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Supporting Materials and Methods 

Total Copper in the Topsoil Datasets 

Figure S1. Distribution of the total copper content in the topsoil dataset (1,202 Cut, dat, represented 

by blue dots) across European vineyards (Orange area; CLC land cover of vineyard was aggregated 

to a pixel of 20 km2 to improve readability); Dark grey: Extent of land use Corine Land Cover 

(CLC 2012; v18.5.1; http://land.copernicus.eu).  
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Table S1. Total copper content in the topsoil dataset (Cut, dat; i.e., soils within 0 – 30 cm depth). 

The region, references, the sampling year(s), the analytical method used to quantify Cu, the total 

number of data (Nb data within parentheses the data located outside vineyards), and the minimal 

(min) and maximal (max) Cut, are reported for each dataset.  
           

Region Dataset name / Owner Ref. 
Sampling 

Year(s) 

Analytical 

Method a 
Nb data b 

Cut (min-max) 

(mg Cu kg-1) 

Europe 

Europe Land Use and Cover Area frame Statistical 
survey (LUCAS) / European Environment Agency 

(EEA) 1 
2009 

AR / ICP-

OES 

380 

(20,692) 
0.54 - 496 

Europe 
Geochemical Mapping of Agricultural and Grazing land 

Soil (GEMAS) 2  
2008 

AR / ICP-

MS 
43 (4,131) 2.6 - 395 

Germany 

Heavy metal and trace element background values in 
German Soils / Bundesanstalt für Geowissenschaften 

und Rohstoffe (BGR; https://produktcenter.bgr.de) 
2003 

HF-HCl-
HClO4 / 

XRF 
10 (818) 15 - 239 

France 

Réseau de Mesure de la Qualité des Sols (RMQS) / 
Institut National de Recherche pour l’Agriculture, 

l’Alimentation et l’Environnement (INRAE) c 
2001-08 

HF-HClO4 

/ ICP-OES 
38 11 - 491 

Spain 
Heavy metal in Spanish agricultural soil;data from 
Ministries of Agriculture and Environment3 

2003-07 
AR/ICP-

OES 
280 (4,013) 1.0 - 772 

Bulgaria 
Monitoring of degraded soil / Institute of Soil Science 

"Nikola Poushkarov" 
2011 

AR / ICP-

OES 
1 28 

Czech 

Republic 

Register of Contaminated Plots and Basal Soil 

Monitoring, Central Institute for Supervising and 

Testing in Agriculture (ÚKZÚZ) 4 

1992-

1997 

AR / ICP-

MS 
46 4.1 - 35 

Catalogna 

(Spain) 
5, 6  2001-13 

AR / AAS 

22 27 - 87 

Mosel 

(Germany) 
7 2003 60 19 - 656 

Slovenia 8, 9  2005 
AR / ICP-

MS 
72 2.4 - 166 

Neuchâtel 

(Switzerland) 

Service de l’énergie et de l’environnement, département 
du développement territorial et de l’environnement, 

canton de Neuchâtel (SENE) 
2004-15 

MicrO-

HNO3 

(2M) / 

ICP-OES 

7 157 - 497 

Aargau 

(Switzerland) 

Kantonales Bodenbeobachtungsnetz (KABO) vom 

Departement Bau, Verkehr und Umwelt, Abteilung für 

Umwelt Kanton Aargau 

2006 4 269 - 278 

Schaffhausen 

(Switzerland) 
Umweltschutz Schaffhausen (SCHA) 

1999-

2011 
10 71 - 436 

Genève 

(Switzerland) 

Département de l’environnement, des transports et de 

l’agriculture de Genève 
2010-13 9 31 - 486 

Tecino 

(Switzerland) 
Sezione della protezione dell'aria, dell'acqua e del suolo  2016 200 11 - 774 

Valais 

(Switzerland) 

Département des transports, de l'équipement et de 

l'environnement (DTEE) du Valais 

1992-

2013 
20 47 - 350 

Total       

1,202 

(29,654) 
0.54 - 774 

a Acronyms of extraction method stand for aqua regia (AR), microwave (MicrO), Fluoridric acid (HF), Perchloric acid (HClO4), 

nitric acid (HNO3) and/or chloridric acid (HCl). Acronyms of methods stand for Inductively coupled plasma optical emission 

spectrometry (ICP-OES), ICP – mass spectrometry (ICP-MS), X-ray fluorescence spectrometry (XRF) and Atomic Absorption 

Spectroscopy (AAS). b Number of data used in the model; the total number of data in the survey are also provided in parenthesis if 

different. c Due to a confidential policy, the RMQS data were provide by the INRAE with a standard deviation of the geolocation 

of 206 m compare to an overall accuracy between 1 to 10 m for the other dataset. However, the deviation is systematically lower 

than the grid cell used for further prediction (250 m), therefore the deviation of the geolocation is considered as acceptable for 

predictions. Depth of the sampling is up to 20 cm for all data exception made for the RMQS, BGR and ÚKZÚZ dataset who 

contained data up to 30 cm depth. All Cu content were above the quantification limit (LQ)(highest LQ for the different dataset: 0.5 

mg Cu kg–1). 
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Building Spatial Variables 

Table S2. Hypothetic predictive variables used as proxies of processes governing the total copper 

content in vineyard topsoil (Cut). All variables are averaged yearly. 

 

Predictive variables 
Original 

resolution (m) 

Year of 

coverage* 
Reference 

Soil properties    

Clay, silt, sand, BD, CEC, 

Corg, soil pH, available soil 

water capacity, soil moisture 

250 2000-2010 http://soilgrids.org 10 

Topography/Climate    

DEM 90 2000 http://srtm.csi.cgiar.org 

LS, Srad, Slope 250 2000 DEM 

Psum, Tav 1000 1960-1990 www.worldclim.org, v1.4 11 

PET, ET, AI  1000 1960-1990 www.cgiar-csi.org 12 

R-factor  500 2000-2010 13, 14 

Land cover    

NDVI, EVI 250 2014-2016 MODIS 15 

LAI, FAPAR, FCover 300 2014-2016 http://land.copernicus.eu 
* Long-term average values within the period of collecting the soil data (Table S1) integrate the seasonal and inter-annual 

variation of the surface reflectance made by satellite recording. Average values can be considered as a better soil proxy than a 

single year of surface reflectance.10  

 

Soil Physicochemical Properties 

Soil texture (i.e. fraction of clay, silt and sand in %), bulk density (BD; kg m-3), cation 

exchange capacity (CEC; cmol kg-1), soil organic carbon content (Corg; %), soil pH in H2O 

(unitless), available soil water capacity (%) and soil moisture content (moisture; %) of topsoil (0-

50 cm depth). These properties were extracted from the SoilGrids project (http://soilgrids.org, 

series M_sl1, v18.4.2017)10 at 250 m resolution. 

 

Topography/Climate  

The Digital Elevation Model (DEM) was generated from the NASA’s Shuttle Radar 

Topography Mission (SRTM, v4.1, http://srtm.csi.cgiar.org/) at 90 m resolution for the year 2000. 

The DEM was previously aggregated by averaging the values to 250 m resolution. The aggregate 

DEM was used to compute a slope length (LS) factor using the Universal Soil Loss Equation 

(USLE) and the solar radiation input in kWh m-2 using SAGA-GIS 2.2.2+ through RSAGA 
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package v0.94-5. Prior to calculating LS, slopes in gradient were computed using the Zevenbergen 

and Thorne 16 algorithm and the catchment area (CA) using the O'Callaghan and Mark 17 algorithm. 

Based on the slope and CA, LS was computed using the Desmet and Govers 18 algorithm. The 

solar radiation input for each month for one year was computed using the Kumar, et al. 19 algorithm 

with basic parameters (solar constant = 1,367 W m-2, height of the atmosphere = 12,000 m, 

atmospheric pressure = 1.013 bar, the vertical slide of the atmosphere containing water = 1.68 cm, 

transmittance of the atmosphere for Europe = 70%). Finally, the annual average potential solar 

radiation input (Srad;;W m-2) was calculated as the day-weighted mean of monthly data and was 

used in further calculations. 

The annual rainfall (rainfall; mm) and the annual average temperature (Tav; °C) were 

obtained from worldclim (www.worldclim.org, v1.4) at 1 km resolution for the period 1960-

1990.11 The annual average of potential evapo-transpiration (PET; mm), evapo-transpiration (ET; 

mm) and aridity index (AI; unitless) were calculated based on the wordlclim data at 1 km 

resolution.12 PET is essentially a measure of the ability of the atmosphere to remove water through 

ET processes. PET was calculated by Hargreaves, et al. 20 following the eq. S1 where, Srad is the 

annual average potential incoming solar radiation previously computed, Tav and Trange (°C) are the 

average and the range of annual temperatures, respectively, also computed based on worldclim 

data. 

PET =  0.0023 ∙  Srad  ∙  (Tav +  17.8)  ∙  0.5 ∙ Trange (S1) 

The AI is used to quantify rainfall availability for atmospheric water demand and to 

characterize the locate climate (i.e. <0.03 hyper arid, 0.03 – 0.2 arid, 0.2 – 0.5 semi-arid, 0.5 – 0.65 

dry sub-humid, >0.65 humid).21 The AI was calculated by dividing the annual sum of rainfall by 

the average PET. 

Rainfall erosivity (R-factor) as used by the Universal Soil Loss Equation (USLE) was 

computed by Panagos et al.13 using datasets from 2000 to 2010 at 500 m resolution for Europe 

excluding Balkan region and Turkey, for which a 1 km resolution 14 was adopted. We merged both 

grid cells using the highest resolution available for each pixel as the R-factor value for further 

analysis. 

Land Cover 

Vegetation indexes for the period 2014-2016 were obtained from two specific sources. 

First, normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) were 
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obtained from the moderate resolution imaging spectro-radiometer (MODIS)15 from the NASA 

Land Processes Distributed Active Archive Center (LP DAAC; https://lpdaac.usgs.gov) at 250 m 

resolution and a temporal coverage of 16 days. Second, leaf area index (LAI), fraction of absorbed 

photosynthetically active radiation (FAPAR) and fraction of vegetation cover (FCover) v1 for the 

same period at 300 m resolution and a temporal coverage of 10 days were obtained through 

Copernicus Global Land Service (CGLS; http://land.copernicus.eu). MODIS and Copernic data 

were averaged over a year, serving as a basis for further modeling. 

 

Total Copper Background in Topsoil 

Total copper background content in topsoil (Cubgd) was defined as the geogenic and 

atmospheric non-agricultural anthropogenic Cut. The Cubgd across Europe was estimated using 

25,122 field samples (LUCAS, GEMAS, BGR and data from Rodriguez Martin, Arias and Grau 

3) collected from non-vineyard areas across Europe (Cubgd,obs; Figure S2.A) delimited from the 

Corine Land Cover (CLC 2012; v18.5.1; http://land.copernicus.eu). 0.4% of these field samples 

showed more than 200 mg Cu kg-1, and were consequently considered as suspiciously 

contaminated and subsequently removed from the Cubgd calculation. The 25,022 remaining field 

samples were used to calculate the Cubgd. For each vineyard pixel, a stepwise buffer increase of 5 

km radius was computed until the buffer contained a minimal number of three Cubgd,obs. Then 

Cubgd,obs within the buffer were averaged and used as the Cubgd for the corresponding pixel. The 

mean Cubgd is 26.7 mg Cu kg-1 with a minimum and maximum of 1.12 and 196 mg Cu kg-1 for 

Europe, respectively. Because Cubgd was estimated using variable buffer sizes, comparison of the 

Cubgd might be subsequently affected by this spatial discrepancy leading to an underestimation or 

overestimation in Cubgd. To evaluate if Cubgd are stable for the vineyard pixels, we calculated a 

modified Cubgd,i for every stepwise buffer increase I (i.e. from 5 km to 100 km; Figure S2.B). Then, 

the modified Cubgd,i was compared to the original one (Cu background = Cubgd -Cubgd,i; Figure 

S2.B). The Cubgd did not change much over space (Cubgd = 5.3 ± 13.8 mg Cu kg−1). As a result, 

Cubgd was assumed to not be significantly affected by the buffer size and could be compared across 

European vineyards. 

  



 

Droz et al., Copper Content and Export in European Vineyards  Page S8 of S24 

 

 
Figure S2: A) Total copper datasets in topsoil from non-vineyard area across Europe (n = 25,122; 

LUCAS, GEMAS, BGR and data from Rodriguez Martin, Arias and Grau 3) used to compute the 

Cubgd estimation. B) Cubgd average as a function of the stepwise buffer radius. Cubgd = Cubgd - 

Cubgd,i, where Cubgd is the original estimation computed at one pixel and Cubbgd,i the stepwise 

estimation for the modified buffer radius.  

 

Soil Loss Rate 

The soil loss rates in European vineyards were estimated using the RUSLE-based22 

modeling platform Global Soil Erosion Modeling (GloSEM),23 a semi-empirical model which is 

an example of a detachment limited model. This means that although the overland flow may 

theoretically transport an infinite amount of sediment, the quantity of sediment available to be 

moved is actually limited by the soil detachment capacity defined by the erosivity of the rainfall. 

The soil erosion (Mg ha−1 yr−1) resulting from sheet and rill erosion processes is given by the 

following multiplicative eq. S2, 

A = R × L × S × K × C × P (S2) 

where: A (Mg ha−1 yr−1) is the annual average soil erosion. R (MJ mm h−1 ha−1 yr−1) is the rainfall-

runoff erosivity factor, a numerical descriptor of the rainfall’s ability to erode soil. It expresses the 

kinetic energy of the raindrop's impact and the rate of associated runoff and was estimated using 

hourly and sub hourly rainfall data acquired from 1,728 samples across the study area. The soil 

erodibility factor K (Mg h MJ−1 mm−1) is an empirical parameter that is measured based on intrinsic 

soil properties such as texture, organic matter, structure and permeability of the topsoil profile. 
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The LUCAS top soil data were used to compute the K factor.24
 The slope length factor L (unitless) 

and the slope steepness factor S (unitless) were derived from the 90m SRTM DEM. The land cover 

and management factor C (unitless) for European vineyards was computed by taking into 

consideration a potential range from 0.15 to 0.45 based on the annual ground vegetation density. 

The status of the vegetation was quantified according to biophysical parameters derived from 

MERIS satellite images, i.e., FCover. The soil conservation or prevention practices factor P 

(unitless) was spatially described using the data provided by Panagos, et al. 25 

 

Predicted No-Effect Noncentration (PNEC) on Soil 

Predicted no-effect concentration (PNEC) of Cut in soil was previously measured by 

Smolder et al.26, 27 using toxicity tests under laboratory conditions on 75 species across three 

terrestrial trophic levels (plants, invertebrates and microorganisms) and for six different soils. The 

six standard soils had specific soil properties (i.e., pH, % Corg and % Clay) covering 96% of the 

variation observed in European vineyard soils for pH, Corg and Clay respectively (Figure S3). For 

each of the 75 species and soils, the toxicity test measured concentrations yielding 50% of the 

inhibition (EC50). PNEC was corrected to account for i) the difference between laboratory and 

field conditions (further referred to as LF with a value of two for Cut)
28, 29 and ii) the toxicity 

threshold as a function of soil properties, made according to Smolder et al.26, 27 For each pixel of 

the European vineyards, the PNEC was estimated using soil standards with the minimum Euclidian 

distance between soil characteristics of the pixel and one of the six standard soils used by Smolder 

et al.26, 27. The estimated PNEC ranged from 30 to 290 (average = 127 mg Cu kg−1) for the 

European vineyard soils. 
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Figure S3: Topsoil properties used to evaluate the predicted no-effect concentration (PNEC) of 

total copper content in vineyard topsoil (Cut). A) Soil organic carbon content (Corg) as a function 

of the clay content. B) H2O pH as a function of the clay content. In blue, topsoil sample properties 

associated with the 1,202 data of total copper content in topsoil (Cut, dat; Table S1). In orange, 

properties of the six reference soils used to build the PNEC model on Cut by Smolder et al.27 Note 

in B, two soils have similar pH and clay content, by consequence only five dots appear on the 

graph. 

 

The Soluble Fraction (𝒇𝒔𝒐𝒍) of the Cu 

The relationship between the soluble fraction (𝑓𝑠𝑜𝑙) of Cut, Corg and pH was established by 

McBride et al. 30 The “semi-empirical” model was developed under environmental condition using 

soil with the following properties: (i) pH between 5 to 8 and (ii) a range of Cut less than the loading 

limit established in the USEPA 503 (<1,500 kg Cu ha−1), (iii) long-term aged equilibrate soil , 

more than 10 years, and (iv) dissolved copper was measured in water or diluted salt (CaCl2 0.01M) 

to avoid unrealistic extraction procedure. Briefly, the model was built as follow: In our study, the 

soluble fraction (𝑓𝑠𝑜𝑙) of the Cuf application was defined following eq. S3, 

𝑓𝑠𝑜𝑙 =  𝐶𝑢𝑠𝑜𝑙/𝐶𝑢𝑃𝑟𝑒𝑑 𝑡 = 0 
(S3) 

𝑓𝑠𝑜𝑙 =  𝐶𝑢𝑠𝑜𝑙/𝐶𝑢𝑡,𝑖𝑛 𝑡 > 0 
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where 𝐶𝑢𝑠𝑜𝑙  and 𝐶𝑢𝑡,𝑖𝑛 represent the concentration of the dissolved and the total copper in topsoil 

(mg Cu kg−1) per year of Cuf application t, respectively. 𝐶𝑢𝑃𝑟𝑒𝑑 represent the average predictions 

of Cut, previously calculate. 𝐶𝑢𝑠𝑜𝑙  was estimated using the semi-empirical equation based on the 

metal complexation theory 30, eq. S4: 

log (𝐶𝑢𝑠𝑜𝑙) = 1.42 −  0.10 × pH + 094 × log (𝐶𝑢𝑡,𝑖𝑛) − 0.68 × log |𝐶𝑜𝑟𝑔| (S4) 

where |𝐶𝑜𝑟𝑔| represents the organic carbon in g kg−1. The goodness of the S4 fit was R2 = 0.851 

and the interval of confidence (2) estimated on the McBride data was 0.617. However, in soils 

where |𝐶𝑜𝑟𝑔| <9 g C kg−1 the 𝑓𝑠𝑜𝑙  were overestimated. Therefore, the eq S5 was used:  

log (𝐶𝑢𝑠𝑜𝑙) = 0.699 −  0.11 × pH + 0.86 × log (𝐶𝑢𝑡,𝑖𝑛) (S5) 

The goodness of the S5 fit was R2 = 0.877 and the interval of confidence (2) estimated on the 

McBride data was 0.507. 

We used eq. S4 & S5 to compute a soluble fraction for all grid cell using the grid soil pH and Corg 

(https://soilgrids.org/, series M_sl1, v18.4.2017).10 We hypothesize that Cut is homogeneously 

distributed within the 0 – 30 cm soil depth. As a result, the relationship between Cu application 

dose (𝐶𝑢𝑖𝑛𝑝𝑢𝑡; kg Cu ha−1 year−1) and 𝐶𝑢𝑡,𝑖𝑛 is expressed in eq. S6,  

𝐶𝑢𝑡,𝑖𝑛 = 𝐶𝑢𝑖𝑛𝑝𝑢𝑡/(𝐵𝐷 × ℎ𝑡𝑜𝑝𝑠𝑜𝑖𝑙) (S6) 

where 𝐵𝐷 is the soil bulk density (https://soilgrids.org/, series M_sl1, v18.4.2017)10 and ℎ𝑡𝑜𝑝𝑠𝑜𝑖𝑙 

the average topsoil thickness (30 cm) where Cut mainly accumulates. The estimated soluble 

fraction (𝑓𝑠𝑜𝑙) ranges between 29 and 95% (95% of the confidence interval), depending on soil 

properties, according to the semi-empirical model. 

 

Data Pre-Processing 

Psum, Tav, PET, ET, AI and R-factor and LAI, FAPAR, FCover were only available on a larger 

resolution (between 0.3-1 km), which was lower than the 250 m resolution of most other predictive 

variables. This resolution discrepancy is acceptable when considering the climatic variability in 

space. Psum, Tav, PET, ET, AI and R-factor and LAI, FAPAR, FCover were thus resampled at a 

resolution of 250 m. Cut, dat geolocation (i.e. x and y coordinates) were used to extract values of 
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each predictive variable on the corresponding grid cell pixel. Then extracted values were used to 

select variables and calibrate the model. Because machine learning algorithm and principal 

components analysis (PCA) assume normality, normality was tested for all predictive variables 

(examination of the skewness of the extracted values). Variables were deemed normally distributed 

if the |skew| <1.31 Variables that were not normally distributed were either inverse, log10 or square 

root transformed, which also reduced the influence of outliers. Finally, all predictive variables 

were centered using z-scores (eq. S7), 

𝑧𝑖 =
𝑥𝑖−�̅�

𝑆𝐷
 (S7) 

where SD is the standard deviation, �̅� the average and xi each data point of the predictive variable. 

 

Table S3. Values of predicted and predictive variables for the model. a) Predicted total copper 

content in the topsoil (Cupred) for the model calibration extracted from the 1,202 field samples. b) 

List of the 10 predictive variables used in the models. 

               

Variable Unit 

Resolution 

(m) 

Years of 

coverage transf. a �̅� b SD b Ref. 

a) Predicted variable               

Total copper content in 

topsoil 
mg kg

−1 1-100 1989-2016 log 1.46 0.52 Table S1 

b) Predictive variables               

Annual rainfall (rainfall) mm 1000 1960-1990 log 2.73 0.25 11 

Aridity Index (AI) unitless 1000 1950-2000 10000×log −2.24 0.34 12 

Soil organic carbon  

content (Corg) 
% 250 1990-2016 no 75.86 60.70 10 

Silt fraction % 250 1990-2016 no 37.87 9.42 10 

Soil moisture content 

(moisture) 
% 250 1990-2016 no 47.19 6.10 10 

Annual average 

temperature (Tav) 
°C 1000 1960-1990 no 11.16 4.42 11 

Enhanced vegetation index 

(EVI) 
unitless 250 2013-2016 1/x 4.59 3.72×103 15 

Soil pH unitless 250 1990-2016 no 67.46 8.76 10 

Slope degree 250 2000 log 0.21 1.18 
RSAGA 

v0.94-516 

Clay fraction % 250 1990-2016 no 21.40 7.41 10 

a transformation used to satisfy a normal distribution of the variable, b �̅� average and SD standard deviation of the 

transformed variable used to center the normal (Z-score; eq. S7). 
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Variable Selection 

We statistically evaluate whether each predictive variable should be retained to compose 

the most appropriate set of predictive variables for the final model following the criteria detailed 

below. Four independent analyses were run in parallel to evaluate the multi-collinearity and spatial 

variability of the topsoil dataset. (i) Pearson correlation was used to compare topsoil properties 

obtained from Soilgrid with the field data collected from 26,324 field measurements across Europe 

assembled from different datasets (LUCAS, GEMAS, BGR and data from Rodriguez Martin, Arias 

and Grau 3; Table S1). This comparison concerned H2O pH values, soil texture content (% clay, 

silt and sand), CEC and Corg. Soilgrid variables that were weakly correlated (i.e., |R2| <0.6) with 

field Cu measurements were not considered for further analysis. (ii) Pearson correlation was used 

to test the collinearity between all possible pairs of predictive variables within the topsoil extracted 

dataset. One predictive variable for each highly correlated pair (i.e., |R2| >0.7) was taken for further 

analysis. (iii) Paired t-test was used to compare the representativeness of predictive variables 

between extracted values from the 1,202 Cut, dat geolocation and 50,000 randomly extracted data 

from each grid cell within the European vineyard domain. Predictive variables that significantly 

differed among the two datasets (t-test; p >0.05) were not considered as spatially representative of 

the European vineyard domain and were consequently not used in further analyses. (iv) PCA is a 

commonly used variable selection technique to reduce the number of variables.32 Contribution and 

relationship analyses of each predictive variable on multiple scales were made under a distance 

biplot using the two first principal’s axes. Comparison of the Euclidean distance (D) allowed to 

remove variables that contain little information (|D| <0.3).33. PCA correlation matrix (CO) was 

also used to evaluate the contribution of predictive variables. First, the number of relevant principal 

axes (nPA) were calculated based on the Kaiser method.34 Then the values of importance (𝑉. 𝑖𝑚𝑝𝑗) 

for each predictive variable j were calculated following eq. S8, 

𝑉. 𝑖𝑚𝑝𝑗 =  √∑ 𝐶𝑂𝑗,𝑖
𝑛𝑃𝐴
𝑖=1  (S8) 

where 𝐶𝑂𝑗,𝑖 are the values on the CO matrix for the j predictive variable on the principal axes i. 
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Machine Learning Building, Performance and Evaluation 

Three independent machine learning techniques i.e., neural networks (R package nnet v 

7.3-12), random forest (R package randomForest v.4.6-12) and bagging tree (R package ipred 

v.0.9-5) were averaged into an ensemble (ENS) to provide the final prediction. First, parameters 

extracted from random forest and bagging tree were tuned with the extracted dataset to optimize 

parameter values with respect to the out-of-bag (OOB) error estimate.35 Otherwise recommended 

parameter values provided by the machine learning package were used. For each technique, 1000 

independent models were generated with as many as 10,000 iterations for fitting the Neural 

Networks and 1,000 trees for the “tree” techniques (i.e., random forest and bagging tree). 

Our final calibrated ensemble model (ENS) is constituted by 1,000 independent models for 

each of the three machine learning techniques (i.e., 3,000 in total). For all grid cells of the European 

vineyard (Figure S1), Cupred was calculated over the 3,000 models and averaged to provide the 

final prediction. Model performance was accomplished using a 10-fold cross-validation (CV) and 

the result evaluated on the regression of Cut, dat in vineyard soils in function of the Cupred to compare 

slope and intercept parameters against the 1:1 line as recommended by Piñeiro, et al.36 to avoid 

potential misinterpretations and more accurately apply an evaluation of uncertainty. 

 

Model Transferability in Space 

Transferability in space evaluation of the model was computed to determine if the model 

was consistent in space or changed across different domains represented by various environmental 

conditions.37 Good transferability in space is defined when a model built in one domain is able to 

accurately predict the field data values outside of the domains.38 First, topsoil samples (–9.2° to 

27° E; 35° to 50° N) were divided into four equivalent geographical domains defined by a cut off 

at the mean x and y coordinate of the extent. For each domain, a sub-ensemble model using the 

three techniques was calibrated and averaged similarly to the predictive model. Then, the sub-

ensemble model of one domain was used to predict the Cut inside the three other domains. 

Transferability was then evaluated four times based on the R2 of the regression of Cut, dat in 

vineyard soil as a function of the Cupred. 
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Influence of heterogeneous sampling depths and time on the Cu prediction 

Influence of the various sampling depths (0-20 vs 0-30 cm) and different times of sampling 

(1989-1999, 2000-2009 vs 2010-2016) was evaluated to determine if these heterogeneous datasets 

might induce over- or underestimation of the final prediction. Topsoil data were classified 

independently by depth or by time. For each class, a sub-ensemble model using the three 

techniques was calibrated and averaged similarly to the predictive model. However, the number 

of samples for the classes 0-30 cm depth (n=87), 1989-99 (n=76) and 2010-2016 (n=222) were not 

sufficient to build a robust model. Then, two sub-ensemble model, 0-20 cm and 2000-2009 were 

used to predict the Cut inside the other class, for example model 0-20 cm was used to predict data 

of 0-30 cm and in the entire dataset. Over- or underestimation of the final prediction were then 

evaluated based on the R2 of the regression of Cut, dat in vineyard soil as a function of the Cupred. 

 

Averaged Relative Importance and Sensitivity Analysis 

The averaged relative importance (ARI) of each variable in the model was calculated with 

an input permutation technique.39 Sensitivity analysis was used to investigate the impact of each 

predictive variable on Cupred. We investigated the response of 1,000 independent models for the 

three machine learning techniques (i.e., 3,000 models in total). The models were previously built 

by computing a one-factor-at-a-time (OFAT) sensitivity analysis. In OFAT, only one input 

predictive variable is changed at one time, holding the remaining variables at their median. 10,000 

regular steps were allowed for each input variable between the minimum and maximum observed 

value across the European vineyard range. 

 

Scaling Analysis. 

Sensitivity of model predictions to grid resolution was evaluated using systematic 

resampling. All predictive variable and topsoil data were successively resampled and averaged on 

a coarser grid cell using a stepwise resolution increase from 400 to 1000 m. At each resolution, we 

built an ensemble of 1,000 independent models for the three machine learning techniques (i.e., 

3,000 models in total). The ensemble was calibrated and averaged similar to the predictive model. 

Calibrated models were evaluated using R2, as a metric of precision, and normalized root-mean-

square error (RMSE) as a metric of bias from the regression of Cut, dat in vineyard soil as a function 

of the Cupred. 
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Scenarios of Copper-Based Fungicide Application 

Four scenarios of Cuf application dose were compared using a simple mass balance 

approach defined as, 

𝑚𝐶𝑢,𝑡+1 = 𝑚𝐶𝑢,𝑡 + 𝑚𝐶𝑢,𝑓 − 𝑚𝐶𝑢,𝑙𝑒𝑎𝑐ℎ − 𝑚𝐶𝑢,𝑟𝑢𝑛𝑜𝑓𝑓 (S9) 

where the end of the year mass of copper (𝑚𝐶𝑢,𝑡+1) is egal to the current mass (𝑚𝐶𝑢,𝑡) within the 

topsoil plus the masse of Cuf applied over the year (𝑚𝐶𝑢,𝑓) minus the mass export by leaching 

(𝑚𝐶𝑢,𝑙𝑒𝑎𝑐ℎ) and runoff (𝑚𝐶𝑢,𝑟𝑢𝑛𝑜𝑓𝑓). Assuming no change over time of the considered topsoil 

volume and a homogenous topsoil layer, the change of mass could be considered as a change of 

Cut and rewrite based on eq 1-2 and S3-6 as, 

𝐶𝑢𝑝𝑟𝑒𝑑,𝑡+1 =  𝐶𝑢𝑝𝑟𝑒𝑑,𝑡 + (𝐴𝑃𝑃𝐶𝑢,𝑓 −𝐶𝑢𝑝𝑟𝑒𝑑,𝑡  
× 𝑛𝑒𝑡 𝑒𝑥𝑝𝑜𝑟𝑡 − 𝐶𝑢𝑖𝑛𝑝𝑢𝑡 × 𝑓𝑠𝑜𝑙)/(𝐵𝐷 × ℎ𝑡𝑜𝑝𝑠𝑜𝑖𝑙) (S10) 

where 𝐶𝑢𝑃𝑟𝑒𝑑 is the average predictions of Cut (mg Cu kg–1), 𝐴𝑃𝑃𝐶𝑢,𝑓  the yearly application dose 

of Cuf (kg Cu ha–1 year–1), 𝑓𝑠𝑜𝑙 the soluble fraction previous calculated in eq S3-6, net export of 

Cu (kg of Cu ha–1 yr–1) assumed to occur during runoff events in the form of soil particle-bound, 

BD the soil bulk density (kg m
–3)10 and htopsoil the average topsoil thickness (30 cm). Note that 𝑓𝑠𝑜𝑙 

from the 𝐶𝑢𝑃𝑟𝑒𝑑t is considered once at t=0 (eq. S3). The eq S10 was used to compute scenario with 

𝐴𝑃𝑃𝐶𝑢,𝑓  equal to 2, 4 and 8 kg Cu ha–1 year–1 over a large time scale. For each, pixel, the scenario 

was applied until the Cupred at year t+1 reach the predicted no-effect concentration (see building 

spatial variables - PNEC).  

 

Uncertainty analysis of the scenarios 

Uncertainties associated to the four scenarios were estimated by computing a numerical 

propagation of individual uncertainty associated to the 10 variables governing Cut in vineyard. The 

table S4 summarizes the uncertainty calculation. 
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Table S4. Uncertainties calculation associated the variables used in our modelling framework and  

selected to numerical calculation of uncertainty analysis on Cupred, Cubgd, net acc, net exp and 

PNEC. 

Variables group or 

calculation step 
Uncertainty calculation 

Soil grid (pH, Corg, clay, silt) Lower and upper limits of a 90% prediction interval.10 

Aridity, moisture, EVI, slope Not available 

Rainfall, Tav SD of the year between 1960-1990 

Runoff 
Estimated using a Markov Chain Monte Carlo (MCMC) 

approach.23 

Cupred 

Lower and upper limits of all combinations of lower and upper 

values for the selected variables, i.e. 26 = 64, a 90% prediction 

interval was considered. 

PNEC 
Uncertainty of pH, Corg, clay is propagated trough the model of 

Smolder et al.26, 27 

Cubgd SD as calculation described in the section above. 

net acc., net exp. 
Uncertainty of corresponding variables is propagated trough eq. 

1 and 2 

 

Then, the final uncertainty is propagated trough the scenario using Eq. 3 & S9-10 with all 

combination of lower and upper values for the selected variables, by producing a lower and upper 

estimations of the scenario’s uncertainty. 
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Supporting Results and Discussion 

Model Performance, Evaluation and Comparison to Previous Copper 

Prediction 

 

Figure S4. Performance and variable contribution to the predictive models. (A) Scatter plot of the 

observed (i.e, measured data) and predicted total copper content in the topsoil (n = 1,202) based 

on the ensemble model including model performance. The black solid line represents the slope at 

a ratio of 1:1 with 95% (2) interval confidence in dash lines. (B) Average variable contributions 

for the ensemble of model (i.e., 3,000 independent models) derived from three machine learning 

techniques. The error bar represents two times the standard deviation across all model iterations. 

A one-way ANOVA was used to determine statistical differences of average contribution of 

variables (statistical values are given in the figure). A Tukey test was used to evaluate statistical 

differences among variables (α = 0.05) (the significative differences between groups are indicated 

by different letters; p≤0.01 for all variables). 

 

On a reduced data set within the range 0 to 130 mg Cu kg–1, the linear relationship of Cut, 

dat as a function of Cupred was high (R2 = 0.83). However, Machine learning algorithms are known 

to be more robust but with lower reproducibility of observed outliers than classic regression 

algorithms.40 The algorithms of machine learning might consider outliers as false or noise data 
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during the training stage. One possible improvement strategy consists in removing outliers from 

the dataset to enhance the prediction 41 however more advanced algorithms might have a better 

capacity of handling this problem especially with the next generation of machine learning,42 e.g., 

deep machine learning. Despite an underestimation, our predictions were significantly higher than 

the two previously reported Cupred (average of 15.3 43 and 19.5 44 mg Cu kg–1) when comparing 

common pixels locations (t-test; p-value <0.01). These differences can be explained by previous 

predictions targeting the overall Cut for different land uses. The small proportion of vineyard area 

(0.9% of the European land use) likely reduces the weight of vineyard land use in the model leading 

to an underestimation of Cupred in vineyards. In addition to this, the two previous predictions were 

computed with 1 km and 500 m grid cell resolution. Coarse spatial resolution has been 

demonstrated to limit accuracy of the prediction in previous works.10, 45, 46 The grid resolution 

impact was clearly shown by the scaling analysis (see above method) with a significant decrease 

in both accuracy and precision of the model when the data were degraded to the lowest resolution 

(Figure S5).  

 

Figure S5. Grid resampling impact on the model results. Resampling was performed by averaging 

data under the initial resolution to a coarser resolution. Average performances of the 3,000 models 

for the A) Accuracy with R² and B) Precision with root mean square error (RMSE) were reported 

as a function of the resolution. The standard deviations for these two metrics under the 3,000 
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models are represented by the shaded polygon. Decrease of the number of topsoil data due to 

averaging is also reported by the black points in graph B. 

 

Regional Predictions 

Vineyard proportion is highest in the Mediterranean region (Table S5) where the climate 

is the most suitable for viticulture (warm and dry summers; cool and wet winters).47 Compared to 

the Alpine area, the Mediterranean is not affected by high annual rainfall, consequently low to 

moderate doses and application frequencies of Cuf are required to prevent fungal disease. 

 

Table S5. Predicted Cut (Cupred) averaged per European region. Regions follow the European 

biogeographic regions designated in 2016 (https://www.eea.europa.eu). Corresponding 

proportions of each region to the total European vineyard area are reported. 

 

Region 
Cupred average (min-max) 

(mg Cu kg–1) 

Vineyard 

Proportion (%) 

Alpine 57 (11 - 130) 1 

Anatolian 16 (6 - 37) 2 

Atlantic 34 (15 - 86) 10 

Black Sea 19 (9 - 49) 1 

Continental 32 (8 - 130) 23 

Mediterranean 22 (4 - 127) 56 

Pannonian 20 (8 - 80) 5 

Steppic  14 (9 - 35) 2 

 

Limits of the Approach 

In the last decade, significant improvement was seen in the resolution, accuracy and 

coverages of spatial data compared to previous work on the field, with even more advancements 

in the near future.48 However, current Corine Land Cover data are the only large scale land cover 

containing vineyard land use information. We estimated on a regional land use cover (Switzerland) 

that the Corine Land Cover, originally presented at a 100 m grid cell resolution, presents a ± 150 

m inaccuracy in border delineation between land use types in some regions. To resolve this issue, 

regional land use cover, sometimes more precise, could be merged together to produce a global 
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land cover. However, only few countries (e.g., France, Germany, Switzerland, Austria) have 

accurate regional land use covers including vineyard as a land use type. Moreover, some climate 

variables are only available at 500 or 1000 m grid cell resolution which might negatively impact 

prediction reliability in areas where local climate variations are important, i.e. mountain areas. 

As previously demonstrated,10, 37 predictions were also consolidated by using a compilation 

of different datasets significantly increasing the amount of training data (i.e., Cut data), improving 

the learning experience to build the algorithm and thus the accuracy of predictions. For instance, 

the global land use stratified scheme corrected per area of country, such as the LUCAS topsoil 

database,1 gives a comprehensive representation of the situation and likely captures the extremes 

of Cu contamination per area for the entirety of European vineyards. However, from a modeling 

point of view the number of training data could be not enough ‘experiences’ derived from the main 

vineyard regions, i.e. the Mediterranean region, to accommodate predictions of the overall Cut. 
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