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Abstract: Over recent decades, tremendous advances in the field of scalable numerical tools and
mesh immersion techniques have been achieved to improve numerical efficiency while preserving a
good quality of the obtained results. In this context, an octree-optimized microstructure generation
and domain reconstruction with adaptative meshing is presented and illustrated through a flow
simulation example applied to permeability computation of micrometric fibrous materials. Thanks to
the octree implementation, the numerous distance calculations in these processes are decreased, thus
the computational complexity is reduced. Using the parallel environment of the ICI-tech library as a
mesher and a solver, a large scale case study is performed. The study is applied to the computation
of the full permeability tensor of a three-dimensional microstructure containing 10,000 fibers. The
considered flow is a Stokes flow and it is solved with a stabilized finite element formulation and a
monolithic approach.

Keywords: octree optimization; microstructure generation; domain reconstruction; flow simulation;
permeability computing

1. Introduction

The properties and behavior of a discontinuous fiber-reinforced thermoplastic are
induced by the mechanisms involved during the forming process. Modeling and numerical
simulation have a major role in understanding and predicting these mechanisms, especially
at the microscopic scale, which provides the most accurate results. Nevertheless, at this
scale of computation, numerical simulations are generally expensive in terms of computing
resources and time. Optimizing and evaluating the used algorithms is a constant challenge.
One of the most expensive issues when using finite elements and immersed boundary
approaches for discontinuous reinforced composites simulation is the computation of
distances. Fibers generation, immersion, and reconstruction techniques particularly rely
on these evaluations, as the distances between fibers must be regularly evaluated during
microstructure generation and distances from each point of the computational mesh to
the frontiers of the immersed elements have to be measured. However, without any
optimization, whenever the number of points and fibers in a simulation rises, the cost of
reconstruction increases dramatically. In order to make these techniques applicable in the
context of composites materials, an optimization of the distance evaluation is required. A
first idea is to implement distance computation algorithms that save computational time.
Reducing the number of expensive functions or operations used to compute each distance
is a key element, as well as defining properly the data types used to limit memory footprint.
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This paper proposes a reduction in the number of distances to evaluate, which is performed
using an octree.

The octree data structure [1] is a partition of a three-dimensional space built from
recursive subdivisions into eight sub-domains. The sub-cubes obtained are hierarchically
organized, which allows to easily reduce search time. Octree algorithms are widely used
in various fields and their application range is significantly extensive, especially when
positions must be accessed and manipulated. These applications include construction of a
three-dimensional object model from a set of images [2] and simulation of displacement
of free surface [3]. Octrees are broadly applied for collision detection algorithms in vir-
tual reality, rigid bodies contacts, characters animation, or machining simulation, such as
cutter-path generation for numerical control machines which require efficient collision de-
tection routines [4–6]. Another significant example involving octree algorithm is the mesh
generation procedure. Octree can be used to create meshes tied to geometrical objects [7],
for adaptive mesh refinement (AMR), e.g., with structured grids in fluid dynamics [8], or
combined with others techniques in advanced mesh generation processes [9].

In this paper, an octree-optimized microstructure generation and domain reconstruc-
tion with adaptative mesh is presented. An application of flow simulation through the
reconstructed domains dealing with the identification of the full-component permeability
tensor is conducted.

2. Microstructure Generation and Optimization Using Octree

The microstructure of a discontinuous fiber composite greatly affects its properties. For
that, virtual numerical sample generation is crucial in order to carry out precise prediction
simulations. However, a major difficulty to generate such a microstructure lies in the
establishment of an optimized methodology that allows generating a very large number of
fibers without interpenetration and with a minimum computation time and resources. In
this work, a Random Sequential Adsorption RSA algorithm [10,11], widely used for rigid
particles generation, is chosen.

A collection of N random unit orientations P, N homogeneously distributed mass
center positions X and N lengths L, following a normal distribution law with mean length
< L > and standard deviation σ, are primarily created. The program begins with one
initial fiber (i) randomly oriented with Pi. Subsequently, another fiber (j) with a random
orientation Pj is selected and then the system is checked for overlap. If the fiber (j)
intersects a pre-existing fiber, it is repositioned by randomly changing orientation vector
Pj while retaining the same position vector Xj. The selection of a new Pj is repeated up to
a maximum number of trials until the overlap condition is released. In this method, the
generated geometry is periodic, so that any fiber cutting a boundary will be extended on
the opposite one. This means that fibers close to surfaces can interact with the fibers of the
near domains. Therefore, every new fiber to be placed is verified for interaction with all
already pre-existing fibers and their 26 periodic images in the near domains.

Figure 1 presents an example of a generated microstructure with 1000 cylindrical
fibers having a same diameter d, a mean aspect ratio r =< L > /d = 20 and a fiber volume
fraction Vf = 0.1.

In the previously described algorithm, N ∗ 27 distances evaluations are required
to generate the N + 1-th fiber. Presuming that no intersection is detected, a minimum
of 27 ∗ N ∗ (N − 1)/2 distances has to be computed, thus leading to a N2 complexity.
However, this number can increase, as once an intersection occurs, new random positions
and orientations must be generated for the fiber. This computational cost is acceptable
when N remains small, but becomes unaffordable when N reaches the order of the millions
of fibers. To limit the number of distances to evaluate, this paper proposes the use of an
octree algorithm. This tree structure enables to browse rapidly across all the elements and to
select them based on their position. Consequently, a selection of the closest elements can be
performed, which allows measuring the distances to these elements only. The complexity
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is decreased and can reach N log(N) for an optimal problem. The next paragraphs describe
the octree building procedure, while the use of the octree is explained in Section 3.1.

Figure 1. Example of a generated microstructure with 1000 fibers having a same diameter d, a mean
aspect ratio r =< L > /d = 20 and a fiber volume fraction Vf = 0.1.

This data storage concept is a tree structure built recursively from a computational
domain, in which elements, e.g., fibers, are dispersed. To clarify this paragraph, an analogy
is performed between the computational domain and box bounding all the elements. In
practice, there is a possibility for elements to be concentrated in a particular area of the
computational domain. In that situation, the octree building procedure is processed in the
interest region only, which does not cause any problem later on. The tree is built through
refinement steps where the computational domain is divided in two along each dimension,
thus generating subdomains (children). The name octree comes from the characterization
of the tree in 3D, where 8 subdomains are generated by the division procedure (Figure 2).

Figure 2. Illustration of the octree data structure: On the left is highlighted the refinement of a
tree element into 8 new elements. The cube on the right presents the geometrical positions of the
octree elements.

After refinement, the elements shall no more be contained in the initial computational
domain, but are defined using pointers towards every child they intersect. This choice
characterizes the octree class, which is composed of the dimensions of the computational
domain and pointers to, either the elements contained inside it or the children generated.
The corollary of this choice is that fibers can be duplicated if they intersect several children.
After a refinement step, all the children are overlooked with emphasis on the number
of elements it contains. If a subdomain remains empty, i.e., no elements intersect it, it is
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immediately deleted. If too many elements are found in this child, the refinement procedure
is repeated in this particular subdomain. The recursiveness is applied in that way until:
either an acceptable number of elements is obtained in the deepest subdomains (leaf), or
the maximal depth of the octree is reached.

The repartition of elements into the children is handled using bounding boxes. Axis-
Aligned Bounding Boxes AABB have been used, which offer different advantages. First of
all, these boxes are very easy to determine, both computationally speaking and in terms
of access to data. It also allows reducing the computational effort for the determination
of the intersections, as the boxes are oriented along the same axes as the computational
domain. Finally, this choice enabled to generalize the octree to very different usage, from
fibers to, e.g., 3D facets used to define surface meshes. The drawback brought by these
bounding boxes lies in the intersections, as an “ill-oriented” fiber may be duplicated in
leaves it does not intersect, only because its bounding box does. In that case, we can
implement Oriented Bounding Box OBB in future works to enclose fibers as tightly as
possible. Another limitation occurs when very long elements (proportionally to the size
of the computational domain) are present, as again the fibers may be highly duplicated.
However, the following developments of this paper will show that octree usage remains
appropriate for elements with a small length to width ratio.

This paragraph presents the octree generation on an example that features 14 fibers,
with a maximal depth for the octree of 2 and 1 fiber allowed per leaf. The procedure is
drawn in Figure 3.

Figure 3. Octree generation example: (a) Fibers in computational domain. (b) Octree first level of
refinement. (c) Octree second level of refinement.

The octree parameters mean that any subdomain containing more than 1 element
needs to be refined, with a limit of only 2 levels. After the first step of the refinement,
the fibers presented in Figure 3a are allocated to every subdomain their bounding box
intersect. An interesting emphasis can be placed on the blue fiber (second “row” from
the top, middle of the computational domain), which is duplicated into both of the two
children on top of the initial computational domain in Figure 3. Consequently, after
a second step of refinement this fiber can be found in two different octree leaves, the
asterisked ones in Figure 3b. Figure 3c corresponds to the final octree as obtained with
the parameters detailed previously. Even if the presence of only one fiber per leaf was
authorized, subdomains containing more than one fiber can be found because of maximum
refinement allowed. Note that the subdomains containing ∅ have been created by octree
refinement, and immediately deleted as no fiber was allocated to it.

When adding a new fiber following the RSA algorithm, thanks to the implementation
of the octree, the check for overlap will be carried out among a reduced number of fibers
initially judged by the octree as potential candidates for collision. Fibers with which there
is a possible collision are the fibers in the leaf or leaves to which the new fiber belongs and
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whose AABBs intersect. Figure 4 shows a schematic diagram of this method: it shows a
leaf of an octree (large box black) to which we would like to add the red fiber and where the
blue and green fibers already exist. Thus, a possibility of intersections can only occur with
blue fibers. The green fibers will not be concerned because their AABBs do not intersect
the AABB of the red fiber.

Figure 4. Illustration of the collision detection optimisation process: addition of the red fiber to an
octree leaf, possibility of collision only with blues fibers whose AABBs intersect the AABB of the
red one.

During this process, fibers are dynamically added to the octree. For that, two major
conditions should be verified to update the octree after adding a new fiber:

• A new fiber must be always included in the global domain initially built for octree
and, if it is not the case, it is necessary to destroy the octree and to reconstruct it;

• The size of a leaf should not exceed the defined maximal size and, if it is not the case,
it is necessary to refine the octree.

To quantify the gain brought by the octree, we study the evolution of the CPU time, t,
according to the number of generated fibers, N. For all the simulations, we consider r = 20,
Vf = 0.1, and a maximum number of trials equal to 5000. The leaf maximal size is fixed to
100. Figure 5 shows a considerable gain on time which improves as the number of fibers
becomes more important.

Figure 5. Microstructure generation time as a function of the number of fibers, for a case with
microstructure having r = 20, Vf = 0.1, and a maximum number of trials equal to 5000.



Entropy 2021, 23, 1156 6 of 16

3. Computational Domain Reconstruction
3.1. Mesh Immersion and Optimization Using the Octree

Mesh immersion is a technique enabling the representation of complex bodies using a
single computational mesh. The main idea is to compute the distance from each point of
the computational mesh to an object immersed, which can be represented by an analytical
function, a mesh, or any set of data.The only constraint is the need to build an interior for
the object, thus defining a frontier. This definition enables to establish a signed distance
function α, as presented in Equation (1) for the immersion of a shape ω of the frontier
Γ = ∂ω into a domain Ω. This interior can be concave or even split, as the mathematical
evaluation of α does not have any prerequisite. However, the more complex ω will be, the
more points in the computational mesh will be needed to represent it accurately.

α = d̄(x, ω) =

{
d(x, Γ) if x ∈ ω
−d(x, Γ) if x /∈ ω

, x ∈ Ω. (1)

Once the signed distance function is defined, any computational point x has a signed-
distance either positive or negative. The union of points with positive α defines the interior,
and the inverse set gives the exterior. This formulation mathematically corresponds to using
a Heaviside function as a level-set function, which gives 1 for α positive and 0 for α negative.
However, this approach is not suitable for multiphase flows, as strong discontinuities are
sources of instability when using Galerkin approximation for the resolution of the Navier–
Stokes equations. To overcome this issue, a smoothed Heaviside function based on a width
parameter ε has been defined and is presented in Equation (2).

Hε(α) =
1
2

(
1 +

uε(α)

ε

)
, (2)

with
uε(α) = ε tanh

(α

ε

)
. (3)

This paradigm introduces a transition phase of a width of about 2ε which smooths
the shifting between physical parameters of the two phases. The “blurred area” does not
operate as a gray zone in terms of mesh immersion, as the norm and sign of the result given
by Hε in this region is depending on α. Compared to immersion results giving either 0 or 1
for a classical Heaviside function, a better capture of the interfaces can even be achieved.
However, the quality of the reconstruction of ω remains highly dependent on the meshing
of Ω. Fine meshes are needed around interfaces, and if the meshing of ω is complex, a high
effort will be put in either mesh generation or distance evaluation.

This interdependency is addressed by coupling the immersion with a mesh adap-
tation procedure. An anisotropic mesh generated automatically concentrates its points
around Γ, guaranteeing that an important portion of them will be located in the transition
region highly impacted by Hε. Further explanations about this procedure can be found
in Section 3.2 and in [12]. Figure 6a presents the results of α for a circle of a radius R, and
Figure 6b presents the results obtained for Hε with ε = R/100. A slice of the computational
mesh is also drawn, where the major part of the points are gathered in the interest zones
(Figure 6c).

The level-set function is defined analytically from α, making the evaluation of α the
major effort of the immersion procedure. If an analytical definition of α requires only one
distance computation per point and does not need to be optimized, considering more
complex representations generates computing complexity, e.g., when meshes or fibers set
are immersed. Those cases use a set of elements to define ω or Γ, so the determination
of the closest neighbor is not immediate. The performance of the immersion code then
highly depends on the computational effort needed to evaluate a single distance, but also
on the number of distances to compute before finding the closest element of ω. Without
any optimization of the immersion procedure, the computation of α for a single point x and
M fibers defining ω require M distance evaluations. Consequently, the immersion of M
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fibers in Ω composed of N points forces the computation of N ×M distances. When few
fibers are immersed in small meshes, this cost is affordable. However, when 10,000 fibers
are immersed, as proposed in the case of study of this paper, the number of computations
is extremely high (assuming that N is quasi-linearly related to M), which is somewhere
between not competitive and unrealizable computationally. The coupling of the mesh im-
mersion procedure with an octree is a way to reduce the complexity. The construction of the
octree was overlooked in Section 2, and its contribution to the reduction in computational
costs is detailed in the next paragraphs.

Figure 6. Immersion and mesh adaptation: (a) Signed distance α and isoline α = 0. (b) Adapted
computational mesh (c) Smoothed Heaviside Hε with ε = R/100.

Instead of computing the distance from a point x to each element defining ω, the idea
behind the octree is to select elements located near x, and to compute the distance from
them only. The distance computation algorithm is discussed in the following, with use of
the nomenclature defined in Table 1.

Table 1. Nomenclature used to discuss distance computation algorithm.

Variable Name Signification

x Point of computational mesh
ω Shape immersed represented by elements
Ex Closest element of the set representing ω from x

OLx Closest octree leaf from x
dx Maximal theoretical distance from x to Ex
Cx Circle/sphere of center x and radius dx
αx Signed distance from x to Ex

All starts with the determination of the octree leaf OLx which is the closest from x.
From the definition of the octree, OLx is proven not to be empty. Even if the closest element
from x, named Ec, is not imperatively stored inside OLx, its distance to x is inferior or
equal to the distance from x to the closest element located inside OLx. A well-parametrized
octree guarantees that the size of the set of elements contained inside a leaf is reasonable.
The distances from x to the bounding boxes of every element contained inside OLx are
then computed. The distance to the furthest point of every bounding box is computed,
and the minimum obtained is selected. This minimal distance dx defines a circle/sphere
Cx of center x and of radius dx, in which the closest elements is compulsorily located. The
octree is then browsed to determine all the leaves it intersects, which are candidates to
host Ex. The bounding boxes of all the elements located in the selected leaves are browsed,
and if the minimum distance from x to it is inferior to dx, the distance from x to the
element is computed. αx is then obtained by selecting the minimum among the distances
to elements evaluated.
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Octree has been defined to be computationally efficient and stand-alone, and the use
of bounding boxes is a key factor to that extent. Large computational savings are enabled
as the octree only knows the elements as bounding boxes and, until the very end of the
algorithm, distances computed are between x and the boxes. The number of distances
from x to the elements, which can be very expensive computationally, is limited to the
elements whose bounding box intersect Cx. Browsing all the boxes contained inside OLx to
determine dx might seem unnecessary, but if this procedure is not completed, the maximal
theoretical distance to Ex is the distance to the furthest point of OLx. Overlooking the
boxes enables to reduce the span of Cx, which may translate to a smaller selection of octree
leaves and to a reduced number of distances from x to elements. The computational cost
of this stage, implying few distance computations to bounding boxes, often tends to be
worth the savings brought by the optimization of Cx. The usage of bounding boxes also
bring easy generalization of the octree procedure. The selection of the closest elements, to
which distance from x is evaluated, is totally independent on the type of elements used.
Heterogeneous sets can even be used, with, e.g., facets and fibers mixed.

Figure 7a presents the refined octree defined in Figure 3, where all the leaves of the
computational tree are colored in red. To compute the distance from a point P to ω, OLP is
determined and drawn in green in Figure 7b. All the bounding boxes of fibers immersed
in this leaf are browsed to determine dP and CP. The octree leaves intersecting this circle
are determined and asterisked in Figure 7c. The intersection between the bounding boxes
of fibers contained in those leaves and CP is examined, and if, and only if, an intersection
is found, the distance from x to the fiber is determined. The same procedure is followed
for points Q and R. Those three examples depict the efficiency of the method in different
situations (the most frequent situation is the one described by the point R), where the
number of evaluations of distances to elements is largely reduced. Table 2 shows a large
decrease despite the low number of fibers immersed, which reduces the efficiency of the
method. The octree construction and closest leaves determination costs are not included
in this situation. However, the recursive construction and the distance to bounding boxes
determination are cheap computationally compared to the distance to fibers evaluation,
which requires projections. When a deeper octree is used for much bigger ω, evaluating
distances to fibers become quite expensive, and savings brought by the octree rise rapidly.

Figure 7. Octree fiber immersion optimization example: (a) Final octree. (b) Determination of closest
leaf. (c) Octree leafs to consider.

Table 2. Reduction in the number of evaluations of distances provided by the octree.

Distances to Fiber/Points P Q R Total

no octree 14 14 14 42
octree 3 3 1 7
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3.2. Parallel Anisotropic Mesh Adaptation

Octree-optimized mesh immersion procedure is an efficient way to represent geome-
tries if an accurate computational mesh is used as Section 3.1 stated. The results obtained
with this technique are highly dependent on the position of the points, particularly at
the interfaces. To that extent, a coupling between mesh immersion and the automatic
generation of an anisotropic mesh is proposed in order to reduce the size of the problem to
be treated. This iterative process starts with a coarse initial mesh, where geometries are
immersed and reconstructed using the methods proposed in Section 3.1. A-posteriori error
estimator [13,14] evaluates errors from the level-set results at each computational point,
using the smoothed Heaviside function Hε described in Equation (2). In order to generate
an anisotropic mesh, a tensor is defined at each point, enabling to measure the errors along
each dimension. In other words, at each computational point, the variation of the function
Hε along each direction is observed.

The adaptation relies on a uniform distribution of the error along the edges of the
mesh in all the computational domain. A metric can be built, which allows to deform the
mesh in order to attain uniform error: refinement is performed in the areas where the error
is too important, while mesh is coarsened where low error is observed. As Hε is defined
from a hyperbolic tangent, major gradients variation are found around the interfaces
while the function is almost constant far from the frontiers. Consequently, around the
interfaces, low edges are required to attain errors equivalent to the one obtained with large
edges where gradients are almost null. Consequently, the new mesh will feature more
nodes in the interest zones, and the reconstruction will gain precision. As the metric is
built as a tensor, different stretching factors are used for each direction, which guarantees
anisotropic meshing.

After several iterations, the errors are uniformly dispersed in the computational
domain. Nodes are mostly concentrated around Γ, and the immersed geometry is well
described. Highly-stretched mesh cells can be found in regions where very thin description
is needed in one dimension while the others do not require particular attention. How-
ever, the stretching ratio of the mesh cells is limited, in order to ensure convergence of
computations. The automatic and anisotropic mesh adaptation brings versatility, and at
the same time guarantees that the results obtained with the mesh immersion procedure
will be accurate. The reduction in the number of points required for the reconstruction
enables to reduces both memory usage and computational costs. Coupled with an octree,
an efficient optimization of the reconstruction is obtained. Moreover, this reconstruction
process is executed on a multi-cores context in order to be able to combine the optimizations
related to the use of mesh adaptation and octree with massively parallel computing. The
parallelization of the process is performed by an iterative coupling between operations
of independent adaptive mesh in different partitions and displacement of the interface
between these partitions [15,16].

3.3. Weak Scalability Test of the Proposed Reconstruction Approach

To determine the scaling capability of the whole reconstruction procedure, weak
scaling tests have been performed on the western French region, Pays de la Loire cluster
Liger (a BULL/Atos DLC720 cluster, 6384 cores Intel Xeon (Haswell and Cascade Lake)
(compute and visualization parallel procedures), a total of 36,608 Gigabytes of system
memory, 5.33 GB per core, FDR Infiniband interconnect (56 GB/s)). Five microstructures
were generated, as described previously, while keeping the same geometrical characteristics
of fibers. To realize tests with similar workload per processor, the size of the computational
domain and the number of immersed fibers were proportionally increased according to the
number of the used cores, as detailed in Table 3.



Entropy 2021, 23, 1156 10 of 16

Table 3. Simulation parameters for weak scalability test performed on liger supercomputer.

Number Domain Number Total
of Fibers Edge Size of Cores Mesh Nodes

test 1 8 0.178 1 172,245
test 2 216 0.534 27 728,895
test 3 1000 0.890 125 37,153,365
test 4 4096 1.425 512 160,374,769
test 5 8000 1.781 1000 317,813,266

The reconstruction process started from an initial coarse mesh and took 30 iterations
with constant precision and fixed octree parameters. For the different test cases, an average
number of mesh nodes per core equal to 3× 105 was maintained with the exception of
test 1 (1.8× 105 nodes) where the volume of fibers that extend outside the computational
domain and are therefore sliced is significant, so leading to a decrease in the number of
nodes. Total time of the immersion and adaptation process as a function of the number of
cores is represented in Figure 8. For an ideal weak scale test, the run time is expected to stay
constant while the workload is increased in direct proportion to the number of processors.
For real case, as shown in Figure 8, a deviation can be observed due to communications
and partitioning efforts. However, according to the same figure, the running time variation
is relatively small between the tests (except for the first one where the workload is different)
which allows to consider that for a scaled problem size, the domain reconstruction approach
has good efficiency in terms of weak scalability.

Figure 8. Total reconstruction time evolution as a function of used cores for the different test cases.

4. Flow Simulation Examples: Application to Permeability Computation
4.1. Flow Simulation

The resulting mesh from the reconstruction process can be used to simulate various
physical phenomena, such as those involved in fluid-structure interaction problems. Gen-
erally, for composite flow applications, incompressible Stokes flow around the fibers is
considered. By considering a stationary regime and neglecting the volume forces, the
variational form of the Stokes problem for velocity field, u, and pressure field, p, is written:

(v, q) ∈ V0 ×Q{
(2ηε(u) : ε(v))Ω − (p,∇ · v)Ω = 0
(∇ · u, q)Ω = 0

(4)

where ε is the strain rate tensor.
A monolithic approach is used, i.e., the flow Equation (4) are solved on the single

mesh defined over the whole computational domain, Ω, regardless of the type of phase
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it contains. The different phases are distinguished by their physical properties which are
taken into account through a mixing law. A linear mixture relation is used for the viscosity,
η, and described by the Equation (5).

η = η f Hε + ηs(1− Hε) (5)

η f and ηs are, respectively, the viscosities of the liquid and solid phases. ηs acts as
a penalty parameter: when it is high enough, shear rate in the penalized phase becomes
close to zero and we find a rigid body motion. This is a simple way to obtain results similar
to those provided by an augmented Lagrangian method where a Lagrange multiplier
is used to impose a constraint on the solid phase to avoid its deformation [17]. To
solve the system (4) using a finite element method, a stabilized approach of VMS type
is employed [12]. The used software in this work is ICI-tech, developed at the High
Performance Computing Institute (ICI) of Centrale Nantes and implemented for massively
parallel context.

4.2. Permeability Computation Procedure

Predicting permeability is a very important issue in the field of composite forming
process. However, it is tricky and complex to obtain experimentally and numerically
reliable results, because most simulations are carried out in small periodic representative
elementary volumes, under a lot of simplifying assumptions that idealize the real media.
Here, we chose to rise to the challenge to numerically determine the permeability tensor
of a large virtual sample of fibrous media that imitates sophisticated real media. In three-
dimensional cases, permeability is characterized by a symmetric second-order tensor K.
This tensor relates the average fluid velocity 〈u〉 to the average pressure gradient on the
fluid domain 〈∇p〉 f , as shown by the Darcy law below:

〈u〉 = −K
η
〈∇p〉 f (6)

Using a monolithic approach with finite element discretization, the homogenized
velocity and pressure fields are written as the sum of their integration on each mesh
element Ωe of the simulation domain Ω:

〈u〉 = 1
VΩ

∑
e

∫
Ωe
(1− Hε(α))u dΩe (7)

〈∇p〉 f =
1

VΩ f
∑

e

∫
Ωe
(1− Hε(α))∇p dΩe (8)

where VΩ is the volume of the total domain and VΩ f is the volume of the fluid domain.
To predict permeability, the proposed simulation procedure relies on microstructure

generation, phase reconstruction, mesh adaptation, and resolution of the Stokes equations,
considering that fibers are static and impermeable. In fact, to determine all components of
K, three flows in the three directions x, y, and z are successively simulated, an exponent
{1, 2, 3} is referred to each one. The flow is induced by an imposed pressure gradient.
Depending on the direction where the flow is desired, a constant pressure field on the
input face of the simulation domain against a null field on the output face is imposed.
For the other faces of the domain, only the normal component of the velocity field is
imposed as null. Assuming that the permeability tensor is symmetric and positive definite,
its components can be calculated by the resolution of the overdetermined linear system
given by:
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〈∇px〉1 〈∇py〉1 〈∇pz〉1 0 0 0 0 0 0
0 0 0 〈∇px〉1 〈∇py〉1 〈∇pz〉1 0 0 0
0 0 0 0 0 0 〈∇px〉1 〈∇py〉1 〈∇pz〉1

〈∇px〉2 〈∇py〉2 〈∇pz〉2 0 0 0 0 0 0
0 0 0 〈∇px〉2 〈∇py〉2 〈∇pz〉2 0 0 0
0 0 0 0 0 0 〈∇px〉2 〈∇py〉2 〈∇pz〉2

〈∇px〉3 〈∇py〉3 〈∇pz〉3 0 0 0 0 0 0
0 0 0 〈∇px〉2 〈∇py〉2 〈∇pz〉3 0 0 0
0 0 0 0 0 0 〈∇px〉3 〈∇py〉3 〈∇pz〉3
0 1 0 −1 0 0 0 0 0
0 0 1 0 0 0 −1 0 0
0 0 0 0 0 1 0 −1 0





Kxx

Kxy

Kxz

Kyx

Kyy

Kyz

Kzx

Kzy

Kzz


= −η



〈ux〉1〈
uy
〉1

〈uz〉1

〈ux〉2〈
uy
〉2

〈uz〉2

〈ux〉3〈
uy
〉3

〈uz〉3

0
0
0



(9)

The solution obtained from the resolution of this matrix system (9) is, obviously, an approx-
imate solution. To ensure a perfect symmetry of K, if necessary, the following modification
to the extra diagonal terms is made:

K f inal
ij = K f inal

ji =
Kij + Kji

2
(10)

4.3. Permeability Computation Validation

To validate permeability computation, the whole procedure was applied to a parallel
square packing of fibers having an identical diameter. Rigidity of fibers was ensured by
imposing ηs = 500η f and a zero velocity condition was imposed upon them. Figure 9a
shows the used geometry configuration for Vf = 25.65%. Equation (11) represents its
calculated permeability tensor adimensionalized by the square of fiber radius which respect
a transverse isotropic form as expected from the symmetry of the packing.

K =

0.21 0 0
0 0.21 0
0 0 0.28

 (11)

Permeability evolution according to fiber volume fraction was studied by varying fiber
diameter and keeping same the domain size for all simulations. The obtained results of
normalized transverse permeability are reported in Figure 9b and compared to the model
of [18–20]. The observed permeability values through this graph are in the same order than
the one obtained from analytical laws which is relevant to our approach.

Figure 9. Comparison of computed permeability with some analytical models: (a) Simulated parallel
square packing configuration. (b) Normalized transverse permeability results.
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4.4. Application for 10,000 Fibers
4.4.1. Microstructure Generation

The first step of the process is the microstructure generation using the octree opti-
mized algorithm described in Section 2. A sample of approximately 10,000 (exactly 10,062)
collision-free fibers is created in a cubic domain with an edge length of 1.35 mm. The fibers
have a common diameter of 15 µm and a length that follows a normal distribution of mean
0.2 mm and standard deviation 0.03 mm. The obtained volume fraction is V f = 14%. The
orientation state is nearly isotropic and is given by the following orientation tensor a2 [21]:

a2 =

 0.334241 −0.00219696 −0.018116
−0.00219696 0.34166 −0.00620966
−0.018116 −0.00620966 0.324099


Figure 10 shows the set of the generated fibers. Despite the fact that the generation is

sequential, these fibers are created in only 1min44s thanks to the octree contribution.

Figure 10. Studied generated microstructure: (a) 10,000 generated fibers. (b) A random slice showing
no collisions.

4.4.2. Microstructure Reconstruction with Adaptative Mesh

The computation was performed on 384 cores. Starting from an initial mesh of
≈4.6 million nodes and ≈27 million elements, after 30 iterations, an adapted final mesh
of ≈67 million nodes and ≈391 million elements is created by the methods described in
Sections 3.1 and 3.2. For Hε with ε = 3.125 µm, the total immersion and adaptation process
required 4h52min for the 30 iterations. Figure 11 shows the evolution, in a number of
elements for each iteration of the mesh adaptation, as well as the computational time.
During the first iterations of immersion of the generated fibers in the initial mesh, the
mesher adds a considerable number of elements until reaching a peak at the ninth iteration,
in order to properly capture the geometries of all the fibers at first. Then, the mesher focuses
its work on optimizing the mesh adaptation at the interfaces while respecting a criterion of
mesh quality. Once an efficient mesh is achieved, the number of elements stabilizes. The
time evolution curve naturally follows the evolution of the mesh size.
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Figure 11. Evolution of the mesh number of elements (left axis) and calculation cost (right axis)
during the 30 iterations of adaptation of anisotropic mesh, performed on 384 cores

4.4.3. Flow Resolution and Permeability Tensor Computation

Three pressure gradients are applied to the constructed finite element mesh in order
to generate the flows required for the identification of K. Figure 12 shows the pressure
field and velocity vectors around the immersed fibers for the flow in the x direction. These
results were obtained for a resolution time of the system (4) equal to approximately 7min
minutes on 384 CPUs.

Figure 12. Flow according to x direction: (a) velocity vector around the fibers. (b) Zoom around a
zone of the figure.

The predicted full permeability tensor adimensionalized by the square of fiber radius
for this media is as follows:

K =

 0.7322 −0.0013 −0.0033
−0.0013 0.7444 −0.0025
−0.0033 −0.0025 0.7089


For isotropic material, only the three diagonal elements are non-null and they are

equal. Here, the studied sample is nearly isotropic. For this reason, the obtained diagonal
elements are quite similar and the off-diagonal elements are smaller by around two orders
of magnitude.

5. Conclusions

Obtained results show our capability thanks to an octree implementation to deal
with big data in terms of input of permeability simulation and to perform reliable finite
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element calculation on complex geometries. Through the proposed method, further studies
can be conducted to better quantify the impact of the microstructural parameters on
the permeability and, thus, avoiding problems related to the choice of the size of the
simulation domains, which remains rather delicate to define, especially in the case of
non-periodic geometries. We can also think about exploring the permeability of multiaxial
tissues of the non-crimp fabric (NCF) or textile type. Thanks to the several numerical
optimization, the permeability can thus be evaluated at the microscopic scale on several
layers by representing the fibers inside the wicks.
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