2.14)

Clearly, the right side of (2.14) can be estimated from above via inequality (2.2) as

ε22π

[ ∫
|p|≤R

|K̂(p)|2|Ĝ1(p) − Ĝ2(p)|2
|p|4s dp +

∫
|p|>R

|K̂(p)|2|Ĝ1(p) − Ĝ2(p)|2
|p|4s dp

]

≤ ε2‖K‖2L1(R)

{
1

π
‖G1(x) − G2(x)‖2L1(R)

R1−4s

1 − 4s
+ ‖G1(x) − G2(x)‖2L2(R)

1

R4s

}
,

where R ∈ (0,+∞). We express

G1(x) − G2(x) =
∫ u0+v1

u0+v2

g′(z)dz.

Hence

|G1(x) − G2(x)| ≤ maxz∈I |g′(z)||v1 − v2| ≤ M |v1 − v2|,

so that

‖G1(x) − G2(x)‖L2(R) ≤ M‖v1 − v2‖L2(R) ≤ M‖v1 − v2‖H1(R).

Evidently,

G1(x) − G2(x) =
∫ u0+v1

u0+v2

dy
[ ∫ y

0
g′′(z)dz

]
.

This enables us to obtain an upper bound for the absolute value of G1(x) −G2(x) as

1

2
maxz∈I |g′′(z)||(v1 − v2)(2u0 + v1 + v2)| ≤ M

2
|(v1 − v2)(2u0 + v1 + v2)|.
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The Schwarz inequality gives us the estimate from above for the norm ‖G1(x) −
G2(x)‖L1(R) as

M

2
‖v1 − v2‖L2(R)‖2u0 + v1 + v2‖L2(R) ≤ M‖v1 − v2‖H1(R)(‖u0‖H1(R) + 1).

(2.15)

Thus we arrive at the upper bound for the norm ‖u1(x) − u2(x)‖2L2(R)
given by

ε2‖K‖2L1(R)
M2‖v1 − v2‖2H1(R)

{ 1

π
(‖u0‖H1(R) + 1)2

R1−4s

1 − 4s
+ 1

R4s

}
, 0 < s <

1

4
.

Lemma 4 allows us to minimize the expression above over R ∈ (0,+∞). This yields
the estimate from above for ‖u1(x) − u2(x)‖2L2(R)

as

ε2‖K‖2L1(R)
M2‖v1 − v2‖2H1(R)

(‖u0‖H1(R) + 1)8s

(1 − 4s)(4πs)4s
. (2.16)

By virtue of (2.13) we derive

∫ ∞

−∞
p2 |̂u1(p) − û2(p)|2dp ≤ 2πε2

b2

∫ ∞

−∞
|K̂(p)|2|Ĝ1(p) − Ĝ2(p)|2dp.

Inequalities (2.2) and (2.15) imply that

∥∥∥∥ d

dx
(u1 − u2)

∥∥∥∥
2

L2(R)

≤ ε2

b2
‖K‖2L2(R)

‖G1 − G2‖2L1(R)

≤ ε2

b2
‖K‖2L2(R)

M2‖v1 − v2‖2H1(R)
(‖u0‖H1(R) + 1)2. (2.17)

According to (2.16) and (2.17) along with definition (1.6) the norm ‖u1 − u2‖H1(R)

can be bounded from above by the expression

εM(‖u0‖H1(R) + 1)

×
{‖K‖2

L1(R)
(‖u0‖H1(R) + 1)8s−2

(1 − 4s)(4πs)4s
+

‖K‖2
L2(R)

b2

} 1
2

‖v1 − v2‖H1(R).

(2.18)

It can be easily verified using (1.15) that the coefficient of ‖v1 − v2‖H1(R) in (2.18) is
less than one. This yields that the map Tg : Bρ → Bρ defined by Eq. (1.11) is a strict
contraction for all values of ε which satisfy inequality (1.15). Its unique fixed point
u p(x) is the only solution of problem (1.9) in the ball Bρ . By virtue of (2.9) we have
that ‖u p(x)‖H1(R) → 0 as ε → 0. The cumulative u(x) ∈ H1(R) given by (1.8) is a
solution of Eq. (1.2). ��
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We proceed to the establishing of the second main result of our article.

3 The continuity of the cumulative solution

Proof of Theorem 5 Apparently, for all the values of ε which satisfy inequality (1.15),
we have

u p,1 = Tg1u p,1, u p,2 = Tg2u p,2. (3.1)

Hence

u p,1 − u p,2 = Tg1u p,1 − Tg1u p,2 + Tg1u p,2 − Tg2u p,2,

such that

‖u p,1 − u p,2‖H1(R) ≤ ‖Tg1u p,1 − Tg1u p,2‖H1(R) + ‖Tg1u p,2 − Tg2u p,2‖H1(R).

Inequality (2.18) gives us

‖Tg1u p,1 − Tg1u p,2‖H1(R) ≤ εσ‖u p,1 − u p,2‖H1(R).

Note that εσ ≤ ρ

‖u0‖H1(R) + 1
< 1 by (1.15) and (1.16) since ρ ≤ 1 and u0(x) is

nontrivial. Hence, we obtain

(1 − εσ )‖u p,1 − u p,2‖H1(R) ≤ ‖Tg1u p,2 − Tg2u p,2‖H1(R). (3.2)

According to (3.1), for our fixed point Tg2u p,2 = u p,2. Let us introduce ξ(x) :=
Tg1u p,2. Thus, for 0 < s <

1

4
, we have

(
− d2

dx2

)s

ξ(x) − b
dξ(x)

dx
= ε

∫ ∞

−∞
K(x − y)g1(u0(y) + u p,2(y))dy, (3.3)

(
− d2

dx2

)s

u p,2(x) − b
du p,2(x)

dx
= ε

∫ ∞

−∞
K(x − y)g2(u0(y) + u p,2(y))dy,

(3.4)

Let us designate G1,2(x) := g1(u0(x) + u p,2(x)), G2,2(x) := g2(u0(x) + u p,2(x))
and apply the standard Fourier transform (2.1) to both sides of problems (3.3) and
(3.4) above. This yields

ξ̂ (p) = ε
√
2π

K̂(p)Ĝ1,2(p)

|p|2s − ibp
, û p,2(p) = ε

√
2π

K̂(p)Ĝ2,2(p)

|p|2s − ibp
. (3.5)
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Evidently,

‖ξ(x) − u p,2(x)‖2L2(R)
= ε22π

∫ ∞

−∞
|K̂(p)|2|Ĝ1,2(p) − Ĝ2,2(p)|2

|p|4s + b2 p2
dp

≤ ε22π
∫ ∞

−∞
|K̂(p)|2|Ĝ1,2(p) − Ĝ2,2(p)|2

|p|4s dp. (3.6)

Clearly, the right side of (3.6) can be bounded from above by means of inequality (2.2)
as

ε22π

[ ∫
|p|≤R

|K̂(p)|2|Ĝ1,2(p) − Ĝ2,2(p)|2
|p|4s dp

+
∫

|p|>R

|K̂(p)|2|Ĝ1,2(p) − Ĝ2,2(p)|2
|p|4s dp

]

≤ ε2‖K‖2L1(R)

{
1

π
‖G1,2 − G2,2‖2L1(R)

R1−4s

1 − 4s
+ ‖G1,2 − G2,2‖2L2(R)

1

R4s

}

(3.7)

with R ∈ (0,+∞). We express

G1,2(x) − G2,2(x) =
∫ u0(x)+u p,2(x)

0
[g′

1(z) − g′
2(z)]dz.

Thus

|G1,2(x) − G2,2(x)| ≤ maxz∈I |g′
1(z) − g′

2(z)||u0(x) + u p,2(x)|
≤ ‖g1 − g2‖C2(I )|u0(x) + u p,2(x)|,

so that

‖G1,2 − G2,2‖L2(R) ≤ ‖g1 − g2‖C2(I )‖u0 + u p,2‖L2(R)

≤ ‖g1 − g2‖C2(I )(‖u0‖H1(R) + 1).

Let us use another representation formula, namely

G1,2(x) − G2,2(x) =
∫ u0(x)+u p,2(x)

0
dy

[ ∫ y

0
(g′′

1 (z) − g′′
2 (z))dz

]
.

Hence

|G1,2(x) − G2,2(x)| ≤ 1

2
maxz∈I |g′′

1 (z) − g′′
2 (z)||u0(x) + u p,2(x)|2

≤ 1

2
‖g1 − g2‖C2(I )|u0(x) + u p,2(x)|2.
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This yields

‖G1,2 − G2,2‖L1(R) ≤ 1

2
‖g1 − g2‖C2(I )‖u0 + u p,2‖2L2(R)

≤ 1

2
‖g1 − g2‖C2(I )(‖u0‖H1(R) + 1)2. (3.8)

Then we obtain the upper bound for the norm ‖ξ(x) − u p,2(x)‖2L2(R)
given by

ε2‖K‖2L1(R)
(‖u0‖H1(R) + 1)2‖g1 − g2‖2C2(I )

[ 1

4π
(‖u0‖H1(R) + 1)2

R1−4s

1 − 4s
+ 1

R4s

]
.

This expression can be trivially minimized over R ∈ (0,+∞) by virtue of Lemma 4
above. We derive the inequality

‖ξ(x) − u p,2(x)‖2L2(R)
≤ ε2‖K‖2L1(R)

(‖u0‖H1(R) + 1)2+8s
‖g1 − g2‖2C2(I )

(1 − 4s)(16πs)4s
.

By means of (3.5) we arrive at

∫ ∞

−∞
p2 |̂ξ(p) − û p,2(p)|2dp ≤ 2πε2

b2

∫ ∞

−∞
|K̂(p)|2|Ĝ1,2(p) − Ĝ2,2(p)|2dp.

Using inequalities (2.2) and (3.8), the norm

∥∥∥∥ d

dx
(ξ(x) − u p,2(x))

∥∥∥∥
2

L2(R)

can be esti-

mated from above by

ε2

b2
‖K‖2L2(R)

‖G1,2 − G2,2‖2L1(R)
≤ ε2

4b2
‖K‖2L2(R)

(‖u0‖H1(R) + 1)4‖g1 − g2‖2C2(I ).

Thus, ‖ξ(x) − u p,2(x)‖H1(R) ≤

≤ ε‖g1 − g2‖C2(I )(‖u0‖H1(R) + 1)2
[‖K‖2

L1(R)
(‖u0‖H1(R) + 1)8s−2

(1 − 4s)(16πs)4s
+

‖K‖2
L2(R)

4b2

] 1
2

.

By virtue of inequality (3.2), the norm ‖u p,1−u p,2‖H1(R) can be bounded from above
by

ε

1 − εσ
(‖u0‖H1(R) + 1)2

×
[‖K‖2

L1(R)
(‖u0‖H1(R) + 1)8s−2

(1 − 4s)(16πs)4s
+

‖K‖2
L2(R)

4b2

] 1
2

‖g1 − g2‖C2(I ). (3.9)

By means of formula (1.17) along with estimate (3.9) inequality (1.18) is valid. ��
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4 Auxiliary results

The solvability conditions for the linear equation with the negative Laplacian raised
to a fractional power, the transport term and a square integrable right side

(
− d2

dx2

)s

u − b
du

dx
− au = f (x), x ∈ R, 0 < s < 1, (4.1)

where a ≥ 0 and b ∈ R, b �= 0 are constants were derived in the proof of the first
theorem of [38]. We will repeat the argument here for the convenience of the readers.
Obviously, the operator involved in the left side of (4.1)

La, b, s :=
(

− d2

dx2

)s

− b
d

dx
− a : H1(R) → L2(R), 0 < s ≤ 1

2
,

(4.2)

La, b, s :=
(

− d2

dx2

)s

− b
d

dx
− a : H2s(R) → L2(R),

1

2
< s < 1,

(4.3)

is nonselfadjoint. By means of the standard Fourier transform (2.1) it can be easily
obtained that the essential spectrum of the operator La, b, s above is given by

λa, b, s(p) := |p|2s − a − ibp, p ∈ R.

Clearly, in the case when a > 0, the operator La, b, s is Fredholm because its essential
spectrum does not contain the origin. But when a vanishes, our operator L0, b, s fails
to satisfy the Fredholm property since the origin belongs to its essential spectrum.
Apparently, in the absense of the drift term, which was discussed for instance in
Theorems 1.1 and 1.2 of [37], we deal with the selfadjoint operator

(
− d2

dx2

)s

− a : H2s(R) → L2(R), a > 0,

which is non Fredholm. We denote the inner product of two functions as

( f (x), g(x))L2(R) :=
∫ ∞

−∞
f (x)ḡ(x)dx, (4.4)

with a slight abuse of notations when the functions involved in (4.4) are not square
integrable. Indeed, if f (x) ∈ L1(R) and g(x) is bounded, like for instance the functions
involved in the inner product in the left side of orthogonality relation (4.5), then the
integral in the right side of (4.4) is well defined. We have the following auxiliary
proposition.

Lemma 6 Let f (x):R → R and f (x) ∈ L2(R), the constant b ∈ R, b �= 0.
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(1) If a > 0 and 0 < s ≤ 1

2
, then problem (4.1) admits a unique solution u(x) ∈

H1(R).

(2) If a > 0 and
1

2
< s < 1, then Eq. (4.1) has a unique solution u(x) ∈ H2s(R).

(3) If a = 0, 0 < s <
1

4
, and, in addition, f (x) ∈ L1(R), then problem (4.1) pos-

sesses a unique solution u(x) ∈ H1(R).

(4) If a = 0,
1

4
≤ s ≤ 1

2
, and, in addition, x f (x) ∈ L1(R), then Eq. (4.1) admits a

unique solution u(x) ∈ H1(R) if and only if

( f (x), 1)L2(R) = 0. (4.5)

(5) If a = 0,
1

2
< s < 1, and, in addition, x f (x) ∈ L1(R), then problem (4.1) has a

unique solution u(x) ∈ H2s(R) if and only if orthogonality relation (4.5) holds.

Proof Let us first demonstrate that it would be sufficient to solve our equation in
L2(R). Apparently, if u(x) is a square integrable solution of problem (4.1), we have

(
− d2

dx2

)s

u − b
du

dx
∈ L2(R).

Then by virtue of the standard Fourier transform (2.1), we obtain

(|p|2s − ibp)̂u(p) ∈ L2(R),

that is

∫ ∞

−∞
(|p|4s + b2 p2)|̂u(p)|2dp < ∞. (4.6)

Let 0 < s ≤ 1

2
. Clearly, (4.6) yields

∫ ∞

−∞
p2 |̂u(p)|2dp < ∞.

Thus
du

dx
is square integrable on the whole real line and u(x) ∈ H1(R).

Let
1

2
< s < 1. Evidently, (4.6) gives us

∫ ∞

−∞
|p|4s |̂u(p)|2dp < ∞.
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Hence

(
− d2

dx2

)s

u ∈ L2(R), such that u(x) ∈ H2s(R).

Let us address the uniqueness of a solution to problem (4.1) for 0 < s ≤ 1

2
. When

1

2
< s < 1 the argument is similar. Suppose that u1,2(x) ∈ H1(R) both solve (4.1).

Then their difference w(x) := u1(x) − u2(x) ∈ H1(R) satifies the homogeneous
equation

(
− d2

dx2

)s

w − b
dw

dx
− aw = 0.

Because the operator La, b, s defined in (4.2) does not have nontrivial zero modes in
H1(R), we obtain that w(x) = 0 identically on the real line.

By applying the standard Fourier transform (2.1) to both sides of problem (4.1), we
arrive at

û(p) = f̂ (p)

|p|2s − a − ibp
, p ∈ R, 0 < s < 1. (4.7)

Hence,

‖u‖2L2(R)
=

∫ ∞

−∞
| f̂ (p)|2

(|p|2s − a)2 + b2 p2
dp. (4.8)

First we consider assertions (1) and (2) of our lemma. Apparently, (4.8) yields that

‖u‖2L2(R)
≤ 1

C
‖ f ‖2L2(R)

< ∞

as assumed. Here and further down C stands for a finite positive constant. By means
of the argument above, when a > 0, equation (4.1) admits a unique solution u(x) ∈
H1(R) for 0 < s ≤ 1

2
and u(x) ∈ H2s(R) if

1

2
< s < 1.

Then we turn our attention to the situation when a = 0. Formula (4.7) gives us

û(p) = f̂ (p)

|p|2s − ibp
χ{|p|≤1} + f̂ (p)

|p|2s − ibp
χ{|p|>1}. (4.9)

Here and below, χA denotes the characteristic function of a set A ⊆ R. Evidently, the
second term in the right side of (4.9) can be bounded from above in the absolute value
by

| f̂ (p)|√
1 + b2

∈ L2(R)

since f (x) is square integrable via the one of our assumptions.
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Let 0 < s <
1

4
. Then, by virtue of (2.2) we arrive at

∣∣∣∣ f̂ (p)

|p|2s − ibp
χ{|p|≤1}

∣∣∣∣ ≤ | f̂ (p)|
|p|2s χ{|p|≤1} ≤ ‖ f (x)‖L1(R)√

2π |p|2s χ{|p|≤1}.

Therefore,

∥∥∥∥ f̂ (p)

|p|2s − ibp
χ{|p|≤1}

∥∥∥∥
2

L2(R)

≤
‖ f (x)‖2

L1(R)

π(1 − 4s)
< ∞

because f (x) ∈ L1(R) as assumed. By means of the argument above, problem (4.1)
possesses a unique solution u(x) ∈ H1(R) in assertion (3) of our lemma.

To establish assertions (4) and (5), we use that

f̂ (p) = f̂ (0) +
∫ p

0

d f̂ (s)

ds
ds.

Then the first term in the right side of (4.9) can be expressed as

f̂ (0)

|p|2s − ibp
χ{|p|≤1} +

∫ p
0

d f̂ (s)
ds ds

|p|2s − ibp
χ{|p|≤1}. (4.10)

Definition (2.1) of the standard Fourier transform gives us

∣∣∣∣d f̂ (p)

dp

∣∣∣∣ ≤ 1√
2π

‖x f (x)‖L1(R).

This allows us to obtain the upper bound in the absolute value on the second term in
(4.10) as

1√
2π

‖x f (x)‖L1(R)

|b| χ{|p|≤1} ∈ L2(R)

via the assumptions of the lemma. We analyze the first term in (4.10) given by

f̂ (0)

|p|2s − ibp
χ{|p|≤1}. (4.11)

Obviously, when
1

4
≤ s ≤ 1

2
, expression (4.11) can be easily estimated from below

in the absolute value by

| f̂ (0)|
|p|2s√1 + b2

χ{|p|≤1},
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which does not belong to L2(R) unless f̂ (0) = 0. This implies orthogonality condition
(4.5). In case (4), the square integrability of the solution u(x) to problem (4.1) is
equivalent to u(x) ∈ H1(R).

Evidently, for
1

2
< s < 1 expression (4.11) can be trivially bounded below in the

absolute value by

| f̂ (0)|
|p|√1 + b2

χ{|p|≤1},

which is not square integrable on the whole real line unless orthogonality relation
(4.5) holds. In case (5), the square integrability of the solution u(x) to Eq. (4.1) is
equivalent to u(x) ∈ H2s(R). ��

Note that in the situation when a = 0 and 0 < s <
1

4
of the lemma above the

orthogonality conditions are not needed as distinct from assertions (4) and (5). In case
(3) under our assumptions Eq. (4.1) admits a unique solution u0(x) ∈ H1(R) which
we use in the proofs of the main results of the article.

Related to Eq. (4.1) on the real line, we consider the sequence of approximate
equations with m ∈ N given by

(
− d2

dx2

)s

um − b
dum
dx

− aum = fm(x), x ∈ R, 0 < s < 1, (4.12)

where a ≥ 0 and b ∈ R, b �= 0 are constants and the right side of (4.12) converges to

the right side of (4.1) in L2(R) as m → ∞. We will prove that, for 0 < s ≤ 1

2
, under

the certain technical assumptions, each of problems (4.12) admits a unique solution
um(x) ∈ H1(R), limiting equation (4.1) has a unique solution u(x) ∈ H1(R), and
um(x) → u(x) in H1(R) as m → ∞, which is the so-called existence of solutions in

the sense of sequences (see [24,37,38] and the references therein). When
1

2
< s < 1,

the similar ideas will be exploited in H2s(R). Our final proposition is as follows.

Lemma 7 Let the constant b ∈ R, b �= 0, m ∈ N, fm(x):R → R and fm(x) ∈
L2(R). Furthermore, fm(x) → f (x) in L2(R) as m → ∞.

(1) If a > 0 and 0 < s ≤ 1

2
, then problems (4.1) and (4.12) admit unique solutions

u(x) ∈ H1(R) and um(x) ∈ H1(R) respectively, such that um(x) → u(x) in
H1(R) as m → ∞.

(2) If a > 0 and
1

2
< s < 1, then Eqs. (4.1) and (4.12) have unique solutions u(x) ∈

H2s(R) and um(x) ∈ H2s(R) respectively, such that um(x) → u(x) in H2s(R)

as m → ∞.

(3) If a = 0 and 0 < s <
1

4
, and in addition fm(x) ∈ L1(R) and fm(x) → f (x)

in L1(R) as m → ∞, then problems (4.1) and (4.12) possess unique solutions
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u(x) ∈ H1(R) and um(x) ∈ H1(R) respectively, such that um(x) → u(x) in
H1(R) as m → ∞.

(4) If a = 0 and
1

4
≤ s ≤ 1

2
, let in addition x fm(x) ∈ L1(R) and x fm(x) → x f (x)

in L1(R) as m → ∞. Moreover,

( fm(x), 1)L2(R) = 0, m ∈ N (4.13)

holds. Then Eqs. (4.1) and (4.12) admit unique solutions u(x) ∈ H1(R) and
um(x) ∈ H1(R) respectively, such that um(x) → u(x) in H1(R) as m → ∞.

(5) If a = 0 and
1

2
< s < 1, let in addition x fm(x) ∈ L1(R) and x fm(x) → x f (x)

in L1(R) as m → ∞. Furthermore, orthogonality relations (4.13) hold. Then
problems (4.1) and (4.12) have unique solutions u(x) ∈ H2s(R) and um(x) ∈
H2s(R) respectively, such that um(x) → u(x) in H2s(R) as m → ∞.

Proof Let us assume that problems (4.1) and (4.12) admit unique solutions u(x) ∈
H1(R) and um(x) ∈ H1(R), m ∈ N respectively for 0 < s ≤ 1

2
, and analogously

u(x) ∈ H2s(R) and um(x) ∈ H2s(R), m ∈ N if
1

2
< s < 1, such that um(x) → u(x)

in L2(R) as m → ∞. Then um(x) also tends to u(x) in H1(R) as m → ∞ if

0 < s ≤ 1

2
, and analogously um(x) → u(x) in H2s(R) as m → ∞ for

1

2
< s < 1.

Indeed, Eqs. (4.1) and (4.12) give us

∥∥∥∥
(

− d2

dx2

)s

(um − u) − b
d(um − u)

dx

∥∥∥∥
L2(R)

≤

≤ ‖ fm − f ‖L2(R) + a‖um − u‖L2(R). (4.14)

Clearly, the right side of inequality (4.14) converges to zero as m → ∞ due to our
assumptions above. By virtue of the standard Fourier transform (2.1), we easily derive

∫ ∞

−∞
(|p|4s + b2 p2)|̂um(p) − û(p)|2dp → 0, m → ∞. (4.15)

Let 0 < s ≤ 1

2
. By means of (4.15),

∫ ∞

−∞
p2 |̂um(p) − û(p)|2dp → 0, m → ∞,

such that

dum
dx

→ du

dx
in L2(R), m → ∞.



  135 Page 22 of 26 V. Vougalter, V. Volpert

Hence, when 0 < s ≤ 1

2
, norm definition (1.6) implies that um(x) → u(x) in H1(R)

as m → ∞.

Suppose that
1

2
< s < 1. By virtue of (4.15),

∫ ∞

−∞
|p|4s |̂um(p) − û(p)|2dp → 0, m → ∞,

so that

(
− d2

dx2

)s

um →
(

− d2

dx2

)s

u in L2(R), m → ∞.

Thus, if
1

2
< s < 1, norm definition (1.5) yields that um(x) → u(x) in H2s(R) as

m → ∞.
Let us apply the standard Fourier transform (2.1) to both sides of Eq. (4.12). This

yields

ûm(p) = f̂m(p)

|p|2s − a − ibp
, m ∈ N, p ∈ R, 0 < s < 1. (4.16)

Let us discuss assertions (1) and (2). By means of parts (1) and (2) of Lemma 6 above,
for a > 0, problems (4.1) and (4.12) admit unique solutions u(x) ∈ H1(R) and

um(x) ∈ H1(R), m ∈ N respectively if 0 < s ≤ 1

2
and analogously u(x) ∈ H2s(R)

and um(x) ∈ H2s(R), m ∈ N provided that
1

2
< s < 1. By virtue of (4.16) along

with (4.7), we arrive at

‖um − u‖2L2(R)
=

∫ ∞

−∞
| f̂m(p) − f̂ (p)|2

(|p|2s − a)2 + b2 p2
dp.

Therefore

‖um − u‖L2(R) ≤ 1

C
‖ fm − f ‖L2(R) → 0, m → ∞

as assumed. Hence, for a > 0, we have um(x) → u(x) in H1(R) as m → ∞ if

0 < s ≤ 1

2
and um(x) → u(x) in H2s(R) as m → ∞ when

1

2
< s < 1 due to the

above argument.
Let us complete the proof by studying the case of a = 0. According to the part (a)

of Lemma 3.3 of [27], under the given conditions

( f (x), 1)L2(R) = 0 (4.17)
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in assertions (4) and (5) of our lemma. By means of the results of parts (3)–(5) of
Lemma6 above, problems (4.1) and (4.12)with a = 0 possess unique solutions u(x) ∈
H1(R) and um(x) ∈ H1(R), m ∈ N respectively for 0 < s ≤ 1

2
and analogously

u(x) ∈ H2s(R) and um(x) ∈ H2s(R), m ∈ N when
1

2
< s < 1. Formulas (4.16) and

(4.7) give us

ûm(p) − û(p) = f̂m(p) − f̂ (p)

|p|2s − ibp
χ{|p|≤1} + f̂m(p) − f̂ (p)

|p|2s − ibp
χ{|p|>1}. (4.18)

Evidently, the second term in the right side of (4.18) can be estimated from above in
the L2(R) norm by

1√
1 + b2

‖ fm − f ‖L2(R) → 0, m → ∞

via the one of our assumptions. Suppose 0 < s <
1

4
. Let us use an analog of inequality

(2.2) to derive

∣∣∣∣ f̂m(p) − f̂ (p)

|p|2s − ibp
χ{|p|≤1}

∣∣∣∣ ≤ | f̂m(p) − f̂ (p)|
|p|2s χ{|p|≤1} ≤ ‖ fm − f ‖L1(R)√

2π |p|2s χ{|p|≤1}.

Hence

∥∥∥∥ f̂m(p) − f̂ (p)

|p|2s − ibp
χ{|p|≤1}

∥∥∥∥
L2(R)

≤ ‖ fm − f ‖L1(R)√
π(1 − 4s)

→ 0, m → ∞

due to the one of the assumptions of the lemma. By virtue of the argument above, we
obtain that um(x) → u(x) in H1(R) as m → ∞ in the situation when a = 0 and

0 < s <
1

4
.

Let us use orthogonality conditions (4.17) and (4.13) to establish assertions (4) and
(5). By virtue of definition (2.1) of the standard Fourier transform, we obtain

f̂ (0) = 0, f̂m(0) = 0, m ∈ N.

This yields

f̂ (p) =
∫ p

0

d f̂ (s)

ds
ds, f̂m(p) =

∫ p

0

d f̂m(s)

ds
ds, m ∈ N. (4.19)
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Therefore, the first term in the right side of (4.18) in assertions (4) and (5) of our
lemma is given by

∫ p
0

[
d f̂m (s)
ds − d f̂ (s)

ds

]
ds

|p|2s − ibp
χ{|p|≤1}.

It easily follows from definition (2.1) of the standard Fourier transform that

∣∣∣∣d f̂m(p)

dp
− d f̂ (p)

dp

∣∣∣∣ ≤ 1√
2π

‖x fm(x) − x f (x)‖L1(R).

Therefore,

∣∣∣∣
∫ p
0

[
d f̂m(s)
ds − d f̂ (s)

ds

]
ds

|p|2s − ibp
χ{|p|≤1}

∣∣∣∣ ≤ ‖x fm(x) − x f (x)‖L1(R)√
2π |b| χ{|p|≤1},

such that

∥∥∥∥
∫ p
0

[
d f̂m (s)
ds − d f̂ (s)

ds

]
ds

|p|2s − ibp
χ{|p|≤1}

∥∥∥∥
L2(R)

≤ ‖x fm(x) − x f (x)‖L1(R)√
π |b| → 0

asm → ∞ as assumed. Thus, um(x) → u(x) in L2(R) asm → ∞. Arguing as above
in the case when a = 0, we observe that um(x) → u(x) in H1(R) as m → ∞ for
1

4
≤ s ≤ 1

2
and um(x) → u(x) in H2s(R) as m → ∞ if

1

2
< s < 1. ��
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