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Efficiently representing spatio-temporal features of dynamic textures (DTs) in videos has been restricted due to negative impacts of the well-known issues of environmental changes, illumination, and noise. In order to mitigate those, this paper proposes a new approach for an efficient DT representation by addressing the following novel concepts. Firstly, a novel filtering kernel, called Difference of Derivative Gaussians (DoDG), is introduced for the first time based on high-order derivative of a Gaussian kernel. It allows to point out DoDG-based filtered outcomes which are prominently resistant to noise for DT representation compared to exploiting the conventional Difference of Gaussians (DoG). A new framework in low computational complexity is then presented to take DoDG into account video denoising as an effective preprocessing of DT encoding. Finally, a simple variant of Local Binary Patterns (LBPs) is addressed to extract local features from these DoDG-filtered outcomes for constructing discriminative DoDG-based descriptors in small dimension, expected as one of appreciated solutions for mobile applications. Experimental results for DT recognition have verified that our proposal significantly performs well compared to all non-deep-learning methods, while being very close to deep-learning approaches. Also, ours are eminently better than those based on the traditional DoG.

Introduction

Dynamic textures (DTs) are textural features repeated in a temporal domain [START_REF] Doretto | Dynamic textures[END_REF]. Efficiently analyzing them is one of crucial missions in applications of computer vision: human interaction [START_REF] Li | Human-robot interaction based on gesture and movement recognition[END_REF][START_REF] Zhang | Gender and gaze gesture recognition for human-computer interaction[END_REF][START_REF] Nguyen | Local derivative pattern for action recognition in depth images[END_REF][START_REF] Deng | Robust human gesture recognition by leveraging multi-scale feature fusion[END_REF][START_REF] Maqueda | Human-computer interaction based on visual handgesture recognition using volumetric spatiograms of local binary patterns[END_REF], tracking motions [START_REF] Nguyen | Spatial motion patterns: Action models from semi-dense trajectories[END_REF][START_REF] Makhura | Learn-select-track: An approach to multi-object tracking[END_REF], object detection [START_REF] Barmpoutis | Smoke detection using spatio-temporal analysis, motion modeling and dynamic texture recognition[END_REF][START_REF] Zhang | Stabilization of atmospheric turbulence-distorted video containing moving objects using the monogenic signal[END_REF][START_REF] Mettes | Water detection through spatio-temporal invariant descriptors[END_REF], background subtraction [START_REF] Sajid | Motion and appearance based background subtraction for freely moving cameras[END_REF][START_REF] Ortego | Stand-alone quality estimation of background subtraction algorithms[END_REF][START_REF] Xu | A robust background initialization algorithm with superpixel motion detection[END_REF][START_REF] Zeng | Adaptive maintenance scheme for codebook-based dynamic background subtraction[END_REF], etc. Due to the negative impacts of environmental changes, illumination and noise, describing their chaotic motions is a notable challenge for DT representation. Many efforts have been introduced to deal with those problems, which can be grouped into six main categories: model-based, geometry-based, optical-flow-based, learning-based, local-feature-based, and filter-based (refer to Section 2.3 for the literature in detail). Among of them, the filter-based approaches, taking filters into account video analysis for noise reduction, have recently obtained promising results in reasonable dimension, expected to be potential for mobile applications needing restricted resources to execute functions. Concretely, 2D/3D Gaussian-based filterings were addressed for video analyses to figure out its filtered images/volumes. The filtered responses were then encoded by a simple operator CLBP [START_REF] Guo | A completed modeling of local binary pattern operator for texture classification[END_REF] to construct descriptors named FoSIG 2D

[17]/V-BIG 3D [START_REF] Nguyen | Volumes of blurred-invariant gaussians for dynamic texture classification[END_REF] correspondingly, while the filtered volumes of the 3D Gaussian-based filterings were encoded by a Local Rubik Pattern (LRP) operator to form another descriptor in more discriminative power [START_REF] Nguyen | Rubik gaussianbased patterns for dynamic texture classification[END_REF]. In another effort, the gradients of these Gaussian-based filterings were also introduced in [START_REF] Nguyen | Prominent local representation for dynamic textures based on high-order gaussiangradients[END_REF] to enhance the performance. Moreover, learned filters have been addressed to construct DT descriptors, e.g., BSIF-TOP [START_REF] Arashloo | Dynamic texture recognition using multiscale binarized statistical image features[END_REF], BSDF [START_REF] Arashloo | Sparse binarised statistical dynamic features for spatio-temporal texture analysis[END_REF], and B3DF SMC [START_REF] Zhao | Dynamic texture classification using unsupervised 3d filter learning and local binary encoding[END_REF]. Experiments in DT recognition have shown that these learned-filter-based approaches in DT encoding have usually obtained results at moderate levels compared to those addressing non-learned filters, e.g., Gaussian-based kernels [START_REF] Nguyen | Prominent local representation for dynamic textures based on high-order gaussiangradients[END_REF][START_REF] Nguyen | Rubik gaussianbased patterns for dynamic texture classification[END_REF]. In the meanwhile, some of the learned filters need more computational cost for the learning processes as well as the obtained descriptors are in big dimension, e.g., up to 2 15 bins for B3DF SMC [START_REF] Zhao | Dynamic texture classification using unsupervised 3d filter learning and local binary encoding[END_REF]. Based on the encoding processes of above filter-based methods, it can be deduced a general diagram for analysis of a given video as shown in Figure 1. Accordingly, it can be verified that the filtering plays an important role in the whole framework. Due to mostly addressing filters as pre-processing, it should be done in rapid time while pointing out filtered outcomes as robust to noise for local DT encoding as possible. To this end, motivated by the concept of the well-known DoG, we propose in this work a novel DoDG filtering kernel formed subject to difference of high-order partial derivatives of a Gaussian kernel to point out robust and discriminative features at various levels. DoDG is then taken into account video analysis as an efficient preprocessing for denoising. Finally, the obtained DoDG-filtered outcomes are encoded by CLBP [START_REF] Guo | A completed modeling of local binary pattern operator for texture classification[END_REF], one of the most popular and simple local operators, in order to structure robust descriptors with a slight dimension. It should be emphasized that in our prior work [START_REF] Nguyen | Prominent local representation for dynamic textures based on high-order gaussiangradients[END_REF], we directly exploited the Gaussian gradients in multi-scales of standard deviations to filter a video. Contrary to that, we simply address the difference of two scales of them to form the novel DoDG kernel, thereby allowing to reduce about two thirds dimensions of DT representation (refer to Tables 2 and8) while inheriting and enhancing robust characteristics (refer to Tables 4 and8). This formulation is the same as forming the conventional DoG kernel but DoDG is much better in the denoising treatment (refer to Table 4). Experimental results have validated the interest of our proposal. Generally, it can be listed our significant contributions as A novel DoDG kernel based on difference of highorder Gaussian-gradients is introduced to efficiently deal with the negative impacts of the well-known issues on DT representation.

A comprehensive investigation has been made to evaluate the prominent effectiveness of DoDG filterings in local DT encoding compared to that of the conventional DoG one. DoDG is considered in multi-order analysis to exploit more high-order DoDG-filtered features for further improvement of discrimination power. Moreover, addressing the odd and even orders is carefully analyzed and recommended thanks to their effectiveness.

An efficient framework is introduced to take the DoDG kernel into account video analysis. Robust DoDG-based descriptors are shallowly structured by addressing a simple operator on the obtained DoDGfiltered outcomes.

Having a small dimension, our DoDG-based descriptors have very good performance compared to all nondeep-learning models, while being close to that of the deep-learning approaches.

Related works

A brief review of LBP and CLBP

For describing an image I, Ojala et al. [START_REF] Ojala | Multiresolution grayscale and rotation invariant texture classification with local binary patterns[END_REF] introduced a LBP pattern as a binary string by measuring differences of intensities between a pixel q ∈ I and its local neighbors as LBP P,R (q) = s I(p i ) -I(q) P i=1 [START_REF] Doretto | Dynamic textures[END_REF] in which {p i } P i=1 (P ∈ Z + ) is a set of P neighbors that are interpolated by a circle sample at center q with radius R, I(.) returns the gray-level of a pixel, and s(.) is defined as: s(x) = 1, if x ≥ 0, and s(x) = 0 in otherwise. Accordingly, it takes 2 P bins for describing a textual image. In reality, the following mappings are often addressed to deal with this burden of dimension: u2 for uniform patterns, riu2 for rotation-invariant u2 patterns, T AP A mapping [START_REF] Nguyen | Topological attribute patterns for texture recognition[END_REF] for topological patterns, LBC [START_REF] Zhao | Completed Local Binary Count for Rotation Invariant Texture Classification[END_REF] -an alternative of riu2 patterns.

In order to address LBP in diverse encoding, Guo et al. [START_REF] Guo | A completed modeling of local binary pattern operator for texture classification[END_REF] proposed its completed model (CLBP) in which CLBP's properties are different integrating ways of three components: CLBP S is identical to the typical LBPs, CLBP M for magnitude patterns, and CLBP C for global gray-level differences of center pixels. Among of them, the integration of 3D joint (i.e., CLBP S/M/C ) is recommended owing to its discriminative power (refer to [START_REF] Guo | A completed modeling of local binary pattern operator for texture classification[END_REF] for the specific formulas of CLBP's components as well as evaluations of their different combinations).

Gaussian filtering kernel and its derivatives

A well-known Gaussian filtering is a convolving function of a n-dimensional Gaussian kernel subject to a spacial domain γ n = {x i } n i=1 so that its outcomes are in accordance with the Gaussian distribution. In general, the kernel is defined as

G n σ (γ n ) = 1 (σ √ 2π) n exp - x 2 1 + x 2 2 + ... + x 2 n 2σ 2 (2) 
where σ ∈ R + means a pre-defined standard deviation.

Accordingly, a k-order partial derivative of G n σ (γ n ) with respect to a direction x i ∈ γ n is formed as

G n σ,∂x k i (γ n ) = ∂ k G n σ (γ n ) ∂x k i ( 3 
)
in which "∂" denotes an operation of partial derivatives. HMM to investigate the dependence of the spatial adjacent pixels, which has been lacking in the former work [START_REF] Qiao | Hidden markov model based dynamic texture classification[END_REF]. Regarding the effectiveness in representing DTs, the model-based approaches have been at moderate levels on DT recognition due to a lack of temporal properties of DTs taking into account their modeling processes [START_REF] Saisan | Dynamic texture recognition[END_REF]. Furthermore, in case of addressing the above issue, the modelings can become more complicated [START_REF] Ravichandran | View-invariant dynamic texture recognition using a bag of dynamical systems[END_REF]. principally have good performances on simple datasets, e.g., UCLA [START_REF] Saisan | Dynamic texture recognition[END_REF], but not on the more challenging ones, e.g., DynTex [START_REF] Péteri | Dyntex: A comprehensive database of dynamic textures[END_REF] and DynTex++ [START_REF] Ghanem | Maximum margin distance learning for dynamic texture recognition[END_REF]. It may be due to lack of temporal information involved in their encodings. [START_REF] Hadji | A new large scale dynamic texture dataset with application to convnet understanding[END_REF]. The second trend concerns with dictionary learning approaches. Quan et al. [START_REF] Quan | Dynamic texture recognition via orthogonal tensor dictionary learning[END_REF] considered patches of a given video as atoms fed into a sparse coding method to learn a dictionary for DT representation, while Quan et al. [START_REF] Quan | Equiangular kernel dictionary learning with applications to dynamic texture analysis[END_REF] proposed equiangular kernel to learn a dictionary in reasonable dimension. In regard to efficiency of the learning-based methods in DT recognition, just the deep models have outperformed the others. However, most of them utilized complex learning algorithms to learn tremendous parameters in deep network architectures. For instance, it takes ∼61M for AlexNet and ∼6.8M for GoogleNet learned in the deep model of [START_REF] Andrearczyk | Convolutional neural network on three orthogonal planes for dynamic texture classification[END_REF], while ∼80M learned parameters are for C3D [START_REF] Tran | Learning spatiotemporal features with 3d convolutional networks[END_REF], ∼88M by MSOE-two-Stream [START_REF] Hadji | A new large scale dynamic texture dataset with application to convnet understanding[END_REF]. Recently, many efforts for object detection have attempted to propose deep-learning models with less resource requirements:

Geometry

Optical

MobileNets [START_REF] Sandler | Mobilenetv2: Inverted residuals and linear bottlenecks[END_REF][START_REF] Howard | Searching for mobilenetv[END_REF], CenterNet [START_REF] Duan | Centernet: Keypoint triplets for object detection[END_REF]. They can be potential alternatives for DT description in further contexts. bins for DT representation, where P denotes a number of the concerned neighbors. This leads to remarkable barriers for real applications due to the curse of dimension.

Local

In order to mitigate that drawback, Zhao et al. [START_REF] Zhao | Dynamic texture recognition using local binary patterns with an application to facial expressions[END_REF] proposed LBP-TOP patterns in consideration of a voxel and its P neighbors sampled on each of its three orthogonal plane-images in a given video. In addition, it is also possible to apply popular mappings (e.g., riu2 mapping) on each plane-image to drastically reduce the dimension. Motivated by these fundamental concepts, many works have been proposed to address LBP's conventional shortcomings for further improvement of discrimination: rotationinvariant problems [START_REF] Zhao | Rotationinvariant image and video description with local binary pattern features[END_REF], sensitivity to noise [START_REF] Nguyen | Smooth-invariant gaussian features for dynamic texture recognition[END_REF][START_REF] Tiwari | Improved weber's law based local binary pattern for dynamic texture recognition[END_REF][START_REF] Tiwari | A novel scheme based on local binary pattern for dynamic texture recognition[END_REF][START_REF] Nguyen | Rubik gaussianbased patterns for dynamic texture classification[END_REF],

near-uniform regions [START_REF] Tiwari | Dynamic texture recognition based on completed volume local binary pattern[END_REF][START_REF] Zhao | Dynamic texture recognition using volume local binary count patterns with an application to 2d face spoofing detection[END_REF][START_REF] Nguyen | Momental directional patterns for dynamic texture recognition[END_REF][START_REF] Tiwari | Dynamic texture recognition using multiresolution edge-weighted local structure pattern[END_REF], etc.

Filter-based methods: Filter-bank approaches, which have been early applied to texture analysis [START_REF] Jain | Unsupervised texture segmentation using gabor filters[END_REF], have had promising results in DT recognition by mitigating influence of noise on video representation. Arashloo et al. [START_REF] Arashloo | Dynamic texture recognition using multiscale binarized statistical image features[END_REF][START_REF] Arashloo | Sparse binarised statistical dynamic features for spatio-temporal texture analysis[END_REF] exploited filters, learned by implementing Independent Component Analysis (ICA) transformation, to point out Binarized Statistical Image Features (BSIF-TOP) based on Three Orthogonal Planes of a given video [START_REF] Arashloo | Dynamic texture recognition using multiscale binarized statistical image features[END_REF], and binarised statistical dynamic features (BSDF) [START_REF] Arashloo | Sparse binarised statistical dynamic features for spatio-temporal texture analysis[END_REF]. In the meanwhile, Zhao et al. [START_REF] Zhao | Dynamic texture classification using unsupervised 3d filter learning and local binary encoding[END_REF] proposed to use Completed Local Binary Pattern (CLBP) [START_REF] Guo | A completed modeling of local binary pattern operator for texture classification[END_REF] for capturing spatio-temporal features from filtered responses computed by learned filters, where these filters were learned by different unsupervised procedures: PCA, ICA, sparse filtering, and k-means clustering.

Recently, Gaussian-based kernels were addressed in the previous works to diminish the well-known problems in local DT encoding. Concretely, the original Gaussian filterings were used to point out original Gaussian filtered responses. After that, CLBP [START_REF] Guo | A completed modeling of local binary pattern operator for texture classification[END_REF] was addressed to capture spatio-temporal features for DT representations of FoSIG [START_REF] Nguyen | Smooth-invariant gaussian features for dynamic texture recognition[END_REF], V-BIG [START_REF] Nguyen | Volumes of blurred-invariant gaussians for dynamic texture classification[END_REF], and RUBIG [START_REF] Nguyen | Rubik gaussianbased patterns for dynamic texture classification[END_REF] (see Figure 2(a)). In the meantime, the gradients of Gaussian kernels were exploited in [START_REF] Nguyen | Prominent local representation for dynamic textures based on high-order gaussiangradients[END_REF] for HoGF descriptors, as a visual instance in iii) -HoGF [START_REF] Nguyen | Prominent local representation for dynamic textures based on high-order gaussiangradients[END_REF]. The distinctive ways come from the light-blue boxes.

Proposed method

An overview

Our proposed framework is graphically illustrated as This allows to extract DoDG-filtered outcomes that effectively deal with the well-known issues thanks to robustness of invariant Gaussian-gradient-filtered features in comparison with those done by the conventional DoG. It should be noted that DoG was exploited in local DT encodings:

FoSIG [START_REF] Nguyen | Smooth-invariant gaussian features for dynamic texture recognition[END_REF], V-BIG [START_REF] Nguyen | Volumes of blurred-invariant gaussians for dynamic texture classification[END_REF], and RUBIG [START_REF] Nguyen | Rubik gaussianbased patterns for dynamic texture classification[END_REF] 

A novel DoDG filtering kernel

As mentioned above, DoG, the well-known Gaussianbased filtering kernel, was exploited as a pre-processing step in the former works [START_REF] Nguyen | Smooth-invariant gaussian features for dynamic texture recognition[END_REF][START_REF] Nguyen | Volumes of blurred-invariant gaussians for dynamic texture classification[END_REF][START_REF] Nguyen | Rubik gaussianbased patterns for dynamic texture classification[END_REF] to reduce the negative impacts of the issues on DT representation. However, its responses are not robust enough for those DT encodings due to the weakness of complementary features.

To deal with this shortcoming, we hereafter introduce a novel filtering kernel by forming the difference of highorder Gaussian gradients in simple computation. Experiments in Section 4 have substantiated that its achieved responses efficiently maintain invariant spatial features as well as provide various robust filtered outcomes to forcefully capture rich information for DT description.

Let (σ, σ ) denote a pre-defined pair of standard deviations, so that 0 < σ < σ . Based on high-order Gaussian gradients formulated as in Eq. ( 3), a k-order filtering kernel of DoDG for a direction

x i ∈ γ n , named DoDG n σ,σ ,∂x k i (γ n )
, is defined as the difference of two scales of k-order Gaussian gradients corresponding to (σ, σ ) as

DoDG n σ,σ ,∂x k i (γ n ) = G n σ,∂x k i (γ n ) -G n σ ,∂x k i (γ n ) (4)
Figure 3 at (b) and (c) respectively shows plots of the densities of DoDG 1D kernel in the first (k = 1) and second (k = 2) orders of (σ, σ ) = (0.7, 1). Appreciably, it can be deduced in general that the proposed DoDG kernels for the spatial domain

γ n = {x i } n i=1 as                    DoDG n σ,σ ,∂x k 1 (γ n ) = G n σ,∂x k 1 (γ n ) -G n σ ,∂x k 1 (γ n ) DoDG n σ,σ ,∂x k 2 (γ n ) = G n σ,∂x k 2 (γ n ) -G n σ ,∂x k 2 (γ n ) . . . . . . . . . DoDG n σ,σ ,∂x k n (γ n ) = G n σ,∂x k n (γ n ) -G n σ ,∂x k n (γ n ) (5) 
As a result, for each k-order, it is possible to obtain n DoDG-filtered outcomes corresponding to n directions that are taken into account a filtering operation.

Beneficial properties of DoDG filtering kernel

Hereafter, we point out some beneficial properties of ent partial derivatives to forcefully consider DoDG-filtered features in multi-scale analysis of higher orders. in four levels of partial derivatives, i.e., k ∈ {1, 2, 3, 4}.

In addition, it is worth noting that the conventional DoG kernel can be also conducted as a degeneration of our DoDG at the zero-order (i.e., k = 0). It means that Eq. ( 4) can be rewritten for the band-pass filter DoG as

DoG n σ,σ (γ n ) = G n σ (γ n ) -G n σ (γ n ) (6)
Consequently, it can be stated several crucial points making a better execution of DoDG in noise reduction compared to DoG and Gaussian gradients [START_REF] Nguyen | Smooth-invariant gaussian features for dynamic texture recognition[END_REF][START_REF] Nguyen | Volumes of blurred-invariant gaussians for dynamic texture classification[END_REF][START_REF] Nguyen | Prominent local representation for dynamic textures based on high-order gaussiangradients[END_REF] as For filtering processes, each spatial domain in γ n is often truncated by a scale range of [-3σ, 3σ] for the convolving operation to optimally capturing the energy of Gaussian distribution. Figure 3 It can be verified from Eqs. ( 5) and ( 6) that for a predefined pair of (σ, σ ) taking into account a filtering process, our DoDG can figure out more complementary filtered outcomes than the only one done by DoG (see Figure 4 for an instance of these filterings). This allows to comprehensively investigate DoDG-filtered features for further enhancement.

Furthermore, our DoDG can inherit and enhance robust characteristics of their corresponding Gaussian gradients (see Figure 3 (b) and (c)). It can be verified this benefit by experimental instances in Table 8 with standard deviations (σ, σ ) = (0.7, 1)).

To validate above advantageous points, both DoG and DoDG are addressed for video analysis as a pre-processing step to handle the well-known issues of DT description (see Section 3.4). After that, the obtained results in DT recognition are thoroughly discussed in Sections 4.4, 4.5, and 4.6.

DT representation with DoDG-based filterings

To verify the DoDG's ability in dealing with the negative influences on DT description, we take its 2D and 3D variations into account the pre-processing step of encoding a given video V for noise-resistance (see Figure 5).

The DoDG-filtered outputs are then encoded by a simple operator CLBP [START_REF] Guo | A completed modeling of local binary pattern operator for texture classification[END_REF] to correspondingly form robust DT descriptors. Hereafter, we express these processes in detail.

Proposed DoDGF 2D σ,σ ,F descriptor: To be compliant with the DoDG 2D filtering, the video V is decomposed subject to its orthogonal planes to obtain separate collections of plane-images f XY , f XT , and f Y T . With respect to each image I ∈ f XY , a k-order DoDG 2D kernel is convolved on it to extract DoDG-filtered images as

     I σ,σ ∂x k = DoDG 2D σ,σ ,∂x k (x, y) * I I σ,σ ∂y k = DoDG 2D σ,σ ,∂y k (x, y) * I (7) 
where "*" stands for a convolving operator; x, y are spatial coordinates. Samples of this filtering can be seen in 6 for their contributions). As a result, all plane-images I ∈ f XY are encoded as

Γ XY σ,σ ,k = 1 NXY I∈fXY Ψ(I σ,σ ∂x k ), Ψ(|I σ,σ ∂x k |), Ψ(I σ,σ ∂y k ), Ψ(|I σ,σ ∂y k |) (8) 
where N XY denotes a number of plane-images in f XY , Ψ(.) is a simple function using a local operator (e.g., LBP, CLBP, etc.) in order to compute the corresponding histogram. Similarly, this encoding is considered for planeimages f XT and f Y T to capture temporal characteristics of DTs. Figure 5(a) shows a visual view of the construction, while Alg. 1 is for the computing structure. Consequently, a robust descriptor based on the high-order 2D DoDG-filtered Features (DoDGF 2D σ,σ ,F ) is constructed in simplicity by concatenating these histograms Γ σ,σ ,k as

DoDGF 2D σ,σ ,F (V) = k∈F Γ XY σ,σ ,k , Γ XT σ,σ ,k , Γ Y T σ,σ ,k (9) 
where F denotes a set of high-orders taking into account the DT encoding; stands for incorporation of histograms computed subject to the specific k-orders. For instance, F = {1 st , 2 nd } means that both first and second gradients of DoDG 2D are addressed for multi-order analysis.

Proposed DoDGF 3D σ,σ ,F descriptor: The DoDG 3D fil-Algorithm 1: Encoding of DoDGF 2D descriptor. Input: A video V; a set F of k orders; a pair of standard deviations (σ, σ ).

Output: A DoDGF 2D descriptor of V. tering is exploited for pre-processing video V as

1: Split V into collections of plane-images: {f XY , f XT , f Y T }; 2: Γ XY σ,σ ,k = Γ XT σ,σ ,k = Γ Y T σ,σ ,k =
Γ I σ,σ ,k = Ψ(I σ,σ ∂x k ), Ψ(|I σ,σ ∂x k |), Ψ(I σ,σ ∂y k ), Ψ(|I σ,σ ∂y k |) ; Γ XY σ,σ ,k = Γ XY σ,σ ,k + Γ I σ,σ ,k ; end for 5: Γ XY σ,σ ,k = 1 N XY Γ XY σ,σ ,k ; //
           V σ,σ ∂x k = DoDG 3D σ,σ ,∂x k (x, y, z) * V V σ,σ ∂y k = DoDG 3D σ,σ ,∂y k (x, y, z) * V V σ,σ ∂z k = DoDG 3D σ,σ ,∂z k (x, y, z) * V (10) 
where z denotes the temporal direction of V. To encode the obtained DoDG-filtered volume V σ,σ ∂x k , it is firstly split into collections of filtered plane-images, {f XY , f XT , f Y T }, subject to its three orthogonal planes. The simple operator Ψ(.) is then taken into account encoding these collections to efficiently capture spatio-temporal features as

Υ(V σ,σ ∂x k ) = Ψ(I ∈ f XY ), Ψ(I ∈ f XT ), Ψ(I ∈ f Y T ) (11) 
Similarly, this encoding is applied to DoDG-filtered volumes V σ,σ ∂y k and V σ,σ ∂z k to correspondingly construct histograms of Υ(V σ,σ ∂y k ) and Υ(V σ,σ ∂z k ). Because these DoDGfiltered outcomes are also bipolar-filtered volumes, it can be possible to consider their absolute volumes (i.e., |V σ,σ ∂x k |, |V σ,σ ∂y k |, and |V σ,σ ∂z k |) to investigate more spatio-temporal features for further enhancement of discrimination power. σ,σ ,F ) as

DoDGF 3D σ,σ ,F (V) = k∈F Υ(V σ,σ ∂x k ), Υ(V σ,σ ∂y k ), Υ(V σ,σ ∂z k ), Υ(|V σ,σ ∂x k |), Υ(|V σ,σ ∂y k |), Υ(|V σ,σ ∂z k |) (12) 
where 

F
I σ,σ DoG = DoG 2D σ,σ (x, y) * I V σ,σ DoG = DoG 3D σ,σ (x, y, z) * V (13) 
Following the construction of the DoDGF 2D descriptor, the 2D DoG-filtered features (DoGF 2D σ,σ ) are structured as

DoGF 2D σ,σ (V) = Λ XY σ,σ , Λ XT σ,σ , Λ Y T σ,σ (14) 
in which Λ XY σ,σ , Λ XT σ,σ , Λ Y T σ,σ are similarly defined as Eq. ( 8), but for structuring DoG-filtered plane-images instead Algorithm 2: Encoding of DoDGF 3D descriptor. Input: A video V; a set F of k orders; a pair of standard deviations (σ, σ ).

Output: A DoDGF 3D descriptor of V.

1: for k ∈ F do //Compute filtered volumes according to order k

V σ,σ ∂x k = DoDG 3D σ,σ ,∂x k * V; V σ,σ ∂y k = DoDG 3D σ,σ ,∂y k * V; V σ,σ ∂z k = DoDG 3D σ,σ ,∂z k * V; Ω = V σ,σ ∂x k , V σ,σ ∂y k , V σ,σ ∂z k , |V σ,σ ∂x k |, |V σ,σ ∂y k |, |V σ,σ ∂z k | ; 2: for V k G ∈ Ω do Split V k G into collections of plane-images: {f XY , f XT , f Y T }; t XY = t XT = t Y T =
an array of zeros;

3: for I 1 ∈ f XY , I 2 ∈ f XT , I 3 ∈ f Y T do t XY = t XY + Ψ(I 1 ); t XT = t XT + Ψ(I 2 ); t Y T = t Y T + Ψ(I 3 ); end for Υ(V k G ) = 1 N XY t XY , 1 N XT t XT , 1 N Y T t Y T ; end for //Concatenate results of computing V k G ∈ Ω 4: DoDGF 3D σ,σ ,k = V k G ∈Ω Υ(V k G );
end for //Concatenate all the obtained histograms

5: DoDGF 3D σ,σ ,F = k∈F DoDGF 3D σ,σ ,k ;
of addressing the DoDG-filtered ones. For instance of encoding the collection f XY of raw plane-images, Λ XY σ,σ is formed as

Λ XY σ,σ = 1 N I∈f XY Ψ(I σ,σ DoG ), Ψ(|I σ,σ DoG |) (15) 
Also based on the construction of DoDGF 3D , the 3D DoGfiltered features (DoGF 3D σ,σ ) are structured as

DoGF 3D σ,σ (V) = Υ(V σ,σ DoG ), Υ(|V σ,σ DoG |) (16) 
It should be noted that the 2D/3D DoG filterings were exploited in the prior works (i.e., FoSIG [START_REF] Nguyen | Smooth-invariant gaussian features for dynamic texture recognition[END_REF], V-BIG [START_REF] Nguyen | Volumes of blurred-invariant gaussians for dynamic texture classification[END_REF],

RUBIG [START_REF] Nguyen | Rubik gaussianbased patterns for dynamic texture classification[END_REF]), but for capturing the absolute-filtered features. In the meanwhile, the DoGF σ,σ ,F to capture more scale-filtered information to enhance the performance (see Table 7).

Addressing our DoDG 2D/3D kernels could produce more DoDG-filtered outcomes which are complementary for the local DT encoding due to Eqs. ( 7) and [START_REF] Zhang | Stabilization of atmospheric turbulence-distorted video containing moving objects using the monogenic signal[END_REF]. In the meanwhile, only one outcome done by the DoG 2D/3D filterings is exploited in FoSIG, V-BIG, RUBIG, and DoGF 2D/3D σ,σ due to Eq. ( 13).

Experiments and evaluations

Datasets and protocols

The benchmark datasets for evaluating our proposed descriptors in DT classification are expressed in this section.

A brief of those is shown in Table 1 for a quick reference.

UCLA dataset [START_REF] Saisan | Dynamic texture recognition[END_REF] classes with different numbers of sequences to form 9-class scheme: "boiling water" (8), "plants" (108), "sea" [START_REF] Sajid | Motion and appearance based background subtraction for freely moving cameras[END_REF], "fire" (8), "flowers" [START_REF] Sajid | Motion and appearance based background subtraction for freely moving cameras[END_REF], "fountains" [START_REF] Nguyen | Prominent local representation for dynamic textures based on high-order gaussiangradients[END_REF], "smoke" (4), "water" [START_REF] Sajid | Motion and appearance based background subtraction for freely moving cameras[END_REF], and "waterfall" [START_REF] Guo | A completed modeling of local binary pattern operator for texture classification[END_REF], where the numbers in parentheses indicate their quantities. Due to the dominance of "plants" class, it is removed to form 8-class with more challenges [START_REF] Xu | Classifying dynamic textures via spatiotemporal fractal analysis[END_REF].

Following settings in [START_REF] Ghanem | Maximum margin distance learning for dynamic texture recognition[END_REF][START_REF] Nguyen | Completed local structure patterns on three orthogonal planes for dynamic texture recognition[END_REF], a half of videos in each group is randomly selected for training and the rest for testing. The trial is repeated 20 times and the final rate is obtained from the average of those.

DynTex dataset [START_REF] Péteri | Dyntex: A comprehensive database of dynamic textures[END_REF] consists of 650 high-quality sequences recorded in various conditional environments (see Figure 6(b) for several instances of DT videos). Following settings in [START_REF] Arashloo | Dynamic texture recognition using multiscale binarized statistical image features[END_REF][START_REF] Tiwari | A novel scheme based on local binary pattern for dynamic texture recognition[END_REF], DynTex's challenging schemes are often addressed for DT recognition using leave-one-out protocol.

DynTex35 is composed as follows. Each of 35 selected videos is split into 10 sub-videos subject to its spacial axes to correspondingly form 35 categories.

Alpha includes three categories as "Sea" [START_REF] Nguyen | Prominent local representation for dynamic textures based on high-order gaussiangradients[END_REF], "Trees" [START_REF] Nguyen | Prominent local representation for dynamic textures based on high-order gaussiangradients[END_REF], and "Grass" [START_REF] Nguyen | Prominent local representation for dynamic textures based on high-order gaussiangradients[END_REF].

Beta includes 162 sequences divided into 10 classes with different numbers of videos in each: "sea(20)", "escalator(7)", "fountains(20)", "calm water(20)", "smoke( 16)", "vegetation(20)", "trees(20)", "flags(20)", "traffic(9)", and "rotation(10)".

Gamma has 10 classes of 264 sequences as "flags(31)", "naked trees(25)", "flowers(29)", "calm water(30)", "foliage(35)", "sea(38)", "escalator(7)", "grass(23)", "fountains(37)", and "traffic(9)".

Herein, the numbers in parentheses indicate cardinality of corresponding categories.

DynTex++ dataset [START_REF] Ghanem | Maximum margin distance learning for dynamic texture recognition[END_REF] consists of 36 categories with 100 sub-videos of 50 × 50 × 50 dimension for each, i.e., 3600 sequences in total. These sub-videos are composed by capturing the major turbulent DTs from 345 raw videos of DynTex. Following settings in [START_REF] Arashloo | Dynamic texture recognition using multiscale binarized statistical image features[END_REF][START_REF] Ghanem | Maximum margin distance learning for dynamic texture recognition[END_REF], a half number of Dynamics scheme is arranged into 18 categories so that its DT videos just include features of dynamics, i.e., independent of spatial appearance.

Appearance scheme has 45 classes only including features of spatial appearance, i.e., independent of dynamics.

Following settings in [START_REF] Hadji | A new large scale dynamic texture dataset with application to convnet understanding[END_REF], 70% of samples in each category is randomly selected for training and the rest (30%) for testing. This trial is repeated 10 runtimes and the final rate is reported by the average of them. Method #bins P = 8 LBP-TOP u2 [START_REF] Zhao | Dynamic texture recognition using local binary patterns with an application to facial expressions[END_REF] 3(P (P -1) + 3) 177 VLBP [START_REF] Zhao | Dynamic texture recognition using local binary patterns with an application to facial expressions[END_REF] 2 3P +2 -CVLBP [START_REF] Tiwari | Dynamic texture recognition based on completed volume local binary pattern[END_REF] 3 × 2 3P +2 -HLBP [START_REF] Tiwari | A novel scheme based on local binary pattern for dynamic texture recognition[END_REF] 6 × 2 P 1536 CLSP-TOP riu2 [START_REF] Nguyen | Completed local structure patterns on three orthogonal planes for dynamic texture recognition[END_REF] 6(P + 2) 2 600 WLBPC [START_REF] Tiwari | Improved weber's law based local binary pattern for dynamic texture recognition[END_REF] 6 × 2 P 1536 MEWLSP [START_REF] Tiwari | Dynamic texture recognition using multiresolution edge-weighted local structure pattern[END_REF] 6 × 2 P 1536 CVLBC [START_REF] Zhao | Dynamic texture recognition using volume local binary count patterns with an application to 2d face spoofing detection[END_REF] 2(3P + 3) 2 1458 CSAP-TOP riu2 [START_REF] Nguyen | Completed statistical adaptive patterns on three orthogonal planes for recognition of dynamic textures and scenes[END_REF] 12(P + 2) 2 1200 FD-MAP u2 L=2 [START_REF] Nguyen | Directional beams of dense trajectories for dynamic texture recognition[END_REF] 216P ((P -1) + 3)) + 16 12760 HILOP [START_REF] Nguyen | Dynamic texture representation based on hierarchical local patterns[END_REF] 3P (P (P -1) + 3) 1416 FoSIG [START_REF] Nguyen | Smooth-invariant gaussian features for dynamic texture recognition[END_REF] 12(P + 2) 2 1200 V-BIG [START_REF] Nguyen | Volumes of blurred-invariant gaussians for dynamic texture classification[END_REF] 12(P + 2) 2 1200 RUBIG [START_REF] Nguyen | Rubik gaussianbased patterns for dynamic texture classification[END_REF] 36(P + 2) Note: P denotes the concerned neighbors. "-" means "not available". Dimension of all above descriptors is referred to their basic parameters used for encoding a given video. for further improvement in practice, e.g., CLBC [START_REF] Zhao | Completed Local Binary Count for Rotation Invariant Texture Classification[END_REF], LDP-based [START_REF] Zhang | Local derivative pattern versus local binary pattern: Face recognition with high-order local pattern descriptor[END_REF][START_REF] Nguyen | Momental directional patterns for dynamic texture recognition[END_REF], LVP-based [START_REF] Fan | A novel local pattern descriptor -local vector pattern in high-order derivative space for face recognition[END_REF][START_REF] Nguyen | Directional densetrajectory-based patterns for dynamic texture recognition[END_REF], LRP [START_REF] Nguyen | Rubik gaussianbased patterns for dynamic texture classification[END_REF], MRELBP [START_REF] Liu | Median robust extended local binary pattern for texture classification[END_REF], etc.

to H Ψ = 2(P + 2) 2 bins for a pattern description, where P denotes a number of neighbors involved in the DT encoding. Consequently, it takes a small dimension for singlescale analysis of high-order DoDG filterings (i.e., |F|=1)

to describe a given video, just 4 × 3 × |F| × H Ψ = 2400 bins for DoDGF 2D σ,σ ,F and 6 × 3 × |F| × H Ψ = 3600 bins for DoDGF 3D σ,σ ,F , where |F| = card(F) denotes the number of k-orders in F taking into account multi-order analysis. Table 2 shows a comprehensive comparison between dimension of DoDGF 2D/3D descriptors and the dimension of other LBP-based ones. ), the linear multi-class SVM classifier of LI-BLINEAR [START_REF] Fan | LIBLINEAR: A library for large linear classification[END_REF] is used with the default parameters.

For structuring DoGF

Complexity of proposed DoDG-based descriptors

In this section, the complexity of computing DoDGF 2D/3D σ,σ ,F descriptors is comprehensively discussed and compared to DoGF In general, it can be verified that the computational cost of DoDGF 2D/3D σ,σ ,F is as simple as that of other LBP-based ones. This is thanks to the separable and linear properties of DoDG's convolving operations which are inherited from the well-known Gaussian filtering kernel. Indeed, for a video V with H × W × T dimension, let Q LBP = O(P × H × W) be the complexity of LBP [START_REF] Ojala | Multiresolution grayscale and rotation invariant texture classification with local binary patterns[END_REF] for encoding a plane-image, where P ∈ Z + denotes a number of concerning neighbors. So the complexity of LBP-TOP [START_REF] Zhao | Dynamic texture recognition using local binary patterns with an application to facial expressions[END_REF] for encoding V: Q LBP-TOP ≈ T × Q LBP . Since CLBP [START_REF] Guo | A completed modeling of local binary pattern operator for texture classification[END_REF] with its three complementary components is taken into account encoding a plane-image:

Q CLBP ≈ 3 × Q LBP , it could be inferred that the computational cost of CLBP for encoding V is Q CLBP-TOP ≈ 3 × Q LBP-TOP . Ac- cordingly, the complexity of DoDGF 2D/3D σ,σ ,F is estimated as Q DoDGF 2D ≈ |F | × T × (4 × Q CLBP + Q DoDG 2D ) for DoDGF 2D
σ,σ ,F , and

Q DoDGF 3D ≈ |F | × (6 × Q CLBP-TOP + Q DoDG 3D ) for DoDGF 3D
σ,σ ,F , where Q DoDG 2D/3D is the cost of corresponding DoDG 2D/3D filterings involved in the DT representation (refer to Algs. 1 and 2 for their computing structures). Due to the separable and linear properties of the DoDG filterings as well as the much smallness of |F| (e.g., |F| = 2 for two orders in Table 7), Q DoDG 2D/3D and |F| can be ignored. Consequently, Q DoDGF 2D/3D ≈ O(P × H × W × T ). Also, addressing CLBP for encoding V (see Sections 3.4 and 4.2), the computational cost of DoGF 2D/3D σ,σ can be conducted as

Q DoGF 2D/3D ≈ O(P × H × W × T ). Furthermore, referred
to complexity estimation of other LBP-based methods presented in [START_REF] Nguyen | Rubik gaussianbased patterns for dynamic texture classification[END_REF], our Q DoDGF 2D/3D is also the same order as FoSIG [START_REF] Nguyen | Smooth-invariant gaussian features for dynamic texture recognition[END_REF], V-BIG [START_REF] Nguyen | Volumes of blurred-invariant gaussians for dynamic texture classification[END_REF], RUBIG [START_REF] Nguyen | Rubik gaussianbased patterns for dynamic texture classification[END_REF], CSAP-TOP [START_REF] Nguyen | Completed statistical adaptive patterns on three orthogonal planes for recognition of dynamic textures and scenes[END_REF], CVLBP [START_REF] Tiwari | Dynamic texture recognition based on completed volume local binary pattern[END_REF], CVLBC [START_REF] Zhao | Dynamic texture recognition using volume local binary count patterns with an application to 2d face spoofing detection[END_REF], VLBP [START_REF] Zhao | Dynamic texture recognition using local binary patterns with an application to facial expressions[END_REF], HoGF [START_REF] Nguyen | Prominent local representation for dynamic textures based on high-order gaussiangradients[END_REF], etc.

(refer to those works for more detail of computation).

In regard to processing time, our DoDGF 2D/3D σ,σ ,1 st descriptors and those based on the DoG (i.e., DoGF

2D/3D σ,σ
) are implemented on the alike computing system: a 64-bit Linux desktop of CPU Core i7 3.4GHz 16G RAM. This is to make an impartial evaluation with other LBP-based ones done in [START_REF] Nguyen | Rubik gaussianbased patterns for dynamic texture classification[END_REF]. Table 3 shows that runtime of encoding the DoDG-based descriptors of a 50 × 50 × 50 video is nearly the same as that of other LBP-based ones. In addition, it should be noted that all runtimes in Table 3 are reported using the CPU in only one thread for running their raw MATLAB codes. In the case of addressing 4 multi-threads, it takes about 0.26s and 0.29s for encoding DoDGF 2D σ,σ ,1 st and DoDGF 3D σ,σ ,1 st respectively. 1 for their attributes in detail). For each of them, we have achieved 5 noise-datasets corresponding to 5 SNR dB levels used for the noise-adding process (see Figure 7 for noise-instances). We then evaluate our DoDGF

2D/3D

σ,σ ,F exploiting the 1 st -order DoDG-filtered outcomes with (σ, σ ) = (0.7, 1) on those noisy datasets. coding, e.g., VLBP [START_REF] Zhao | Dynamic texture recognition using local binary patterns with an application to facial expressions[END_REF], LBP-TOP [START_REF] Zhao | Dynamic texture recognition using local binary patterns with an application to facial expressions[END_REF], CLSP-TOP [START_REF] Nguyen | Completed local structure patterns on three orthogonal planes for dynamic texture recognition[END_REF],

HILOP [START_REF] Nguyen | Dynamic texture representation based on hierarchical local patterns[END_REF]. Their specific parameters along with the achieved results of DT recognition are presented in Table 4.

It can be seen from Table 4 that taking DoDG into account the DT encoding makes our proposed DoDG-based descriptors more robust against noise compared to the DoG-based ones and other LBP-based variants as well.

Specifically, our DoDGF 2D/3D descriptors absolutely resist to the Gaussian noise for the simple scheme, i.e., 50-4fold.

In the meanwhile, except that the VLBP's performance has sharply decreased by 3%, the noise-resistant ability of the rest is approximately the same execution in general (see Table 4). On the challenging scheme, i.e., Gamma, the performance of both DoDGF 2D and DoDGF 3D has dropped by about 2%, but that of DoDGF 3D has the bet-ter rates in more "stability". In comparison to the DoGbased descriptors, DoGF 3D is much better the 2D one in both rates and noise-resistant ability. In terms of the ability of other LBP-based variants, all of them have a sharp decrease compared to ours (see Figure 8 for a graphical view). This has proved the impressive property of DoDG making our DoDG-based descriptors more robust in noisy conditions. In addition, it can be seen from Table 4 that DoDGF 2D/3D has the nearly same levels of noise resistance as HoGF 2D/3D 's [START_REF] Nguyen | Prominent local representation for dynamic textures based on high-order gaussiangradients[END_REF].

Classification rates (%) Besides, we also investigate the affects of different density levels of salt-and-pepper noise ρ on the performance of our DoDGF 2D/3D in comparison with the conventional DoG-based descriptors (i.e., DoGF 2D/3D ). Accordingly, we add the salt-and-pepper noise with levels ρ ∈ {10%, 20%, 30%, 40%, 50%, 60%, 70%} into the challenging scheme Gamma. The DoDGF 2D/3D descriptors are then computed with the same settings that was addressed for the performing estimation in above SNR-noise conditions. It can be seen from Table 5 that the resistant ability of our DoDGF 2D/3D is much better than the conventional DoG-based ones.

Rich and discriminative features

A DoDG filtering points out more filtered outcomes than the well-known DoG (see Figure 4 in line (a) and two first ones in line (b)). This allows to exploit spatio-temporal features in more forceful contexts to enhance the discrimination power (see Table 6 for their contributions). Also, a DoDG kernel can be computed in higher partial derivatives to conduct high-gradient features for further improvement (see Figure 4 in lines (b) and (c) for instances of high-order DoDG filterings, and Table 7 for their performances). Moreover, addressing various orders of DoDG allows to take into account a hierarchical representation of DTs that somewhat shares the similar links to hierarchical representation in deep-learning models.

Assessments of DoDG-based descriptors

Based on the experimental results in Table 7, it can be stated that our DoDG is the major factor in order to boost the discrimination of DoDGF 2D/3D . Hereafter, we discuss their performance thoroughly.

The performance of DoDG-based descriptors is diminished subject to the increasing high-orders of DoDG involved in the filterings. It is due to the weakness of appearances in the larger-orders. Therein, the odd DoDG kernels often handle denoising in more effect (see Table 7).

Local patterns extracted from each of the DoDGfiltered outcomes are complementary to enhance the robustness. Indeed, Table 6 shows that DoDGF 2D has higher rates when integrating all those features, as mentioned in Section 3.4.

It can be seen from Table 7 that the DoDGF 2D/3D

descriptors have the nearly same rates on simple datasets (e.g., UCLA). However, for the challenging schemes (i.e., Beta and Gamma), the DoDGF 3D one has much better results. This has proved that exploiting the 3D DoDG kernel can enrich more robust spacial-filtered information for DT representation compared to using the 2D one. Figure 9 intuitively shows this prominent point.

Taking a coherence of both odd and even DoDG filterings into account multi-order analysis gives better rates compared to doing that with the whole either odd or even ones (see Table 7 for results in 2-scale of orders). It is due to the fact that the odd and even orders are complementary since the first ones are semi-symmetric shapes while the second ones are symmetric shapes (see Section 3.3 for these properties and Figure 3 for illustration with 1D DoDG kernels).

In general, the single-order DoDGF 2D/3D σ,σ ,F descriptors with the setting of (σ, σ ) = (0.7, 1) often point out the best results on UCLA and Alpha datasets (see Table 7). Moreover, the odd-even DoDGF 2D/3D (0.7,1),F descriptors in multi-order analysis (i.e., {1 st , 2 nd }, {1 st , 4 th }, {2 nd , 3 rd }, {3 rd , 4 th }) have produced better performances than the others on all datasets (they also obtain the best results on UCLA and Alpha datasets). It means that on the more challenging schemes (Beta, Gamma, and DynTex++), exploiting complementary information by odd and even orders of DoDG allows to enhance the discrimination power.

Among of above those, the 1 st -order DoDGF 2D/3D (0.7,1),{1 st } descriptors should be addressed for mobile applications due to their small dimension, i.e., just 2400 bins for the 2D one and 3600 bins for the 3D. For more strict requirement of accuracy, the setting of multi-gradients F = {1 st , 2 nd } should be addressed for DoDGF 2D/3D (0.7,1),F due to the best results. Hereafter, if no settings are specified, the default ones are in the following comprehensive evaluations.

Comprehensive comparison to DoG-based descriptors

It can be verified from Table 7 that our proposed descriptors using the novel DoDG filterings are much powerful execution compared to those using the well-known DoGs, i.e., rates in the 0 th -order rows of Table 7. In consideration of the contributions of complementary filtered outcomes as shown in Table 6, it can assert the prominent performance of DoDG's parts compared to DoG's. This has proved that our novel filtering kernel is more influential for the local DT description. Furthermore, the DoDG-filtered features are also more discriminative than those of DoGs in FoSIG [START_REF] Nguyen | Smooth-invariant gaussian features for dynamic texture recognition[END_REF] and V-BIG [START_REF] Nguyen | Volumes of blurred-invariant gaussians for dynamic texture classification[END_REF], where both blurred and invariant Gaussianbased characteristics are taken into account the DT encoding. It can be seen from Figure 10 for a comprehensive comparison of their performances, where all the descriptors are constructed by the same CLBP riu2 8,1 for capturing spatio-temporal features in DoG/DoDG-based outcomes.

Comprehensive comparison to HoGF descriptors

In our prior work [START_REF] Nguyen | Prominent local representation for dynamic textures based on high-order gaussiangradients[END_REF], the 2D/3D Gaussian gradients in multi-scales of standard deviations were directly exploited to filter a video. The obtained HoGF 2D/3D descriptors have good recognition rates compared to state of the art. In this work, thanks to DoDG 2D/3D filterings, our DoDGF 2D/3D descriptors obtain better performance than HoGF 2D/3D . Indeed, it can be verified from Table 8 8). In the case of addressing the best settings, rates of our DoDGFs are just a little lower on Gamma (see Table 9) but about 1% higher than those of HoGFs on both DTDB's large-scale schemes (see Table 11). Furthermore, the dimension of DoDGFs is about two thirds smaller than that of HoGFs (see Table 8). Those evidences have proved the significant denoising treatment of our DoDG compared to the Gaussian- gradient kernels. In addition, our DoDG-based descriptors obtain the best performance by the same settings of the 2-order form {1 st , 2 nd } for both the DoDG 2D/3D filterings, whilst those of HoGFs [START_REF] Nguyen | Prominent local representation for dynamic textures based on high-order gaussiangradients[END_REF] are different: {2 nd , 3 rd } for the 2D Gaussian-gradient filtering, and {3 rd , 4 th } for the 3D one (see Tables 9 and11). This assures that our DoDGFs can be more adaptative in real implementations.

Comprehensive comparison to state of the art

Generally, it can be seen from should be noted that DNGP's and FD-MAP's are not better than ours on other schemes (see Table 9). In addition, CVLBC [START_REF] Zhao | Dynamic texture recognition using volume local binary count patterns with an application to 2d face spoofing detection[END_REF] also obtains the nearly same performance as ours but it performs less on DynTex35 and DynTex++.

Also, it has not been verified on the challenging scenarios: Alpha, Beta, and Gamma (also see Table 9). For further consideration of enhancement, we present the specific rates of DoDGF 3D (0.7,1),{1 st ,2 nd } in Figure 11 for the 9-class scheme and Figure 12 for the 8-class one.

Classification on DynTex

It can be observed from Table 9 that our DoDGF 2D/3D descriptors obtain the best rates compared to all non-deeplearning approaches, from over 1% to 3% higher improvement on the challenging schemes (i.e., Beta and Gamma) than those of MDP-based [START_REF] Nguyen | Momental directional patterns for dynamic texture recognition[END_REF] and RUBIG [START_REF] Nguyen | Rubik gaussianbased patterns for dynamic texture classification[END_REF] descriptors, very recent robust methods based on local features for DT representation. Moreover, with the highest rates of 100%, 100%, 98.15%, and 96.97% on DynTex35, Alpha, Beta, and Gamma respectively, these results are very close to those of the deep-learning techniques, i.e., DT-CNNs [START_REF] Andrearczyk | Convolutional neural network on three orthogonal planes for dynamic texture classification[END_REF], st-TCoF [START_REF] Qi | Dynamic texture and scene classification by transferring deep image features[END_REF], and D3 [START_REF] Hong | D3: recognizing dynamic scenes with deep dual descriptor based on key frames and key segments[END_REF]. It is worth noting that we just use the shallow framework for DT representation versus complicated algorithms addressed by those deep-learning models which their deployment is restricted on mobile devices.

For further consideration of improvement, we present the specific rates of DoDGF 3D (0.7,1),{1 st ,2 nd } in Figure 13 for the Beta scheme and Figure 14 for the Gamma one. 

Classification on DynTex++

Our proposal has significant performance on this scheme with over 97% for DoDG-based descriptors in 2-scale analyses of orders (see Table 9). These rates are the best compared to all methods, excluding MEWLSP (98.48%) [START_REF] Tiwari | Dynamic texture recognition using multiresolution edge-weighted local structure pattern[END_REF], and DT-CNNs [START_REF] Andrearczyk | Convolutional neural network on three orthogonal planes for dynamic texture classification[END_REF] (98.18% for AlexNet and 98.58% for GoogleNet frameworks). Specifically, DoDGF 3D (0.7,1),{1 st ,2 nd } just obtains 97.52% due to the challenging categories highlighted in red rates in Figure 15.

It is noteworthy that MEWLSP's performance is inferior to ours on UCLA (see Table 9). Also, it has not been verified on more challenging schemes, i.e., Alpha, Beta, Gamma. In the meantime, DT-CNNs taking a large number of learned parameters for those frameworks just obtain about 0.5∼1% higher than ours. 9). In this work, two basic local operators, LBP-TOP [START_REF] Zhao | Dynamic texture recognition using local binary patterns with an application to facial expressions[END_REF] and CLBP [START_REF] Guo | A completed modeling of local binary pattern operator for texture classification[END_REF] are also implemented in the same set of neighbors {(P, R)} = {(8, 1)} for objective evaluations in recognizing DTs on DTDB. Table 11 presents results of DoDGF further contexts based on more experimental results as follows.

Classification on DTDB dataset

The experimental results in Table 7 have verified that the 3D filtering is better than the 2D one in most cases. It may be deduced that addressing the higher directions of DoDG can improve the performance. In other words, addressing jointly shape and motion cues based on the 3D filtering is more effective than a separate consideration in the 2D one.

Taking multi-scale analysis of {(σ, σ )} into account the DT encoding does not make the DoDG-based descriptors more robust, except 97.35%, a little higher rate on Gamma of DoDGF 3D {(0.5,1),(0.7,1),(1,1.3)},{1 st } (see Table 12(a)).

Also, addressing multi-scale of high-order DoDGs is not for further enhancement (see Table 12(b)).

In addition, combining two kinds of above multi-scale analyses obtains a better rate of 97.73% on Gamma for DoDGF 3D {(σ,σ )},F , while facing with the cruse of larger dimension, up to 21600 bins, (see Table 12(c)).

Taking odd and even orders of DoDG is recommended because their outcomes are more complementary. Presently, deep-learning-based methods are going on the major stream for computer vision community. They often obtain significant results in DT recognition (see Tables 9 and 11). However, it takes much time for them to learn millions of parameters using complex learning algorithms in multi-deep-layer networks. For instance, it takes ∼80M for C3D [START_REF] Tran | Learning spatiotemporal features with 3d convolutional networks[END_REF], ∼88M for MSOE-two-Stream [START_REF] Hadji | A new large scale dynamic texture dataset with application to convnet understanding[END_REF], while ∼61M for AlexNet and ∼6.8M for GoogleNet for DT-CNN [START_REF] Andrearczyk | Convolutional neural network on three orthogonal planes for dynamic texture classification[END_REF]. This is one of crucial barriers in order to bring those into real applications for mobile devices as well as embedded sensor systems, those which strictly require tiny resources for their functions.

Conclusions

The σ,σ ,F descriptors in slight dimension. Indeed, Tables 9 and11 show the very good performances of our 2order DoDGF 3D (0.7,1),{1 st ,2 nd } with 7200 bins as well as those of the single order DoDGF 2D (0.7,1),{1 st } with only 2400 bins on different datasets. Those can be easily applied to edge devices, while maintaining a comparable performance related to deep learning models. For perspectives, instead of using CLBP [START_REF] Guo | A completed modeling of local binary pattern operator for texture classification[END_REF], it is able to take other LBP-based operators into account our proposed framework for a purpose of further enhancement, e.g., CLBC [START_REF] Zhao | Completed Local Binary Count for Rotation Invariant Texture Classification[END_REF], LDP-based [START_REF] Zhang | Local derivative pattern versus local binary pattern: Face recognition with high-order local pattern descriptor[END_REF][START_REF] Nguyen | Momental directional patterns for dynamic texture recognition[END_REF], LVP-based [START_REF] Fan | A novel local pattern descriptor -local vector pattern in high-order derivative space for face recognition[END_REF][START_REF] Nguyen | Directional densetrajectory-based patterns for dynamic texture recognition[END_REF], LRP [START_REF] Nguyen | Rubik gaussianbased patterns for dynamic texture classification[END_REF], MRELBP [START_REF] Liu | Median robust extended local binary pattern for texture classification[END_REF], etc.

In addition, analysis in multi-scale solutions of supporting regions (e.g., {(P, R)} = {(8, 1), (8, 2), (8, 3)}) can be considered for these operators to investigate more extensively local relationships for further improvement.
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 1 Figure 1: A general framework of encoding a video based on filtering.
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 3 Literature of DT representation Efficiently representing DTs plays an important role in real applications of computer vision. Many approaches have been introduced and can be resumed in six main groups as follows. Model-based methods: Most of model-based methods have taken advantage of the concept of Linear Dynamical System (LDS), introduced by Saisan et al. [29], in order to model turbulent movements of DTs. Chan et al. [30] introduced a kernel-PCA (Principal Component Analysis) to adapt the observation component of LDS so that it could be in accordance with issues of analyzing DTs in more complex contexts: chaotic properties of motions, moving camera, etc. Also motivated by the LDS's concept, Mumtaz et al. [31] proposed DT mixture (DTM) model to cluster DT features based on their similarities that were estimated by Hierarchical Expectation-Maximization (HEM) algorithm. In another aspect of LDS's leverage, Wang et al. [32] adapted LDS to be agreed with bag-ofwords (BoW) to capture turbulent characteristics of DTs in videos, while Ravichandran et al. [33] took into account bag-of-systems (BoS) to attempt a spatio-temporal concern in DT representation. In addition, several modelbased approaches have relied on Hidden Markov Model (HMM) to model DT motions. Qiao et al. [34] addressed HMM to encode spatial information of DTs in consideration of their appearance along time of a sequence. After that, Qiao et al. [35] proposed a model of multivariate

  -flow-based methods: Most of optical-flow-based methods have represented DTs based on magnitudes and directions of normal flow. Peh et al.[START_REF] Peh | Synergizing spatial and temporal texture[END_REF] proposed to shape and trace paths of DT motions in a video. In the meanwhile, on one side, Péteri et al.[START_REF] Péteri | Qualitative characterization of dynamic textures for video retrieval[END_REF][START_REF] Péteri | Dynamic texture recognition using normal flow and texture regularity[END_REF] took advantage of normal vector field and criteria of sequences in order to extract DT features. On the other side, they combined the normal flow and filtering regularity for the feature extraction. Lu et al.[START_REF] Lu | Dynamic texture recognition by spatio-temporal multiresolution histograms[END_REF] attempted to exploit the beneficial characteristics of the velocity and acceleration to structure spatio-temporal multi-resolution probability distribution.Lately, Nguyen et al.[START_REF] Nguyen | Directional beams of dense trajectories for dynamic texture recognition[END_REF][START_REF] Nguyen | Directional densetrajectory-based patterns for dynamic texture recognition[END_REF] encoded a DT video by addressing motion points subject to their trajectories and local motive neighbors. With regard to effectiveness in DT recognition, the optical-flow-based methods have been at moderate abilities due to assumption of brightness constancy and local smoothness as mentioned by Rivera et al. [49]. In addition, their moderation can be caused by the less regard of textural appearances, one of important clues for DT understanding. Learning-based methods: In general, there are two trends of learning-based methods for DT representation as follows. The first one is based on deep learning techniques. Qi et al. [50] proposed Transferred ConvNet Features (TCoF), which were deep spatio-temporal structures learned from an implementation of Convolutional Neural Network (CNN) (i.e., AlexNet [51]) for the frames of a video. In the meanwhile, Andrearczyk et al. [52] also implemented AlexNet [51] and GoogleNet [53] frameworks to learned DT features on the three orthogonal planes of a given video. Also addressing the video's planes, Arashloo et al. [54] proposed a combination of a multi-layer convolutional model and PCA's function to learned filters. In other works, Hong et al. [55] introduced a learning concept of "key frames" and "key segments" to construct a deep dual descriptor based on static and dynamic learned features. Hadji et al. [56] composed a new challenging large scale dataset (DTDB). They then implemented some deep-learning methods for learning DTs on DTDB: Convolutional 3D (C3D) [57], RGB/Flow Stream [58], Marginalized Spatio-temporal Oriented Energy (MSOE) in two learning streams (MSOE-two-Stream)

  -feature-based methods: Taking advantage of simple computation of Local Binary Pattern (LBP) [26] and its variants, many efforts have been made and achieved noteworthy performances in DT recognition. For encoding a given video, Zhao et al. [64] introduced VLBP patterns in consideration of a voxel and its local neighbors that are interpolated by addressing three consecutive frames in a given video. Because of this encoding, it is up to 2 3P +2

Figure 2 (

 2 Figure 2(b)). Different from them, we propose in this work the novel DoDG kernel for the filterings. As highlighted by the light-blue boxes in the flowchart of Figure 2(c), three main significant points can be taken out as follows: i) Our DoDG is based on the difference of two scales of Gaussian gradients. Experiments would verify that the DoDG-based responses have more robustness compared to the original Gaussian kernels, the Gaussian gradients as well as the conventional DoG. ii) We also propose and validate the noteworthy contribution of the absolute features of the DoDG-based responses in the performance improvement.

Figure 2 :

 2 Figure 2: Comparison with previous works based on the Gaussianbased filterings: (a) -FoSIG [17], V-BIG [18], and RUBIG [19]; (b)

Figure 5 .

 5 Figure 5. In general, it takes two major steps to structure a given video V: i) a novel filtering for an efficient reduction of the negative impacts of the problems on DT representation; ii) a local DT encoding of the obtained filtered-outcomes in simplicity of computation. For the filtering, we introduce a novel DoDG kernel based on the difference of high-order Gaussian-gradients (see Section 3.2).

  DoDG for DT representation. For the simplicity of presentation, let us consider k-order DoDG in 1D space, which their profiles are shown in Figure 3. When k is odd, DoDG's responses are semi-symmetric since DoDG σ,σ (x) = -DoDG σ,σ (-x) (see Figure 3(b)). When k is even, DoDG's responses are symmetric since DoDG σ,σ (x) = DoDG σ,σ (-x) (see Figure 3(c)). Its responses are somewhat similar to that of the DoG kernel (also see Figure 3(a)). Also, being a Gaussian-based kernel, DoDG naturally produces robust features against noise. Accordingly, our DoDG can be structured into two groups: odd and even order kernels. It is evident that two groups are complementary together since they exploit local features in a totally different way. A combination of those allows to take into account both symmetric and asymmetric features, thereby enhancing the informative richness and discrimination power. On the other hand, since the G n σ,∂x k i filtering kernel has separable and linear properties, the computational complexity of our DoDG n σ,σ ,∂x k i is also inherited from those advantages. Those allow to compute our DoDG 1 in differ-1 A simple MATLAB code for 2D/3D DoDG filterings is available at http://tpnguyen.univ-tln.fr/download/MATCodeDoDG

Figure 3 :

 3 Figure 3: Profile of 1D DoG kernel (a) using a pre-defined pair of standard deviations (σ, σ ) = (0.7, 1) in comparison with those of 1D DoDG kernels at the first (b) and second (c) orders.

Figure 4 in

 4 lines (b) and (c) shows DoDG-filtered images obtained by using the DoDG 2D filtering kernel with (σ, σ ) = (0.7, 1)

  illustrates a graphical view of exploiting both DoG and DoDG to filter an image with a specific pair of standard deviations (σ, σ ) = (0.7, 1). Accordingly, it can be visually realized that our DoDG has figured out less closedto-zero bipolar features than DoG, those which make the encoding more sensitive to noise as claimed by Vu et al[START_REF] Vu | Improving texture categorization with biologically-inspired filtering[END_REF].Our DoDG has extracted more diversity of bipolar filtered-image partitions than DoG (see Figure3), thereby allowing to capture forceful features for DT representation.Also, conducted from Figure3(b) and (c), our DoDG could maintain invariant spatial information in better stable frequencies thanks to an adaptive conservation of DoDG's distribution in accordance with that of the concerning Gaussian gradients. In the meanwhile, it is not for DoG since the subtraction of non-Gaussiangradient filterings is agreed with an approximation of the Laplacian of Gaussian (LoG) (see Figure3(a)).

Figure 4 :

 4 Figure 4: Instances of 2D Gaussian-based filterings for an given image I using a pre-defined pair of standard deviations (σ, σ ) = (0.7, 1). Therein, (a): a DoG-filtered image of the conventional DoG 2D filtering, (b) and (c): DoDG-based images of odd and even DoDG 2D filterings respectively.

Figure 5 :

 5 Figure 5: Our proposed framework for encoding a video V based on its DoDG-filtered outcomes computed by the novel DoDG filterings.

Figure 4 :

 4 Figure 4: line (b) for the odd gradients and line (c) for the even ones. Since I σ,σ ∂x k and I σ,σ ∂y k are bipolar-filtered images, it is possible to consider their absolute outcomes (i.e., |I σ,σ ∂x k | and |I σ,σ ∂y k |) to explore more textural appearances for further improving discrimination (see Table6 for

Figure 5 (

 5 Figure 5(b) shows a visual view of the construction, while Alg. 2 is for the computing structure. Finally, the obtained histograms are normalized and concatenated to form a local robust descriptor of the high-order 3D DoDGfiltered Features (DoDGF 3D σ,σ ,F ) as

  denotes a set of high-orders taking into account the DT encoding; stands for incorporation of histograms computed subject to the specific k-orders of F. For instance, F = {1 st , 2 nd } means that both first and second partial derivatives of DoDG 3D are addressed for analysis of multi-orders. DoG-based descriptors for assessment: To verify the interest of our DoDG in local DT description compared to the well-known DoG kernel, we also implement local DoG-based descriptors based on the corresponding DoG filterings for comprehensive evaluations in Sections 4.4 and 4.6. Accordingly, the 2D and 3D DoG kernels are addressed for the filtering of video V as

  to capture more the bipolar-filtered ones of those filterings due to an objective comparison to DoDGF 2D/3D σ,σ ,F in abilities of DT classification. Consequently, it can be stated that our DoDG-based descriptors have some following benefits to enhance the performance compared to other local Gaussian-based ones: Our DoDGF 2D/3D σ,σ ,F descriptors are enriched more spatio-temporal characteristics extracted from both bipolar and absolute DoDG-filtered outcomes instead of only absolute features from the DoG-filtered ones in FoSIG, V-BIG, and RUBIG (see Table 6 for evaluations of their contributions). It can take advantage of more complementary features by addressing DoDG in high-order gradients. This allows DoDGF 2D/3D

  Figure 6(a) for several instances of DT videos). The following protocols are usually addressed for DT recognition. 50-class: 200 videos are grouped into 50 classes with 4 sequences for each. Two popular protocols are usedfor assessments: leave-one-out[START_REF] Arashloo | Dynamic texture recognition using multiscale binarized statistical image features[END_REF][START_REF] Tiwari | Improved weber's law based local binary pattern for dynamic texture recognition[END_REF] and 4-fold cross validation[START_REF] Nguyen | Completed local structure patterns on three orthogonal planes for dynamic texture recognition[END_REF][START_REF] Tiwari | A novel scheme based on local binary pattern for dynamic texture recognition[END_REF].

9 -

 9 class and 8-class: 200 videos are arranged into 9

Figure 6 :

 6 Figure 6: Samples of videos in UCLA (a), DynTex (b), DTDB (c).

4. 2 .

 2 Experimental settings For DoDG filtering processes: In experiments of this work, we conduct DoDG 2D/3D σ,σ ,∂x k i in four orders (i.e., {1 st , 2 nd , 3 rd , 4 th }) of gradients with direction axes for the convolving operation x, y, z ∈ [-3σ, 3σ]. Pairs of standard deviations are empirically investigated as {(σ, σ )} = {(0.5, 0.7), (0.5, 1), (0.7, 1), (1, 1.3), (1, 1.5)}. For structuring DoDGF 2D/3D σ,σ ,F descriptors: To construct

our

  DoDG-based descriptors, we simply utilize CLBP 2 , one of the most popular local operators, with the 3Djoint setting of riu2 mapping and a supporting region (P, R) = (8, 1). It means Ψ = CLBP riu2 8,1 corresponding 2 Operator CLBP [16] is addressed in this work for a purpose of simplicity in implementing and evaluating the effectiveness of our novel DoDG filtering for DT representation compared to the wellknown DoG. It could be absolutely replaced by other robust ones

  In order to make an objective comparison, the same settings should be addressed for the construction of the DoG-based descriptors. It means that the pre-defined pairs of {(σ, σ )} are also used for the DoG filterings, while Ψ = CLBP riu2 8,1 is exploited for the local encoding of the DoG-filtered outcomes. As a result, it takes 2 × 3 × H Ψ = 1200 bins for

Figure 7 :

 7 Figure 7: Noise-instances obtained by using different levels of SNR dB on a plane-image in a video of UCLA dataset.

Figure 8 :

 8 Figure 8: Impacts of Gaussian noise on DoDGF 2D/3D compared to DoGF 2D/3D and other LBP-based descriptors.

Figure 9 :

 9 Figure 9: Rates of DoGF 2D/3D σ,σ and 1 st -order DoGF 2D/3D σ,σ ,1 st .

Figure 10 :

 10 Figure 10: Rates of several local-feature-based descriptors using the same CLBP riu2 8,1 for encoding DoG/DoDG-based outcomes.

Figure 12 :

 12 Figure 12: Specific rates on each category of 8-class.

Figure 14 :

 14 Figure 14: Specific rates on each category of Gamma. The challenging categories are highlighted in red rates.

  Figure 15: Specific results of DT recognition of DoDGF 3D (0.7,1),{1 st ,2 nd } on each category of DynTex++. The challenging categories are highlighted in red rates.

  2D/3D σ,σ ,F utilizing the best settings discussed in Section 4.5. Also, those of the other LBP-based ones and learning-based methods are expressed in this table for a purpose of comprehensive comparison. It should be noted that rates of the learning-based methods are referred to the implementations of Hadji et al. [56]. It can be seen from Table 11 that our DoDG-based descriptors have performed very well in DT recognition on both Dynamics and Appearance. Those results are about 7∼9% better than those of the DoG-based ones. For instance, on Dynamics, DoGF 3D (0.7,1) just obtains

  simple and efficient DoDG kernel has been proposed to deal with the well-known problems of local DT representation. To take our DoDG into account video analysis, an adaptative framework has been presented for local DT representation, which is also available for different LBP-based encodings on robust DoDGfiltered outcomes. Just using a shallow analysis to exploit DoDG-filtered features, we have constructed discrimina-

Normalized 6 :

 6 Repeat the steps 4 and 5 on f XT and f Y T

	for Γ XT σ,σ ,k and Γ Y T σ,σ ,k respectively.
	7: DoDGF 2D σ,σ ,k = Γ XY σ,σ ,k , Γ XT σ,σ ,k , Γ Y T σ,σ ,k ;
	end for
	//Concatenate all the obtained histograms
	8: DoDGF 2D σ,σ ,F =

k∈F

DoDGF 2D

σ,σ ,k ;

Table 1 :

 1 A brief of properties of benchmark DT datasets.

	Dataset	Sub-dataset #Videos	Resolution #Classes Protocol
		50-class	200	110 × 160 × 75	50 LOO and 4fold
	UCLA	9-class	200	110 × 160 × 75	9 50%/50%
		8-class	92	110 × 160 × 75	8 50%/50%
		DynTex35	350 different dimensions	10 LOO
	DynTex	Alpha Beta	60 162	352 × 288 × 250 352 × 288 × 250	3 LOO 10 LOO
		Gamma	264	352 × 288 × 250	10 LOO
	DynTex++		3600	50 × 50 × 50	36 50%/50%
	DTDB	Dynamics Appearance	> 10000 different dimensions > 9000 different dimensions	18 70%/30% 45 70%/30%
	Note: LOO and 4fold are leave-one-out and four cross-fold validation respectively.
	50%/50% is 50% random samples for training and the remain (50%) for testing.

Table 2 :

 2 A comparison of various bins of LBP-based descriptors.

Table 3 :

 3 Comparison of processing time of encoding a video with 50 × 50 × 50 dimension in DynTex++ dataset.

	Descriptor	{(σ[, σ ])} {(P, R)} Mapping Runtime (s)
	VLBP [64]	-	{(4, 1)}	-	≈ 0.22
	LBP-TOP [64]	-	{(8, 1)}	u2	≈ 0.15
	CLSP-TOP [73]	-	{(8, 1)}	riu2	≈ 0.27
	CSAP-TOP [75]	-	{(8, 1)}	riu2	≈ 0.50
	HILOP [76]	-	{(8, {1, 2})}	u2	≈ 0.42
	FoSIG [17]	{(0.5, 6)}	{(8, 1)}	riu2	≈ 0.37
	V-BIG [18]	{(0.5, 6)}	{(8, 1)}	riu2	≈ 0.35
	RUBIG [19]	{(0.5, 6)}	{(8, 1)}	riu2	≈ 0.56
	HoGF 2D σ,1 st [20]	{σ = 1}	{(8, 1)}	riu2	≈ 0.54
	HoGF 3D σ,1 st [20]	{σ = 1}	{(8, 1)}	riu2	≈ 0.70
	DoGF 2D σ,σ	{(0.7, 1)}	{(8, 1)}	riu2	≈ 0.37
	DoGF 3D σ,σ	{(0.7, 1)}	{(8, 1)}	riu2	≈ 0.35
	Our DoDGF 2D σ,σ ,1 st {(0.7, 1)}	{(8, 1)}	riu2	≈ 0.58
	Our DoDGF 3D σ,σ ,1 st {(0.7, 1)}	{(8, 1)}	riu2	≈ 0.79
	Note: "-" means "not available". Runtimes of HILOP [76] and
	DoGF 2D/3D are implemented by this work while the others are referred
	to implementations of [19]. It should be noted that all above runtimes
	are reported using a CPU in only one thread for running their raw
	MATLAB codes.				
	4.4. Advantages of DoDG filterings		
	4.4.1. Robustness to the issues of DT description	
	Thanks to taking our DoDG into account the filterings,
	all DoDG-filtered outcomes are complementary and robust
	to environmental changes, illumination, and noise. This
	allows that local spatio-temporal features extracted from
	these outcomes are more insensitive for DT encoding com-
	pared to those extracted from a raw video. Indeed, in
	order to evaluate this advantageous property, we inves-
	tigate DoDG on noisy datasets to evaluate its ability of
	noise-resistance.				
	Accordingly, we address the Gaussian zero-mean noise
	model with different signal-to-noise ratio (SNR) levels, i.e.,
	SNR dB ∈ {1, 2, 3, 4, 5}, to add noise into UCLA [29] -
	the simple dataset, and DynTex [41] -the more challeng-
	ing one (see Table				

Table 4 :

 4 Performances (%) on different Gaussian noise subsets: 50-4fold of UCLA and Gamma of DynTex. .00 92.00 94.00 94.00 96.00 87.12 88.64 89.02 90.91 90.53 92.80 LBP-TOP * [64] .00 99.50 99.00 98.50 97.50 77.65 81.82 84.47 86.36 87.12 93.56 CLSP-TOP * [73]

		None 91.00 93None --{(4, 1)} ---{(8, 1)} u2 97.50 99None --{(8, 1)} riu2 98.00 100 99.50 99.50 99.00 99.00 82.95 84.85 84.47 86.36 87.50 93.18
	HILOP * [76]	None	-	-{(8, {1, 2})}	u2	99.50 99.50 99.50 99.50 99.50 99.50 88.64 89.77 90.91 90.91 91.29 92.42
	CLBP S/M/C [16]	None	-	-	{(8, 1)}	riu2	99.50 99.50 99.50 99.00 99.50 99.50 85.98 87.12 87.88 88.64 89.39 92.80
	ZoGF 2D *	Orig. Gau. 0 th -order	{σ = 1}	{(8, 1)}	riu2	100 100 99.50 99.00 99.00	100 88.64 90.15 89.39 89.39 88.64 92.42
	ZoGF 3D *	Orig. Gau. 0 th -order	{σ = 1}	{(8, 1)}	riu2	100 100 100 100 100	100 90.53 90.53 90.91 90.15 90.91 93.56
	HoGF 2D * [20]	Gau. gradi. 1 st -order	{σ = 1}	{(8, 1)}	riu2	100 100 100 100 100	100 90.53 90.53 90.15 90.91 90.53 93.56
	HoGF 3D * [20]	Gau. gradi. 1 st -order	{σ = 1}	{(8, 1)}	riu2	100 100 100 100 100	100 90.91 92.05 93.18 92.05 92.05 96.21
	DoGF 2D	DoG	0 th -order {(0.7, 1)}	{(8, 1)}	riu2	100 100 100 100 100	100 81.06 86.74 88.64 89.02 88.26 92.42
	DoGF 3D	DoG	0 th -order {(0.7, 1)}	{(8, 1)}	riu2	100 99.50 100 99.50 100	100 87.88 89.77 90.15 91.29 89.77 94.70
	Our DoDGF 2D	DoDG	1 st -order {(0.7, 1)}	{(8, 1)}	riu2	100 100 100 100 100	100 89.77 90.53 89.77 90.53 91.29 95.08
	Our DoDGF 3D	DoDG	1 st -order {(0.7, 1)}	{(8, 1)}	riu2	100 100 100 100 100	100 90.91 91.67 91.67 91.67 92.80 96.21

SNR dB for 50-4fold SNR dB for Gamma Descriptor Filter Derivative {(σ[, σ ])} {(P, {R})} Mapping dB=1 dB=2 dB=3 dB=4 dB=5 No-dB dB=1 dB=2 dB=3 dB=4 dB=5 No-dB VLBP * [64]

Table 5 :

 5 Performances (%) on different density levels of salt-andpepper noise on Gamma of DynTex.

	Descriptor	ρ=10% ρ=20% ρ=30% ρ=40% ρ=50% ρ=60% ρ=70%
	DoGF 2D	92.42	88.26	78.79	71.97	70.45	65.53	59.09
	DoGF 3D	91.67	90.15	87.50	81.06	72.73	61.36	57.20
	Our DoDGF 2D	93.18	92.05	89.02	88.64	87.12	81.44	76.14
	Our DoDGF 3D	91.67	89.77	89.39	89.39	87.50	86.74	83.71

Table 6 :

 6 Comparing contributions of DoG and 1 st -order DoDG 2D .

	DoG/DoDG filtered complement(s) #bins Dyn35	Beta Gamma Dyn++
	I 0.7,1 ∂x 1	600	98.86	92.59	91.29	92.93
	I 0.7,1 ∂y 1	600	99.43	92.59	93.18	93.89
	|I 0.7,1 ∂x 1 |	600	97.43	91.36	90.91	93.94
	|I 0.7,1 ∂y 1 |	600	96.57	93.21	90.53	93.83
	|I 0.7,1 ∂x 1 | + |I 0.7,1 ∂y 1 |	1200	98.00	95.06	93.18	95.62
	I 0.7,1 ∂x 1 + I 0.7,1 ∂y 1	1200	98.86	95.06	93.94	95.19
	I 0.7,1 ∂x 1 + I 0.7,1 ∂y 1 + |I 0.7,1 ∂x 1 | + |I 0.7,1 ∂y 1 |	2400 99.43 95.68	95.08	96.40
	I 0.7,1 DoG + |I 0.7,1 DoG |	1200	98.00	91.98	92.42	94.86

Note: Dyn35 and Dyn++ stand for DynTex35 sub-set and DynTex++ respectively.

Table 7 :

 7 DT Classification rates (%) of DoDGF 100 99.50 100 99.50 98.70 98.80 98.37 98.70 99.14 99.14 98.33 98.33 94.44 96.91 94.70 95.45 96.91 97.15 (0.5, 1) 100 99.50 100 99.50 99.05 98.75 98.70 98.15 99.43 99.14 98.33 98.33 96.30 96.30 94.70 95.08 96.82 96.51 (0.7, 1) 100 100 100 100 99.10 99.35 96.63 99.46 99.43 98.57 98.33 98.33 95.68 96.30 92.80 95.83 95.95 96.39 (1, 1.3) 100 100 100 100 98.60 99.10 95.22 98.70 99.43 98.57 98.33 98.33 94.44 96.30 92.80 95.83 96.15 96.24 (1, 1.5) 100 100 100 100 98.45 99.75 98.04 97.83 99.14 98.86 98.33 96.67 95.06 96.30 94.32 96.59 96.06 96.72 4 th (0.5, 0.7) 99.00 99.00 98.50 99.00 98.10 98.00 96.30 95.76 98.29 97.71 98.33 96.67 96.30 95.06 92.80 93.18 95.56 96.72 (0.5, 1) 100 100 100 100 99.35 98.70 97.39 98.48 98.29 96.86 98.33 100 93.21 93.21 91.67 95.45 95.69 96.57 (0.7, 1) 100 100 100 100 98.80 98.15 97.93 98.70 99.14 98.00 98.33 96.67 96.91 95.06 92.42 93.56 96.30 95.69 (1, 1.3) 99.00 98.00 99.00 98.00 98.35 98.50 97.61 95.33 96.86 98.00 98.33 100 94.44 94.44 92.80 95.45 95.27 96.11 (1, 1.5) 100 100 100 99.50 99.30 99.10 97.93 98.59 97.71 98.57 100 98.33 93.21 92.59 93.18 95.45 95.49 95.62 {1 st , 2 nd } (0.5, 0.7) 99.50 99.50 99.00 99.50 98.50 98.55 99.02 98.70 96.57 96.29 100 100 95.68 96.92 94.70 96.21 96.93 97.62 (0.5, 1) 100 99.50 100 99.50 99.10 98.50 97.39 97.61 99.43 99.43 100 100 96.30 95.68 94.70 96.97 97.20 97.55 100 98.25 99.35 96.96 97.39 98.86 99.14 100 98.33 96.91 95.06 96.21 96.59 96.88 96.45 Note: 50-LOO and 50-4fold denote results on 50-class breakdown using leave-one-out and four cross-fold validation. 2D and 3D columns denote results of the 2D and 3D descriptors correspondingly. The 0 th -order denotes results of DoGF

	2D/3D σ,σ ,F and DoGF	2D/3D σ,σ	descriptors on benchmark datasets.

  {1 st ,2 nd } are about 1% to 2% better than those of HoGFs (see Table

		that
	rates of DoDGF 2D/3D (0.7,1),{1 st ,2 nd } are generally higher than
	those of two separate deviation scales of 2-order HoGFs,
	i.e., HoGF	2D/3D {σ=1},{1 st ,2 nd } and HoGF 2D/3D {σ=0.7},{1 st nd } , for
	DT recognition on challenging datasets. Particularly, on
	2D/3D rates of our DoDGF (0.7,1),

Table 8 :

 8 Comparing rates of DoDGF 2D/3D and HoGF 2D/3D [20]. Note: Dyn35 and Dyn++ are shortened for DynTex35 sub-set and DynTex++ respectively while Dyna and Appe stand for DTDB's schemes Dynamics and Appearance. Results of HoGFs [20] on DTDB are reported by this work.

				DynTex		Dyn++	DTDB
	Descriptor	#bins						
			Dyn35	Beta Gamma		Dyna Appe
	HoGF 2D {σ=0.7},{1 st ,2 nd } [20]	7200	99.43	95.06	95.83	97.43	67.95	68.84
	HoGF 2D {σ=1},{1 st ,2 nd } [20]	7200	99.71	96.91	95.08	97.39	68.84	68.66
	DoDGF 2D (0.7,1),{1 st ,2 nd }	4800	99.71 97.53	96.21	97.14 69.81 69.84
	HoGF 3D {σ=0.7},{1 st ,2 nd } [20]	9600	99.14	96.91	96.21	97.71	70.47	71.06
	HoGF 3D {σ=1},{1 st ,2 nd } [20]	9600	99.71	96.91	96.59	97.34	70.89	71.11
	DoDGF 3D (0.7,1),{1 st ,2 nd }	7200	99.71 98.15	96.97	97.52 72.06 72.10

Table 9

 9 Figure 11: Specific rates on each category of 9-class.

	that our DoDG-
	based descriptors have obtained the best rates compared
	to all non-deep-learning methods. Their performances are
	also better than those of deep-learning-based approaches
	on UCLA as well as very close to those on DynTex and
	DynTex++. This is certainly thanks to the leverage con-
	tribution of our DoDG. Hereunder, we detail particular
	discussions of those on each benchmark dataset.
	4.8.1. Classification on UCLA
	It can be verified from Table 9 that thanks to the effi-
	ciently denoising processes of DoDG filterings, our DoDG-
	based descriptors perform very well compared to state of
	the art, including the deep-learning methods, i.e., DT-
	CNNs [52]. More specifically, they obtain the best rates
	of 100% on both schemes of 50-class and 50-4fold. In
	terms of classifying DTs on 9-class and 8-class, our pro-
	posal is just a little inferior to DNGP [49] (99.6%) on 9-
	class, while achieving the highest rate of 99.57% on 8-class
	by DoDGF 3D (0.7,1),{1 st ,2 nd } , the same as FD-MAP's [47]. It

Table 9 :

 9 Comparison of DT recognition rates (%) on benchmark DT datasets Figure13: Specific rates on each category of Beta. The challenging categories are highlighted in red rates.

	Category	Dataset Encoding method	UCLA 50-LOO 50-4fold 9-class 8-class Dyn35 Alpha DynTex Beta Gamma	Dyn++
		FDT [47]	98.50	99.00 97.70 99.35	98.86 98.33 93.21	91.67	95.31
	Optical-flow-based	FD-MAP [47]	99.50	99.00 99.35 99.57	98.86 98.33 92.59	91.67	95.69
		DDTP [48]	99.00	99.50 98.75 98.04	99.71 96.67 93.83	91.29	95.09
		AR-LDS [29]	89.90 N	-	-	-	-	-	-	-	-
	Model-based	KDT-MD [30] NLDR [33]	--	97.50 -	--80.00 -	--	--	--	--	--
		Chaotic vector [32]	-	-85.10 N 85.00 N	-	-	-	-	-
		3D-OTF [37]	-	87.10 97.23 99.50	96.70 83.61 73.22	72.53	89.17
		WMFS [38]	-	-97.11 96.96	-	-	-	-	-
		NLSSA [40]	-	-	-	-	-	-	-	-	92.40
	Geometry-based	KSSA [40] DKSSA [40]	--	--	--	--	--	--	--	--	92.20 91.10
		DFS [74]	-	100 97.50 99.20	97.16 85.24 76.93	74.82	91.70
		2D+T [80]	-	-	-	-	-85.00 67.00	63.00	-
		STLS [39]	-	99.50 97.40 99.50	98.20 89.40 80.80	79.80	94.50
		MBSIF-TOP [23]	99.50 N	-	-	-98.61 N 90.00 N 90.70 N	91.30 N	97.12 N
	Filter-based	B3DF SMC [25]	99.50 N	99.50 N 98.85 N 98.15 N 99.71 N 95.00 N 90.12 N	90.91 N	95.58 N
		DNGP [49]	-	-99.60 99.40	-	-	-	-	93.80
		VLBP [64]	-	89.50 N 96.30 N 91.96 N 81.14 N	-	-	-	94.98 N
		LBP-TOP [64]	-	94.50 N 96.00 N 93.67 N 92.45 N 98.33 88.89 84.85 N	94.05 N
		DDLBP with MJMI [81]	-	-	-	-	-	-	-	-	95.80
		CVLBP [68]	-	93.00 N 96.90 N 95.65 N 85.14 N	-	-	-	-
		HLBP [67]	95.00 N	95.00 N 98.35 N 97.50 N 98.57 N	-	-	-	96.28 N
		CLSP-TOP [73]	99.00 N	99.00 N 98.60 N 97.72 N 98.29 N 95.00 N 91.98 N	91.29 N	95.50 N
		MEWLSP [70]	96.50 N	96.50 N 98.55 N 98.04 N 99.71 N	-	-	-	98.48 N
		WLBPC [66]	-	96.50 N 97.17 N 97.61 N	-	-	-	-	95.01 N
		CVLBC [69]	98.50 N	99.00 N 99.20 N 99.02 N 98.86 N	-	-	-	91.31 N
		VSCR [82]	99.43	-	-	-	95.43	-	-	-	-
		CSAP-TOP [75]	99.50	99.50 96.80 95.98	100 96.67 92.59	90.53	-
	Local-feature-based	FoSIG [17]	99.50	100 98.95 98.59	99.14 96.67 92.59	92.42	95.99
		V-BIG [18]	99.50	99.50 97.95 97.50	99.43	100 95.06	94.32	96.65
		HILOP [76]	99.50	99.50 97.80 96.30	99.71 96.67 91.36	92.05	96.21
		MMDP D M/C [21]	100	100 98.70 98.70	99.43 98.33 96.91	92.05	95.86
		MEMDP D M/C [21]	100	100 98.90 98.70	99.71 96.67 96.91	93.94	96.03
		RUBIG [19]	100	100 99.20 99.13	98.86	100 95.68	93.56	97.08
		HoGF 2D {σ=1},{2 nd ,3 rd } [20]	100	100 99.20 98.91	99.71	100 97.53	96.59	97.19
		HoGF 3D {σ=1},{3 rd ,4 th } [20]	100	100 99.25 99.57	99.43 98.33 98.15	97.53	97.63
		Our DoDGF 2D (0.7,1),{1 st }	100	100 99.05 98.04	99.43	100 95.68	95.08	96.40
		Our DoDGF 2D (0.7,1),{1 st ,2 nd }	100	100 99.25 99.13	99.71	100 97.53	96.21	97.14
		Our DoDGF 3D (0.7,1),{1 st }	100	100 99.10 99.24	100 98.33 97.53	96.21	97.15
		Our DoDGF 3D (0.7,1),{1 st ,2 nd }	100	100 99.55 99.57	99.71	100 98.15	96.97	97.52
		DL-PEGASOS [42]	-	97.50 95.60	-	-	-	-	-	63.70
		PI-LBP+super hist [83]	-	100 N 98.20 N	-	-	-	-	-	-
		PD-LBP+super hist [83]	-	100 N 98.10 N	-	-	-	-	-	-
		PCA-cLBP/PI-LBP/PD-LBP [83]	-	-	-	-	-	-	-	-	92.40
		Orthogonal Tensor DL [59]	-	99.80 98.20 99.50	-87.80 76.70	74.80	94.70
	Learning-based	Equiangular Kernel DL [60] SOE-Net [84]	--	--	--	--	-88.80 77.40 -96.70 95.70	75.60 92.20	93.40 94.40
		st-TCoF [50]	-	-	-	-	-	100 *	100 *	98.11 *	-
		PCANet-TOP [54]	99.50 *	-	-	-	-96.67 * 90.74 *	89.39 *	-
		D3 [55]	-	-	-	-	-	100 *	100 *	98.11 *	-
		DT-CNN-AlexNet [52]	-	99.50 * 98.05 * 98.48 *	-	100 * 99.38 * 99.62 *	98.18 *
		DT-CNN-GoogleNet [52]	-	99.50 * 98.35 * 99.02 *	-	100 *	100		

* 99.62 * 98.58 * Note: "-" means "not available". Superscript "*" indicates results using deep learning algorithms. "N" indicates rates with 1-NN classifier. 50-LOO and 50-4fold denote results on 50-class breakdown using leave-one-out and four cross-fold validation respectively. Dyn35 and Dyn++ are abbreviated for DynTex35 and Dyn-Tex++ datasets respectively. Evaluations of VLBP and LBP-TOP operators are referred to the evaluations of implementations in

[START_REF] Tiwari | A novel scheme based on local binary pattern for dynamic texture recognition[END_REF][START_REF] Qi | Dynamic texture and scene classification by transferring deep image features[END_REF]

.

Table 10

 10 shows results of our DoDGF 2D/3D on two challenging subsets of DTDB, Dynamics and Appearance. In

	100%	100%	98.80%	99.80%	94.60%	97.20%	100%	100%	91.60%
	99.80%	97.20%	92.60%	99.40%	99.40%	100%	100%	100%	98.20%
	100%	98.20%	99.00%	100%	100%	96.60%	98.60%	99.40%	96.20%
	100%	95.00%	99.00%	99.80%	93.80%	100%	77.60%	95.80%	93.20%

Table 11 :

 11 Comparison of performances (%) on two challenging subsets of the large scale DTDB[START_REF] Hadji | A new large scale dynamic texture dataset with application to convnet understanding[END_REF] dataset.Note: "-" means "not available". Superscript "*" expresses results using deep learning algorithms. Group A denotes local-feature-based methods, while B: learningbased. Results of above learning-based methods are referred to[START_REF] Hadji | A new large scale dynamic texture dataset with application to convnet understanding[END_REF]. Results of HoGFs[START_REF] Nguyen | Prominent local representation for dynamic textures based on high-order gaussiangradients[END_REF] on DTDB are reported by this work.

	Group Encoding method	{(P, R)}	Dynamics Appearance
		LBP-TOP u2 [64]	{(8, 1)}	48.30	47.50
		CLBP riu2 S/M/C [16]	{(8, 1)}	60.35	60.72
		HoGF 2D {σ=1},{2 nd ,3 rd } [20]	{(8, 1), (8, 2)}	69.38	69.56
		HoGF 3D {σ=1},{3 rd ,4 th } [20]	{(8, 1), (8, 2)}	71.08	71.03
	A	DoGF 2D (0.7,1) DoGF 3D (0.7,1)	{(8, 1)} {(8, 1)}	63.27 65.07	64.14 65.11
		Our DoDGF 2D (0.7,1),{1 st }	{(8, 1)}	68.03	68.54
		Our DoDGF 2D (0.7,1),{1 st ,2 nd }	{(8, 1)}	69.81	69.84
		Our DoDGF 3D (0.7,1),{1 st }	{(8, 1)}	70.52	70.94
		Our DoDGF 3D (0.7,1),{1 st ,2 nd }	{(8, 1)}	72.06	72.10
		MSOE Stream [85]	-	80.10	72.20
		SOE-Net [84]	-	86.80	79.00
	B	C3D [57] RGB Stream [58]	--	74.90 * 76.40 *	75.50 * 76.10 *
		Flow Stream [58]	-	72.60 *	64.80 *
		MSOE-two-Stream [56]	-	84.00 *	80.00 *

Table 12 :

 12 Rates (%) of DoDGF2D/3D{(σ,σ )},F in further scale analysis. {1 st ,2 nd ,3 rd ,4 th } {1 st ,2 nd ,3 rd ,4 th }

		DoDG-based Descriptor	#bins	Beta Gamma DynTex++
		DoDGF 2D {(0.7,1),(0.5,1)},{1 st }	4800 95.06	95.45	97.02
		DoDGF 2D {(0.7,1),(1,1.3)},{1 st }	4800 95.68	94.32	96.51
	(a)	DoDGF 2D {(0.5,1),(0.7,1),(1,1.3)},{1 st } DoDGF 3D {(0.7,1),(0.5,1)},{1 st }	7200 95.06 7200 97.53	94.70 96.21	97.19 97.19
		DoDGF 3D {(0.7,1),(1,1.3)},{1 st }	7200 97.53	96.59	96.87
		DoDGF 3D {(0.5,1),(0.7,1),(1,1.3)},{1 st }	10800 97.53	97.35	97.52
		DoDGF 2D (0.7,1),{1 st ,2 nd ,3 rd }	7200 96.91	95.08	97.09
	(b)	DoDGF 2D (0.7,1),9600 96.91 DoDGF 3D (0.7,1),{1 st ,2 nd ,3 rd } 10800 98.15	95.45 96.59	97.44 97.51
		DoDGF 3D (0.7,1),14400 97.53	96.97	97.53
		DoDGF 2D {(0.7,1),(0.5,1)},{1 st ,2 nd }	10800 96.30	95.45	97.27
	(c)	DoDGF 2D {(0.5,1),(0.7,1),(1,1.3)},{1 st ,2 nd } 14400 95.68 DoDGF 3D {(0.7,1),(0.5,1)},{1 st ,2 nd } 14400 97.53	95.08 97.35	97.56 97.43
		DoDGF 3D {(0.5,1),(0.7,1),(1,1.3)},{1 st ,2 nd } 21600 97.53	97.73	97.81
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with rate of 72.06%. In the meanwhile, in smaller dimension, our DoDGF 2D/3D descriptors also have about 1% better than HoGF 2D/3D [START_REF] Nguyen | Prominent local representation for dynamic textures based on high-order gaussiangradients[END_REF]. Those have consolidated the prominent ability of DoDG filterings in noise reduction compared to the traditional DoGs and the Gaussian-gradient-based filterings. In terms of comparison to CLBP and LBP-TOP without addressing any filters in their encodings, our DoDG-based descriptors obtain about ∼12% and ∼24% higher than CLBP's [START_REF] Zhao | Dynamic texture recognition using local binary patterns with an application to facial expressions[END_REF] and LBP-TOP's [START_REF] Guo | A completed modeling of local binary pattern operator for texture classification[END_REF] respectively (see Table 11). In the meantime, the DoGF 2D/3D descriptors based on the wellknown DoGs are also ∼5% and ∼17% better than CLBP's and LBP-TOP's respectively. This has proved the importance of filterings in noise reduction for DT representation, especially, the prominent contribution of our DoDGs.

Regarding comparison to the learning-based methods, in general, our DoDG-based descriptors have performance being very close to most of those methods, particularly, better than some of them. Indeed, with 72.10% on Appearance, our DoDGF 3D (0.7,1),{1 st ,2 nd } is about 8% better than deep-learning-based Flow Stream (64.80%) [START_REF] Simonyan | Two-stream convolutional networks for action recognition in videos[END_REF] while being as good as learning-based MSOE Stream [START_REF] Derpanis | Spacetime texture representation and recognition based on a spatiotemporal orientation analysis[END_REF]. For DT recognition on Dynamics, ours (72.06%) is the same execution as that of Flow Stream [START_REF] Simonyan | Two-stream convolutional networks for action recognition in videos[END_REF] while being very close to that of C3D (74.90%) [START_REF] Tran | Learning spatiotemporal features with 3d convolutional networks[END_REF] and RGB Stream (76.40%) [START_REF] Simonyan | Two-stream convolutional networks for action recognition in videos[END_REF] (see Table 11). Furthermore, it should be pointed out that SOE-Net [START_REF] Hadji | A spatiotemporal oriented energy network for dynamic texture recognition[END_REF] obtains the nearly highest rates on both schemes of DTDB, but not mean that it also has the same performance on other datasets. Certainly, all SOE-Net's performances on DynTex and DynTex++ are much lower than our DoDG-based descriptors. For instance, it could be seen from Table 9 that SOE-Net just obtains 96.70%, 95.70%, 92.20%, and 94.40% on Alpha, Beta, Gamma, and DynTex++ respectively. In the meanwhile, our DoDGF 3D (0.7,1),{1 st ,2 nd } is 100%, 98.15%, 96.97%, and 97.52% respectively. This has restated the interest of our proposal.

Further discussions

In addition to the thorough evaluations discussed in Section 4.5, it can be asserted the DoDG-based descriptors in