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1 Introduction

Birds have a large body mass but very thin legs with mostly ligaments. It
has been shown in [2, 3] that ligaments reduce the bones to work mainly under
pressure, with links between bones in rotation only without transmitting flexion.
The result is a tensegrity system and this allows the pressure in the bones to be
reduced. In the current study we are interested in the fact that the ligaments
could ensure static equilibrium without action of the muscles on the one hand
and on the other hand to ensure stability of balance. Ligaments can be modeled
by a long cable guided by pulleys. The position, size and orientation of the
pulleys depend on the species. Legs evolve in 3D space, and the long-term
objective is to study the possibility of passive walking of such structures. The
short term objective is to study equilibrium positions at rest. First in plan,
then in 3D. In the medium term it will be useful to study the coordination
of leg movements via the ligament for an actuation due to gravity and thigh
movement.

2 Position d’équilibre au repos, modele dans le
plan sagittal

2.1 Geometric Models

In a standing equilibrium position, the leg of a human seen in the sagittal plane
is straight. The alignment of the ankle, knee, hip and CoM allows for zero
torque.

For a bird, the leg is not straight and the CoM is a little in front of the leg
and at knee height, staying of course in the support zone.

As we limit ourselves to the study in the sagittal plane, the model with one
leg is sufficient. The presence of two legs to ensure balance in the frontal plane
is not discussed here.

The model of a quail is used as an inspiration. The detail of the model is
given in the file: Points digitalisés sur le sq de la caille.

Points of interest are identified :



Figure 1: Bird’s foot in resting position. Does the ligament shown in red ensure
balance?

e S00 : CoM

e S03 : Hip pivot

e 525 : Knee CoR

e 528 : CoR ankle

e S06 : Foot CoR

e S32: point of attachment of the ligament to the body

We check that the sagittal plane defined by points S00, SO1, and S02 is indeed
the x,z plane of the data to project the coordinates of all the points in this plane.
(x is the abscissa axis, z is the ordinate axis). The coordinates of the points
of are not normalized, to give them a unit, we use the fact that the average
dimensions of the bones are given in the file: [, = 0.03, [; = 0.052, [, = 0.042.
In fact we use the sum of these dimensions to make the normalization.

We model the set with 4 joints: finger, ankle, knee and hip. The segments of
the legs are assumed mass-less. The mass is concentrated in the center of mass.

Finger data is selected from the illustrations. The ligament passes in front of
the center of rotation of the nails. The pulley guiding the ligament is modeled
as being very close to the ground. Finger dimensions are not very accurate and
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Figure 2: From measurement points on the quail skeleton we try to build a
simplified model.



Figure 3: The modeling of the bird’s foot with 4 joints ¢, at ¢4 and a concen-
trated mass.

have no impact on the modeling except for the equilibrium condition concerning
the CoM projection.

All calculations made we obtain a model, illustrated on figure 4 with the
following characteristics:

The dimensions of the leg bodies I, = 0.0329, I; = 0.0511, [, = 0.04.

The dimensions of the pulleys rq = 0.002,r. = 0.0047,r, = 0.0074.

The dimensions of the body : The position of the CoM in relation to the
attachment point in the body frame: Lcons = 0.0505, lconr = 0.0168.

The position of the center of rotation of the hips in the body frame: L,; =
0.0027, 1, = 0.0215.

The chosen illustrations will be in general :l4, = 0.005 (height of the triangle
of fingers), for the length of the fingers: 1,1 = —0.02, l,5 = 0.04.

2.1.1 La position du CoM
The coordinates of the CoM are:

Toom = —lpsin(qi) — ljsin(q1 + q2) — lesin(qr + g2 + q3)
—(leom — lat)sin(qr + g2 + q3 + q4) (1)
+(Lcoom — Lat)cos(qr + g2 + q3 + q4)

Ycom = Ta+ lpcos(qr) +1ljcos(qr + q2) + lecos(qr + q2 + q3)
+(lcom — lat)cos(q1 + q2 + q3 + q4) (2)
+(Lcom — Lat)sin(qr + q2 + g3 + qa)

These equations can be written in a more compact way by introducing the pa-
rameters [ and O¢ to write the position of the CoM in a reference frame linked
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Figure 4: The different dimensions of the bodies to represent the quail.



to the body and centered on the hip joint : g = \/(Lcom —Lat)? + (leom — lat)? =
0.0480, O = —arctan({Leem=Ledy = _1 6675rd :

(leom—lat)
Tcom = —lpsin(qr) —ljsin(qr + q2) — lesin(qr + g2 + g3) (3)
—lgsin(q + g2 + g3 + ¢4 + 0c)

Yoom = Ta+ lpcos(qr) + licos(qn + q2) + lecos(qr + g2 + q3) ()
+lgeos(qr + g2 + g3 + g4 + 0c)

To check the stability of the balance, only the horizontal position of the CoM
is important, it must be on the projection of the nails.

2.2 Ligament length as a function of leg position

For a ligament attached from the main body to the foot, the length of the cable
depends on the values of the angles and the size of the pulleys. It is assumed
that the ligament is attached at the base of the fingers. The cable is assumed
to be taut, it is straight between the support areas and tangent to the pulley
and then wraps along the pulley to change direction.

The cable will wrap around 3 pulleys associated with the fingers, foot, knee.
These winding distances depend on the angles of the joints. We note the radii
of the pulleys of the "fingers”, the ankle, and the knee respectively rq, rc, 74.
The cable also runs along the foot and the tibia. The lengths of cable that
tangent the pulleys are constant. In the same way, the distance from the point
of attachment on the fingers to the first pulley is constant, we assume that the
cable is guided in the trochlea and joins the pulley at a zero angle (see figure 4).
The attachment length of the last pulley at the attachment point on the body
depends on the angle of the body. The different dimensions used are shown on
figure 4.

The detail of the cable length calculation is as follows:

e For the finger attachment, we assume that the cable attaches to the pulley
at a point Q of the pulley such that the radius through Q makes a zero
angle with the horizontal. Along the fingers the cable has a fixed length
noted lpg.

e Along the foot, the cable changes side to wind on the pulley, the length
of the cable is:

V)2 = (ra+ 102,

e The cable leaves the finger pulley at an angle to the horizontal ¢; —
asin((re +r4)/lp). The length of the cable wound along the finger pulley
is therefore:

rg* (g1 — asin((re +7a)/lp)).

e The hook point on the pulleys of the ankle makes an angle m + q; —
asin((re +rq)/lp) with the horizontal.



Along the leg, the cable changes side to wind on the pulley, the length of
the cable is :

V)2 = (e 4702,

The cable leaves the ankle pulley at an angle to the horizontal © + ¢; +
g2 — asin((rc +74)/1;). So the cable was wrapped around this pulley for
a length:

re(qa — asin((re +714) /1 + asin((re = ra)/lp))-

The cable arrives on the knee pulley at an angle to the horizontal ¢; +
g2 — asin((re +1r4)/15).

The distance from the center of the knee pulley to the attachment point
depends on gq:

la(g) = \J12 + L2, + 2, — 2closcos(a) — 2eLassin(as)  (5)

The length of the cable to go from the knee pulley to the attachment point
depends on qq:

la(qa)* — 7’3

The line reling the center of the knee pulley at the point of attachment
has an orientation

le — latcos(qa) — Larsin(qa)

t
atan( —lat8in(qs) + Larcos(qy)

relative to the thigh.

the starting angle of the knee pulley cable to the horizontal is therefore:

i
5 +q1+ 92+ q3 + as(qa)

with

le — larcos(qa) — Larsin(qy)
_latSin((M) + Latcos(qél)

a4(qs) = atan( ) — acos(rg/la(ga))-  (6)

The cable therefore wraps around the knee pulley for length:

rg(g +q(3) + aa(qa) + asin((re +1r4)/1;))

In conclusion the length of the cable is written:

1(q) =lo +7raq1 — Teq2 + 7rgqs3 + 1a(qa) (7)



with

lo="loqd + \/l127—(7‘,1—+7“c)2+ V)2 = (re+1g)?
+rqgasin(rq/lay) — (re + ra)asin((re —rq)/lp) (8)
+(re +rg)asin((re +rg)/l;) + 145
and
la(qa) = \/la(qa)?* = 72 + 1gaa(qs) 9)

The pulleys are essentially guides for the cables but not really pulleys in the
mechanical sense. Ligaments are often clamped in guides and therefore do not
detach spontaneously from the pulleys.

In summary, for the calculation of the length of the tensioned cable ac-
cording to the robot configuration, we have the following conclusions:

2.3

The cable lengths between pulleys or between the finger attachment point
and the finger pulley are constant.

Variations in the angles q1, g2, g3 change the cable length in proportion to
their variation and the pulley radii associated with the joint.

The cable length decreases for a positive variation of the angle if the
winding is on the left side of the pulley (ankle) and increases for a winding
on the right side of the pulley (finger, knee).

cable length is changed for a body angle variation g .

A variation in the point of attachment of the cable on the finger will not
affect the behavior of the system, except on the joint limits to avoid pulley
detachment.

The size of the pulleys slightly affects the behavior, but the case of pulleys
of the same size is interesting because the equations are simplified (see
bird model), in quail, the pulleys have significantly different radii.

The winding direction of the cable on the sheave is an essential parameter.
For the majority of pulleys, the winding direction is obvious to avoid pulley
separation. For finger attachment, the 2 cases can be considered (see bird
model)

Static model

The static model is used to search for equilibrium positions. The system config-
urations are searched for such that the equilibrium of forces are satisfied. The
modeling used assumes that the foot is flat on the ground. The forces acting on
the system are its weight and the force in the cable. The writing of the dynamic
model via Lagrange’s formalism, then the assumption of zero acceleration and
zero speed of the system allow us to write the static model in the form:

oU

a7 =" (10)



where U is the potential energy of the system, here U = mgyconr(q) + Fl(q).
The static model is therefore written:

Aycort(q) ol(q)
F =0 11
™ + 94 (11)
or:
ayc?iM E F
a@Zcqu + ? e 0 (12)
aycl'lgM ﬁ
994 0qa
—1,81 — 1,812 — 1,5123 — 151234 Tq
—1;812 — 1,58123 — 1551234 —Te F
—1,5123 — 1551234 lor gm0
—1651234 Slo)

where S1 = sin(q1), S12 = sin(q1 + g2), S123 = sin(q1 + g2 + ¢3), S1234 =
sin(qi 4+ q2 + g3 + g1 + 0c), C1234 = cos(q1 + g2 + q3 + g4 + 0c)
Using (9), 94(93) can be written:

0q4
31(49((14) __ la(gd) 355(114) +r, 3ag(¢]4) (14)
da la(qs)? — 7"3 da da
_ ¢ U(ga)\ l
asla) = atan(2) — acos(ry/la(as)),
U(q4) = lc— latCOS((M) - LatSin((M)v (15)
Viga) = —lasin(qs) + Larcos(qa).
Using (5), 8157234) can be written:
Ola(qa)  2lclarsin(qs) — 2lcLaicos(qa) (16)
aL]4 N 2la
Using (15), 8“57534) can be written:
fas(as) _  BagU— bV Ola (ga)
0qa4 Ula)?*+V(24)*  14(qa)\/la(qa)>—r2 Oas
%{f) = latsin(qa) — Latcos(qa), (17)
3‘27(134) = _latCOS(Q4) - LatSin(Q4)'

2.4 Balance condition, inextensible cable

If the cable is taut, i.e. if {(¢) = l., then the cable will be able to provide the
necessary force to ensure balance. The balance positions must satisfy :



mgayCOaIZ(Qe) + 859(;1)F = 0

18
l(Q) - lcable = 0. ( )
It is a system of 5 equations with 5 unknowns g, F'.
1,51 1,512 — 1.5123 — 1551234 g 0
—1;5812 —1.5123 — 1551234 ey 0
—1.58123 — 151234 + Tgms =10 (19)
—16S1234 913014) _F 0
lo + ragq1 = Ted2 + 7gq3 + la(q4) o 0
The third equation may allow us to express mig by :
F le l
= 5123+ 951234 (20)
mg Tg Tg

By transferring this expression into the equation (19), we obtain a system
of 4 equations with 4 unknowns q1, g2, g3, q4:

le l
—1,81 — 1,812 — 15123 — 1551234 Td(§5123 + ?51234)
—1;812 — 15123 — 1551234 —7e(;25123 4 1¢.51234) B
—1651234 Olan) (Lo g193 4 lag1234) |
lo+7raqi —req2 +19q3 + la(qa) "o ~oable ’
(21)
or:
LpS1+ 1812 + (1 — 2)S123 + (1 — £)S1234 0
[iS12 4+ Lo(1 + £2)S123 + lg (1 + £=)S1234 0 )
Ola(ga) Ic Ola(ga) L
ool 125123 + g (1 + =51 22) 51234 8

lo+raqr — 7eq2 + 79q3 + 14(q4) — leable

We note the solutions g.. You can search for solutions numerically with
fsolve for example. Then we can deduce the force to obtain the equilibrium F,
using (20).

The bird is in equilibrium if Zcoar(ge) is in the support area and if the force
F, is positive since a cable cannot be compressed.

In the following example, starting from the configuration corresponding to
the measurements provided: ¢ = [0.0493, —0.5055, 1.1088, —1.4057] and shown
in the figure 3, we calculate the length of the corresponding cable I(q) — Iy =
0.0523, then we look for the appropriate balance position. We get the configu-
ration ¢, = [0.1288, —0.2779,0.5749, —1.6494] represented on the figure 5. The
force in the cable is Fe = 0.6268mg

10

o oo oo
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Figure 5: The equilibrium position corresponds to the length of the cable defined
for the reference position measured by Anick. The position of the CoM is a little
further behind the knee than expected but well in the axis of the feet.
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The influence of the cable length on the equilibrium positions is studied.
In figure 6, several equilibrium positions are drawn. In all cases, the center of
mass projects into the support area and is very close to zero. In the figure 7,
the evolution of the equilibrium configurations as a function of the length of
the cable, the evolution of the CoM projection along the x-axis and the force in
the cable are plotted. We note that the joint variable evolves in a quasi linear
way. The angles q1, g2, g3 could have negative values but remain positive when
we limit the exploration to positive forces in the cables. We can have a case of
stretched leg, illustrated in figure 6(a) for which the force in the cable is very low
or cases of legs a little more bent 6(b,c,d) where the force in the cable increases
to become higher than the weight of the quail we have normalized things by

representing for the force mig.

2.4.1 Effect of the choice of the attachment points

The case studied previously is with point S032. If we take point S031, for the
same length of cable the equilibrium position of the quail is presented on the
figure 8. The same type of difference between reference position and equilibrium
position is observed. The balance configuration of the leg is a bit different but
in both cases the CoM is a bit lower than the knee but at the back.

It can be observed that in this case, as the point of attachment is closer to
the point of the hip, variations in cable length will result in greater angular and
force variations. The graph of the evolution of angles and forces for the different
configurations of equilibrium in the case of an S0031 attachment point is shown
in figure 9.

2.5 Effect of the size of the finger pulleys and way cable
is guided

The rolling along is bones that can be assimilated to pulleys is quite visible
for most joints. But for the fingers this is more complex. The ligament is
essentially guided in a trochlea and the visualization of the center of rotation
and thus the pulley is obtained by construction. However, the way the ligament
is elongated according to the angle of the fingers is important and will change
the configuration of the feet and knee in the equilibrium position. It is this
point that we will explore in this section.

We will trace the evolution of the balance positions as a function of the
radius of the finger pulley. A negative value of the radius corresponds to a roll
in the other direction. We only consider the ”variable” length of the cable, i.e.
which depends on the joint configurations.

We consider finger pulley radii that vary from 0 to the size of the ankle and
knee pulleys, with a positive and negative sign to indicate a different winding
of the cable. The different balance configurations are shown in figure 10. The
evolution of the balance joint configurations as a function of the radius of the
finger ”"pulley” is shown in figure 11.

We can observe 3 interesting special cases.

12
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Figure 6: Some quail balance positions, for different cable lengths: (a) : the
cable is shortened, to a case with a force close to 0, Fe = 0.0852, I(q) — Iy =
0.0443, (b) : the cable is shortened, I(q) — lp = 0.0.503, Fe = 0.4933 (c) the
cable is lengthened I(q) — lp = 0.0563, Fe = 0.8854 (d) the cable is lengthened
1(q) —lop = 0.0623, Fe = 1.2474, the force in the cable is greater than the weight
of the quail.
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Figure 7: Evolution of the equilibrium position, CoM projection, and force in
the cable as a function of the cable length.
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Figure 8: The quail with the S0031 quail attachment point and the equilibrium
position associated with the cable length corresponding to the measuring points.

e If r; = 74, and the cable passes to the right of the center of the fingers
then the 1st and 3rd line of the equation (13) tells us that the knee axis
is vertical to the finger axis.

e If ry = 7., (r, in the figure) and the cable passes to the right of the center
of the fingers then, the 1st and 2nd line of the equation (13) tells us that
q1 = 0, the foot is vertical.

o If r; = 0, then ¢g; doesn’t change the length of the cable and the only
possible equilibrium position is when the CoM projection is on the finger
joint.

2.6 Balance condition, extendable cable

It is assumed that the cable is extensible. The cable has an empty length [, and
an assumed constant stiffness K.
The potential energy of the system is then written :

1
Ue = mgycom + 5K (I(g) = ly)?

We thus obtain as a static model %q(q) =0:

dycom(q) = Ol(q)
mg 94 + 94

K(i(g) — 1) = 0.

15
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Figure 9: Evolution of the equilibrium position, the CoM projection, and the
force in the cable as a function of the length of the cable for an S031 attachment
point.
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Figure 10: Several equilibrium configuration for differents value of the dimension
of the finger pulley and differents way the cable passe around the pulley. In the
upper left case, the pulley of the knee and finger have the same size, the knee
is at the vertical of the finger joint. In the upper right case, the case studied.
In the lower left case, the pulley has 0 diametre, the angle of the foot as no
influence on the cable lenght, the CoM is projected at the finger joint. The
lower right case, the foot is vertical.
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Figure 11: Evolution of the equilibrium position, the CoM projection, and the
force in the cable as a function of the diametre of the finger pulley. Positive and
negative value correspond to different ways the cable passe around the pulley.

A ¢ position is therefore an equilibrium position if we have:

dycom(ge) | Ol(ge)
K(l(ge) = 1,) = 0. 23
e v e UC O Rl (23)
Or:

~1,S1 — ;812 — 1.S123 — 1S1234 rd 0
—1;512 — 15123 — 151234 Lo | K(g) — ) 0
—1:5123 — 151234 rg mg |0
~1GS1234 L 0

(24)

It is a system of 4 equations with 4 unknowns ¢q. One can search for solutions
numerically with fsolve for example.

A solution obtained with the inextensible cable model ¢., F. can be found
with the extensible cable model of stiffness K, by choosing 1, = loqpie — F?

With the flexible cable model, one can test the stability of the g, installation
in the sense of returning to the equilibrium position in case of disturbance in
addition to the mechanical stability of the contact: zoonr(ge) is in the support
zone.

2.7 Stability of equilibrium

With the elastic cable model, we want to know if when we move the bird away
from an equilibrium position it will return to that position. We have an equi-
librium position ¢, that satisfies :

18



oU.(q)
Oq

This equilibrium is said to be stable if when the robot configuration is moved
away from its equilibrium configuration it returns to it. No matter what notion
of stability is adopted, the question always consists in evaluating the behavior
of a system that is disturbed with respect to its equilibrium configuration by
external forces and/or torques. Generally speaking, small variations in forces
applied to the nodes of a system will cause changes in its configuration. If the
system returns to its initial equilibrium configuration when the forces are reset
to zero, it is considered stable.

For a system to return to its equilibrium configuration following an external
perturbation, the deformation of the system dq under the effect of a perturbation
must require a positive work input [1]. That is to say that the stiffness matrix
(i.e. the Hessian matrix of the potential energy of the mechanism)

=0 (25)

0 Ue(q)
K= 92q (26)
must be set positive. (This finding is based on the hypothesis that the system
cannot move freely in translation or rotation in its space, which corresponds to
the case studied in this work. For a case where the system is not constrained in
its space, the stiffness matrix must rather be semi positively defined).

The term K ; of the stiffness matrix is :

o 82U6(Q)
Y 0q;0q,

soit

0 0 e 0l(qe
o gyCOM(Q)+ (ge)

Kl' i = m
7 an'( dq; dq;

K(l(ge) = 1v))

Pycom(qe) = 0%1(qe)

K;j =mg + K(l(g.) — 1,) + K 27
! 9q;0q; 9q:0q; (1(ge) =) dq;  Oq @)
This stiffness matrix can be written :

K =K, + KKj + KK (28)

with
Y Y2 Y3z Ya
K, = — Y2 Y2 Yz Y4
Ys Y3 Ys Y4
Ya Y4 Ya Y4

19



000 O
000 O
Ki=149 00 o
0 0 0 Kja
7‘3 —TgTe rarg rqdl4
K, — | ~Tdre rg —Trg  —Tedl4
1= Targ  —TeTg 7“3 rqdid ’

radld  —r.dld  rydld di4?

and 1 = [,C1 + [;C12 + 1.0123 + C1234, yo = 1;C12 + 1,C123 + 1cC1234,
ys = 10123 + gO1234, ys = 1C1234, did = 24| Ky = S19 (1(g,) —1,).

The balance positions studied are positions in which tﬁtg?ggs are erect but
with the body pointing downwards, and a center of mass lower than the knee
so we have: y4 < y3 <0<y < 1.

In order to have a positive defined stiffness matrix, it is necessary and suf-
ficient that the 4 main miners of this matrix have positive determinants. This
condition can be established for with a set of variables written in any order.

A first necessary condition is therefore deduced: the terms of the diagonal
must be positive. We note that dl4 < 0 and that Kj; is very small in front
of dl4%2. We have only 2 values of g; which are positive, so we have only 2
conditions on K :

K> ’% 29
d
K> % (29)
Ceci nous donne la valeur minimum de K :
Y1 Y2
K > masr:(%, T—Z) (30)

In our case study, like y; > y2 and rq4 < r., the first term is most penalizing
term. We note that the smaller 7,4 is, the greater the stiffness of the cable must
be to ensure balance. We must have K > 1.8262¢ + 04, we choose K = 20000.
It can be noted that for a higher pose of the CoM, e.g. if the CoM is higher that
the hip has it exist for human (and not for bird), we will have more condition to
satisfy. If the radius of the finger pulley is the smallest one, the most penalizing
condition will not changed.

Order 2 minors must have positive determinants. We consider the minor of
K(1:2,1:2):

det = (Krg —y1) (K2 = y2) = (Krare = y2)* (31)

det = —Kr3ys + y1ya — Kr2yy + 2Krareys — s (32)

We write r. in the form r. = rqa.We can then write the equation in the
form:
det = —Kriys + y1yo — Ka?riy + 2K ariys — ya (33)

We're looking for the value of a that maximizes the value of the determinant.
o is such that 24et.
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Odet
Oa

= —2Kar2y; +2Kr3y, =0 (34)

or

2K 72
o= 2ld¥2 _ 92 (35)

C2Kriyn ow
If we transfer this value in the expression of the determinant we obtain:

Y2
det = —Kriy, + Krﬁy—z + Y190 — Yo (36)

1

Kr?
det = —Tld(yz?ﬂ —y3) + Y152 — U3 (37)
Kr?
det = (1 — o L)ya(y1 — y2) (38)
1

It is known that y; > y2, and that yo > 0 so the last 2 terms of this expression
are positive. To have the first positive minor, we must have Krd? > y; so the

2
first term (1 — Izd) is negative. We deduce therefore that an extremum of the

determinant is negative by scanning the values of «, (ratio between the radii of
the pulleys of the fingers and ankle).

To determine whether this extremum is a minimum or a maximum, we de-
termine the second derivative of the determinant with respect to a. By deriving
the equation (34) with respect to a we obtain:

0?det

Oa?
The optimum obtained is therefore a maximum of the det function, so we can
deduce that there is no set of parameters that correspond to a stable equilibrium
of the structure.

It can be noted that the difficulty in obtaining a stable equilibrium is mainly
reflected by the difficulty in obtaining a positive term for this determinant. For
the hip and knee joints, stable equilibrium is obtained simply by the fact that
the CoM is lower than the axis of the joint.

We have defined 3 conditions necessary to have stability: K(1,1) > 0,
K(2,2) > 0, det(K(1 : 2,1 : 2)) > 0. The first 2 conditions can be satisfied
by the choice of the ligament stiffness K but this is not the case for the third
condition. To satisfy this condition, it is proposed to add a ligament around the
fingers and/or ankle.

= —2Kr%y; <O0. (39)

3 Ligament addition
To ensure balance, we propose to add in our model ligaments that will act

around each joint independently with a pulley of radius R4, R., and a stiffness
cable K4, K..
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3.1 Modeling

The idea is to add a cable that roll around a finger pullay of radius R4 and that
is attached to the connected bones, and a cable that roll around a ankle pulley
of radius R, and that is attached to the connected bones. Depending of the side
of the pulley were the cable is, we will defined a coefficient s; and s. for each
cable, the lenght of the cable will be :

la =lgo + saRaq

le =leo+scReq (40)

where s; = 1, for i = a, c if the cable is on the rigt side and s; = —1 if the
cable is on the left side, l49 and l.o is a constant value that do not depend on
the configuration of the leg.

A treatment similar to what was done for the long cable will lead us to define
a new potential energy for the system:

1 1
Uea = mgyconm + iK(l(Q) —1,)% + ng(Sdem + 10 — lua)?

1
+§Kc(scch2 + lcO - lvc)2'

where [,4 and [, are the no-load length of the springs. We can introduce
new variables : lg, = lgo — lyd, lev = leg — leq to simplify the equation.
We thus obtain as a static model m{%q) = 0 that can be developped as :

Td saRaKa(saRaq1 — lav) 0
Oycom(q —Tc SeRKe(ScReqo — ey 0
mg 8M( )+ . K(l(qe)—lv)—k ( 0 q2 ) — 0
q g
3%((14) 0 0
q4
(41)
or if we want to explicitly write the forces in the cables :
Td sqRq 0 0
Aycom (q) —Tc 0 sc R, 10
mgiaq + ry F+ 0 Fy+ 0 F, = 0 (42)
0la(ga) 0 0 0
0qa

with positive forces into the 3 cables : F' = K(I(q) — l,)) as previously, and
2 new forces Fy = K4(sqRaq1 — lay) et F. = K.(scReqa — ley)-

From the static model (41), the equilibrium position can be calculated. The
no-load lengths of the extra ligaments cannot be chosen so as not to change the
equilibrium position ¢., otherwise the force in the ligament would be zero and
since the forces exerted must be positive, the ligament could only stabilize the
whole in one direction. Depending on the no-load position for the additional
cables added, the equilibrium position will be modified. This additional degree
of freedom can be used to have an equilibrium position close to the reference
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position chosen in figure 4, we will note this configuration ¢, (nominal config-
uration) but in the nominal configuration the CoM projection is very far from
the finger joint and the force in the cable will be very hight.

Stability is studied by writing the second derivative of potential energy, the
stiffness matrix is then written :

K; =K, +K;+Kiy+Kn (43)
with Ky, Ki, et Ky définis dans 1’équation (62), et

KsR2 0 0 0
0 K.R: 0 0
0 0 00
0 0 00

KN =

Note that the same stiffness matrice is obtained independently of the side where
the cables passe, for any value of s., s,. It can be noticed that only the matrix
Ky, the terms dl4 and Kj;4 depends on the equilibrium configuration while the
other coefficient depend only of the stifness ceofficient and the dimension of the
pulleys.

La matrice K est une matrice symétrique :

—y1 + KTZ + Kdel —yo — Krgre —ys + Krgrg —y4 + Kradld
—yo + Kr2 + K.R? —y3 — Krerg —yq — Krcdl4
—y3 + Krg —ys + Krgdld

—ys + K(dl4? + Ky4)

3.2 The parameters choosen

An iterative method is proposed to find the properties of the extra ligaments that
will ensure balance. The condition of stability concerns the different minors. We
will write the successive determinants to be studied by considering the joint, g4
then g3, then g2 then g;. The first condition to be satisfied is: det; = K(4,4) >
0. For our case, this condition is satisfied for any stiffness of the ligament, we
have det; > 0. The second condition to be satisfied is det; = K(3:4,3:4) > 0.
As soon as the stiffness of the long cable K is greater than 100 N/m, this
condition is satisfied. For the following we will choose K = 20000N/m, value
for which dety > 0. We then consider dets = K(2 : 4,2 : 4) > 0, we calculate
the determinant without adding stiffness K., the determinant is then noted
dets;. If dets; > 0, there is no need to introduce an ankle stiffness. Introducing
K stiffness to the ankle will change the value of the determinant to dets =
dets; + K.R2%dets, if dets; < 0, choosing K.R? > —‘Z"‘e—?; will ensure that dets
is positive. The method can then be repeated for the finger. Note that the
choice of the stiffness at the long cable and the ankle will influence the stiffness
needed at the ankle and then at the finger .... High stiffness in the long cable
will reduce the stiffness needed in the other joints.

On the example treated, a stable solution can be obtained by choosing
K.R? = 0.1, K4R? = 0.2. By choosing for all the cables a stiffness of 20000, this
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gives us the size of the associated pulleys: R. = 0.0022, R; = 0.0032. There are
of course many other possibilities.

You can choose the no-load positions of the cables [, 14, gev, SO that the
equilibrium position is as close as possible to g,. Care must be taken to ensure
that the forces in the cables are positive, the choice of the side the cables roll
can be chosen to satisfy this constraint.

The equilibrium configuration satisfy the four equations (41) with three
forces ¥, Fy, F,, thus not any configuration can be achieved and the closest
configuration to g, can be chosen.

From equation (41) it can be seen that the 2 last line are actuated only by
the long cable. The two equations must be satisfyed:

F 0
—1G51234 Palas) | g = [ 0 ] (44)

—1.8123 — 1551234 T
mg

0qa4
It is possible to calculate F using the third equation and using the fourth

one, the equilibrium configuration must satisfied :

8[4((]4) 1.S123 + 1551234 -0

(9(]4 Tg

1gS1234 + (45)

Among the set of possible configuration, we choose the closest to the con-
figuration mesure in the museum. We choose to minimize the norm of the
equilibriuml configuration and the nominal using absolute angle to emphasize
on the orientation of the body.

The desired equilibrium configuration is : ge = [0.0493, —0.5055, 1.2325, —1.8279]

The caracteristique of the long cable is similar to previous case. The force
required in the added cable are calculated. The side of the pulley where the
cable must passed are defined to have positive force. The left size must be used
for the finger pulley and the ankle pulley. The values of l4,, ¢., are deduced to
have the desired force. The equilibrium obtained is shown in figure 12.

3.3 Change of equilibrium configuration with changed of
the long cable

The equilibria when the length of the cable is changed will also be slightly
disturbed, the evolution of the equilibrium position and stability conditions as
a function of the length of the long cable is plotted in the following figures 13
to 16. Note that in order to have a balance, the forces in the three cables must
be positive, which limits the possible variations in cable length. A variation in
the no-load length of the long cable is chosen as the abscissa for plotting the
different equilibrium positions. However, a variation in elongation also exists,
due to the redistribution of forces between the different cables. The real length
of the long cable is therefore different from the one used as abscissa of the curves.

It can be observed that the equilibrium in the sense of the return to the
equilibrium position in case of a disturbance is well satisfied in all cases (Figure
15). The cables at the level of the bolts and pins play an important role with
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Figure 12: Stable equilibrium of a bird leg with 3 ligaments.
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Figure 13: Equilibrium of a bird leg with 3 ligaments for various variation of
the long cable.
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Figure 14: Forces in the cable for stables equilibrium for various variation of

the long cable.
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Figure 15: With 3 cables, equilibrium can be stable as shown by the determinant

of the mineurs of the Hessian.
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ankle and finger) with variation of the lenght cable. a) dl=-0.005, b) d1=-0.003,
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significant forces in the cables (Figure 14). This allows for a more limited force in
the long cable, usually less than the body weight of the bird. The counterpart
is that the configurations of the fingers and ankles are constrained by these
forces and their configuration varies less than in the case with a single cable
in proportion to the knee and hip joints (Figure 13 and Figure 16). It is then
possible that the projection of the CoM tends to leave the foot support and that
static equilibrium is lost (Figure 14).

This arrangement of additional ligaments was chosen based on the shape of
the stiffness matrix to ensure stable balance. Alternatively, the strong ligaments
of the bird’s leg can be used as a model for other arrangements.

4 Choice of ligaments based on bio-inspiration

The most powerful muscles/ligaments in bird are represented in the figure 17.
One ligament is bi-articular, represented in yellow, it includes finger and ankle.
One ligament is bi-articular, represented in green, it includes ankle and knee.
Two parallele ligaments, represented in blue are bi-articular they includes hip
and knee. The contribution of the knee on their elongation differs since the lig-
aments because the ligaments do not pass on the same side of the knee pulley,
whereas they both pass on the same side of the hip. The hypotheses of alter-
nating or simultaneous work of the two hip-knee ligaments will be considered
successively. The pulley at ankle for the two ligaments can be consider identical.
This is not the case for the knee, the pulley for the blue ligaments is larger than
for the green one, thus we will used two differents dimension 7, and 74s.

By analogy with what was done in the calculation of the length of the lig-
ament in section 2.2. We can write here for our three ligaments noted 144, Lok,

lkh-
laa(q) = laao + Taq1 — Tcq2 (46)
lak(q) = lako — Teq2 — Tg2q3 (47)
len(q) = lkno + 79q3 + 1a(qa) (48)
lkh2(q) = lkhoo — 19q3 + la(qa) (49)

A treatment similar to what was done previously will lead us to define a new
potential energy for the system:

1 1
Ue2 = mgycom + §Kda(rdq1 —Teq2 — ldav)® + §Kak(—7“c(I2 — 79243 — lakv)?
1 9 1 2
+§Kkh(TgQB +14(qs) — lkno)” + §Kkh2(—7"gQ3 +14(q4) — lkn2o)™

where lgav, lakv, lkho and lgpo, are the difference between the no-load length
of the springs and the lenght of the cable for q=0.
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Figure 17: The main muscles implied in passive extension for bird leg.
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We thus obtain as a static model BU#@ = 0 that can be developped as

function of the forces in the cables :

rd 0 0 0
8 —Tc e
mgm—k e | Frat e | Foat Fop+|  _ Frn2 =
0q 0 —Tg2 Tg Tg
0 0 0l4(q4) 0ls(qa)
0qa 0q4
(50)
with positive forces into the 2 first cables :
Faa = Kda(rdch —Teq2 — ldav) (51)
Fak = Kak(_rcq2 — Tg243 — lak:'u) (52)

and positive or nul forces into the 2 first cables, a negative force will be replaced
by a nul one since cables can not produce a negative force. An unstressed cable
cannot contribute to the stability of the balance.

Fin = Kin(rgqs + 14(qa) — lkho) (53)

Finz = Kina(—7¢q3 + 14(q4) — lkn2o) (54)

4.1 Research for balance positions

In the presence of 4 ligaments many parameters will affect the balance position
and stability. For the size of the pulleys, bio-inspiration can help us. We keep
the previous values and choose 742 = %rc. The stiffnesses Kyq, Kok, Kin, Kiho
will have an important effect on the stability of the equilibrium. The lengths
ldavs lakvs lkhoy lkhoo Will adjust the equilibrium positions. The way they are
chosen is explained now.

An equilibrium configuration is a solution which satisfies the equation 50
under the constraints of positivity of the forces (here the 4). We will look
for the g. configuration closest to the equilibrium position of the figure 5 (i.e.
[0.1288, —0.2779,0.5749, —1.6494]) by considering the joint configurations writ-
ten in an absolute reference frame, to favour the absolute orientation of the bod-
ies, such that all the forces are greater than or equal to 5% of the bird’s weight.
A local minimum is the configuration ¢, = [0.1403, —0.2752,0.5491, —1.6221]
shown in figure 18. The corresponding forces are F' = [0.5966,0.1217,0.5934,
0.0640]mg. The forces in the da and kh cables are close to the forces when
a single cable is used, whereas the forces in the ak and kh2 cables are lower.
There are many other possible equilibria with other forces.

These forces can be produced by many conditions on stiffnesses and open
lengths. These choices can affect the stability of the balance.

4.2 Stability of equilibrium

To test the stability of the equilibrium, the stiffness matrix (i.e. the Hessian ma-
trix of the potential energy of the mechanism) must be defined and its positivity
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Figure 18: The closest equilibrium position to that shown in Figure 5 is with 4
bio-inspired cables and forces > 5% of the weight in each cable.

tested.
9?U.(q)

02%q

The term K ; of the stiffness matrix is :

K= (55)

- _ U0
" 0g,0q,
soit
2 2
K;;= mg? %;‘jg{lf%) + 8g;fé§j))Kkh(TgQ3 + 14(ga) — lgno)+

%(%))Kkm(—fg% +14(qa) — lkno )+
K, 5(%(1{;—%(12) a(w%-%%) + K ka(—rcqtr)?_rgmza) 3(—7”c%2—7“92q3)+
@ qi q; a i q;
O(rgqs+la(qa)) 9(rggs+la(qa)) O(=rgaz+la(qa)) 9(=rgas+la(q4))
Kk 33%'4 - 33(1;'4 =+ Ko 5‘111 — g‘lﬂ' ] 4( )
56

This stiffness matrix can be written :

K = Ky + KKy + +Kipo Kz + Ko Ky, + KoKy, + Ken Ky, + Keno Ky,
(57)
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with Ky, Kj previously defined, but with Ky, = 2°Uge) (rggs + la(qa) — lino)

) 0q40qa
and Ky as Ky, but with Ky = gqi(g;z (—7gq3 + 14(qa) — lkh2o)-
7"5 —rqre 0 0
2
| —Trare T 0 0
Kiaa 0 0o 0 0]’
0 0 0 0
[0 0 0 0
|10 7‘2 rerga 0
LS I 0 rerge 15 0 ’
| 0 0 0 0
[0 0 0 0
0 0 0 0
Ky, 00 7"3 rgdld |’
| 0 0 7rydi4 dl4?
0 0 0 0
0 0 0 0
K 00 12  —rydd |’
0 0 —rydl4 dl4?

and dl4 = 2.

for the previous equilibrium configuration, we look for an identical stiffness
value for all the cables which allows us to obtain a positive Hessian matrix and
we find : Ky, = Ko = Ky, = Kgpa > 60000. A 2 times lower stiffness on
Ky, = Kipo is also acceptable.

We note that for the stiffness matrix, whereas for a cable, we could show
that it was impossible to find a solution so that the minor K(1:2,1:2) has a
positive determinant, here the fact of cutting the ligament in 2 at the level of
the knee makes it possible to increase the contribution of the stiffnesses for the
term K(2,2) by two, and thus to make the equilibrium stable.

We can ask ourselves if this element is preponderant to ensure stability and
therefore if it would be possible to have a balance with a bi-articular finger-ankle
cable and a tri-articular ankle-knee-hip cable.

pour la configuration d’équilibre précédente, on recherche une valeur de
raideur identique pour tous les cdbles qui permettent d’obtenir une matrice
hessienne positive et on trouve : Ky, = Ko = Kgp = Kgpe > 60000. Une
raideur 2 fois plus faible sur K, = Kipo est aussi accepatble.

5 Importance of the bi-articular ligament route
A notable difference between the conceptual red line and the practical imple-

mentation via muscles is the passage of the ligaments via the joints which are
on the same side for the real implementation and crossed for the conceptual red
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line. The work developed in Wanda Zhao’s thesis and the notion of buckling
will be taken up here to compare 2 very implified bird’s foot architecture. This
work is also related to the master thesis of Navdeep.

We consider an inverted double pendulum that carries a mass, a bi-articular
ligament encompasses the 2 joints. Only the finger-ankle-ankle joints are con-
sidered and the mass is placed at the hip. The ligament hooks onto the ”thigh”
and ”sole”. The equations become :

It is assumed that the cable is extensible. The cable has an empty length [,
and an assumed constant stiffness K.

The potential energy of the system is then written :

1
U. = mgycon + 5K (1(g) ~ 1)’
‘We thus obtain as a static model 8%1('1) =0:

mgaycg;w(Q) + 659(5)[((1@ — 1) =0.

A ¢ position is therefore an equilibrium position if we have:

Oycom(ge) . Ol(qe)

K(l(ge) — 1) = 0.
mg POy T k1(g,) - 1,) =0 59)
Or:
~1,81 — 1,812 — 15123 0 ~ 0
—1,512 —1,8123 | sewr, | Bl =) | (59)
—1,5123 Ty mg 0

It is a system of 3 equations with 3 unknowns ¢q. One can search for solutions
numerically with fsolve for example. s. peut valoir 1 ou -1 selon la position du
ligament c’est ce que nous étudions ici.

With the elastic cable model, we want to know if when we move the bird
away from an equilibrium position it will return to that position. We have an
equilibrium position ¢. that satisfies :

U (q)
dq

The term K; ; of the stiffness matrix is :

=0 (60)

- 9PUe(q)
I 0q;0q;

soit

2
0 ?JCOM(qe) +K5’l(qf) 81(%)

K, ; =mg
” 9q:0q; dq;  0qg;

(61)
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This stiffness matrix can be written :

K =K, + KK, (62)
with
Yr Y2 Y3
Ky=—1|9 v y |,
Ys Ys Ys
7"3 —Tdre T’dTg
Ky=| —rgre r? 5cTcTg |
TqTlg  Sclely rg

and y; = 1,C1 4+ 1;C12 4+ 1.C123 + 1gC1234, yo = [;C12 + 1.C123 + 1C1234,
ys = 1.0123 + 1cC1234.

6 Conclusion

The representation proposed with a cable to balance the weight of the bird in
resting position is interesting to define this position. It would be necessary to
compare the configurations found with configurations observed in birds from
the geometric characteristics of the different species.

It can be observed that for the proposed cabling, ligament passing to the left
of the finger pulley, the configuration obtained corresponds to a foot close to
the vertical. This result was not expected. Wiring with a ligament passing to
the right of the finger pulley would make it possible to approach an equilibrium
position with one knee in the axis of the fingers.

While the presence of a cable allows the weight of the bird to be balanced,
it does not ensure stability of the installation. This result will be obtained
whatever the geometrical parameters describing the bird.

It is possible to obtain a stable equilibrium configuration if other ligaments
are taken into account. The proposal studied here takes into account an addi-
tional ligament at the finger, and ankle joints. Two ligaments have been added
here, it is possible that stability can be ensured for different sets of parameters
by fewer ligaments or by a set of ligaments that could be bi-articular.

Inspired by the arrangement of the main ligaments on a bird’s foot, a study
with 4 ligaments 1 bi-articular finger-ankle, 1 bi-articular ankle-knee and 2 bi-
articular cruciate knee-hip. In this case a stable equilibrium configuration with
fairly stiff ligaments could be obtained It was then shown that the grouping of
the ligaments was not appropriate to ensure stability.

It is also possible that a modeling of the joints by tensegrity systems (in X)
and not by pivots can avoid the use of these additional ligaments.
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