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We study the correctness of automatic differentiation (AD) in the context of a higher-order, Turing-complete
language (PCF with real numbers), both in forward and reverse mode. Our main result is that, under mild
hypotheses on the primitive functions included in the language, AD is almost everywhere correct, that is, it
computes the derivative or gradient of the program under consideration except for a set of Lebesgue measure
zero. Stated otherwise, there are inputs on which AD is incorrect, but the probability of randomly choosing
one such input is zero. Our result is in fact more precise, in that the set of failure points admits a more explicit
description: for example, in case the primitive functions are just constants, addition and multiplication, the set
of points where AD fails is contained in a countable union of zero sets of polynomials.
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1 INTRODUCTION

Automatic differentiation (AD) provides efficient methods for computing the derivative (or, more
generally, the gradient or Jacobian) of a function specified by a computer program. Since computing
derivatives is a key ingredient in the resolution of all sorts of optimization problems, it is not
surprising that AD grew into a large field with applications to a host of scientific domains, most
notably machine learning [Baydin et al. 2018].

Traditionally, AD focused on first-order imperative programs and, although its techniques allow
the presence of flow control instructions and loops [Beck and Fischer 1994; Joss 1976; Speelpen-
ning 1980], its scope was often limited to straight-line programs (also know as computational
graphs [Goodfellow et al. 2016]), which were enough for most practical purposes, such as express-
ing neural networks. After the advances in deep learning of the last years, this is no longer the case:
neural network architectures are now łdynamicž, in the sense that the input may influence the
shape of the net, and expressing such architectures requires resorting a priori to the full power of a
modern programming language, yielding what some have called differentiable programming [LeCun
2018]. This evolution of deep learning spurred the rapid development of differentiable programming
frameworks [Abadi et al. 2016; Paszke et al. 2017] and, at the same time, received much attention
in programming languages (PL) research for establishing its theoretical foundations [Abadi and
Plotkin 2020; Brunel et al. 2020; Elliott 2018; Huot et al. 2020; Shaikhha et al. 2019; Wang et al. 2019].
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28:2 Damiano Mazza and Michele Pagani

From the viewpoint of PL theory, AD methods boil down to program transformations: writing R
and R for the set and type of real numbers, respectively, we receive as input a program𝑀 : R𝑛 → R

computing a (possibly partial) function J𝑀K : R𝑛 ⇀ R whose gradient ∇J𝑀K exists in a set
d (𝑀) ⊆ R𝑛 (called the domain of differentiability), and we must output another program 𝑔𝑟𝑎𝑑 (𝑀)

computing ∇J𝑀K. The crucial features that one typically asks of such transformations are:

(i) efficiency: asymptotically, evaluating 𝑔𝑟𝑎𝑑 (𝑀) is not more costly than evaluating𝑀 ;
(ii) soundness: 𝑔𝑟𝑎𝑑 (𝑀) (r) evaluates to ∇J𝑀K(r) for all r ∈ d (𝑀).

Notice that there is a tension between efficiency and soundness: implementing the definition of
derivative as a limit gives a trivially sound (to an arbitrary degree of precision) but unacceptably
inefficient method. Conversely, more efficient transformations tend to be more complex (e.g., reverse
mode is more complex than forward mode, see below) and their soundness more difficult to prove.
Also observe that we are only interested in the correctness of the result when ∇J𝑀K is defined; in
case r ∉ d (𝑀), the evaluation of 𝑔𝑟𝑎𝑑 (𝑀) (r) may give anything, including (but not necessarily!)
divergence.

Another highly desirable feature of 𝑔𝑟𝑎𝑑 is modularity: if 𝑃 is a subprogram of𝑀 then 𝑔𝑟𝑎𝑑 (𝑃)
is a subprogram of 𝑔𝑟𝑎𝑑 (𝑀) or, if this is not literally the case, the computation of the former
may be reused in computing the latter. Indeed, it has been known from the early days of AD that
modularity offers a path to attaining both efficiency and soundness: the program𝑀 is decomposed
into elementary blocks whose gradients are immediately computable, and 𝑔𝑟𝑎𝑑 (𝑀) is obtained by
assembling these transformed blocks following the structure of𝑀 . In this way, the execution of
𝑔𝑟𝑎𝑑 (𝑀) mimics that of 𝑀 , yielding efficiency, and soundness relies on the so-called chain rule
of calculus, which assures us that the derivative of a compound function may be expressed in
terms of the derivative of its components. Furthermore, one sees that there are two łdualž ways of
assembling the transformed blocks to form 𝑔𝑟𝑎𝑑 (𝑀): a covariant way, yielding forward mode AD,
and a contravariant way, yielding reverse mode AD (this will be explained in Sect. 2.2).

The theory of AD transformations has by now been developed to considerable depth by several
authors: Pearlmutter and Siskind first pointed out that reverse mode AD, commonly known as
backpropagation, may be naturally expressed in terms of higher-order programs, and used this
idea to develop a differentiable variant of Scheme [Pearlmutter and Siskind 2008]; more recently,
Elliott emphasized functoriality as a systematic way of understanding the modular nature of AD
transformations [Elliott 2018]; the work [Wang et al. 2019] introduced Lantern, a fully general
differentiable programming framework in which the notion of delimited continuation is used
to correctly handle memory updates during backpropagation; finally, Brunel, Mazza and Pagani
showed that the continuation-passing machinery at work in [Wang et al. 2019] (and, implicitly,
in [Pearlmutter and Siskind 2008]) may be understood in terms of linear negation (in the sense
of Girard’s linear logic), giving a purely functional transformation for reverse mode AD and a
conceptually clean analysis of its efficiency in terms of a łlinear factoringž evaluation rule [Brunel
et al. 2020]. On the semantics side, Abadi and Plotkin studied denotational semantics for a first
order differentiable language [Abadi and Plotkin 2020] and Huot, Staton and Vákár gave a uniform
approach to proving soundness of AD (forward and reverse) for simply-typed programs based on a
diffeology semantics [Huot et al. 2020].

Nevertheless, an analysis of soundness of AD transformations for a fully general programming
language is currently missing: the above-mentioned work is either fully general but lacks soundness
proofs [Pearlmutter and Siskind 2008; Wang et al. 2019] or proves soundness in a restricted setting
(first order [Abadi and Plotkin 2020] or simply-typed 𝜆-calculi [Barthe et al. 2020; Brunel et al. 2020;
Huot et al. 2020]). Filling this gap is precisely the contribution of the present paper: we study the
soundness of AD transformations in the setting of the (idealized) functional programming language
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PCFR, a variant with real numbers of Plotkin’s famous Turing-complete language [Plotkin 1977].
For forward mode, we use the standard transformation described for instance in [Wang et al. 2019].
For reverse mode, since PCFR is purely functional, we consider an extension of the transformation
introduced in [Brunel et al. 2020], albeit simplified in that we leave linearity aside, since that is
only needed for efficiency and here we are merely interested in soundness. The extension, which is
a contribution of this paper in its own right, concerns conditional statements and fixpoints, which
are not dealt with in loc. cit.
The first relevant observation is that, in presence of conditionals, soundness in the sense of

statement (ii) above actually fails. Consider the program

SillyId := 𝜆𝑥R .if𝑥 = 0 then 0 else𝑥 .

We clearly have that SillyId : R → R and that JSillyIdK is the identity function. We therefore
expect 𝑔𝑟𝑎𝑑 (SillyId) to compute the constant function 1. And yet, by modularity/functoriality, AD
transformations will give something like

𝑔𝑟𝑎𝑑 (SillyId) = 𝜆𝑥R .if𝑥 = 0 then 0 else 1,

which obviously gives the wrong result for 𝑥 = 0. This phenomenon, which is well known in the
AD community [Beck and Fischer 1994], is due to functoriality turning a syntactic discontinuity
into a semantic one. Notice that, although the above example is indeed quite silly, similar situations
may happen in a non-trivial neural network with rectified linear unit activation: if

ReLU := 𝜆𝑥R.if𝑥 ≤ 0 then 0 else𝑥,

then ReLU(𝑥) −ReLU(−𝑥) behaves exactly as SillyId(𝑥). Also, using recursive definitions, it is easy
to obtain programs on which AD fails on infinitely many inputs, even uncountably many in case of
programs of type R𝑛 → R with 𝑛 > 1 (simply consider 𝜆𝑥R.𝜆𝑦R.if𝑥 · 𝑦 = 0 then 0 else𝑥 · 𝑦).

So, to each given PCFR program𝑀 : R𝑛 → R, we may assign a set Fail(𝑀) ⊆ d (𝑀) of points on
which AD is unsound. Notice once again that we disregard what lies outside of d (𝑀), where
𝑔𝑟𝑎𝑑 (𝑀) is free to behave arbitrarily. For instance, 𝑔𝑟𝑎𝑑 (ReLU) is something like 𝜆𝑥R.if𝑥 ≤
0 then 0 else 1, which evaluates to 0 when 𝑥 = 0, even though JReLUK is not differentiable in
0. Morally, we cannot say that AD is łwrongž when there is no łrightž value to compare it to.
After toying with more examples, one is led to conjecture that Fail(𝑀) is always of measure

zero (in the sense of the standard Lebesgue measure on R𝑛), so one may hope to establish an
łalmost-everywherež relaxation of (ii):

(ii’) ae-soundness: 𝑔𝑟𝑎𝑑 (𝑀) (r) evaluates to ∇J𝑀K(r) for all r ∈ d (𝑀) except on a set of measure
zero.

This is exactly the main result of our paper. Let us stress that, considering that łfullž soundness is
impossible, such a result is quite meaningful in practice because of the link between the Lebesgue
measure and the standard understanding of randomness onR𝑛 . In typical deep learning applications,
weights are initialized łat randomž and later updated via gradient descent in order to minimize a
loss function. Technically, this means that the weights evolve following some standard probability
distribution, which always arises from integrating a probability density function with respect to the
Lebesgue measure. So, an informal way of stating (ii’) is that AD almost never fails, in the sense that,
according to the standard definition of probability, the likelihood of computing wrong derivatives
during gradient descent is zero.

The main result itself is articulated in Theorem 33 and Theorem 42. The first result takes care of
soundness proper: we define, for any given PCFR program 𝑀 : R𝑛 → R whose domain (i.e., the
inputs on which it converges) is ⇓𝑀 , a set S(𝑀) ⊆ ⇓𝑀 of stable points, and Theorem 33 affirms
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28:4 Damiano Mazza and Michele Pagani

that statement (ii) holds on d (𝑀) ∩ S(𝑀). Then, we establish in Theorem 42 that the set ⇓𝑀 \ S(𝑀)
of unstable points of𝑀 is of measure zero. Since d (𝑀) ⊆ ⇓𝑀 , this proves statement (ii’).
The intuition behind stable points is the following. Take 𝑀 : R𝑛 → R, r ∈ R𝑛 and trace the

execution of𝑀 (r). This means, in particular, unfolding the recursive definitions in𝑀 and choosing,
for each instance of a conditional statement of𝑀 , the łthenž or łelsež branch. One obtains thus a
program with no conditionals and no fixpoints, i.e., a simply-typed 𝜆-term, which is said to trace
𝑀 (r). Such a program depends of course on r. If, however, there exists a simply-typed 𝜆-term 𝑡 and
an open neighborhood𝑈 ⊆ R𝑛 of r (in the standard topology) such that 𝑡 (r′) traces𝑀 (r′) for all
r
′ ∈ 𝑈 , then r is stable (Definition 26). For instance, any 𝑟 ≠ 0 is stable for the ReLU program given
above: there always exists an open interval 𝐼 around 𝑟 such that either Zero := 𝜆𝑥R.0 or Id := 𝜆𝑥R.𝑥
traces ReLU on 𝐼 , depending on whether 𝑟 < 0 or 𝑟 > 0, respectively. On the other hand, 0 is an
unstable point of ReLU: any open interval around 0 must contain negative points, on which ReLU

is traced by Zero, and positive points, on which ReLU is traced by Id, and of course Zero ≠ Id.
The proof of Theorem 33 uses stability to reduce the soundness of AD on PCFR to the soundness

of AD on simply-typed 𝜆-terms, which may be established in various ways [Brunel et al. 2020;
Huot et al. 2020]. The idea is simple: if r ∈ S(𝑀), then𝑀 łbehaves likež a simply-typed 𝜆-term 𝑡 in
an open neighborhood of r, and we know that AD works for 𝑡 everywhere, so it łmustž work for
𝑀 on r. Although intuitively clear, the actual argument is surprisingly subtle. First, the definition
of trace (Definition 25) is not obvious, due to non-uniformity issues introduced by higher types:
two copies of the same higher-order subterm may be traced in different ways, as explained in the
example given at the beginning of Sect. 3.1. Second, knowledge of the correctness of 𝑔𝑟𝑎𝑑 (𝑡) (r)
does not immediately imply the correctness of 𝑔𝑟𝑎𝑑 (𝑀) (r) and some non-trivial work is needed to
show that they behave similarly.

The measure-zero bound on unstable points (Theorem 42), albeit obtained via a standard logical
predicate argument, also requires non-trivial elements, most notably the notion of complete quasi-
continuity, which is needed to account for the behavior of unstable points under composition, and
the related notion of quasivariety. Although the exact meaning of these notions depends on the
choice of primitives of PCFR (i.e., the basic real functions included in the language), under mild
assumptions a quasivariety is always of measure zero, and Theorem 42 states precisely that Fail(𝑀)
is a quasivariety. For example, when the primitives are just constants, addition and multiplication,
quasivarieties are arbitrary subsets of countable unions of zero sets of polynomials. Furthermore,
our Lemma 41 implies properties of PCFR-definable functions which, as far as we can tell, were
previously unknown. For example, if 𝑓 : R𝑛 ⇀ R is definable in PCFR, and if𝑈 ⊆ R is open, then
in general the border of 𝑓 −1 (𝑈 ) (i.e., 𝑓 −1 (𝑈 ) minus its interior) is not empty because conditionals
introduce discontinuities, but it is always a quasivariety. Similarly, the set of zeros of 𝑓 is always the
disjoint union of an open set and a quasivariety.

Related work. We already mentioned some of the relevant previous work at the interface between
AD and PL theory and stressed that our contribution here is to study the soundness of AD in a fully
general setting (higher-order, Turing-complete language), something which, as far as we know,
was lacking.

We also mentioned that the unsoundness of AD in presence of conditional statements is well
known [Beck and Fischer 1994]. Surprisingly, though, recent PL work on the subject acknowledges
this problem only sporadically, e.g. [Abadi and Plotkin 2020]. The solution proposed therein is
restricting to continuous Boolean conditions, meaning that the inverse images of the two Boolean
values along such conditions are open. For example, testing for zero or for non-positivity are not
continuous, because the inverse image of true is the singleton {0} or ]−∞, 0], respectively, which

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 28. Publication date: January 2021.



Automatic Differentiation in PCF 28:5

are not open. With this limitation, the authors prove statement (ii) for a Turing-complete first-
order language. The benefit of Abadi and Plotkin’s approach is allowing a denotational semantics
modeling the 𝑔𝑟𝑎𝑑 operator, but it has the drawback of representing standard total functions with
programs diverging on singularities (for example, ReLU yields a program diverging in 0), which is
somewhat unexpected. We discuss this further at the end of Sect. 2.2 and in Sect. 5.

Our approach, in the wake of a large part of the AD literature, is to stick to the standard semantics
and provide a bound on the unsoundness of AD, as precise as possible. This approach dates back
to the Seventies, as far as we know to Joss’s Ph.D. thesis [Joss 1976], who proved statement (ii’)
for forward mode AD in the context of an imperative language with variable assignments, basic
arithmetic functions (sum, multiplication, division), conditional statements and gotos. So our result
may be seen as an extension Joss’s theorem in several directions: to a higher-order language; to a
wider set of primitive functions (as long as they form an admissible clone, Definition 11); and to
reverse mode AD. Additionally, Theorem 42 is more precise than (ii’), because it characterizes the
set of failure points Fail(𝑀) as a quasivariety, which is a rather special example of negligible set.
Some discussion about this point is given in Sect. 5, in particular the proof of Theorem 42 hints to
methods for automatically computing at least some overapproximation of Fail(𝑀) statically from
the structure of𝑀 .
From a broader perspective, variants of PCF with real numbers similar to the one studied here

have been considered in the literature, e.g. [Escardó 1996] and [Di Gianantonio and Edalat 2013].
The latter actually also considers AD, but it is not about correctness and is quite different in spirit,
being more focused on denotational semantics. There is also a recent line of work whose goal
is to understand the non-differentiable points of program-defined functions, such as [Mak et al.
2020; Zhou et al. 2019], including in the context of AD [Lee et al. 2020], where it is a natural and
important question [Griewank and Walther 2008]. Non-differentiability and unsoundness of AD
have an important point in common: they are both introduced by conditionals. This explains why
some notions used in our paper also crop up in the study of non-differentiability, such as zero sets of
analytic functions [Zhou et al. 2019]. However, let us underline that the two issues are orthogonal:
from our perspective, PCF-definable functions might as well have been differentiable everywhere
(as in the SillyId example), what matters is that AD still makes mistakes and we wish to understand
them. Whether our techniques also yield tools for describing the set of non-differentiable points of
PCF-definable functions and, in that case, exactly how they relate to the above-mentioned work is
an interesting question which we leave for the future.

Finally, let us mention that our notion of stable point (Definition 26), which is new as far as we
know, is based on a concept of trace (Definition 25) belonging to the same circle of ideas as Ehrhard
and Regnier’s Taylor expansion [Ehrhard and Regnier 2006, 2008] and the modern understanding of
intersection types in the spirit of Mazza, Pellissier and Vial’s work [Mazza 2017; Mazza et al. 2018].
This extremely general perspective allows the definition of finitary approximations of programs at
the level of the operational semantics, rather than denotational, as was the case traditionally. Our
proof techniques are therefore not ad hoc for our current purposes and may be expected to have
applications beyond the present paper.

Contents of the paper. Sect. 2 introduces the language PCFR with its rewriting relation (Fig. 1)
and the AD transformations (Fig. 2 and Equations (9), (10)). Our results are quite general and do
not depend on a specific operational semantics but apply to a wide family of them (Proposition 10),
including the standard ones (call-by-value, call-by-name, etc.). We also introduce admissibility
of primitives (Definition 11) and the associated topological notions, among which quasivarieties
(Definition 13). Sect. 3 and Sect. 4 are the heart of the paper, containing the proofs of Theorem 33
and Theorem 42, respectively, as described above. Sect. 5 concludes the paper, discussing the results.
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28:6 Damiano Mazza and Michele Pagani

Notations. We write 𝑓 : 𝐴 ⇀ 𝐵 to say that 𝑓 is a partial function from a set 𝐴 to a set 𝐵. In that
case, ⇓ 𝑓 will denote the subset of 𝐴 on which 𝑓 is defined. Given two partial functions 𝑓 , 𝑔 : 𝐴 ⇀ 𝐵

and 𝑎 ∈ 𝐴, the equality 𝑓 (𝑎) = 𝑔(𝑎) means that either both 𝑓 (𝑎) and 𝑔(𝑎) are defined and equal, or
that both 𝑓 (𝑎) and 𝑔(𝑎) are undefined. The notation 𝑓 (𝑎) ≠ 𝑔(𝑎) of course is understood as the
logical negation of that. Given a subset 𝐴′ ⊆ 𝐴, we write 𝑓 |𝐴′ for the restriction of 𝑓 to 𝐴′. If 𝐴 is
endowed with a complete measure 𝜆 (typically 𝐴 is R and 𝜆 is the Lebesgue measure), then we say
that 𝑓 and 𝑔 are almost everywhere equal, and we write 𝑓 ∼ 𝑔, if 𝜆({𝑎 ∈ 𝐴 | 𝑓 (𝑎) ≠ 𝑓 (𝑏)}) = 0. This
is equivalent to the existence of two subsets 𝐴′, 𝑍 of 𝐴 such that ⇓ 𝑓 ∪ ⇓𝑔 ⊆ 𝐴′ ∪ 𝑍 , 𝜆(𝑍 ) = 0 and
𝑓 |𝐴′ = 𝑔 |𝐴′ , a fact which is implicitly used in the proof of Proposition 10.1

We write 𝐵𝜀 (r) for the open ball of R𝑛 of radius 𝜀 centered at r ∈ R𝑛 . Given 𝑓 : R𝑛 ⇀ R
𝑚 , we

denote by d (𝑓 ) the domain of differentiability of 𝑓 , defined to be the set of all r ∈ R𝑛 where 𝑓
is differentiable in the sense that the total derivative of 𝑓 at r exists, i.e., 𝑓 admits a best linear
approximation at r. We denote by J 𝑓 the Jacobian of 𝑓 . We recall that, if 𝜕𝑖 𝑓𝑗 denotes the partial
derivative of the 𝑗-th component of 𝑓 with respect to its 𝑖-th parameter, then within d (𝑓 ) the
Jacobian is equal to the𝑚 × 𝑛 matrix (𝜕𝑖 𝑓𝑗 ). If𝑚 = 1, the Jacobian is called gradient and denoted
by ∇𝑓 . As a special case of the above, within d (𝑓 ) we have ∇𝑓 = (𝜕1 𝑓 , . . . , 𝜕𝑛 𝑓 ). Although it may
happen in general that all partial derivatives exist without the Jacobian/gradient being defined, it
will never be the case in what follows because we will always work within d (𝑓 ).

2 PCF WITH REAL NUMBERS

2.1 Terms and Semantics

The programming language we use, called PCFR, is introduced in Fig. 1. There is only one base
type, R, for real numbers. We use 𝑛-ary products for convenience. If one prefers, these may be seen
as syntactic sugar defined from nullary and binary products. Throughout the paper, we stipulate
that unary products are just identities: ⟨𝑀⟩ and 𝜋1

1𝑀 both stand for𝑀 . We often omit the index 𝑛
in a projection 𝜋𝑛𝑖 , when inessential. The empty product type is denoted by 1. Given a type 𝐴, we
write 𝐴𝑛 for the 𝑛-fold product 𝐴 × · · · ×𝐴.

The metavariables 𝜙, 𝜒,𝜓 range over a set of function symbols, each coming with a type of the
form R𝑘 → R, where 𝑘 is the arity of the symbol. We suppose that the set of function symbols
contains at least all real numbers 𝑟 ∈ R as nullary symbols, called numerals, as well as binary
addition and multiplication, for which we use infix notation, i.e.,𝑀 +𝑁 and𝑀 ·𝑁 stand for +(𝑀, 𝑁 )
and ·(𝑀, 𝑁 ), respectively. We also write 𝑛-ary sums as syntactic sugar. Each function symbol
𝜙 : R𝑘 → R comes with a function J𝜙K : R𝑘 ⇀ R and we assume that J𝑟K, J+K and J·K are the
corresponding numbers and operations on real numbers. The functions J𝜙K for 𝜙 ranging over
function symbols will be referred to as the primitive functions of PCFR.

The notation if (𝑃,𝑀, 𝑁 ) is just a compact form of if 𝑃 ≤ 0 then𝑀 else𝑁 . We call 𝑃 the guard of
the conditional.

The primitive functions one considers are usually very regular, typically analytic (e.g. exponential,
logarithm, trigonometric functions, sigmoid maps. . . ). Sect. 2.3 details the precise conditions that
primitives must enjoy in order for our results to hold. The expressive power of PCFR considerably
enlarges the set of definable functions, in particular introducing singularities. The following

1Proof of the equivalence: let 𝐷 := {𝑎 ∈ 𝐴 | 𝑓 (𝑎) ≠ 𝑓 (𝑏) }. If 𝜆 (𝐷) = 0, then we may take𝐴′ := (⇓ 𝑓 ∪⇓𝑔) \𝐷 and 𝑍 := 𝐷 .
Conversely, given 𝐴′ and 𝑍 with the required properties, notice that 𝐷 ⊆ ⇓ 𝑓 ∪ ⇓𝑔, hence 𝐷 ⊆ 𝐴′ ∪ 𝑍 . But observe that
𝐷 ∩𝐴′ = ∅, so 𝐷 ⊆ 𝑍 , which gives us 𝜆 (𝐷) = 0.
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𝐴, 𝐵 ::= R | 𝐴→ 𝐵 | 𝐴1 × · · · ×𝐴𝑛

(a) Types.

Γ, 𝑥𝐴 ⊢ 𝑥 : 𝐴

𝜙 : R𝑘 → R, Γ ⊢ 𝑀1 : R, . . . , Γ ⊢ 𝑀𝑘 : R

Γ ⊢ 𝜙 (𝑀1, . . . , 𝑀𝑘 ) : R

Γ, 𝑥𝐴 ⊢ 𝑀 : 𝐵

Γ ⊢ 𝜆𝑥𝐴 .𝑀 : 𝐴→ 𝐵

Γ ⊢ 𝑀 : 𝐴→ 𝐵, Γ ⊢ 𝑁 : 𝐴
Γ ⊢ 𝑀𝑁 : 𝐵

Γ ⊢ 𝑀1 : 𝐴1, . . . , Γ ⊢ 𝑀𝑘 : 𝐴𝑘

Γ ⊢ ⟨𝑀1, . . . , 𝑀𝑘⟩ : 𝐴1 × · · · ×𝐴𝑘

Γ ⊢ 𝑀 : 𝐴1 × · · · ×𝐴𝑘

Γ ⊢ 𝜋𝑘𝑖 𝑀 : 𝐴𝑖

Γ ⊢ 𝑃 : R Γ ⊢ 𝑀 : 𝐴 Γ ⊢ 𝑁 : 𝐴
Γ ⊢ if (𝑃,𝑀, 𝑁 ) : 𝐴

Γ, 𝑓 : 𝐴→ 𝐵 ⊢ 𝑀 : 𝐴→ 𝐵

Γ ⊢ fix 𝑓 𝐴→𝐵 .𝑀 : 𝐴→ 𝐵

(b) Terms and typing rules.

(𝜆𝑥.𝑀)𝑁 −→ 𝑀{𝑁 /𝑥} 𝜋𝑘𝑖 ⟨𝑀1, . . . , 𝑀𝑘⟩ −→ 𝑀𝑖 𝜙 (𝑟1, . . . , 𝑟𝑘 ) −→ J𝜙K(𝑟1, . . . , 𝑟𝑘 )

if (𝑟, 𝑀, 𝑁 ) −→

{
𝑀 if 𝑟 ≤ 0

𝑁 if 𝑟 > 0
fix 𝑓 .𝑀 −→ 𝑀{𝜆𝑥 .(fix 𝑓 .𝑀)𝑥/𝑓 }

(c) Rewriting steps.

Fig. 1. The language PCFR over the ground type R of real numbers.

examples will be useful in the sequel:

ReLU := 𝜆𝑥R.if (𝑥, 0, 𝑥) Int := 𝜆𝑥R.𝜆𝑦R.if (𝑦 − 𝑥, if (𝑦 − 𝑥 + 1, 1, 0), 1)
SillyId := 𝜆𝑥R.if (𝑥, if (−𝑥, 0, 𝑥), 𝑥) Floor := 𝜆𝑥R.

(
fix 𝑓 .𝜆𝑛R.if (Int𝑥 𝑛, 𝑛, 𝑓 (if (𝑥, 𝑛 − 1, 𝑛 + 1)))

)
0
(1)

ReLU and SillyId are the PCFR terms corresponding to the namesake examples discussed in the
Introduction. ReLU is a typical example of a continuous non-differentiable function, having a corner
in 0. We know that AD fails on SillyId; Sect. 2.2 will elaborate on this point. The program Int takes
two inputs 𝑥 and 𝑦 and gives 0 if 𝑥 ∈ [𝑦,𝑦 + 1[, or 1 otherwise. It is auxiliary to the definition of the
Floor function, mapping a real number to the greatest integer less than or equal to it. Floor is an
example of how recursive definitions may yield maps with an infinite number of non-differentiable
points, being discontinuous on the integers.
We denote by𝑀{𝑁 /𝑥} the capture-free substitution of a term 𝑁 to the free occurrences of the

variable 𝑥 in𝑀 .
Note that the presence of the additive structure on R turns the product R𝑛 into a biproduct.

Indeed, the injection 𝜄𝑛𝑖 , for 𝑖 such that 1 ≤ 𝑖 ≤ 𝑛, may be defined as

𝜄𝑛𝑖 := 𝜆𝑥R. ⟨0, . . . , 0, 𝑥, 0, . . . , 0⟩ , (2)

where the variable 𝑥 is in the 𝑖-th position of the 𝑛-tuple. We omit the index 𝑛 when inessential or
clear from the context.
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For every type 𝐴→ 𝐵, we set Ω𝐴→𝐵 := fix 𝑓 𝐴→𝐵 .𝑓 . We write just Ω when the type is irrelevant.
Given a term Γ, 𝑓 : 𝐴 → 𝐵 ⊢ 𝑀 : 𝐴 → 𝐵 and 𝑛 ∈ N ∪ {∞}, we define fix𝑛 𝑓 .𝑀 of type 𝐴 → 𝐵 as
follows:

fix0 𝑓 .𝑀 := Ω, fix𝑛+1 𝑓 .𝑀 := (𝜆𝑓 .𝑀) (𝜆𝑥 .(fix𝑛 𝑓 .𝑀)𝑥), fix∞ 𝑓 .𝑀 := fix 𝑓 .𝑀. (3)

Throughout the paper, we use boldface metavariables to denote sequences of metavariables, i.e.,
x = 𝑥1, . . . , 𝑥𝑛 is a sequence of variables, M = 𝑀1, . . . , 𝑀𝑛 is a sequence of terms, etc. The length of
the sequence is specified only when necessary.
Let us introduce two particularly important classes of terms:

Definition 1 (program, simple term). A typing environment Γ is ground whenever all of its
variables have type R. A PCFR term 𝑀 is called a program of arity 𝑛 and coarity 𝑚 whenever
𝑥R1 , . . . , 𝑥

R
𝑛 ⊢ 𝑀 : R𝑚 .

A term is called simple if it does not contain conditionals or fixpoints. Small Latin letters 𝑡,𝑢, 𝑣
range over simple terms. Note that the subset of the simple terms of PCFR corresponds to the simply
typed 𝜆-calculus on the ground type R enriched with function symbols.

A context is a term with a single occurrence of a special variable {·}, called the hole. We use
metavariables C,D to range over contexts. Given a context C and a term𝑀 , we write C{𝑀} for the
term obtained by replacing the hole {·} of C with𝑀 , allowing the capture of the free variables in
𝑀 by the binders of C.

The reduction relation −→ is defined by context closure of the rewriting rules in Fig. 1c:

Definition 2 (reduction). Fig. 1c defines the set of rewriting rules of PCFR, which are pairs
𝑅 −→ 𝑃 of terms, with 𝑅 called the redex and 𝑃 the contractum of the rule.

A reduction step 𝜎 is a triple (C, 𝑅, 𝑃) such that C is a context, and 𝑅 −→ 𝑃 is a valid reduction
rule. We also write 𝜎 : C{𝑅} −→ C{𝑃} or, when the context C is irrelevant, simply 𝜎 : 𝑀 −→ 𝑁 , for
𝑀 = C{𝑅} and 𝑁 = C{𝑃}, and say that 𝜎 fires the redex 𝑅 in𝑀 . A term𝑀 without redexes, i.e. such
that𝑀 ≠ C{𝑅} for any C and any redex 𝑅, is said to be normal, or a normal form.

Given another context D, we denote by D{𝜎} the step (D{C}, 𝑅, 𝑃). Similarly we write 𝜎{𝑁 /𝑥} for
the triple (C{𝑁 /𝑥}, 𝑅{𝑁 /𝑥}, 𝑃{𝑁 /𝑥}), which is still a valid reduction step.
A reduction sequence 𝜌 from a term 𝑀 to a term 𝑁 , in symbols 𝜌 : 𝑀 −→∗ 𝑁 , is either empty, in

which case 𝑁 = 𝑀 , or a sequence of reduction steps (C𝑖 , 𝑅𝑖 , 𝑃𝑖 )1≤𝑖≤𝑛 with 𝑛 ≥ 1 such that𝑀 = C1{𝑅1},
𝑁 = C𝑛{𝑃𝑛} and for all 𝑖 < 𝑛, C𝑖 {𝑃𝑖 } = C𝑖+1{𝑅𝑖+1}. We call 𝑀 the source of 𝜌 , 𝑁 its target and 𝑛
the length of 𝜌 . We often identify a single reduction step and the corresponding reduction sequence of
length 1. The notations D{𝜌} and 𝜌{𝑁 /𝑥} are extended to reduction sequences in the obvious way.

Two reductions sequences 𝜌 : 𝑀 −→∗ 𝑀 ′ and 𝜌 ′ : 𝑀 ′ −→∗ 𝑀 ′′ compose in the obvious way to yield a
reduction sequence 𝜌𝜌 ′ : 𝑀 −→∗ 𝑀 ′′. Empty reduction sequences are the identities of such an operation.

A sequence 𝜌 is normalizing if there is no reduction step 𝜎 such that 𝜌𝜎 is a valid reduction sequence,
or, equivalently, if the target of 𝜌 is a normal form. A term𝑀 is called normalizing if there exists a
normalizing reduction from𝑀 . Otherwise𝑀 is said to be diverging.

PCFR is Turing-complete: usual PCF [Plotkin 1977] is essentially the fragment obtained by
restricting to integer (including negative) numerals and sum. We recall some results about reduction
which are completely standard (see e.g. [Amadio and Curien 1998]).

Proposition 3 (confluence). Whenever 𝑀 −→∗ 𝑁1 and 𝑀 −→∗ 𝑁2, there exist 𝑁 such that
𝑁1 −→

∗ 𝑁 and 𝑁2 −→
∗ 𝑁 . In particular, if 𝑁1 and 𝑁2 are normal forms, then 𝑁1 = 𝑁2.

Proposition 4 (subject reduction). If Γ ⊢ 𝑀 : 𝐴 and𝑀 −→ 𝑀 ′, then Γ ⊢ 𝑀 ′ : 𝐴.
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Proposition 5 (strong normalization for simple terms). For every simple term 𝑡 there exists
𝑛 ∈ N such that the length of every reduction sequence starting from 𝑡 is bounded by 𝑛.

A reduction strategy S is a relation between terms𝑀 of PCFR and occurrences of redexes in𝑀 .

A strategy is called deterministic whenever it is a partial function. We denote by
S
−→ the reduction

relation defined by reducing only the redexes fired by S and we write S-nf for a normal form of
S
−→. We write 𝛽 for the maximal strategy, giving the reduction relation −→. Of course this strategy is
not deterministic, however Proposition 3 assures that the normal form associated with a term is
unique if it exists.

Reduction strategies are often defined by fixing a subset of redexes in Fig. 1c and a set of evaluation
contexts. An example which will be useful in the sequel is head reduction, which is defined by taking
all reduction rules but restricting their application to head contexts, generated by the following
grammar:

H ::= {·} | 𝜙 (𝑀1, . . . ,H, . . . , 𝑀𝑘 ) | H𝑁 | ⟨H, 𝑁 ⟩ | ⟨𝑀,H⟩ | 𝜋𝑖H | if (H, 𝑀, 𝑁 ).

A head reduction step is of the form H{𝑅} → H{𝑃} with 𝑅 → 𝑃 a rewriting step of Fig. 1c and H a
head context. A head reduction sequence is a reduction whose steps are all head reduction steps.
Observe that head reduction is not deterministic. Apart from the freedom in the order of the

evaluation of the arguments of a function symbol, we allow to reduce within a pair as well as to
project it: for instance, the term 𝜋1⟨(𝜆𝑥 .𝑥)𝑦,𝑀⟩ may be decomposed either as H{𝜋1⟨(𝜆𝑥 .𝑥)𝑦,𝑀⟩}
with the empty head context H = {·}, or as H′{(𝜆𝑥.𝑥)𝑦} with the head context H′ = 𝜋1⟨{·}, 𝑀⟩,
and the two decompositions fire different redexes.

A classic result [Amadio and Curien 1998; Barendregt 1985] is that head reduction is a łwinning
strategyž for finding the 𝛽-normal form of a closed program:

Proposition 6. Let𝑀 be a normalizing closed program (i.e., of type R𝑛) whose 𝛽-normal form is
𝑁 . Then, there is a head reduction sequence𝑀 −→∗ 𝑁 .

LetS be a reduction strategy, let Γ = 𝑥R1 , . . . , 𝑥
R
𝑛 and let Γ ⊢ 𝑀 : R𝑚 . We define the partial function

J𝑀KS
Γ
: R𝑛 ⇀ R

𝑚 as follows:

J𝑀KS
Γ
(𝑟1, . . . , 𝑟𝑛) =

{
⟨𝑞1, . . . , 𝑞𝑚⟩ if𝑀{𝑟1/𝑥1} . . . {𝑟𝑛/𝑥𝑛}

S
−→∗ ⟨𝑞1, . . . , 𝑞𝑚⟩ ,

⊥ otherwise,

where ⊥means undefined. By Proposition 3, J𝑀KS
Γ
is a well-defined partial function, even in case S

is not deterministic, in fact if𝑀{𝑟1/𝑥1} . . . {𝑟𝑛/𝑥𝑛}
S
−→∗ ⟨𝑞1, . . . , 𝑞𝑚⟩ and𝑀{𝑟1/𝑥1} . . . {𝑟𝑛/𝑥𝑛}

S
−→∗〈

𝑞′1, . . . , 𝑞
′
𝑚

〉
we have that 𝑞𝑖 = 𝑞′𝑖 for each 𝑖 , as

S
−→⊆−→ and this latter is confluent.

We write ⇓S𝑀 for ⇓J𝑀KS
Γ
and dS (𝑀) for d (J𝑀KS

Γ
). In case S = 𝛽 , we omit the indices from the

above notations and write simply J𝑀K
Γ
, ⇓𝑀 and d (𝑀). The first of the next two statements follows

immediately from Proposition 6, the second from the definitions and the confluence property.

Proposition 7. Let𝑀 , 𝑁 and 𝑃 be programs (𝑃 of coarity 1), then the following relations hold:

J𝜙 (𝑀1, . . . , 𝑀𝑘 )KΓ = J𝜙K
Γ
◦
〈
J𝑀1KΓ , . . . , J𝑀𝑘KΓ

〉
, J⟨𝑀1, . . . , 𝑀𝑘⟩KΓ =

〈
J𝑀1KΓ , . . . , J𝑀𝑘KΓ

〉
,

Jif (𝑃,𝑀, 𝑁 )K
Γ
= r ↦→



J𝑀K

Γ
(r) if J𝑃K

Γ
(r) ≤ 0,

J𝑁 K
Γ
(r) if J𝑃K

Γ
(r) > 0,

⊥ if J𝑃K
Γ
(r) = ⊥.
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−→
D𝑛 (R) := R × R𝑛 D𝑛 (𝐴→ 𝐵) := D𝑛 (𝐴) → D𝑛 (𝐵)

←−
D𝑛 (R) := R × R⊥𝑛 D𝑛 (𝐴1 × · · · ×𝐴𝑘 ) := D𝑛 (𝐴1) × · · · × D𝑛 (𝐴𝑘 )

(a) The action over types

−→
D𝑛 (𝜙 (M)) :=

(
𝜆zR×R

𝑛

.

〈
𝜙 (𝜋1z) ,

𝑘∑
𝑖=1

𝜕𝑖𝜙 (𝜋1z) · 𝜋2𝑧𝑖 , . . . ,

𝑘∑
𝑖=1

𝜕𝑖𝜙 (𝜋1z) · 𝜋𝑛+1𝑧𝑖

〉)
−→
D𝑛 (M)

←−
D𝑛 (𝜙 (M)) :=

(
𝜆zR×R

⊥𝑛
.

〈
𝜙 (𝜋1z) , 𝜆𝑎

R.

𝑘∑
𝑖=1

𝜋2𝑧𝑖 (𝜕𝑖𝜙 (𝜋1z) · 𝑎)

〉)
←−
D𝑛 (M)

(b) The action over a function symbol 𝜙 of arity 𝑘 . We suppose that, for every 1 ≤ 𝑖 ≤ 𝑘 , there is an associated

function symbol 𝜕𝑖𝜙 of arity 𝑘 such that 𝜕𝑖J𝜙K (r) = J𝜕𝑖𝜙K (r) for every r ∈ R𝑘 on which 𝜕𝑖J𝜙K is defined.

The writing 𝜙 (M) is a shortcut for 𝜙 (𝑀1, . . . , 𝑀𝑘 ), and, similarly, 𝜆z stands for the sequence of abstractions

𝜆𝑧1 . . . 𝜆𝑧𝑘 and D𝑛 (M) for the sequence of applications to D𝑛 (𝑀1) . . .D𝑛 (𝑀𝑘 ). These sequences are supposed

empty if 𝑘 = 0.

D𝑛 (𝑥
𝐴) := 𝑥D𝑛 (𝐴) D𝑛 (𝜆𝑥

𝐴 .𝑀) := 𝜆𝑥D𝑛 (𝐴) .D𝑛 (𝑀) D𝑛 (𝑀𝑁 ) := D𝑛 (𝑀)D𝑛 (𝑁 )

D𝑛 (⟨𝑀1, . . . , 𝑀𝑘⟩) := ⟨D𝑛 (𝑀1), . . . ,D𝑛 (𝑀𝑘 )⟩ D𝑛 (𝜋𝑖𝑀) := 𝜋𝑖D𝑛 (𝑀)

D𝑛 (if (𝑃,𝑀, 𝑁 )) := if (𝜋1D𝑛 (𝑃),D𝑛 (𝑀),D𝑛 (𝑁 )) D𝑛 (fix 𝑓
𝐴 .𝑀) := fix 𝑓 D𝑛 (𝐴) .D𝑛 (𝑀)

(c) The action over the other programming primitives.

Fig. 2. The forward and reverse AD transformations. The symbol D denotes either one of them. The index 𝑛

refers to the gradient dimension and acts only over ground type annotations. We will omit the index when

inessential or clear from the context.

Proposition 8. For every program 𝑀 and strategy S, we have, for all r ∈ ⇓S𝑀 , J𝑀KS
Γ
(r) =

J𝑀K
Γ
(r). So, in particular, ⇓S𝑀 ⊆ ⇓𝑀 , dS (𝑀) ⊆ d (𝑀) and, for every r ∈ dS (𝑀), JJ𝑀KS

Γ
(r) =

JJ𝑀K
Γ
(r).

2.2 Automatic Differentiation

As mentioned in the Introduction, the two modes of AD are performed by means of the program

transformations
−→
D (forward) and

←−
D (reverse), outlined in full detail in Fig. 2. The cornerstone of

these transformations is the chain rule, which describes the derivative of a composition of functions:

(𝑓 ◦ 𝑔) ′(𝑥) = 𝑓 ′(𝑔(𝑥)) · 𝑔′(𝑥). (4)

This says in particular that (−) ′ is not functorial (i.e., modular/compositional): the right-hand side
of Equation (4) does not use only 𝑔′(𝑥) but also 𝑔(𝑥). Functoriality may be achieved by transforming

a map 𝑓 : R→ R into a map
−→
D (𝑓 ) : R2 → R2 acting as follows:

−→
D (𝑓 ) : ⟨𝑧, ¤𝑧⟩ ↦→ ⟨𝑓 (𝑧), 𝑓 ′(𝑧) · ¤𝑧⟩ . (5)

Referring to Equation (4), the input 𝑧, which is often called primal in the AD literature, corresponds
to the output of 𝑔, whereas ¤𝑧, called tangent, corresponds to the output of 𝑔′. The reader may easily

check functoriality:
−→
D (𝑓 ◦ 𝑔) =

−→
D (𝑓 ) ◦

−→
D (𝑔). This generalizes to 𝑛-ary maps in the definition of
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−→
D𝑛 in Fig. 2b2 and is the essential part of forward mode AD. The attribute forward refers to the
fact that the computation of both the primal and the tangent follows the input-to-output flow, in
particular the derivative 𝑓 ′(𝑧) is computed after having accumulated in ¤𝑧 the derivative of its input
function.

Notice that, if we denote by |𝑀 | the size of a term𝑀 , we have that |
−→
D𝑛 (𝜙 (𝑀)) | = 𝑂 (𝑛)+ |

−→
D𝑛 (𝑀) |.

So, supposing that 𝐹 consists only of function symbols and variables, evaluating both 𝐹 and
−→
D𝑛 (𝐹 )

on a given input requires a number of operations roughly equal to their size. But |
−→
D𝑛 (𝐹 ) | = 𝑂 (𝑛 |𝐹 |),

therefore the evaluation of
−→
D𝑛 (𝐹 ) is blown up by a factor of 𝑛 with respect to the evaluation of 𝐹 .

In applications to deep learning, 𝐹 is a loss function and 𝑛 is the number of learning parameters,
which may be huge (hundreds of millions).

Luckily, AD offers a more efficient method for applying the chain rule in these cases, called
reverse mode AD, or backpropagation, because the idea is to accumulate the tangents in the reverse
order with respect to the primals. More precisely, by taking the notation of (4), the backpropagation
←−
D (𝑓 ) of 𝑓 first computes 𝑓 ′(𝑔(𝑥)) and then waits for the derivative 𝑔′(𝑥) in order to perform
the multiplication. As first observed by [Pearlmutter and Siskind 2008], this mode may be natu-
rally expressed in a functional programming language by replacing the tangent variables ¤𝑧 with
backpropagators 𝑧∗ representing functions (in fact, special forms of continuations):

←−
D (𝑓 ) : ⟨𝑧, 𝑧∗⟩ ↦→

〈
𝑓 (𝑧), 𝜆𝑎R.𝑧∗ (𝑓 ′(𝑧) · 𝑎)

〉
(6)

A backpropagator is a map R→ R𝑛 waiting for a real number (the derivative of the next function)
in order to achieve the computation of the gradient of the whole function. In (6), the second
component of the returned pair is the backpropagator associated with 𝑓 , the variable 𝑧∗ being the
awaited backpropagator associated with the input function of 𝑓 (called 𝑔 in (4)). This transformation

generalizes to the definition of
←−
D𝑛 in Fig. 2b for 𝑛-ary maps.

We encourage the reader to check that |
←−
D𝑛 (𝜙 (𝑀)) | = 𝑂 (1) + |

←−
D𝑛 (𝑀) |, so if 𝐹 consists only

of function symbols and variables, the evaluation of
←−
D𝑛 (𝐹 ) is asymptotically as costly as the

evaluation of 𝐹 . However, in more complex cases, the sole transformation (6) is not enough to
guarantee efficiency: if 𝐹 contains sharing, e.g. a subroutine 𝑔 called several times, the evaluation

of
←−
D (𝐹 ) may duplicate uselessly the computation associated with the backpropagator of 𝑔, and

this may result in an exponential blowup. This highlights a key difference between forward and
reverse mode: if 𝐹 is a first order program (i.e., every abstraction 𝜆𝑥𝐴 in 𝐹 is such that 𝐴 has no

arrows), then
−→
D (𝐹 ) is also a first order program, whereas

←−
D (𝐹 ) is a higher order term. When

backpropagation is expressed in an imperative language, as is usually the case, duplication is not
a problem because efficiency is automatically achieved by accumulating the tangents (in reverse
order) in memory. But for functional languages, subtle techniques have been introduced to avoid
this problem, e.g. closure conversions [Pearlmutter and Siskind 2008] or memory references and
delimited continuations [Wang et al. 2019].

In this paper we follow the approach of [Brunel et al. 2020], giving a purely functional solution
based on linear logic types: backpropagators have type R⊥𝑛 , which corresponds to the set of linear
maps from R to R𝑛 . The efficiency of the transformation is then guaranteed by a factoring rule
added to the operational semantics, which allows sharing the evaluation of different occurrences of
a backpropagator 𝑧∗ in an expression:

𝑧∗𝑀 + 𝑧∗𝑁 −→ 𝑧∗ (𝑀 + 𝑁 ). (7)

2Modulo some syntactic bureaucracy, i.e., the pair ⟨𝑧, ¤𝑧 ⟩ of (5) corresponds in Fig. 2b to a single variable 𝑧 of type R × R𝑛 ,
whose components are obtained by using the projections 𝜋𝑖
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This rewriting rule is sound because backpropagators are linear maps, so they commute with sums.
In particular, the normal form of a term obtained using (7) is the same one would have obtained,
perhaps in more steps, without using it. As mentioned in the Introduction, in our present setting
we are concerned only with soundness, not efficiency. For this reason, we adopt the definition

R⊥𝑛 := R→ R𝑛

and do not consider the linear factoring rule (7). In fact, by the above remark, rule (7) only speeds
up computation without introducing any error, so our almost-everywhere soundness result is
transparent to its use, and enforcing linearity would only lead to unnecessary complications
induced by a more sophisticated type system. We do retain the notation (−)⊥ as a reminder that
this is supposed to be a linear arrow (i.e., R⊥𝑛 should really be R ⊸ R𝑛), but the transformation of
[Brunel et al. 2020] remains well typed with the above łnon-linearž definition of negation. Indeed,
apart from the addition of conditional and fixpoints, the transformation of Fig. 2 is exactly that of
loc. cit. and it is efficient as long as it is executed according to the operational semantics enriched
with (7), so nothing is lost with respect to our previous work.

So far we have explained AD transformations only in regard to primitive functions, which
are the łelementary blocksž of straight-line programs mentioned in the Introduction. It is an
observation first formalized in [Wang et al. 2019] that the transformations may be extended to

arbitrary programs simply by applying the functoriality principle:
−→
D and

←−
D are defined to commute

with the programming constructs of the language, resulting in Fig. 2c. As a result, the abstract
syntax tree of an expression is basically preserved by the two transformations,3 only the types
of the variables are lifted so as to accommodate primals and tangents or backpropagators at the
ground level. This behavior is often described by saying that AD is implemented via łoperator
overloadingž. We prefer the term łfunctorialityž because we find it technically more appropriate.

Notice that, in the definition of D (if (𝑃,𝑀, 𝑁 )), the transformation is applied also to the guard 𝑃
in order to preserve typability, because 𝑃 may share free variables with 𝑀 and 𝑁 . However, the
computation of the gradient of 𝑃 is useless and therefore D (𝑃) is projected to the first component.
A possible optimization would be to define D (if (𝑃,𝑀, 𝑁 )) := if (D′(𝑃),D (𝑀),D (𝑁 )) where D′ is
an auxiliary transformation such that D′(𝑥𝐴) = 𝜋1𝑥D (𝐴) and which behaves homomorphically on
every other term. We avoid introducing D

′ because it is not crucial for our results and because
such an optimization is not so relevant at our level of abstraction (indeed, the evaluation of D (𝑃) is
linear in the evaluation of 𝑃 , as proved in [Brunel et al. 2020], so asymptotically there is no gain).
Some examples of the two modes of D are given in Fig. 3. In the case of subtraction (Fig. 3b),

notice how the size of the term resulting from the forward transformation
−→
D𝑛 increases with the

gradient dimension 𝑛, while it is constant in
←−
D𝑛 , as expected from the above discussion.

Given a term Γ ⊢ 𝑀 : 𝐴 with Γ = 𝑥𝐴1

1 , . . . , 𝑥
𝐴𝑛

𝑛 , one can check that D (Γ) ⊢ D (𝑀) : D (𝐴), where

D (Γ) = 𝑥
D (𝐴1)
1 , . . . , 𝑥

D (𝐴𝑛)
𝑛 . In particular, if𝑀 is a program, then

𝑥R×R
𝑛

1 , . . . , 𝑥R×R
𝑛

𝑛 ⊢
−→
D𝑛 (𝑀) : R × R

𝑛 𝑥R×R
⊥𝑛

1 , . . . , 𝑥R×R
⊥𝑛

𝑛 ⊢
←−
D𝑛 (𝑀) : R × R

⊥𝑛 (8)

If, furthermore,𝑀 is simple, then the computational behavior of the transformations
−→
D and

←−
D is

given by the following result, which was proved in [Barthe et al. 2020; Brunel et al. 2020; Huot et al.
2020],4 and in which 𝜄𝑛𝑖 are the injections of R into R𝑛 as defined in Equation (2).

3This is the case for all constructs except the conditional, where a projection is added to the transformation of the guard.
This minor technicality is due to the fact that we consider only the ground type of real numbers and not that of Booleans.
4In a personal communication, Mitchell Wand showed us that soundness of reverse mode AD may also be proved by means
of łopenž logical relations of the kind discussed in [Barthe et al. 2020] and used here for the unsoundness bound (Sect. 4).
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−→
D1 (ReLU) = 𝜆𝑥

R×R .if (𝜋1𝑥, ⟨0, 0⟩ , 𝑥)
←−
D1 (ReLU) = 𝜆𝑥

R×R⊥ .if (𝜋1𝑥, ⟨0, 𝜆𝑎.0⟩ , 𝑥)

(a) D1 of the rectified linear unit ReLU, defined in (1).

−→
D1 (𝑥

R − 𝑦R) =
(
𝜆𝑧R×R1 𝑧R×R2 .

〈
𝜋2
1 (𝑧1) − 𝜋

2
1 (𝑧2), 𝜋

2
2 (𝑧1) − 𝜋

2
2 (𝑧2)

〉)
𝑥R×R𝑦R×R

−→
D2 (𝑥

R − 𝑦R) =
(
𝜆𝑧R×R

2

1 𝑧R×R
2

2 .
〈
𝜋3
1 (𝑧1) − 𝜋

3
1 (𝑧2), 𝜋

3
2 (𝑧1) − 𝜋

3
2 (𝑧2), 𝜋

3
3 (𝑧1) − 𝜋

3
3 (𝑧2)

〉)
𝑥R×R

2

𝑦R×R
2

←−
D𝑛 (𝑥

R − 𝑦R) =
(
𝜆𝑧R×R

⊥𝑛

1 𝑧R×R
⊥𝑛

2 .
〈
𝜋2
1 (𝑧1)−𝜋

2
1 (𝑧2), 𝜆𝑎

R.(𝜋2
2 (𝑧1)1·𝑎 + 𝜋

2
2 (𝑧2) (−1) ·𝑎)

〉)
𝑥R×R

⊥𝑛
𝑦R×R

⊥𝑛

(b) D𝑛 of the subtraction 𝑥 − 𝑦, with 𝑛 = 1, 2, where we suppose 𝜕1 (𝑥 − 𝑦) := 1 and 𝜕2 (𝑥 − 𝑦) := −1.

Fig. 3. Some examples of the D transformations. Notice that we take the liberty of using the same name for

the ground variables 𝑥R and 𝑦R and their images 𝑥D (R) and 𝑦D (R) under D.

Proposition 9 (soundness of AD for simple terms). Let Γ = 𝑥R1 , . . . , 𝑥
R
𝑛 and let Γ ⊢ 𝑡 : R be a

simple program. Then, for all r = (𝑟1, . . . , 𝑟𝑛) ∈ d (𝑡), we have

−→
D𝑛 (𝑡){

〈
𝑟1, 𝜄

𝑛
11

〉
/𝑥1} . . . {

〈
𝑟𝑛, 𝜄

𝑛
𝑛1

〉
/𝑥𝑛} −→

∗
〈
J𝑡K

Γ
(r),∇J𝑡K

Γ
(r)

〉
←−
D𝑛 (𝑡){

〈
𝑟1, 𝜄

𝑛
1

〉
/𝑥1} . . . {

〈
𝑟𝑛, 𝜄

𝑛
𝑛

〉
/𝑥𝑛}

)
−→∗

〈
J𝑡K

Γ
(r), 𝑢

〉
such that 𝑢1 −→∗ ∇J𝑡K

Γ
(r).

Looking at Proposition 9, if𝑀 is an arbitrary program of arity 𝑛 and coarity 1, it is reasonable
to believe that the following programs compute ∇J𝑀K

Γ
in r = (𝑟1, . . . , 𝑟𝑛) ∈ R

𝑛 whenever this is
defined:

−−−→
𝑔𝑟𝑎𝑑𝑛 (𝑀) (r) := 𝜋

2
2

−→
D𝑛 (𝑀){

〈
𝑟1, 𝜄

𝑛
11

〉
/𝑥1} . . . {

〈
𝑟𝑛, 𝜄

𝑛
𝑛1

〉
/𝑥𝑛}, (9)

←−−−
𝑔𝑟𝑎𝑑𝑛 (𝑀) (r) :=

(
𝜋2
2

←−
D𝑛 (𝑀){

〈
𝑟1, 𝜄

𝑛
1

〉
/𝑥1} . . . {

〈
𝑟𝑛, 𝜄

𝑛
𝑛

〉
/𝑥𝑛}

)
1. (10)

In the sequel, we will omit the index 𝑛 when inessential or clear from the context. We will also
write 𝑔𝑟𝑎𝑑 (𝑀) for either one the above terms.5

Referring to Fig. 3, it is immediate to check that, regardless of the mode, 𝑔𝑟𝑎𝑑1 (ReLU 𝑧
R) (𝑟 ) −→∗ 1

if 𝑟 > 0 and 𝑔𝑟𝑎𝑑1 (ReLU 𝑧
R) (𝑟 ) −→∗ 0 if 𝑟 ≤ 0. This is the expected result except for 𝑟 = 0, where

the map JReLU 𝑧K𝑧R is not differentiable. As discussed in the Introduction, our soundness result
concerns only the domain of differentiability d (𝑀) of a map J𝑀K represented by a program and
nothing is stated about the value of 𝑔𝑟𝑎𝑑 (𝑀) outside d (𝑀). This situation is quite common in AD
frameworks, where it may even be desirable to control the behavior of the łnon-existent derivativež
on singularities. For example, the following term cReLU implements the rectified linear unit (i.e.,
JcReLU 𝑧K𝑧R = JReLU 𝑧K𝑧R ) so that 𝑔𝑟𝑎𝑑 returns some arbitrarily chosen 𝑞 ∈ R on 0:

cReLU𝑞 := 𝜆𝑥R.if (𝑥, if (−𝑥, 𝑞 · 𝑥, 0), 𝑥), 𝑔𝑟𝑎𝑑1 (cReLU𝑞 𝑧
R) (𝑟 ) −→∗



1 if 𝑟 > 0,

𝑞 if 𝑟 = 0,

0 if 𝑟 < 0.

(11)

We do not consider these computations as errors because ∇JReLU 𝑧K𝑧R is undefined at 0.

5Notice that the above definition of 𝑔𝑟𝑎𝑑 is slightly different from the informal one used in the Introduction: it applies to
terms with free ground variables, whereas in the Introduction we abusively applied 𝑔𝑟𝑎𝑑 to closed terms.
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We already discussed SillyId (see (1)) as a first example of a mismatch between AD and the
gradient in the domain of differentiability of a map. Let us consider here a refined example:

EqProj := 𝜆𝑥R.𝜆𝑦R.if (𝑥 − 𝑦, if (𝑦 − 𝑥, 𝑥,𝑦), 𝑦). (12)

This term is extensionally equivalent to the binary projection 𝜆𝑥R.𝜆𝑦R.𝑦 and therefore its gradient
should be ⟨0, 1⟩ on the whole domain R2. By contrast, the reader may check that:

−−−→
𝑔𝑟𝑎𝑑2 (EqProj𝑥

R
1 𝑥

R
2 ) (𝑟1, 𝑟2) = 𝜋

2
2

(−→
D2 (EqProj)

〈
𝑟1, 𝜄

2
11

〉 〈
𝑟2, 𝜄

2
21

〉)
−→∗ 𝜋2

2 (if (𝑟1 − 𝑟2, if (𝑟2 − 𝑟1, ⟨𝑟1, ⟨1, 0⟩⟩ , ⟨𝑟2, ⟨0, 1⟩⟩), ⟨𝑟2, ⟨0, 1⟩⟩))

−→∗

{
⟨0, 1⟩ if 𝑟1 ≠ 𝑟2,

⟨1, 0⟩ if 𝑟1 = 𝑟2.

The diagonal of R2 gives an uncountable set of errors (a similar computation yields the same
result also for the reverse mode). However, this set is negligible, i.e., of Lebesgue measure zero, in
accordance with the claim (ii’) stated in the Introduction.

Let us add a last comment on example (12). Consider the unary program EqProj𝑥R1 𝑥
R
1 , which is

extensionally equivalent to the identity. One can check that
−−−→
𝑔𝑟𝑎𝑑1 (EqProj𝑥1𝑥1) (𝑟 ) −→

∗ 1 for every
𝑟 ∈ R, so there is no error at all in this case. This is in sharp contrast with approaches based on
partial conditionals, such as [Abadi and Plotkin 2020], in which conditionals diverge when the
guard evaluates to 0: under such semantics, EqProj𝑥1𝑥1 diverges everywhere.

Different reduction strategies change the convergence and differentiability domain of a program,
so a priori the soundness of AD depends on the strategy. In the above examples, we considered the
maximal reduction strategy 𝛽 . If we wish to specialize to a more restrictive reduction strategy S,

we should prove that 𝑔𝑟𝑎𝑑 (𝑀) evaluates, in accordance with S, to the gradient of J𝑀KS
Γ
at almost

every point where this is defined. In fact, if we succeed in proving this with respect to 𝛽 , then it
follows also for any other łreasonablež strategy S:

Proposition 10. Let Γ ⊢ 𝑀 : R be a program. If J𝑔𝑟𝑎𝑑 (𝑀)K
Γ
|d (𝑀) ∼ ∇(J𝑀K

Γ
), then for any

reduction strategy S such that dS (𝑀) ⊆ ⇓S(𝑔𝑟𝑎𝑑 (𝑀)) we also have J𝑔𝑟𝑎𝑑 (𝑀)KS
Γ
|dS (𝑀) ∼ ∇(J𝑀KS

Γ
).

Proof. By hypothesis we have that d (𝑀) = 𝐴 ∪𝑍 with 𝑍 of measure zero and J𝑔𝑟𝑎𝑑 (𝑀)K
Γ
|𝐴 =

∇(J𝑀K
Γ
) |𝐴. Let S be a reduction strategy satisfying the hypothesis and let 𝐵 := 𝐴 ∩ dS (𝑀). We

need to prove that J𝑔𝑟𝑎𝑑 (𝑀)KS
Γ
|𝐵 = ∇(J𝑀KS

Γ
) |𝐵 and that dS (𝑀) \ 𝐵 is negligible.

Let us start with this latter point. Notice that, by Proposition 8, dS (𝑀)\𝐵 = dS (𝑀)\(𝐴∩dS (𝑀)) =

dS (𝑀) \𝐴 ⊆ d (𝑀) \𝐴, and the latter set is of measure zero by hypothesis.
Let us now take r ∈ 𝐵. We have:

J𝑔𝑟𝑎𝑑 (𝑀)KS
Γ
(r) = J𝑔𝑟𝑎𝑑 (𝑀)K

Γ
(r) by 𝐵 ⊆ dS (𝑀) ⊆ ⇓S(𝑔𝑟𝑎𝑑 (𝑀)) and Proposition 8

= ∇(J𝑀K
Γ
) (r) because 𝐵 ⊆ 𝐴

= ∇(J𝑀KS
Γ
) (r) by 𝐵 ⊆ dS (𝑀) and Proposition 8.

□

The condition dS (𝑀) ⊆ ⇓S(𝑔𝑟𝑎𝑑 (𝑀)) is reasonable, since dS (𝑀) ⊆ ⇓S𝑀 by definition and it is
very likely that ⇓S𝑀 ⊆ ⇓S𝑔𝑟𝑎𝑑 (𝑀), because the convergence of 𝑔𝑟𝑎𝑑 (𝑀) coincides with that of
D (𝑀) and the latter essentially behaves like 𝑀 , as we will prove in Sect. 3.2. Notice that, when
𝑡 is simple, ⇓S𝑡 = ⇓S𝑔𝑟𝑎𝑑 (𝑡) is trivially true because of strong normalization (Proposition 5), so
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Proposition 9 in fact holds for any reduction strategy. Common strategies such as call-by-value, call-
by-name and call-by-need are easily seen to enjoy the condition of Proposition 10. See Remark 30
below for a proof sketch in the case of call-by-value.

2.3 Primitive Functions and CompleteQuasicontinuity

The only assumption we made so far about the function symbols of PCFR is that for every 𝜙 of
arity 𝑘 and every 1 ≤ 𝑖 ≤ 𝑘 , there is another 𝑘-ary function symbol 𝜕𝑖𝜙 corresponding to the
partial derivative of J𝜙K with respect to its 𝑖-th argument (Fig. 2b). In order to prove one of our
main results (Theorem 42), we will need to make some further topological and measure-theoretic
assumptions, which we proceed to spell out.
In what follows, we always consider R𝑛 with its standard topology and the Lebesgue measure.

We denote by int(𝑋 ) the interior of a set 𝑋 (the largest open set contained in 𝑋 ) and by bor(𝑋 ) its
border, defined as bor(𝑋 ) := 𝑋 \ int(𝑋 ). Equivalently, bor(𝑋 ) = 𝜕𝑋 ∩ 𝑋 where 𝜕𝑋 is the boundary
of 𝑋 (the closure of 𝑋 minus int(𝑋 )). In case 𝑋 is closed, bor(𝑋 ) = 𝜕𝑋 .

We recall that a clone [Szendrei 1986] on a set𝐴 is a collection P of functions𝐴𝑛
⇀ 𝐴 (for varying

𝑛) which is closed under composition6 and contains all projections (in particular, the identity on 𝐴).
Notice that clones are stable under arbitrary intersections, hence every set F of functions 𝐴𝑛

⇀ 𝐴

(for possibly varying 𝑛) generates a clone ⟨F⟩, the smallest clone containing F.

Definition 11 (admissible primitive functions). We say that a clone P on R is admissible if
𝑓 ∈ P implies:

(1) 𝑓 is continuous on its domain;
(2) if 𝑓 : R𝑛 ⇀ R is not identically zero, then 𝑓 −1 (0) is of Lebesgue measure zero in R𝑛 .

Fix a set F of function symbols together with their semantics. We abusively denote by F also the set
of all J𝜙K with 𝜙 ranging over the chosen function symbols. We say that F forms an admissible set of
primitive functions if ⟨F⟩ is admissible.

It is well known [Mityagin 2015] that an example of admissible clone is provided by the collection
of all real functions which are defined and analytic on some open set 𝑈 ⊆ R𝑛 , for varying 𝑈 and 𝑛.
Notice that a subclone of an admissible clone is admissible. Therefore, a simple way of ensuring
that the primitive functions of PCFR are admissible is to ask that they are all analytic where they
are defined. This is of course true of our łmandatoryž primitive functions (constants, addition and
multiplication), as well as all functions usually taken as primitive, such as division, square root,
exponential, logarithm, the trigonometric functions and their inverses, Gaussian functions, many
sigmoid functions (e.g. the error function), etc. Other desirable functions which are not analytic
(the step function, the floor function, the rectified linear unit. . . ) are usually programmable in PCFR
from these primitive functions.

The definitions that follow are parametric in a choice of admissible clone B, so we should speak
of B-quasiopen set, B-quasicontinuity, etc. However, for simplicity, we will omit the parameter B,
implicitly fixing once and for all an admissible set F of primitive functions and letting B := ⟨F⟩.
Functions in B will be called basic.

Definition 12 (qasiopen set). We define the class of quasiopen sets of R𝑛 to be the smallest
class of subsets of R𝑛 which:

(1) contains every open set;
(2) contains the zero set of every basic function R𝑛 ⇀ R;
(3) is closed under countable unions and binary intersections.

6We mean that if 𝑓 : 𝐴𝑘
⇀ 𝐴 and 𝑔1, . . . , 𝑔𝑘 : 𝐴𝑛

⇀ 𝐴 are in P, then so is the function a ↦→ 𝑓 (𝑔1 (a), . . . , 𝑔𝑘 (a)) .
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Inductively, the quasiopen sets of R𝑛 may be defined as follows:

𝑄,𝑄 ′ ::= 𝑈 | ℎ−1 (0) |
⋃
𝑖∈𝐼

𝑄𝑖 | 𝑄 ∩𝑄
′,

where 𝑈 ranges over the open sets of R𝑛 , ℎ : R𝑛 ⇀ R ranges over basic functions (which may further
be supposed to be not identically zero) and 𝐼 is countable.

Definition 13 (qasivariety). A set 𝑍 ⊆ R𝑛 is called a quasivariety if there exists a family
{ℎ𝑖 }𝑖∈𝐼 of basic functions ℎ𝑖 : R

𝑛 → R with 𝐼 countable and such that 𝑍 ⊆
⋃

𝑖∈𝐼 ℎ
−1 ({0}) . In other

words, a quasivariety is an arbitrary subset of a countable union of zero sets of basic functions.

The following result, which says that quasivarieties form a class of łnegligible setsž, will be
frequently used in the sequel, without explicit mention:

Lemma 14. Quasivarieties enjoy the following properties:

(1) measure zero: if 𝑍 ⊆ R𝑛 is a quasivariety, then it a has Lebesgue measure zero in R𝑛 ;
(2) stability under countable unions: if {𝑍𝑖 }𝑖∈𝐼 is a countable family of quasivarieties, then⋃

𝑖∈𝐼 𝑍𝑖 is a quasivariety;
(3) stability under subsets: if 𝑍 is a quasivariety and 𝑍 ′ ⊆ 𝑍 , then 𝑍 ′ is a quasivariety.

Proof. Immediate from the definition. □

Lemma 15. Let 𝑄 ⊆ R𝑛 be quasiopen. Then:

(1) there exists an open set𝑈 and a quasivariety 𝑍 such that 𝑄 = 𝑈 ∪ 𝑍 ;
(2) bor(𝑄) is a quasivariety. Hence, in the above one may always take𝑈 = int(𝑄) and 𝑍 = bor(𝑄).

The set of non-positive numbers R≤0 is an example of quasiopen subset of R: to see why, simply
notice that R≤0 = R<0 ∪ {0}, the first being open and the second being the zero set of the identity,
which is always a basic function. In a sense, the key property of the class of quasiopen sets is that
it includes both R≤0 and R>0, a fact which will be used crucially in Lemma 38.

On the other hand, thick Cantor sets provide examples of non-quasiopen subsets of R: such a set
𝐾 is closed, of positive measure and has empty interior, so 𝐾 = bor(𝐾), which would contradict
Lemma 15.2 if 𝐾 were quasiopen.
In what follows, if 𝑓 : 𝐴 ⇀ 𝐵 and 𝑔 : 𝐶 ⇀ 𝐷 are partial functions between sets, we write 𝑓 × 𝑔

for the function of type 𝐴 ×𝐶 ⇀ 𝐵 × 𝐷 such that (𝑓 × 𝑔) (𝑎, 𝑐) = (𝑓 (𝑎), 𝑔(𝑐)) whenever 𝑓 (𝑎) and
𝑔(𝑐) are defined, and is undefined otherwise.

Definition 16 ((complete) qasicontinuity). A function 𝑓 : R𝑛 ⇀ R
𝑚 is quasicontinuous7 if,

for every quasiopen set 𝑄 ⊆ R𝑚 , 𝑓 −1 (𝑄) is quasiopen. We say that 𝑓 is completely quasicontinuous
(cqc) if idR𝑘 × 𝑓 is quasicontinuous, for all 𝑘 ∈ N.

Complete quasicontinuity is needed in order to have Lemma 17.4 below. It is worth pointing out,
however, that we have not been able to find an example of a quasicontinuous function which is
not completely quasicontinuous. So, while we conjecture that complete quasicontinuity is strictly
stronger than quasicontinuity, the two notions might coincide in reality.

Lemma 17. We have the following properties:

(1) a function 𝑓 : R𝑛 → R𝑚 is quasicontinuous iff for every𝑄 which is either open or the zero set of
a basic function, 𝑓 −1 (𝑄) is quasiopen.

7The terminology łquasicontinuousž already has a standard meaning, unrelated to the one defined here. On the other hand,
łquasiopenž and łcompletely quasicontinuousž, which are the fundamental notions used in this work, do not seem to have
been used in the literature.
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R ⊏ R
𝐴′ ⊏ 𝐴 𝐵′ ⊏ 𝐵
𝐴′→ 𝐵′ ⊏ 𝐴→ 𝐵

𝐴′𝑖 ⊏ 𝐴𝑖 , ∀ 1 ≤ 𝑖 ≤ 𝑘

𝐴′1 × · · · ×𝐴
′
𝑘
⊏ 𝐴1 × · · · ×𝐴𝑘

𝐴𝑖 ⊏ 𝐴, ∀ 1 ≤ 𝑖 ≤ 𝑛

𝐴1 × · · · ×𝐴𝑛 ⊏ 𝐴

(a) The pre-trace relation on types.

Ξ ⊢ {·} ⊏ {·}

𝐴1 × · · · ×𝐴𝑛 ⊏ 𝐴

Ξ, 𝑝𝐴1×···×𝐴𝑛 ⊏ 𝑥𝐴 ⊢ 𝜋𝑛𝑖 𝑝 ⊏ 𝑥
𝑖 ∈ {1, . . . , 𝑛}

Ξ, 𝑝𝐴
′
⊏ 𝑥𝐴 ⊢ 𝑡 ⊏ 𝑀

Ξ ⊢ 𝜆𝑝𝐴
′
.𝑡 ⊏ 𝜆𝑥.𝑀

Ξ ⊢ 𝑡 ⊏ 𝑀, Ξ ⊢ 𝑢1 ⊏ 𝑁 . . . Ξ ⊢ 𝑢𝑛 ⊏ 𝑁

Ξ ⊢ 𝑡 ⟨𝑢1, . . . , 𝑢𝑛⟩ ⊏ 𝑀𝑁

Ξ ⊢ 𝑡1 ⊏ 𝑀1, . . . , Ξ ⊢ 𝑡𝑘 ⊏ 𝑀𝑘

Ξ ⊢ ⟨𝑡1, . . . , 𝑡𝑘⟩ ⊏ ⟨𝑀1, . . . , 𝑀𝑘⟩

Ξ ⊢ 𝑡 ⊏ 𝑀

Ξ ⊢ 𝜋𝑘𝑖 𝑡 ⊏ 𝜋
𝑘
𝑖 𝑀

Ξ ⊢ 𝑡1 ⊏ 𝑀1 . . . Ξ ⊢ 𝑡𝑘 ⊏ 𝑀𝑘

Ξ ⊢ 𝜙 (𝑡1, . . . , 𝑡𝑘 ) ⊏ 𝜙 (𝑀1, . . . , 𝑀𝑘 )

Ξ ⊢ 𝑡𝑖 ⊏ 𝑀𝑖

Ξ ⊢ 𝜋𝑖 ⟨𝑡𝑖 , 𝑡𝑖⟩ ⊏ if (𝑃,𝑀1, 𝑀2)
𝑖 ∈ {1, 2}

Ξ ⊢ 𝑡 ⊏ fix𝑛 𝑓 .𝑀

Ξ ⊢ 𝑡 ⊏ fix 𝑓 .𝑀
𝑛 > 0

(b) The pre-trace relation on terms. In the variable rule, if 𝑛 = 1, then 𝜋𝑖 is omitted. Recall the definition of

fix𝑛 𝑓 .𝑀 in (3).

Fig. 4. The pre-trace relation between simple and arbitrary PCFR terms.

(2) Identities are cqc and cqc functions are stable under composition.
(3) Basic functions are cqc. In particular, projections are cqc.

(4) If 𝑓 : R𝑘 ⇀ R
𝑚 and 𝑔 : R𝑘 ⇀ R

𝑛 are cqc, then the function ⟨𝑓 , 𝑔⟩ : R𝑘 → R𝑚+𝑛 defined by
⟨𝑓 , 𝑔⟩(𝑧) := (𝑓 (𝑧), 𝑔(𝑧)) if 𝑧 ∈ ⇓ 𝑓 ∩ ⇓𝑔 and undefined otherwise, is also cqc.

Contrarily to what the name might suggest, a continuous function is not in general quasicontin-
uous. In fact, it is well known that any closed subset of R may be the zero set of a map which is
smooth everywhere (in particular, continuous). So let 𝜙 : R→ R be a smooth function whose zero
set is a thick Cantor set 𝐾 , which, as observed above, is not quasiopen. The set {0} is quasiopen (it is
the zero set of the identity, which is a basic map), and yet𝜙−1 ({0}) = 𝐾 , so𝜙 is not quasicontinuous.

3 SOUNDNESS OF AD

We want to prove that 𝑔𝑟𝑎𝑑 (𝑀) computes the gradient of a program𝑀 almost everywhere in d (𝑀)

(Theorem 42). The proof splits in two parts: Theorem 33 states that 𝑔𝑟𝑎𝑑 (𝑀) is sound for the set
S(𝑀) of stable points of d (𝑀) (Definition 26) and Sect. 4 shows that S(𝑀) is actually almost all of
d (𝑀) ⊆ ⇓𝑀 , in the sense that ⇓𝑀 \ S(𝑀) is of measure zero.
Intuitively, a point r ∈ ⇓𝑀 is stable whenever there exists a simple term 𝑡 that łtracesž the

evaluation of 𝑀 over an open ball 𝐵𝜀 (r) of r. Such a 𝑡 allows us to lift the soundness theorem
for simple terms (Proposition 9) to 𝑔𝑟𝑎𝑑 (𝑀). This reasoning is based on the extrusion lemma
(Lemma 31), which needs a notion of łtracež not only at level of terms (Definition 25), but also at
the level of the reduction sequences (Definition 24).

3.1 Traces

The pre-trace relation is defined in Fig. 4. The judgments used in the definition are of the form
Ξ ⊢ 𝑡 ⊏ 𝑀 , where 𝑡 is a simple term or simple context,𝑀 is an arbitrary term or context of type,
say, Γ ⊢ 𝑀 : 𝐴 and Ξ is a function mapping any variable 𝑥𝐴 of Γ to a fresh variable 𝑝𝐴

′
with 𝐴′ ⊏ 𝐴.
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We usually denote this map as a list 𝑝
𝐴′1
1 ⊏ 𝑥

𝐴1

1 , . . . , 𝑝
𝐴′𝑛
𝑛 ⊏ 𝑥𝐴𝑛

𝑛 , supposing the 𝑝𝑖 ’s and 𝑥𝑖 ’s to be
pairwise different.

For brevity, we omit to specify the types of the terms in the subjects of the judgments in Fig. 4b,
but we encourage the reader to verify that if 𝑝1 ⊏ 𝑥1, . . . , 𝑝𝑛 ⊏ 𝑥𝑛 ⊢ 𝑡 ⊏ 𝑀 and 𝑥𝐶1

1 , . . . , 𝑥
𝐶𝑛

𝑛 ⊢ 𝑀 : 𝐴,

then 𝑝
𝐶′1
1 , . . . 𝑝

𝐶′𝑛
𝑛 ⊢ 𝑡 : 𝐴

′ with𝐴′ ⊏ 𝐴 and, for all 1 ≤ 𝑖 ≤ 𝑛,𝐶 ′𝑖 ⊏ 𝐶𝑖 . In particular, 𝑡 is a simply-typed
𝜆-term or context. We write 𝑡 ⊏ 𝑀 when the typing environment Ξ is irrelevant.

Conditionals and fixpoints are the only additional features of PCFR with respect to the simply-
typed 𝜆-calculus, and the purpose of ⊏ is to łtracež them with simply-typed terms themselves. The
last two rules of Fig. 4b łslice outž a conditional with the traces of its two branches and unfold a
fixpoint into its finite approximations. In fact, the conditional rule is a bit more convoluted as it
uses a dummy projection in order to encode the index of the chosen branch, a crucial information
for the extrusion property (Lemma 31). For example, 𝑢1 := 𝜆𝑥R.𝜋1⟨0, 0⟩ and 𝑢2 := 𝜆𝑥R.𝜋2⟨𝑥, 𝑥⟩ are
traces corresponding to the łthenž and łelsež branch, respectively, of ReLU defined in (1).
The variable rule of Fig. 4 also deserves an explanation. Its non-trivial shape, which is due to

higher order types, may be understood as follows. Let 𝑇 := 𝜆𝑓 R→R.𝑓 (𝑓 0 + 1) be a term using its
(higher order) argument twice and consider the program 𝑇 ReLU. Recall that ReLU contains a
conditional controlled by its argument, and has two different traces 𝑢1 and 𝑢2 discussed above.
However, the execution of 𝑇 ReLU, as sketched in Fig. 5, explores both branches of ReLU, so we
allow to trace𝑇 with 𝑡 := 𝜆𝑝.𝜋2𝑝 ((𝜋1𝑝)0 + 1) and𝑇 ReLU with 𝑡 ⟨𝑢1, 𝑢2⟩. That is, we allow different
instances of the same variable 𝑓 to be traced by different components of a tuple variable 𝑝 , because,
even if in the original program all occurrences of 𝑓 are replaced by copies of the same term ReLU,
different copies of ReLU might be traced by different simple terms, so the occurrences of 𝑓 must be
łseparatedž accordingly.

Lemma 18. Let𝑀 and 𝑡 be normal forms of type D𝑛 (R) whose free variables have type belonging
to {D𝑛 (R),R,R

𝑛,R⊥𝑛 }. If 𝑡 ⊏ 𝑀 then 𝑡 = 𝑀 .

Lemma 19. If Ξ ⊢ 𝑡 ⊏ 𝑀 , then:

(1) D (Ξ) ⊢ D (𝑡) ⊏ D (𝑀), where D turns any assignment 𝑝𝐴
′
⊏ 𝑥𝐴 of Ξ into 𝑝D (𝐴

′)
⊏ 𝑥D (𝐴) .

(2) Let Ξ = Ξ
′, 𝑥𝐴 ⊏ 𝑥𝐴. For every closed simple term 𝑢 of type 𝐴, we have Ξ′ ⊢ 𝑡{𝑢/𝑥} ⊏ 𝑀{𝑢/𝑥}.

Lemma 20. We have that Ξ ⊢ 𝑤 ⊏ 𝑀{𝑁 /𝑥} is equivalent to

• 𝑤 = 𝑡{𝑢1/𝑥1} . . . {𝑢𝑛/𝑥𝑛}, for some 𝑛 ∈ N and terms 𝑡,𝑢1, . . . , 𝑢𝑛 ,
• such that Ξ, 𝑝𝐴1×···×𝐴𝑛 ⊏ 𝑥𝐴 ⊢ 𝑡{𝜋1𝑝/𝑥1} . . . {𝜋𝑛𝑝/𝑥𝑛} ⊏ 𝑀 , 𝑝 not free in 𝑡 ,
• and Ξ ⊢ 𝑢𝑖 ⊏ 𝑁 for all 1 ≤ 𝑖 ≤ 𝑛.

In particular, Ξ, 𝑝𝐴1×···×𝐴𝑛 ⊏ 𝑥𝐴 ⊢ 𝑤 ⊏ 𝑀 implies 𝑤 = 𝑡{𝜋1𝑝/𝑥1} . . . {𝜋𝑛𝑝/𝑥𝑛} for some 𝑡 not
containing 𝑝 free.

Definition 21 (Tracing rewriting steps). Let 𝜎 : 𝑅 −→ 𝑃 be a rewriting step of Fig. 1c, and 𝜐 be
a reduction sequence between simple terms. We define 𝜐 ⊏ 𝜎 depending on 𝑅.

• If 𝑅 = (𝜆𝑥.𝑀)𝑁 : we ask that 𝜐 is any reduction of the form

(𝜆𝑝.𝑡{𝝅𝑝/x})⟨u⟩ −→ 𝑡{𝝅 ⟨u⟩/x} −→∗ 𝑡{u/x}

where 𝑝 ⊏ 𝑥 ⊢ 𝑡{𝝅𝑝/x} ⊏ 𝑀 , with {𝝅𝑝/x} denoting the substitutions {𝜋1𝑝/𝑥1} . . . {𝜋𝑛𝑝/𝑥𝑛}
for some 𝑛 ∈ N, and where u is a sequence 𝑢1, . . . , 𝑢𝑛 of simple terms such that 𝑢𝑖 ⊏ 𝑁 for all 𝑖 ,
and in which the redexes 𝜋𝑖 ⟨u⟩ −→ 𝑢𝑖 are reduced in any order.
• If 𝑅 = 𝜋𝑖 ⟨𝑀1, . . . , 𝑀𝑘⟩: we ask that 𝜐 is any reduction of the form 𝜋𝑖 ⟨𝑡1, . . . , 𝑡𝑘⟩ −→ 𝑡𝑖 for
𝑡1 ⊏ 𝑀1,. . . , 𝑡𝑘 ⊏ 𝑀𝑘 .
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𝑇 ReLU ReLU(ReLU 0 + 1) if (ReLU 0 + 1, 0,ReLU 0 + 1)

𝑡 ⟨𝑢1, 𝑢2⟩ 𝜋2⟨𝑢1, 𝑢2⟩ (𝜋1⟨𝑢1, 𝑢2⟩ 0 + 1) 𝑢2 (𝑢10 + 1) 𝜋2⟨𝑢10 + 1, 𝑢10 + 1⟩

if (ReLU 0 + 1, 0,ReLU 0 + 1) if (1, 0,ReLU 0 + 1) ReLU 0 + 1 if (0, 0, 0) + 1 0 + 1 1

𝜋2⟨𝑢10 + 1, 𝑢10 + 1⟩ 𝜋2⟨𝑢10 + 1, 𝑢10 + 1⟩ 𝑢10 + 1 𝜋1⟨0, 0⟩ + 1 0 + 1 1

∗

∗

=

⊏ ⊏ ⊏

⊏ ⊏ ⊏ ⊏ ⊏ ⊏

Fig. 5. Tracing the head reduction𝑇 ReLU −→∗ 1. The term𝑇 is 𝜆𝑓 .𝑓 (𝑓 0+ 1), of which 𝑡 := 𝜆𝑝.𝜋2𝑝 ((𝜋1𝑝)0+ 1)

is a trace; ReLU is given in (1), with traces 𝑢1 := 𝜆𝑥.𝜋1⟨0, 0⟩, 𝑢2 := 𝜆𝑥 .𝜋2⟨𝑥, 𝑥⟩.

• If 𝑅 = 𝜙 (r): we ask that 𝜐 = 𝜎 .
• If 𝑅 = if (𝑟, 𝑀1, 𝑀2): we ask that 𝜐 is any reduction of the form 𝜋𝑖 ⟨𝑡, 𝑡⟩ −→ 𝑡 with 𝑡 ⊏ 𝑀𝑖 and
𝑖 = 1 if 𝑟 ≤ 0, otherwise 𝑖 = 2.
• If 𝑅 = fix 𝑓 .𝑁 : we ask that 𝜐 ⊏ 𝜎 ′ where 𝜎 ′ is any reduction of the form

(𝜆𝑓 .𝑀) (𝜆𝑥.(fix𝑛 𝑓 .𝑀)𝑥) −→ 𝑀{𝜆𝑥.(fix𝑛 𝑓 .𝑀)𝑥/𝑓 }

for some 𝑛 ∈ N, as defined in the first case.

Lemma 22 (pullback). Let 𝜎 : 𝑅 −→ 𝑃 be a rewriting step. For any 𝑤 ⊏ 𝑃 , there exist 𝑡 ⊏ 𝑅 and
𝜉 : 𝑡 −→∗ 𝑤 such that 𝜉 ⊏ 𝜎 .

We now extend Definition 21 to one-step head reductions (as defined in Sect. 2.1).

Definition 23 (Tracing head reduction steps). Let 𝜎 = (H, 𝑅, 𝑃) be a reduction step with H

a head context, and let 𝜎0 denote the rewriting step 𝑅 → 𝑃 . If 𝜉 : 𝑡 −→∗ 𝑢 is a reduction sequence on
simple terms, we write 𝜉 ⊏ 𝜎 whenever one of the following holds:

• there exists a simple context h ⊏ H such that 𝜉 = h{𝜐} with 𝜐 ⊏ 𝜎0 in the sense of Definition 21;
• the hole of H is in the guard of a conditional, 𝜉 is the empty sequence and 𝑡 = 𝑢 ⊏ H{𝑅}.

Finally, we extend the relation ⊏ to reduction sequences by reflexive-transitive closure.

Definition 24 (Tracing head reduction seqences). Let 𝜌 be a head reduction sequence
starting from a term𝑀 and let 𝜉 be a reduction sequence starting from a simple term 𝑡 . We write 𝜉 ⊏ 𝜌
if either 𝜌 and 𝜉 are empty and 𝑡 ⊏ 𝑀 , or if 𝜌 = 𝜎1 · · ·𝜎𝑛 is of length 𝑛 > 0 and 𝜉 = 𝜉1 · · · 𝜉𝑛 such that
𝜉𝑖 ⊏ 𝜎𝑖 for every 1 ≤ 𝑖 ≤ 𝑛, according to Definition 23.

Fig. 5 gives an example of tracing the head reduction of the term𝑇 ReLU discussed above. Notice
that the reduct of 𝑡 ⟨𝑢1, 𝑢2⟩ is an intermediate term not corresponding to any trace. Notice also that
all the reductions in the guard of a conditional (such as the first steps in the third line of Fig. 5)
share the same traces. In general, 𝜉 ⊏ 𝜌 implies that 𝜌 is a head reduction but not necessary 𝜉 ,
because the first case of Definition 21 requires 𝜉 to reduce projection redexes not in the łhead
positionž of a simple term. In fact, the reduction of 𝑡 ⟨𝑢1, 𝑢2⟩ in Fig. 5 is not head.

Definition 25 (trace relation). Let𝑀 be a term and 𝑡 a simple term. We say that 𝑡 traces𝑀 ,
in symbols 𝑡 ⊏∼ 𝑀 , whenever there exists a normalizing reduction 𝜉 starting from 𝑡 and a normalizing

head reduction 𝜌 starting from𝑀 such that 𝜉 ⊏ 𝜌 .

As an example, let us consider the term SillyId of (1). Let us define the simple terms:

𝑡1 := 𝜆𝑥.𝜋1⟨𝜋1⟨0, 0⟩ , 𝜋1⟨0, 0⟩⟩ , 𝑡2 := 𝜆𝑥 .𝜋1⟨𝜋2⟨𝑥, 𝑥⟩ , 𝜋2⟨𝑥, 𝑥⟩⟩ , 𝑡3 := 𝜆𝑥 .𝜋2⟨𝑥, 𝑥⟩ . (13)
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{·} ◁ {·} 𝑥𝐴 ◁ 𝑥D (𝐴)
𝑀 ◁𝑀 ′

𝜆𝑥 .𝑀 ◁ 𝜆𝑥.𝑀 ′
𝑀 ◁𝑀 ′ 𝑁 ◁ 𝑁 ′

𝑀𝑁 ◁𝑀 ′𝑁 ′
𝑀 ◁𝑀 ′

𝜋𝑘𝑖 𝑀 ◁ 𝜋
𝑘
𝑖 𝑀
′

𝑀1 ◁𝑀
′
1 . . . , 𝑀𝑘 ◁𝑀

′
𝑘

⟨𝑀1, . . . , 𝑀𝑘⟩ ◁
〈
𝑀 ′1, . . . , 𝑀

′
𝑘

〉 𝑃 ◁ 𝑃 ′ 𝑀 ◁𝑀 ′ 𝑁 ◁ 𝑁 ′

if (𝑃,𝑀, 𝑁 ) ◁ if (𝜋1𝑃
′, 𝑀 ′, 𝑁 ′)

𝑀 ◁𝑀 ′

fix 𝑓 .𝑀 ◁ fix 𝑓 .𝑀 ′

𝑧
D (R)
1 . . . 𝑧

D (R)

𝑘
⊢ 𝑡 : R(⊥𝑛) simple normal form, 𝑀1 ◁𝑀

′
1, . . . , 𝑀𝑘 ◁𝑀

′
𝑘

𝜙 (𝑀1, . . . , 𝑀𝑘 ) ◁ (𝜆𝑧
D (R)
1 . . . 𝜆𝑧

D (R)

𝑘
. ⟨𝜙 (𝜋1𝑧1, . . . , 𝜋1𝑧𝑘 ), 𝑡⟩)𝑀

′
1 · · ·𝑀

′
𝑘

Fig. 6. The expansion relation. In the rule on the third line, if 𝑘 = 0 then the right-hand term in the conclusion

is just ⟨𝜙, 𝑡⟩.

Notice that, for any 𝑖 ∈ {1, 2, 3}, we have 𝑡𝑖 ⊏ SillyId (see Fig. 4), therefore also 𝑡𝑖𝑟 ⊏ SillyId 𝑟 for
any real number 𝑟 . By contrast, we have that 𝑡1𝑟 ⊏∼ SillyId 𝑟 iff 𝑟 = 0, 𝑡2𝑟 ⊏∼ SillyId 𝑟 iff 𝑟 < 0 and,
symmetrically, 𝑡3𝑟 ⊏∼ SillyId 𝑟 iff 𝑟 > 0. This highlights a sharp difference between the relations ⊏
and ⊏∼: the former is static whereas the latter traces the execution of a term. Indeed, the projections
of the 𝑡𝑖 ’s reflect the different choices in the conditionals of SillyId.

3.2 AD Is Sound on Stable Points

Consider a PCFR program 𝑥R1 , . . . , 𝑥
R
𝑛 ⊢ 𝑀 : R. One can easily check that for every r ∈ R𝑛 ,𝑀{r/x}

is normalizing if and only if there exists a simple term 𝑡 tracing 𝑀{r/x}. However, this term 𝑡

usually depends on the chosen r. In the following definition of stable points, we consider a situation
where 𝑡 can be łuniformlyž chosen in an open ball around r.

Definition 26. We define the set of stable points of a program 𝑥R1 , . . . , 𝑥
R
𝑛 ⊢ 𝑀 : R as follows:

S(𝑀) :=

{
r ∈ R𝑛 | ∃ 𝜀 > 0, ∃ 𝑥R1 , . . . , 𝑥

R
𝑛 ⊢ 𝑡 : R s.t. 𝑡 ⊏ 𝑀 and

∀ r′ ∈ 𝐵𝜀 (r) 𝑡{r
′/x} ⊏∼ 𝑀{r

′/x}

}
.

Notice that we have restricted the tracing of𝑀 to terms 𝑡 of the same type as𝑀 , in particular 𝑡
does not split different occurrences of a free variable 𝑥𝑖 of𝑀 . In fact, these variables are supposed
to be replaced with numerals, which are not split by ⊏. Also observe that, by definition, we have
S(𝑀) ⊆ ⇓𝑀 , as 𝑡{r/x} ⊏∼ 𝑀{r/x} implies that𝑀{r/x} has a normal form. Moreover, S(𝑀) is open:
it is easy to check that S(𝑀) =

⋃
r∈S(𝑀) 𝐵𝜀r (r), where 𝜀r is the positive real whose existence is given

by the very definition of stability of r.
We already argued in the Introduction that S(ReLU𝑥R) = R \ {0}. By recalling the above

discussion about the simple terms 𝑡1, 𝑡2 and 𝑡3 in (13), we may infer that also S(SillyId𝑥R) = R \ {0},
in fact 0 is the border where one has to swap between 𝑡1𝑟 and either 𝑡2𝑟 or 𝑡3𝑟 in tracing SillyId 𝑟 .
Similarly, but with more involved simple terms, one can check that S(Floor𝑥R) = R \ Z with Floor

given in (1). As a last example, let us consider the term EqProj defined in (12) and the simple terms

𝑡1 := 𝜆𝑥.𝜆𝑦.𝜋1 ⟨𝜋1 ⟨𝑥, 𝑥⟩ , 𝜋1 ⟨𝑥, 𝑥⟩⟩ , 𝑡2 := 𝜆𝑥 .𝜆𝑦.𝜋1 ⟨𝜋2 ⟨𝑦,𝑦⟩ , 𝜋2 ⟨𝑦,𝑦⟩⟩ , 𝑡3 := 𝜆𝑥.𝜆𝑦.𝜋2 ⟨𝑦,𝑦⟩ .

These are all such that 𝑡𝑖 ⊏ EqProj. However, 𝑡1𝑟𝑞 ⊏∼ EqProj 𝑟𝑞 iff 𝑟 = 𝑞, 𝑡2𝑟𝑞 ⊏∼ EqProj 𝑟𝑞 iff 𝑟 < 𝑞
and 𝑡3𝑟𝑞 ⊏∼ EqProj 𝑟𝑞 iff 𝑟 > 𝑞. So the diagonal splits the plane R2 in two open sets where either 𝑡2
or 𝑡3 uniformly traces the execution of EqProj, whereas the execution on the diagonal is traced by
𝑡1. But the diagonal contains no open set, therefore S(EqProj𝑥R𝑦R) = R2 \ {(𝑟, 𝑟 ) ; 𝑟 ∈ R}. Notice,
finally, that EqProj𝑥R𝑥R may be traced everywhere by 𝑡1𝑥R𝑥R, hence S(EqProj𝑥R𝑥R) = R.
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The tracing relation ⊏∼ is defined over programs. However, in order to prove soundness (Theo-
rem 33), we must move from a program𝑀 to its transformation D (𝑀), this latter having a more
complex type than𝑀 . The difficulty behind the proof of Theorem 33 is then to deduce from 𝑡 ⊏∼ 𝑀

a link between D (𝑡) and D (𝑀). In order to do that, we define a further relation ◁ (Fig. 6) catching
an invariant between𝑀 and D (𝑀) (as well as between 𝑡 and D (𝑡)) stable under the evaluation of
the two terms. Then the extrusion lemma (Lemma 31 and its iterated version Lemma 32) will use ◁
for deducing the needed link between D (𝑡) and D (𝑀) from the hypothesis 𝑡 ⊏∼ 𝑀 .

Definition 27 (expansion). The relation ◁ on terms and contexts of PCFR is defined in Fig. 6.

As mentioned above, expansion is used to establish that𝑀 and D (𝑀) łbehave similarlyž. Such
a link emerges from two of the main properties of ◁, namely that 𝑀 ◁ D (𝑀) holds for every 𝑀
(Lemma 28), and that it is a simulation (if𝑀◁𝑀 ′, then𝑀 ′ simulates𝑀 , Lemma 29). These justify the
definition in the case𝑀 = 𝜙 (𝑀1, . . . , 𝑀𝑘 ): it mimics the definition of D (𝑀) in the first component
of the product, whereas the second component is chosen as an arbitrary closed simple normal
form. The first gives us stability under reduction, in particular in the case of a conditional redex,
while the second component cannot be asked to be linked with the partial derivatives of 𝜙 , because
𝜙 (𝑀1, . . . , 𝑀𝑘 ) eventually reduces to a numeral, which has zero derivative.

Lemma 28. For every program 𝑥R1 , . . . , 𝑥
R
𝑛 ⊢ 𝑀 : R, r ∈ R𝑛 and sequence u = 𝑢1, . . . , 𝑢𝑛 of simple

closed normal forms of suitable type, we have 𝑀{r/x} ◁ D (𝑀){⟨r, u⟩/x}, where by {⟨r, u⟩/x} we
mean {⟨𝑟1, 𝑢1⟩ /𝑥1} · · · {⟨𝑟𝑛, 𝑢𝑛⟩ /𝑥𝑛}.

Lemma 29. Let𝑀 ◁𝑀 ′ and𝑀 −→ 𝑁 , then there exists 𝑁 ′ such that𝑀 ′ −→∗ 𝑁 ′ and 𝑁 ◁ 𝑁 ′.

Proof Sketch. Let (C, 𝑅, 𝑃) be the reduction step𝑀 −→ 𝑁 . The proof is an induction on C. The
only non-trivial part is the base of the induction, i.e. C = {·}, in which the reasoning splits following
Fig. 1c: the case of a 𝛽-reduction is a consequence of a substitution lemma on ◁. If 𝑅 = 𝜙 (r), then
𝑀 ′ −→∗ ⟨𝜙 (𝜋1L

′), 𝑡{L′/z}⟩ for some L′ of the same length as r such that 𝑟𝑖 ◁ 𝐿′𝑖 for all 𝑖 . Notice that
𝑟𝑖 ◁ 𝐿

′
𝑖 implies that 𝜋1𝐿′𝑖 −→ 𝑟𝑖 as well as 𝐿′𝑖 is a simple closed normal form, so in particular 𝑡{L′/z}

is normalizable by Proposition 5. We therefore have: ⟨𝜙 (𝜋1L′), 𝑡{L′/z}⟩ −→∗
〈
J𝜙K(r), 𝑡 ′

〉
with 𝑡 ′ a

simple closed normal form, and we conclude by taking 𝑁 ′ :=
〈
J𝜙K(r), 𝑡 ′

〉
.

The cases of the other redexes (conditional, products and fixpoints) are immediate. □

Remark 30. A variant of Lemma 29 can be used to prove that ⇓S𝑀 ⊆ ⇓S𝑔𝑟𝑎𝑑 (𝑀), for some
reduction strategy S (see discussion after Proposition 10). For example, if S is the call-by-value strategy,

then one can prove the statement of Lemma 29 by replacing −→ and −→∗ with
S
−→ and

S
−→∗ (in the

case of a 𝑅 = 𝜙 (r) redex, one should notice that the terms L′ are all values, and one should replace
łnormalizablež with łS-normalizablež and łsimple closed normal form with łsimple closed S-nfž).

Then, consider a program 𝑀 of arity 1 and suppose r ∈ ⇓S𝑀 , i.e. 𝑀{r/x}
S
−→∗ 𝑞, for 𝑞 a numeral.

We have by Lemma 28 and this variant of Lemma 29 that D (𝑀){⟨r, u⟩/x}
S
−→∗ 𝑁 with 𝑞 ◁ 𝑁 and

each 𝑢𝑖 either the normal form of 𝜄𝑛𝑖 1 or 𝜄𝑛𝑖 , depending whether D is
−→
D or

←−
D (recall Equations (9)

and (10)). By inspecting Fig. 6, we can deduce 𝑁 = ⟨𝑞, 𝑡⟩ for some closed simple S-nf 𝑡 . This means
←−−−
𝑔𝑟𝑎𝑑 (𝑀)

S
−→∗ (𝜋2 ⟨𝑞, 𝑡⟩)1

S
−→ 𝑡1, this latter evaluating to a normal form because it is a simple term

(Proposition 5). We conclude r ∈ ⇓S
←−−−
𝑔𝑟𝑎𝑑 (𝑀). The case of

−−−→
𝑔𝑟𝑎𝑑 (𝑀) is simpler.

Lemma 31 (extrusion). Let𝑀 ◁𝑀 ′, 𝑡 ◁ 𝑡 ′, 𝑡 ′ ⊏ 𝑀 ′. Let 𝜎 : 𝑀 −→ 𝑀1 be a head reduction step and
moreover let 𝜉 : 𝑡 −→∗ 𝑡1 be such that 𝜉 ⊏ 𝜎 (so in particular 𝑡 ⊏ 𝑀 and 𝑡1 ⊏ 𝑀1). Then there exist
𝑀 ′1, 𝑡

′
1 such that the following relations hold:
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𝑡

𝑀

𝑡1

𝑀1

𝜉
∗

𝜎

⊏
𝑡 ′

𝑀 ′

𝑡 ′1

𝑀 ′1

∗

∗

⊏ ⊏

◁ ◁

◁ ◁

Proof Sketch. By Definition 23, 𝜎 = H{𝜎0} for some head context H and reduction step
𝜎0 : 𝑅 −→ 𝑃 . The proof is by induction on H.

The case H = {·} splits following Fig. 1c. For example, let 𝜎 be𝑀 = (𝜆𝑥 .𝐿)𝑁 −→ 𝐿{𝑁 /𝑥} = 𝑀1, so
that 𝜉 is the reduction 𝑡 = (𝜆𝑝.𝑤{𝝅𝑝/x}) ⟨u⟩ −→∗ 𝑤{u/x} = 𝑡1. Then 𝑀 ′ = (𝜆𝑥.𝐿′)𝑁 ′ with 𝐿 ◁ 𝐿′

and 𝑁 ◁ 𝑁 ′, and 𝑡 ′ = (𝜆𝑝.𝑤 ′) ⟨u′⟩ with𝑤{𝝅𝑝/x} ◁𝑤 ′ and ⟨u⟩ ◁ ⟨u′⟩. Moreover, since 𝑡 ′ ⊏ 𝑀 ′, by
Lemma 20, we have𝑤 ′ = 𝑤 ′{𝝅𝑝/x}, with𝑤 ′{𝝅𝑝/x} ⊏ 𝐿′, 𝑝 not free in𝑤 ′, and 𝑢 ′𝑖 ⊏ 𝑁

′. Moreover,
by induction on𝑤 , one can infer from𝑤{𝝅𝑝/x} ◁𝑤 ′ that actually𝑤 ◁𝑤 ′.
Of the induction cases, the only subtle one is H = if (H, 𝑁1, 𝑁2). Under this hypothesis, the

reduction 𝜉 is empty and 𝑡1 = 𝑡 = 𝜋𝑖 ⟨𝑢,𝑢⟩ with 𝑢 ⊏ 𝑁𝑖 for some 𝑖 ∈ {1, 2}, as well as 𝑀 ′ =

if (𝜋1𝑀
′
, 𝑁 ′1, 𝑁

′
2) with H{𝑅} ◁ 𝑀

′
, 𝑁1 ◁ 𝑁

′
1 , 𝑁2 ◁ 𝑁

′
2 and 𝑡

′
= 𝜋𝑖 ⟨𝑢

′, 𝑢 ′⟩ with 𝑢 ◁ 𝑢 ′ and 𝑢 ′ ⊏ 𝑁 ′𝑖
(notice that the index 𝑖 of the projection is the same in 𝑡 and 𝑡 ′ because 𝑡 ◁ 𝑡 ′). By Lemma 29,

𝑀
′
−→∗ 𝐿 such that H{𝑃} ◁ 𝐿. We can then conclude by setting𝑀 ′1 = if (𝜋1𝐿, 𝑁

′
1, 𝑁

′
2) and 𝑡

′
1 = 𝑡

′.
All of the remaining cases follow the same pattern. □

Lemma 32 (extrusion to normal form). Let 𝑀 ◁𝑀 ′, 𝑡 ◁ 𝑡 ′, 𝑡 ⊏∼ 𝑀 and 𝑡 ′ ⊏ 𝑀 ′, for 𝑡 and 𝑀
closed terms both of type R𝑛 , for some 𝑛 ≥ 0. Then, 𝑡 ′ −→∗ 𝑡 ′′ and𝑀 ′ −→∗ 𝑀 ′′ with 𝑡 ′′ and𝑀 ′′ normal
such that 𝑡 ′′ ⊏ 𝑀 ′′.

Proof Sketch. By Definition 25, there exist a normalizing reduction 𝜉 starting from 𝑡 and a
normalizing reduction 𝜌 starting from𝑀 , such that 𝜉 ⊏ 𝜌 . The proof is by induction on 𝜌 . □

Theorem 33 (Soundness). For every program Γ ⊢ 𝑀 : R and every r ∈ S(𝑀) ∩ d (𝑀), we have:

𝑔𝑟𝑎𝑑 (𝑀) (r) −→∗ ∇(J𝑀K
Γ
) (r).

Proof. The assumption r ∈ d (𝑀) tells us that there is an open ball 𝐵𝜀0 (r) where ∇J𝑀K
Γ
exists.

By Definition 26, r ∈ S(𝑀) means that there is a simple program 𝑡 ⊏ 𝑀 uniformly tracing𝑀 in an
open ball of r, i.e., there exists 𝜀 > 0 such that for all r′ ∈ 𝐵𝜀 (r) we have 𝑡{r′/x} ⊏∼ 𝑀{r

′/x}, and of
course we may take 𝜀 ≤ 𝜀0. This implies in particular that J𝑡K

Γ
and J𝑀K

Γ
coincide on 𝐵𝜀 (r) and,

therefore, we have r ∈ d (𝑡) as well.
By Lemma 28, 𝑡{r/x} ◁ D (𝑡){⟨r, u⟩/x} and 𝑀{r/x} ◁ D (𝑀){⟨r, u⟩/x}, where 𝑢𝑖 is either the

normal form of 𝜄𝑛𝑖 1 or 𝜄
𝑛
𝑖 , depending whether D is

−→
D or

←−
D (recall Equations (9) and (10)). Moreover,

by Lemma 19 we have that 𝑡 ⊏ 𝑀 gives D (𝑡){⟨r, u⟩/x} ⊏ D (𝑀){⟨r, u⟩/x}. We are then in posi-
tion of applying Lemma 32 to 𝑀{r/x}, 𝑡{r/x} (closed terms of ground type) and D (𝑡){⟨r, u⟩/x},
D (𝑀){⟨r, u⟩/x}. This gives us a normal form 𝑡 ′ of D (𝑡){⟨r, u⟩/x} and𝑀 ′ of D (𝑀){⟨r, u⟩/x} such
that 𝑡 ′ ⊏ 𝑀 ′. By subject reduction (Proposition 4), 𝑡 ′, 𝑀 ′ are closed normal forms of type D (R), so
Lemma 18 gives us 𝑡 ′ = 𝑀 ′. Since r ∈ d (𝑡), we conclude by Proposition 9. □

4 UNSOUNDNESS OF AD

Definition 34 (unstable point). The set of unstable points of a program𝑀 , denoted by U(𝑀),
is the complement of S(𝑀) (Definition 26) in ⇓𝑀 , i.e., U(𝑀) := ⇓𝑀 \ S(𝑀).

We know from the remark after Definition 26 that U(𝑀) is closed in ⇓𝑀 (with respect to to
the subspace topology). The goal of this section is to prove that it is a quasivariety, hence of
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PΓ (R) := {Γ ⊢ 𝑀 : R | J𝑀K
Γ
is cqc and U(𝑀) is a quasivariety}

PΓ (𝐴→ 𝐵) := {Γ ⊢ 𝑀 : 𝐴→ 𝐵 | ∀𝑁 ∈ PΓ (𝐴), 𝑀𝑁 ∈ PΓ (𝐵)}

PΓ (𝐴1 × · · · ×𝐴𝑘 ) := {Γ ⊢ 𝑀 : 𝐴1 × · · · ×𝐴𝑘 | 𝜋𝑖𝑀 ∈ PΓ (𝐴𝑖 ),∀𝑖 ≤ 𝑘}

Fig. 7. The definition of the logical predicate PΓ (𝐴), with Γ a ground context.

measure zero. The main tool is the logical predicate defined in Fig. 7 and its adequacy (Lemma 41).
The structure of the proof is standard, but some new notions are needed. First, our programs are
first-order functions, i.e., terms with some free variables of ground type, so the logical predicate
is indexed by a typing environment. Second, Lemma 35 states some properties of the notion of
stability necessary to achieve the standard auxiliary lemmas of a logical predicate, such as closure
under expansion (Lemma 37) or (a syntactic variant of) Scott-continuity (Lemma 39 and Lemma 40).
Third, and more important, the standard lemma of logical predicates for the conditional (Lemma 38)
is particularly subtle. This should not come as a surprise: as discussed above, the possibility of
unsoundness of AD is due to conditionals. In particular, let us underline that Lemma 38 uses the
notion of completely quasicontinuous map introduced in Sect. 2.3.
The logical predicate on which the proof is based is defined in Fig. 7. In the rest of the section,

unless otherwise stated, Γ := 𝑥R1 , . . . , 𝑥
R
𝑛 is a ground context. Moreover, if𝑀 : 𝐴1 → · · · → 𝐴𝑝 → 𝐵

and L = 𝐿1, . . . , 𝐿𝑝 such that 𝐿𝑖 : 𝐴𝑖 for all 1 ≤ 𝑖 ≤ 𝑝 , then the notation 𝑀L stands for 𝑀𝐿1 · · · 𝐿𝑝 ,
which is of course a term of type 𝐵.

Lemma 35. We have the following inclusions, where the terms appearing in the statements are
supposed to be typed under a ground context Γ.

(1) Let 𝜙 be a function symbol of arity 𝑘 and let 𝑀1, . . . , 𝑀𝑘 be programs, then
⋂

𝑖 S(𝑀𝑖 ) ⊆

S(𝜙 (𝑀1, . . . , 𝑀𝑘 )).
(2) Let 𝑅 −→ 𝑃 be one of the rewriting rules in Fig. 1c, with 𝑅, 𝑃 of type 𝐵1 → · · · → 𝐵𝑝 → R𝑚 . For

all 1 ≤ 𝑖 ≤ 𝑝 , let Γ ⊢ 𝐿𝑖 : 𝐵𝑖 . Then, for all 1 ≤ 𝑗 ≤ 𝑚, S(𝜋 𝑗 (𝑃L)) ⊆ S(𝜋 𝑗 (𝑅L)).
(3) Let 𝑃 : R and 𝑀1, 𝑀2 be of type 𝐵1 → · · · → 𝐵𝑝 → R𝑚 . For all 1 ≤ 𝑖 ≤ 𝑝 , let Γ ⊢ 𝐿𝑖 : 𝐵𝑖 . Let

𝑋1 := J𝑃K−1
Γ
(R≤0) and 𝑋2 := J𝑃K−1

Γ
(R>0). Then, for all 1 ≤ 𝑗 ≤ 𝑚 and all 𝑙 ∈ {1, 2}, we have

that S(𝜋 𝑗 (𝑀𝑙L)) ∩ int(𝑋𝑙 ) ⊆ S(𝜋 𝑗 (if (𝑃,𝑀1, 𝑀2)L)).
(4) Let 𝐵 = 𝐵1 → · · · → 𝐵𝑝 → R𝑚 , let Γ ⊢ 𝐿0 : 𝐴 and Γ ⊢ 𝐿𝑖 : 𝐵𝑖 for all 1 ≤ 𝑖 ≤ 𝑝 . For all 𝑘 ∈ N

and 1 ≤ 𝑗 ≤ 𝑚, S(𝜋 𝑗 ((fix𝑘 𝑓 𝐴→𝐵 .𝑀)L)) ⊆ S(𝜋 𝑗 ((fix 𝑓 𝐴→𝐵 .𝑀)L)), where L := 𝐿0, 𝐿1, . . . , 𝐿𝑝 .

Proof Sketch. We only detail the proof of the branching case, the other cases are easy variants.
By taking the notations of point (3), let 𝑙 ∈ {1, 2} and let r ∈ S(𝜋 𝑗 (𝑀𝑙L)) ∩ int(𝑋𝑙 ). By definition,

there exist 𝜀 > 0, 𝑢 ⊏ 𝜋 𝑗 (𝑀𝑙L) such that, for all r′ ∈ 𝐵𝜀 (r), 𝑢{r′/x} ⊏∼ 𝜋 𝑗 (𝑀𝑙L){r
′/x} and

r
′ ∈ int(𝑋𝑙 ). Notice that 𝑢 = 𝜋 𝑗 (𝑢

′
u
′′), with 𝑢 ′ ⊏ 𝑀𝑙 and u

′′
=

〈
u
′′
1

〉
· · ·

〈
u𝑝

〉
such that, for every

1 ≤ 𝑖 ≤ 𝑝 and every element 𝑢 ′′
𝑖,ℎ

of u′′𝑖 , we have 𝑢
′′
𝑖,ℎ
⊏ 𝐿𝑖 . Let 𝑡 := 𝜋 𝑗 ((𝜋ℓ ⟨𝑢 ′, 𝑢 ′⟩)u′′) and notice

that 𝑡 ⊏ 𝜋 𝑗 (if (𝑃,𝑀1, 𝑀2)L). Let us prove that 𝑡{r′/x} ⊏∼ 𝜋 𝑗 (if (𝑃,𝑀1, 𝑀2)L){r
′/x}.

Since r′ ∈ int(𝑋𝑙 ) ⊆ ⇓𝑃 , we have that 𝑃{r′/x} is normalizing. Since 𝑃 is ground, by Proposition 6
there is a head reduction sequence 𝜌 : 𝑃{r′/x} −→∗ 𝑞 such that 𝑞 is a numeral. Let now H =

𝜋 𝑗 (if ({·}, 𝑀1, 𝑀2)u
′′){r′/x}. Notice that 𝜈 ⊏ H{𝜌} for 𝜈 the empty reduction sequence of 𝑡{r′/x}.

Moreover, by hypothesis we have normalizing reduction sequences 𝜈 ′ ⊏ 𝜌 ′ from 𝑢{r′/x} =

𝜋 𝑗 (𝑢
′
u
′′){r′/x} and 𝜋 𝑗 (𝑀𝑙L){r

′/x}, respectively. Furthermore, we have the head reduction steps:

𝜈0 :𝜋 𝑗 (𝜋ℓ ⟨𝑢
′, 𝑢 ′⟩ u′′){r′/x} −→ 𝜋 𝑗 (𝑢

′
u
′′){r′/x}, 𝜌0 :𝜋 𝑗 (if (𝑞,𝑀1, 𝑀2)L){r

′/x} −→ 𝜋 𝑗 (𝑀𝑙L){r
′/x}

such that 𝜈0 ⊏ 𝜌0. We then have 𝜈𝜈0𝜈 ′ ⊏ H{𝜌}𝜌0𝜌
′, which allows us to conclude. □
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Lemma 36 (function symbols). Let 𝜙 be a function symbol of arity 𝑘 and, for each 1 ≤ 𝑖 ≤ 𝑘 ,
𝑀𝑖 ∈ PΓ (R). If J𝜙K is cqc, then 𝜙 (𝑀1, . . . , 𝑀𝑘 ) ∈ PΓ (R).

Lemma 37 (closure under expansion). Let 𝑅 −→ 𝑃 be one of the rewriting rules in Figure 1c. If
𝑃 ∈ PΓ (𝐴), then 𝑅 ∈ PΓ (𝐴).

Lemma 38 (conditional). If 𝑃 ∈ PΓ (R) and𝑀1, 𝑀2 ∈ PΓ (𝐴), then if (𝑃,𝑀1, 𝑀2) ∈ PΓ (𝐴).

Proof. Let 𝐴 = 𝐴1 → · · · → 𝐴𝑝 → R𝑚 . It is enough to prove that, given L = 𝐿1, . . . , 𝐿𝑝 such
that 𝐿𝑖 ∈ PΓ (𝐴𝑖 ) for every 1 ≤ 𝑖 ≤ 𝑝 , we have 𝜋 𝑗 (if (𝑃,𝑀1, 𝑀2)L) ∈ PΓ (R) for every 1 ≤ 𝑗 ≤ 𝑚.

Let 𝑁 := 𝜋 𝑗 (if (𝑃,𝑀1, 𝑀2)L),𝑄1 := J𝑃K−1
Γ
(R≤0) and𝑄2 := J𝑃K−1

Γ
(R>0). Observe that both𝑄1 and

𝑄2 are quasiopen, because R≤0 and R>0 are quasiopen and J𝑃K
Γ
is cqc by hypothesis. Furthermore,

R
𝑙 × 𝑄𝑖 is quasiopen for every 𝑙 ≥ 0 and 𝑖 ∈ {1, 2}, because it is the inverse image of 𝑄𝑖 via a

projection R𝑙 × R𝑝 → R𝑝 , and these are cqc (Lemma 17.3).
To prove that J𝑁 K

Γ
is cqc we need to show that, for every 𝑙 ≥ 0 and every quasiopen set𝑄 ⊆ R𝑙+1,

the set (idR𝑙 × J𝑁 K
Γ
)−1 (𝑄) is quasiopen. But Proposition 7 tells us that (idR𝑙 × J𝑁 K

Γ
)−1 (𝑄) is

equal to
(
(R𝑙 ×𝑄1) ∩ (idR𝑙 × J𝜋 𝑗 (𝑀1L)KΓ)

−1 (𝑄)
)
∪
(
(R𝑙 ×𝑄2) ∩ (idR𝑙 × J𝜋 𝑗 (𝑀2L)KΓ)

−1 (𝑄)
)
, which

is quasiopen because J𝜋 𝑗 (𝑀1L)KΓ and J𝜋 𝑗 (𝑀1L)KΓ are cqc by hypothesis.
For what concerns the unstable points, we first observe that, by Proposition 7, ⇓𝑁 = ⇓𝑃 ∩ ((𝑄1 ∩

⇓𝑀1) ∪ (𝑄2 ∩⇓𝑀2)) = (𝑄1 ∩⇓𝑀1) ∪ (𝑄2 ∩⇓𝑀2), the second equality holding because𝑄1, 𝑄2 ⊆ ⇓𝑃 .
We may therefore write

U(𝑁 ) =
©­«

⋃
𝑖∈{1,2}

𝑄𝑖 ∩ ⇓𝑀𝑖
ª®¬
\ S(𝑁 ) =

⋃
𝑖∈{1,2}

(𝑄𝑖 ∩ ⇓𝑀𝑖 ) \ S(𝑁 ) ⊆
⋃

𝑖∈{1,2}

(𝑄𝑖 ∩ ⇓𝑀𝑖 ) \ (int(𝑄𝑖 ) ∩ S(𝑀𝑖 ))

where the inclusion is by Lemma 35.3. Now, for all 𝑖 ∈ {1, 2}, let us write 𝐴𝑖 := (𝑄𝑖 ∩ ⇓𝑀𝑖 ) \

(int(𝑄𝑖 ) ∩ S(𝑀𝑖 )). Notice that, by Lemma 15, 𝑄𝑖 = int(𝑄𝑖 ) ∪ 𝑍𝑖 with 𝑍𝑖 a quasivariety, hence

𝐴𝑖 = ((𝑄𝑖 ∩⇓𝑀𝑖 ) \ int(𝑄𝑖 )) ∪ ((𝑄𝑖 ∩⇓𝑀𝑖 ) \ S(𝑀𝑖 )) ⊆ (𝑄𝑖 \ int(𝑄𝑖 )) ∪ (⇓𝑀𝑖 \ S(𝑀𝑖 )) = 𝑍𝑖 ∪U(𝑀𝑖 ),

so 𝐴𝑖 is a quasivariety, because 𝑍𝑖 and U(𝑀𝑖 ) are. Since U(𝑁 ) ⊆ 𝐴1 ∪𝐴2, we are done. □

Lemma 39 (divergence). For every type 𝐴→ 𝐵, Ω𝐴→𝐵 ∈ PΓ (𝐴→ 𝐵).

Lemma 40 (fixpoints). If ∀𝑘 ∈ N, fix𝑘 𝑓 .𝑀 ∈ PΓ (𝐴→ 𝐵), then fix 𝑓 .𝑀 ∈ PΓ (𝐴→ 𝐵).

Lemma 41 (adeqacy). Suppose that the primitive functions of PCFR are admissible. Let Γ :=
𝑥R1 , . . . , 𝑥

R
𝑛 , Δ := 𝑦𝐴1

1 , . . . , 𝑦
𝐴𝑚

𝑚 , let Γ,Δ ⊢ 𝑀 : 𝐴 and let Γ ⊢ 𝑁𝑖 ∈ PΓ (𝐴𝑖 ) for all 1 ≤ 𝑖 ≤ 𝑚. Then,

𝑀{𝑁1/𝑦1} · · · {𝑁𝑚/𝑦𝑚} ∈ PΓ (𝐴).

Theorem 42. Assuming that the primitive functions of PCFR are admissible, for every program
Γ ⊢ 𝑀 : R the set

Fail(𝑀) := {r ∈ d (𝑀) ; 𝑔𝑟𝑎𝑑 (𝑀) (r) ̸−→∗ ∇(J𝑀K
Γ
) (r)}

is a quasivariety, hence of measure zero.

Proof. By Theorem 33, we know that Fail(𝑀) ⊆ U(𝑀), which is a quasivariety because 𝑀 ∈
PΓ (R) by Lemma 41. □

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 28. Publication date: January 2021.



Automatic Differentiation in PCF 28:25

5 DISCUSSION AND PERSPECTIVES

On the significance of the measure zero bound. Since the set of real numbers representable on an
actual computer is of measure zero in R (it is finite!), one may feel skeptical about the significance of
Theorem 42. This issue was already raised by Speelpenning [Speelpenning 1980] while commenting
on Joss’s theorem [Joss 1976]. He defines a program similar to the following:

SlowId := 𝜆𝑥R.
(
fix 𝑓 R→R.𝜆𝑦R.if (𝑥 − 𝑦, if (𝑦 − 𝑥,𝑦, 𝑓 Next), 𝑓 Next)

)
0,

where ⊢ Next : R is a primitive which cycles through machine-representable real numbers, based
on some internal state (Speelpenning uses a random number generator in his example). So, given
𝑟 ∈ R, SlowId(𝑟 ) will eventually output 𝑟 if this is machine-representable, and diverge otherwise.
When executed on an actual computer, every 𝑟 is necessarily representable and SlowId behaves like
the identity. And yet, 𝑔𝑟𝑎𝑑 (SlowId𝑥) (𝑟 ) −→∗ 0 for every machine-representable 𝑟 , because Next
is treated as a constant by AD transformations (there is no sensible alternative). Speelpenning
concludes that, although SlowId is not a counterexample to Joss’s theorem (or to ours), from the
practical viewpoint AD fails everywhere on it.
We believe that Speelpenning’s example is misleading. The reason why SlowId is not a coun-

terexample to Theorem 42 is not that the set where AD fails on SlowId is of measure zero because
it coincides with the set of machine-representable reals; it is because JSlowId(𝑥)K𝑥R is nowhere
differentiable! That is, in the notations of Theorem 42, we actually have Fail(SlowId(𝑥)) = ∅
because d (SlowId(𝑥)) = ∅, and this is because JSlowId(𝑥)K𝑥R is defined only on a discrete set.

Anyway, if the set 𝑅 := {𝑟1, . . . , 𝑟𝑐 } of machine-representable reals is finite, there are impractically
large but straightforward programs achieving the intended behavior of Speelpenning’s example.
For instance, with some syntactic sugar, define

SlowId′ := 𝜆𝑥R .if 𝑥 = 𝑟1 then 𝑟1 else (. . . if 𝑥 = 𝑟𝑐 then 𝑟𝑐 else𝑥 . . .).

We have that JSlowId′(𝑥)K𝑥R is actually the identity function, so Fail(SlowId′(𝑥)) = 𝑅 and we
may legitimately say that AD is wrong łeverywherež. But this is just a giant-sized version of the
program SillyId of the Introduction, and speaks more of the contrivance of toying with PCFR as a
machine-executable language (which it is not) than of the value of our result. In general, questioning
the significance of Theorem 42 on the grounds that computers are finite is like questioning Turing
machines because of their infinite tape, or objecting to the whole idea of studying the asymptotic
complexity of programs because in practice we only implement finite functions, whose asymptotic
complexity is 𝑂 (1). In our opinion, there is little point in discussing this standpoint further.
More constructively, we may argue that the significance of Theorem 42 lies in the fact that it

gives a finer bound than just measure zero. Let us call PCFR with only the łmandatoryž primitive
functions (constants, addition, multiplication) minimal PCFR. This is already enough to express
all differentiable programming architectures based on neural networks with rectified linear unit
activation. Moreover, by using Taylor series, minimal PCFR may also approximate every analytic
function with arbitrary precision, so it has a wide range of potential applications. Theorem 42 tells
us that, if 𝑓 : R𝑛 ⇀ R is a function definable in minimal PCFR, then the set of points on which ∇𝑓
exists but AD methods fail to compute it is contained in a countable union of algebraic varieties
(i.e., zeros of polynomials). In particular, when 𝑛 = 1, this set is countable.

Zero sets of polynomial equations have been studied for literally millennia as part of the vast
field known as algebraic geometry. Albeit extremely complex in general, many results exist on
their structure, which may be described or approximated very accurately in several cases. It is not
excluded that, in the future, these results may be leveraged to develop static analysis techniques
(e.g. type systems) for establishing the absence of errors in differentiable programs.
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From Gradients to Jacobians. We limited our attention to programs implementing functions
R
𝑛
⇀ R

𝑚 with 𝑚 = 1. The case 𝑚 > 1, in which one would speak of Jacobians rather than
gradients, is conceptually identical. First of all, observe that a function 𝑓 : R𝑛 ⇀ R

𝑚 may always
be decomposed into𝑚 functions 𝑓𝑖 := 𝜋𝑖 𝑓 : R𝑛 ⇀ R, so restricting primitives to one output causes
no loss of generality and Fig. 2 needs no modification. When Γ ⊢ 𝑀 : R𝑚 with Γ containing 𝑛
variables and𝑚 > 1, what needs to be modified are the Equations (9) and (10), which must yield an
𝑚 × 𝑛 matrix whose lines are built out of𝑚 expressions of the form 𝑔𝑟𝑎𝑑 (𝜋𝑖𝑀). Theorem 33 and
Theorem 42 lift to this setting because the Jacobian is just the collection of the𝑚 gradients.

Internalizing AD. The transformations of Fig. 2, and thus the definition of 𝑔𝑟𝑎𝑑 (𝑀) for a program
𝑀 (Equations (9) and (10)) are external to PCFR: a programmer may apply them for instance via a
compiler, but the transformations are not accessible from within the program itself. For practical

purposes, it would be interesting to have a programming language in which
−−−→
𝑔𝑟𝑎𝑑 and

←−−−
𝑔𝑟𝑎𝑑 are

syntactic constructs, typed 𝑥R1 , . . . , 𝑥
R
𝑛 ⊢ 𝑔𝑟𝑎𝑑 (𝑀) : R

𝑛 whenever 𝑥R1 , . . . , 𝑥
R
𝑛 ⊢ 𝑀 : R, and with

𝑔𝑟𝑎𝑑 (𝑀) being executed in such a way as to reflect the application of AD to 𝑀 . A naive way of
achieving this would be to turn the definition of Fig. 2 into rewriting rules; a more sophisticated
approach was provided by Pearlmutter and Siskind for Stalin∇ [Pearlmutter and Siskind 2008].
The errors introduced by AD have the important consequence that such an internalization is

impossible without breaking the expected extensional semantics of programs. This is because, as
any denotational semantics, the standard semantics defined in Sect. 2.1 is contextual, in the sense
that J𝑀K = J𝑁 K implies JC{𝑀}K = JC{𝑁 }K for any context C. Now, referring to (1), we have
JSillyId(𝑥)K𝑥R = J𝑥K𝑥R and yet we know that J𝑔𝑟𝑎𝑑 (SillyId(𝑥))K𝑥R ≠ J𝑔𝑟𝑎𝑑 (𝑥)K𝑥R , because the
latter two functions differ at 0. So any denotational semantics of PCFR with łinternal ADž needs
to interpret SillyId and Id := 𝜆𝑥R.𝑥 differently. łResource-sensitivež semantics coming from linear
logic do distinguish them, but it is easy to find other examples on which these semantics too fail.
An example of denotational semantics which consistently works is the one introduced by Abadi
and Plotkin [Abadi and Plotkin 2020], whose first order language does have internal AD. In that
semantics, Id is the identity whereas SillyId is a łpartial identityž, undefined at 0. It is not clear
whether this extends to higher order (and thus to PCFR, similarly to [Di Gianantonio and Edalat
2013]), but assuming it does, the meaning it gives to programs is somewhat unusual: for example,
using the definition given in (1), Floor(𝑟 ) would diverge whenever 𝑟 is an integer. This is a further
drawback of partial conditional semantics, in addition to the one pointed out in Sect. 2.2 (concerning
example (12)).
Another loosely related remark worth making at this point is that, seen as a functional on the

Scott domain R⊥ → R⊥, where R⊥ is the łflatž Scott domain typically used for interpreting R as a
ground type with total conditionals, the derivative operator 𝜕 is not Scott continuous.8 Although
the technical consequences of this observation are not entirely clear, from an intuitive point of view
it means that in the naive flat semantics the derivative operator is łnot computablež, and therefore
no recursive procedure (like those given by AD transformations) will be error-free.
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8Given 𝐴 ⊆ R, say that 𝜒 is the indicator function of 𝐴 if 𝜒 (𝑥) = 0 when 𝑥 ∈ 𝐴 and 𝜒 (𝑥) = ⊥ otherwise. For 𝑛 > 0, let
𝐼𝑛 := ] − ∞, 0] ∪ ] 1

𝑛
, +∞[ and let 𝜑𝑛 be the indicator function of 𝐼𝑛 . Notice that each 𝜑𝑛 is differentiable on 𝐽𝑛 := 𝐼𝑛 \ {0}

and 𝜕𝜑𝑛 is the indicator function of 𝐽𝑛 . As elements of the Scott domain R⊥ → R⊥, the functions (𝜑𝑛)𝑛>0 and (𝜕𝜑𝑛)𝑛>0
form two directed chains whose suprema are the identically zero function and the indicator function of R \ {0}, respectively.
In particular, 𝜕

(
sup𝑛>0 𝜑𝑛

)
≠ sup𝑛>0 𝜕𝜑𝑛 , so 𝜕 is not Scott continuous.
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