

Numerical Simulation of Bubble Growth under Low Pressure

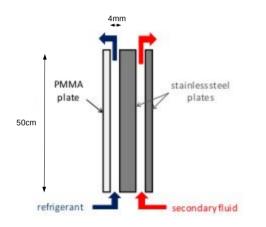
<u>N. Grenier</u>, M.-C. Duluc, M. Brahiti, P. Mantaropoulos, F. Giraud, B. Tréméac and P. Tobaly

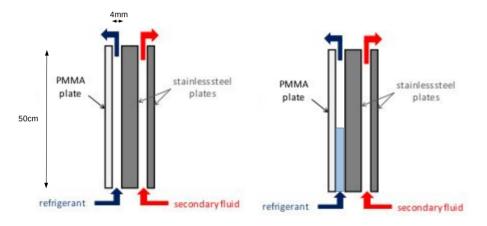
GDR Transferts et Interfaces – juin 2021

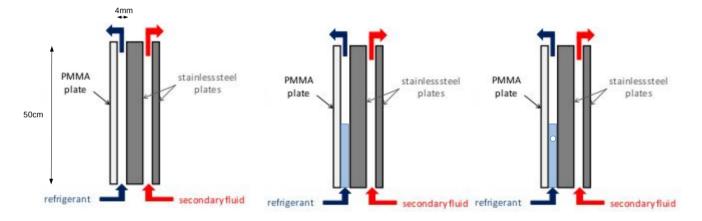
- Air conditioning at room temperature
- Harmful working fluids
- Water as refrigerant
 - Ambient temperature $\rightarrow P_s$

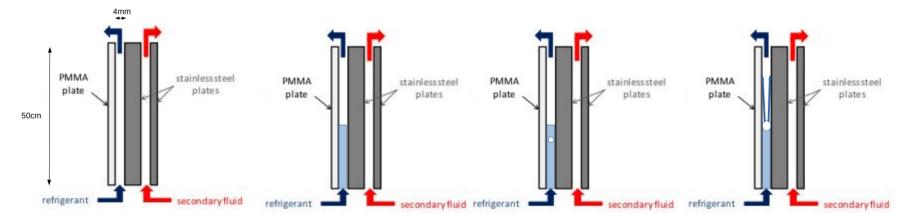
$$P_{sat} \simeq 1\% P_{atm}$$

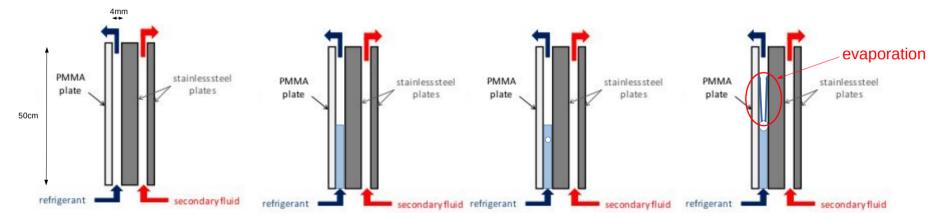
$$\frac{\rho_l}{\rho_v} \to 10^5$$





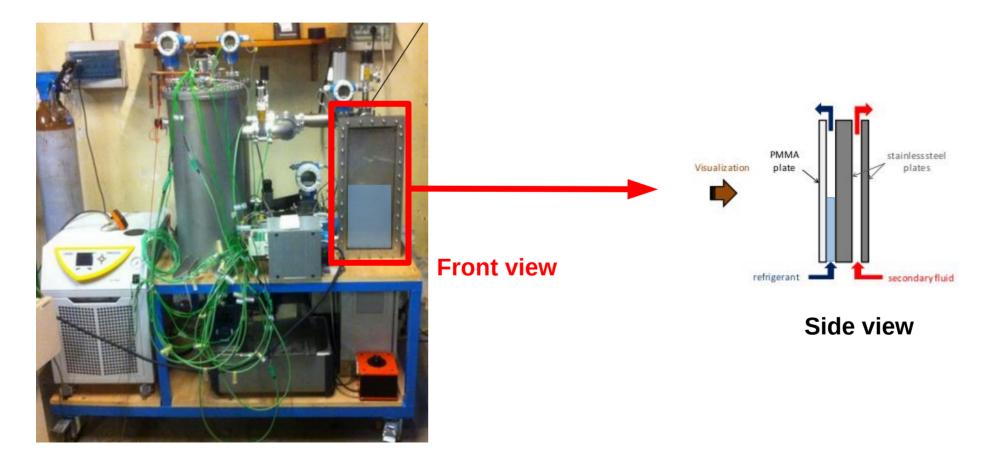


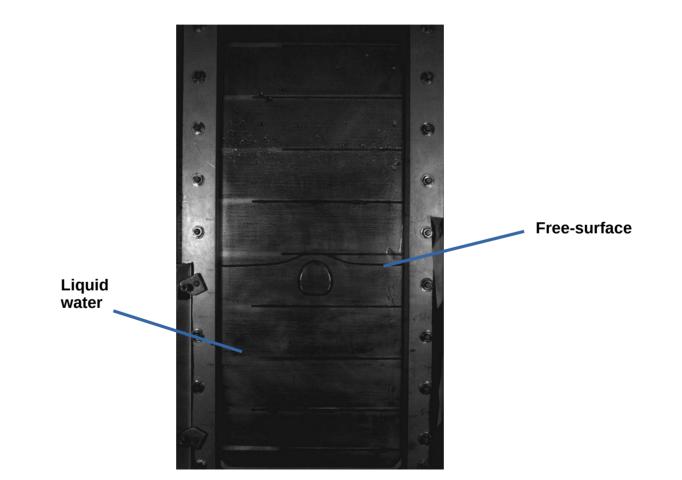


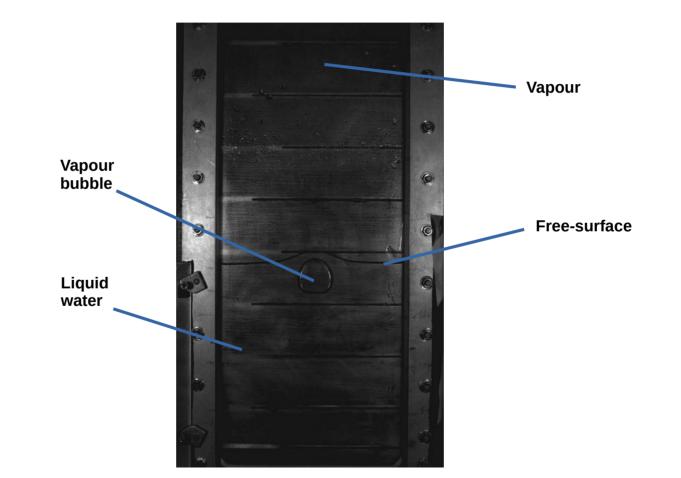


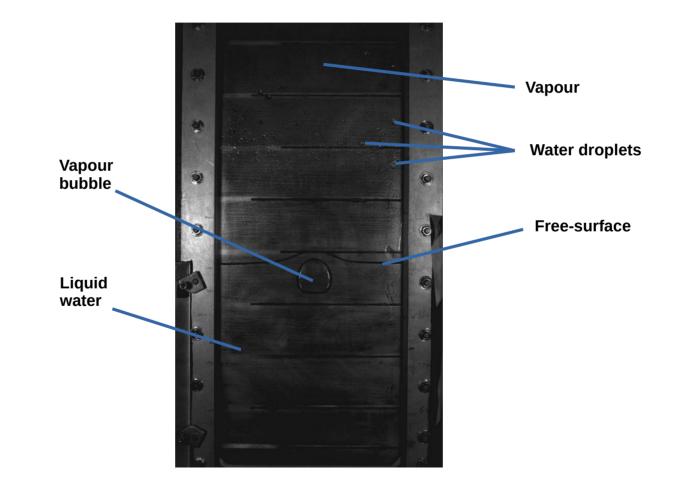
- Complex physics / short time scales
 - Usual correlations out of range
- Need for numerical simulation to support experiments

Experimental cell

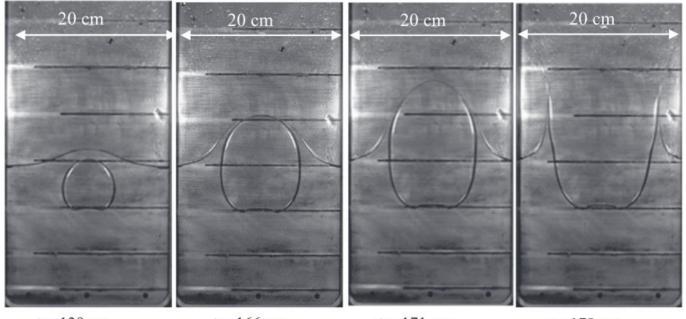








Experimental scenarios



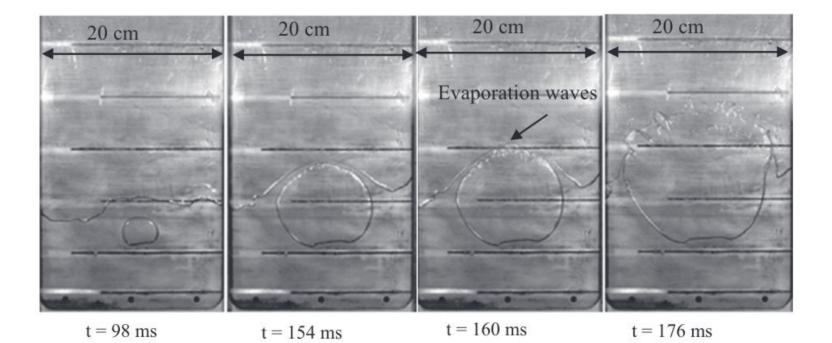
t = 139 ms

t = 178 ms

(Co = 0.23, ΔP = 1.18 kPa, FR = 20%, P_{sat} = 1.46 kPa)

Giraud, Tréméac IJHMT 2019

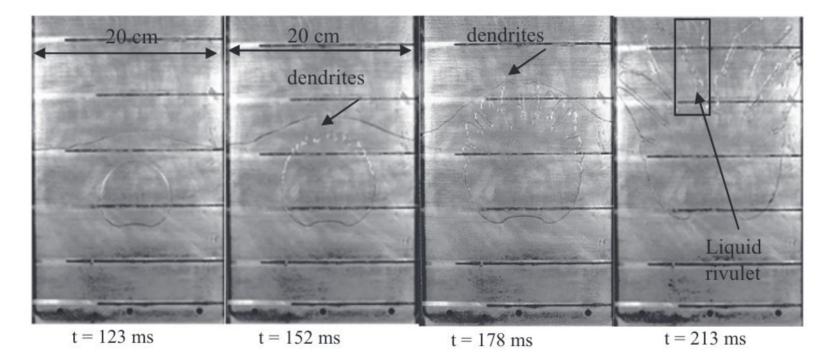
Experimental scenarios



 $(Co = 0.35, \Delta P = 1.10 \text{ kPa}, FR = 30\%, P_{sat} = 0.88 \text{ kPa})$

Giraud, Tréméac IJHMT 2019

Experimental scenarios



(Co = 0.69, ΔP = 1.18 kPa, FR = 20%, P_{sat} = 1.46 kPa)

Giraud, Tréméac IJHMT 2019

Numerical approach

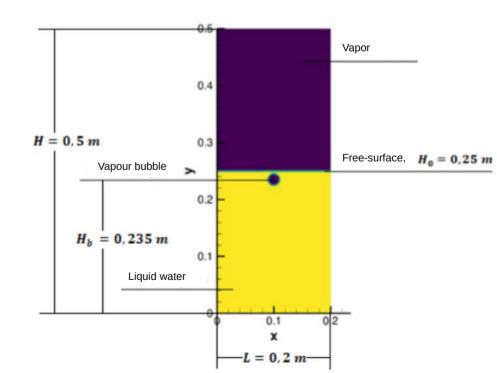
- Two-fluid Direct Numerical Simulation
 - Mixing model
 - Compressible approach
 - Assumptions :
 - 2 densities, one for each fluid $\tilde{\rho_g} = \alpha \rho_g$ $\tilde{\rho_l} = (1 \alpha) \rho_l$
 - 1 pressure, 1 velocity, 1 temperature for both fluids $\rho = \tilde{\rho_g} + \tilde{\rho_l}$
 - 2 mass, 1 momentum, 1 enthalpy conservation equations $\begin{cases} \frac{\partial_t \tilde{\rho_g} + div(\tilde{\rho_g}\mathbf{u}) = 0}{\partial_t \tilde{\rho_l} + div(\tilde{\rho_l}\mathbf{u}) = 0} \\ \frac{\partial_t \tilde{\rho_l} + div(\tilde{\rho_l}\mathbf{u}) = 0}{\partial_t \tilde{\rho_l} + div(\tilde{\rho_l}\mathbf{u} \otimes \mathbf{u} + \nabla p) = S} \end{cases}$ $\rightarrow\,$ isobaric relation to close equations and obtain volume fraction
 - Barotropic Equation of State $p = f(\rho)$
 - Also includes viscous and thermal diffusion, surface tension effects

Numerical approach

- Finite Volume approach $Q^{n+1} = Q^n \frac{\Delta t}{V} \sum_e F_e^n I_e + \Delta t S^n$
- Numerical flux at cell edge $F_e = v_e^+ U_L + v_e^- U_R + p_e \mathbf{n}_e$
 - Centered pressure $p_e = 1/2(p_R + p_L)$
 - Velocity upwind $v_e = 1/2(\mathbf{u}_L + \mathbf{u}_R) \gamma_e(p_R p_L)$
 - γ_e stabilizes the scheme
 - Based on semi-implicit low-Mach scheme [Grenier et al., JCP 2013]
 - Implicit continuity equation
 - → **no time-step restriction** linked to sound speed
 - Explicit momentum equation
 - High-density ratio ($\mathcal{O}(10^5)$)

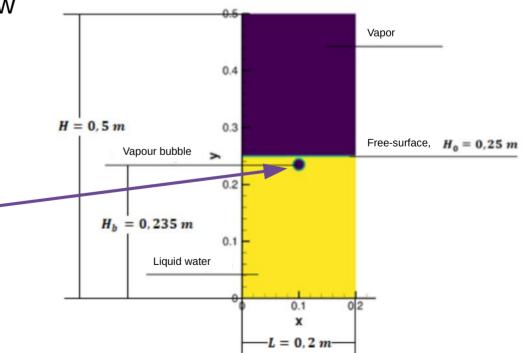
Numerical set-up

- Hypothesis
 - First approach \rightarrow 2D computation
 - Short time scales \rightarrow isothermal flow
- Initial conditions ?
 - Lack of experimental data
 - · visualisation only
 - Strong hypothesis for simulation
 - Motionless fluids
 - Bubble
 - Circular shape
 - Initial pressure



Numerical set-up

- Hypothesis
 - First approach \rightarrow 2D computation
 - Short time scales \rightarrow isothermal flow
- Initial conditions ?
 - Lack of experimental data
 - visualisation only
 - Strong hypothesis for simulation
 - Motionless fluids
 - Bubble -
 - Circular shape
 - Initial pressure



Preliminary study : space convergence

- Space convergence
 - Good jet description
 - Still under-resolved for filament rupture
 - $\delta x = 5 \, 10^{-4} \, m$ (400x1000 cells) selected for further study

 $\frac{H_b}{H_0} = 0.94$ $\frac{R_b}{H_0} = 0.04$ $\frac{\rho_b}{\rho_v} = 30$

 $P_s=0.85\,kPa$

$$\rho_v = 0.0066 kg/m^{-3}$$

 $H_0=0.25\,m$

$$\begin{array}{c} \mathbf{t} = \mathbf{5} \operatorname{ms} \\ \mathbf{0.35} \\ \mathbf{0.36} \\ \mathbf{0.25} \\ \mathbf{0.1} \\ \mathbf{0.15} \\ \mathbf{0.26} \\ \mathbf{0.1} \\ \mathbf{0.15} \\ \mathbf{0.26} \\ \mathbf{0.26} \\ \mathbf{0.36} \\ \mathbf$$

. .

Parametric study

Experimental conditions

 $P_s = 0.98 \, kPa$ $\rho_v = 0.0076 kg/m^{-3}$ $H_0 = 0.25 \, m$

 CFD guess estimate for initial conditions

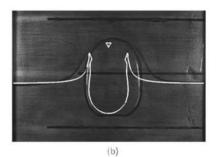
 $\frac{H_b}{H_0} = 0.936$ $\frac{R_b}{H_0} = 0.04$ $\frac{\rho_b}{\rho_v} = 30$

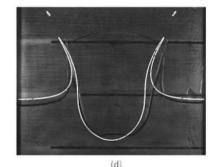
- Objective: find best initial conditions
 - Bubble location
 - Bubble radius
 - Bubble pressure
- Constraints: best match experimental data (HSV)
 - Bubble growth
 - Interfacial dynamics

21

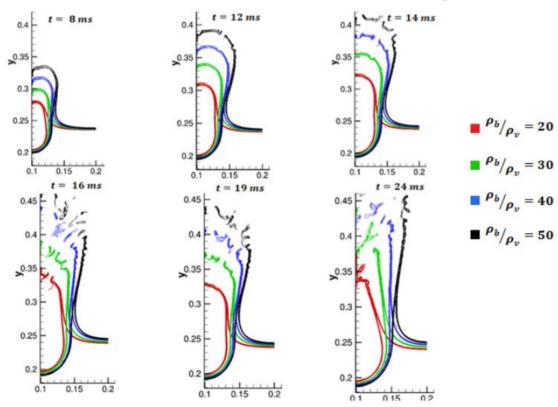
CFD results (iso contours of volume fraction) superimposed on EFD visualisations

(a)



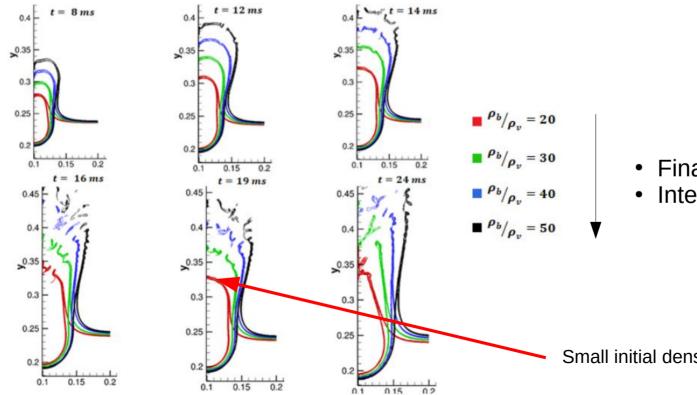


• Initial bubble density



- Final bubble area is higher
- Interface rupture is faster

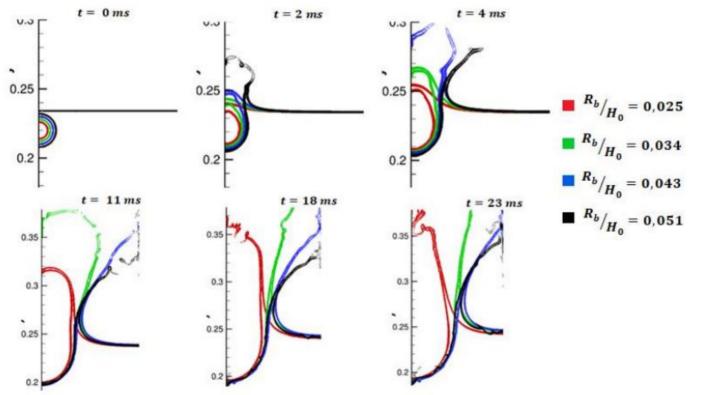
• Initial bubble density



- Final bubble area is higher
- Interface rupture is faster

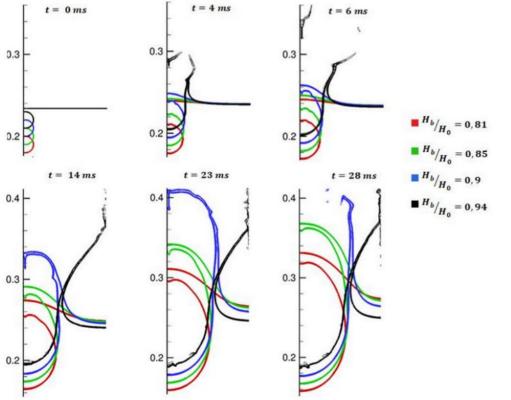
Small initial density \rightarrow possible reconnection

• Initial bubble radius (same location under free-surface)



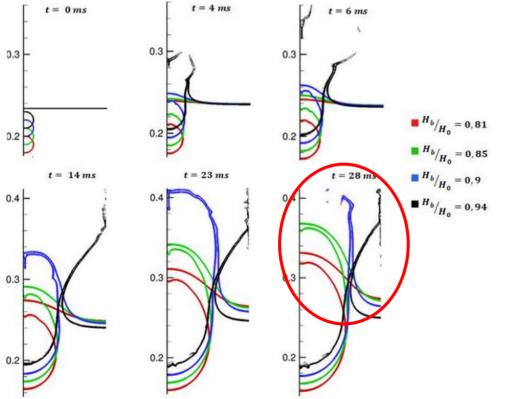
- Interface rupture is
 faster
 - at constant depth
 - less liquid above bubble

Initial bubble height (same radius)



- Bubble growth is faster
- Interface break-up is faster
- Direct connection with jet thickness at break-up

Initial bubble height (same radius)



- Bubble growth is faster
- Interface break-up is faster
- Direct connection with jet thickness at break-up

Best fitting with experimental data

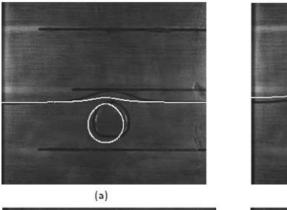
• Experimental conditions

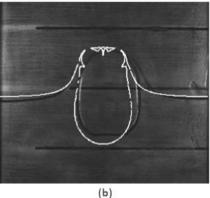
 $P_s = 0.98 \, kPa$ $\rho_v = 0.0076 kg/m^{-3}$ $H_0 = 0.25 \, m$

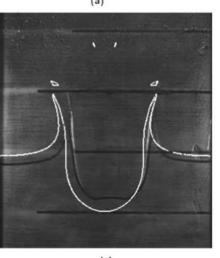
• CFD initial conditions

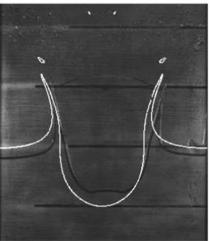
 $rac{H_b}{H_0} = 0.906 \qquad rac{R_b}{H_0} = 0.064 \qquad rac{
ho_b}{
ho_v} = 15$

- ☑ Interface break-up
- ☑ Bubble dynamics
- ☑ Bubble area VS time









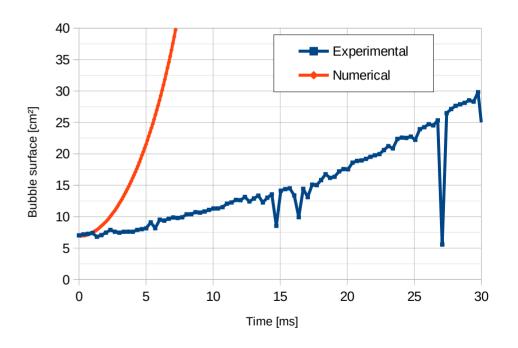
(d)

Best fitting with experimental data

• Bubble area VS time

 \rightarrow CFD much faster than EFD

• Relevant physical effects are missing in CFD

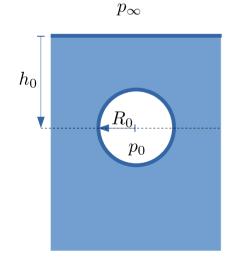


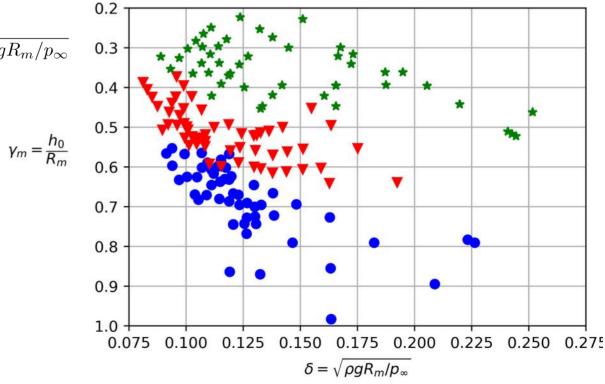
Scenarios

	Pattern I	Pattern II	Pattern III
Cavity opening			
Central jet			
Lateral Jet			
	005	000	-o-ill

Scenarios map

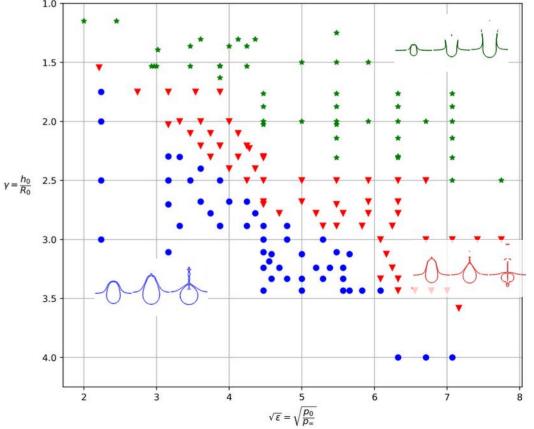
- Non-dimensional analysis [Blake JFM 1987, Zhang JFM 2015]
 - Standoff parameter $\gamma_m = \frac{h_0}{R_m}$
 - Buoyancy parameter $\delta = \sqrt{\rho_l g R_m / p_\infty}$



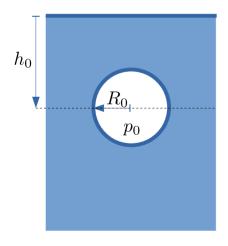


Scenarios map

- Other non-dimensional analysis
 - Standoff parameter $\gamma = \frac{h_0}{R_0}$
 - Strength parameter $\epsilon = \frac{p_0}{p_{\infty}}$



31



Prediction?

• Gravity, surface tension, liquid viscosity

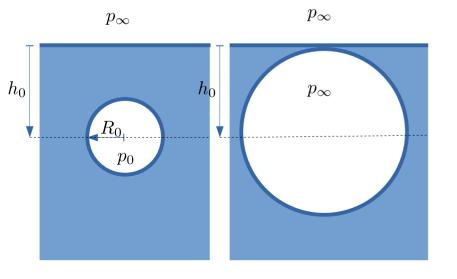
 \rightarrow negligible influence on map

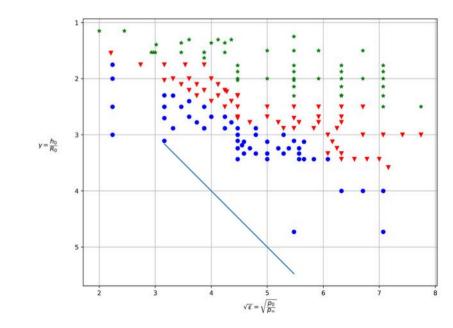
Prediction?

 $\gamma = \sqrt{\epsilon}$

Inadequate!

- Gravity, surface tension, liquid viscosity
 → negligible influence on map
- Static dilatation model





Conclusion

- Study of bubble growth under low pressure
- Complex physics
 - Short time-scales
 - Dilatation of a vapour inclusion inside incompressible liquid
- Numerical code robust to handle two fluids with large density ratio ($\mathcal{O}(10^5)$)
- Qualitative agreement with experimental observations (bubble growth, free-surface deformation and jet break-up)
- But quantitative agreement needs to improve the model
 - 3D to catch film on front/rear sides of domain
 - Fine discretisation of double interface (surface tension effects)
 - Heat and mass transfer
- Simpler model to predict scenarios