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ABSTRACT 17 

Copper-based fungicides (Cuf) are used in European (EU) vineyards to prevent fungal 18 

diseases. Soil physicochemical properties govern locally the variation of total copper 19 

content (Cut) in EU vineyards. However, variables controlling Cut distribution at larger 20 

scale are poorly known. Here machine learning techniques were used to identify 21 

governing variables and to predict the Cut distribution in EU vineyards. Precipitation, 22 

aridity and soil organic carbon are key variables explaining together 45% of Cut 23 

distribution across EU vineyards. This underlines the effect of both climate and soil 24 

properties on Cut distribution. The average net export of Cu at the EU scale is 0.29 kg 25 

Cu ha–1 which is two orders of magnitude less than the net accumulation of Cu (24.8 kg 26 

Cu ha–1). Four scenarios of Cuf application were compared. The current EU regulation 27 

with a maximum of 4 kg Cu ha–1 year–1 may increase by 2% the EU vineyard area 28 

exceeding the predicted no-effect concentration (PNEC) in soil in the next 100 years. 29 

Overall, our results highlight vineyard areas requiring specific remediation measures 30 

and strategies of Cuf use to manage a trade-off between pest control and soil and water 31 

contamination.  32 
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INTRODUCTION 33 

Copper-based fungicides (Cuf) are intensively used in European vineyards since the 34 

end of the 19th century to prevent fungal disease such as ‘Downy Mildew’.1 Cuf 35 

application doses and timing vary across regions depending on practices, regulation, 36 

hydro-climatic conditions and vine variety. The European Union (EU 2018/1981) 37 

regulation recently decreased from 6 to 4 kg Cu ha–1 year–1 the maximal dose allowed.2 38 

However, doses as high as 50 kg Cu ha–1 year–1 were applied frequently for decades in 39 

the mid-20th century.3 Today, the total copper content in topsoil (Cut) exceeds 100 mg 40 

Cu kg–1 in 15% of the European vineyard area. This corresponds to the average 41 

proposed threshold values for which soil remediation is needed.4-6 European vineyards 42 

represent more than 50% of the total vineyard surface worldwide.7 Although vine 43 

growing accounts for only 3.3% of the agricultural area in Europe, it uses 86% of total 44 

fungicides consumed in Europe.8 Hence, vineyard soil is often more contaminated by 45 

Cuf than soils of any other agricultural soils. Cuf accumulates in soil and can impact soil 46 

organisms and plants,9 thereby reducing soil fertility10 and productivity.11 In contrast, 47 

leaching12 and surface runoff13,14 export Cuf from vineyard soil, which can contaminate 48 

aquatic ecosystems15 and drinking water resources.16 49 

Cuf mobility in topsoil controls Cut accumulation and off-site export. Cu mobility in soil 50 

is mainly controlled by (i) sorption on organic matter,17 and to a lesser extent on clay 51 

and Fe-, Mn-(hydr)oxide and carbonate,18 (ii) pH-redox dependency since alkaline soil 52 

increase the proportion of available binding sites on organic matter.17,19
 Cu sorbed on 53 

fine particle matter may result in Cu export in runoff. 13,14 Hydro-climatic and field 54 

conditions indirectly control Cu export by (i) affecting soil properties,20 (ii) mediating 55 
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dissolved and particulate Cuf transport, and (iii) modifying preferential transport.21 56 

Accordingly, presumed or established processes governing Cut mobility in vineyard soil 57 

may co-occur and/or may be interrelated (Table 1). Variables governing Cut and 58 

dynamics in vineyard soil are, however, examined in laboratory and field studies 59 

separately. As a result, the understanding of variables governing Cut in soil remains 60 

study- or site-specific. The identification of variables governing Cut in vineyard soil and 61 

leading to Cu accumulation and/or off-site export over time is necessary to evaluate the 62 

current and future distribution of Cut at the European scale. 63 

In this context, a major issue is to predict the spatial variation of Cut in the European 64 

vineyards, to quantify Cu accumulation and export and to identify priority areas requiring 65 

soil remediation. The purpose of this study was (i) to identify key variables potentially 66 

governing Cut in vineyard topsoil (0 – 30 cm), (ii) to predict average Cut at European 67 

vineyards scale using machine learning technics, and (iii) to estimate Cut accumulation, 68 

export and associated toxicity for terrestrial trophic levels, for historical, current and 69 

future scenarios of Cuf application (i.e, 0, 2, 4 or 8 kg Cu ha–1 y–1). 70 

 71 

MATERIALS AND METHODS 72 

Topsoil total Copper Datasets. 73 

Cut datasets (Cut, dat; i.e., soils within 0–30 cm) were obtained from several soil 74 

surveys across European vineyards (–9.4° to 42° E; 35° to 53° N; SI, Figure S1) 75 

delineated by the Corine Land Cover (CLC 2012; v18.5.1; http://land.copernicus.eu). In 76 

total, 1,202 Cut, dat measurements (average: 27.8 mg Cu kg–1; min–max: 0.54–774 mg 77 

Cu kg–1) were sampled between 1992 and 2016 (median = 2008, standard deviation 78 
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(SD) = 5) and used in our study. Summary of the studied Cut, dat are provided in Table 79 

S1 of the Supporting Information (SI). Although the Cu quantification methods differ 80 

among datasets, inter-comparability between datasets has been demonstrated 81 

previously for the methods used in our study.22 The impact of topsoil sampling depth 82 

(first 20 or 30 cm) and sampling time span on the average prediction of Cut (Cupred) at 83 

the European scale remains low (SI, section Influence of heterogeneous sampling 84 

depths and time on the Cu prediction). The heterogeneity of topsoil sampling depth and 85 

time span did not significantly (within 2σ) impact the average predictions of Cut at the 86 

European scale.  87 

 88 

Predictive Variables. 89 

Soil properties, topology, climate and land cover were selected and evaluated as 90 

hypothetic predictive variables of Cut (Table 1 & SI, Table S2). Geogenic, i.e., from bed 91 

rocks,23 and atmospheric non-agricultural anthropogenic inputs of Cu, i.e., mining, 92 

smelter, sewage sludge and vehicle brake pads are sources of Cu contributing from 5 to 93 

100 g Cu ha–1 year–1 whereas about 8 kg Cu ha–1 years–1 of Cuf are applied on 94 

vineyards.24 Topsoils surrounding Cu mining or smelter, that may reach up to 6 g Cu kg–
95 

1,25,26 were not identified close to vineyard areas. Consequently, geogenic and industrial 96 

sources of Cu were not considered in this study. 97 

 98 

 99 

 100 

 101 
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Table 1. Hypothetic Predictive Variables Governing the Total Copper Content in 102 

Vineyard Topsoil (Cut) Leading to Cut Accumulation and/or off-site Export. 103 

 

Variables a  Processes  

 

Soil properties  
 

  

Soil 
physicochemical 
properties affect 
Cut mobility  

 Cut correlates positively to soil organic matter since Cu 
preferentially sorbs to organic matter in soil,13,17 which 
affects Cut mobility. Higher pH increases sorption sites 
(e.g. negative charge) for Cut on clay, organic matter and 
sand containing carbonate,19 and reduces Cut leaching.12  

  

Soil moisture 
influences soil 
biogeochemistry  

 Soil moisture directly affects microbial respiration and 
activities in soil resulting in biogeochemical 
gradients.27,28 Cu occurs as Cu(II) in oxic soils. In 
contrast, Cu(II) may potentially precipitate to less mobile 
Cu(I) forms in anoxic soils.17,29 

 

Topography/climate 
 

 

  

Topography and 
climate conditions 
drive soil erosion 

 Greater rainfall depth and higher slope length enhance 
soil erosion by runoff.21 Cut is mostly bound to 
suspended particles matter (SPM) in topsoil (~85%13, 14) 
where SPM-bound Cu can account for 84.4% of the total 
Cut exported by runoff.14  

 

Hydro-climatic 
conditions 
influence Cu 
application doses 

 
Intense rainfalls during warm conditions favor the 
development of ‘Downy Mildew’. This increases the 
frequency and amount of Cut use in some areas to 
control it.30,31 

  

Hydro-climatic 
conditions 
influence (i) soil 
chemistry 

 Arid environments (with higher AI values), characterized 
by higher soil pH and oxidizing soils,20 favor Cut 
accumulation (see soil physicochemical properties 
above). In contrast, arid soils tend to lose more soil 
organic matter and associated Cut since Cu is 
preferentially associated to soil organic matter.13,17  

  

(ii) Vegetation 
growth 

 Optimal conditions for vegetation growth depend on 
temperature, soil moisture and solar radiation, and vary 
across plant growth stages.32 Vegetation growth controls 
Cut mobility indirectly by limiting erosion via surface 
runoff and thus can be related to Cut.  
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(iii) Plant uptake 

 Cu uptake from soil by plants remains limited: 0.1–7.2% 
by wild33 and 0.1–3.8% by the vineyard34 plants of the 
Cut. Hence, plants only marginally decrease Cut in soil. 

 

Plant cover 
 

 

  

Plant cover affects 
surface runoff and 
organic matter 
content in topsoil 

 Plant cover, i.e., vine and grass in vineyards, can 
stabilize the vineyard soil and thus limit erosion via 
surface runoff.35 In addition, plant decomposition can 
slightly increase organic matter content in topsoil,36 
thereby reducing Cu mobility.  

a Hypothetic predictive variables governing Cut in vineyard soil. Variables associated 104 

with each process are provided in the SI, Table S2. Processes were identified based on 105 

experimental studies in vineyard or related soil. 106 

 107 

Predictive variables were computed or directly obtained on a grid cell of 250×250 m 108 

for the study area. Details concerning building spatial variables are provided in the in SI, 109 

Table S2 & S3. Cut, dat coordinates were used to extract values of each predictive 110 

variable in the corresponding grid cells. Extracted data were then used to select 111 

variables and calibrate the model (details in SI). Extracted data represented adequately 112 

the range of predictive variables within the prediction domain (details given in SI; paired 113 

t-test; p-valueaverage >0.01) and did not display any spatial correlation (Moran’s test; 114 

Iaverage = –0.211 ± 0.09; p-value >0.01). The selection of variables was carried out from 115 

the 24 original predictive variables (SI, Table S2) to limit collinearity between predictive 116 

variables and optimize model predictions as described elsewhere:37 (i) Pearson 117 

correlation was used to discard variables providing the similar information and (ii) 118 

principal component analysis (PCA) was used to discard noise variables containing the 119 

least information.38 120 

 121 
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 122 

Prediction of Total Copper Content in European Vineyard Topsoil. 123 

The variable selection procedure highlight that the following variables were predictive 124 

of the average Cut in European vineyards: clay and silt fractions (%), soil organic carbon 125 

content (Corg; %), soil pH (unitless), aridity index (AI; unitless), annual average 126 

temperature (Tav; °C), annual rainfall (rainfall; mm), soil moisture content (moisture; %), 127 

the enhanced vegetation index (EVI; unitless) and slope (degree; SI, Table S3). This 128 

selection is consistent with predictive variables reported previously (Table 1). Three 129 

independent machine learning techniques, i.e., neural networks (R package nnet v 7.3-130 

12), random forest (R package randomForest v.4.6-12) and bagging tree (R package 131 

ipred v.0.9-5), were used in parallel and were averaged into an ensemble model (ENS; 132 

details in SI) for the final prediction, as described elsewhere.39 The ENS resulted in 133 

fewer false predictions and higher predictive accuracy than a single model. Consistency 134 

of Cupred was evaluated for each grid cell on a SD of 1,000 predictions for each machine 135 

learning technique. Model performance was evaluated using a 10-fold cross-validation 136 

(CV). Model spatial transferability was evaluated using a spatially constrained 10-fold 137 

CV (details in SI). For each model, the averaged relative importance (ARI) of each 138 

variable in the model was calculated with an input permutation technique and one-139 

factor-at-a-time (OFAT) sensitivity analysis (details in SI). The complete modelling 140 

framework to select variables, calibrate the model and predict Cut is available for 141 

download at https://github.com/Boris-Droz/ML_soil_predi_conc. 142 

 143 

 144 
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 145 

Copper Accumulation and Export. 146 

Cut net mass accumulation since the beginning of the Cuf application was estimated 147 

assuming that Cut is distributed similarly across a homogenous topsoil layer, following 148 

eq. 1, 149 

                                     (1) 150 

where          stands for the Cut net mass accumulation (kg Cu ha–1),       the 151 

background of geogenic and atmospheric non-agricultural anthropogenic Cut (mg Cu 152 

kg–1; SI, Figure S2),    is the soil bulk density (https://soilgrids.org/, series M_sl1, 153 

v18.4.2017; in kg m–3)40 and the average topsoil thickness where Cu mainly 154 

accumulates (         = 30 cm; SI, Table S1). The net mass export of Cut (        ; kg of 155 

Cu ha–1) was assumed to be the sum of Cut exported from topsoil via runoff and 156 

leaching, and was calculated yearly following eq. 2,13, 14 157 

                    
   

                       (2) 158 

where         is the soil loss rate (kg ha–1) as defined elsewhere21 and      the soluble 159 

fraction of        estimated from soil properties (both details in SI). 160 

 161 

Scenarios of Copper-Based Fungicides Application Doses. 162 

Four scenarios of Cuf application doses were compared: (i) an historical scenario with 163 

8 kg Cu ha–1 year–1 inferred from sold Cuf amount before the 2002 European 164 

regulation,2 and/or speculated illegal usage in some areas,41 (ii) current regulation 165 

scenarios, with either (iii) 2 or (iii) 4 kg Cu ha–1 year–1 as average and maximum doses, 166 
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respectively,2, 42 and (iv) a scenario of Cuf substitution, i.e., no Cuf application or 0 kg Cu 167 

ha–1 year–1.  168 

For the scenario with 8 kg Cu ha–1 year–1 and current regulation scenarios, a stepwise 169 

mass balance calculation based on a year t was established (eq. 3 and detail in SI) 170 

assuming no temporal variation of the topsoil volume and a homogeneous topsoil layer 171 

(0–30 cm),  172 

                                         
                                      (3) 173 

where        is the average predictions of Cut (mg Cu kg–1),         the yearly 174 

application dose of Cuf (kg Cu ha–1 year–1) and      the soluble fraction as calculated in 175 

eq S3–6. The          was previously calculated in eq. 2.            accounted for the 176 

yearly Cu application dose to which the soluble fraction of Cuf (    ) and the          177 

were deducted. For each, pixel, the scenario was applied until Cupred at year     178 

reaches for the given pixel the predicted no-effect concentration (PNEC; SI, building 179 

spatial variables). In contrast, the time required to export the accumulated Cuf via runoff 180 

and associated suspended solids and reach back      , i.e., assuming the existence of 181 

alternatives to Cuf, was estimated by dividing eq. 1 by eq. 2.  182 

The uncertainty associated with each scenario was estimated by numerical 183 

propagation of uncertainties across the entire modelling framework. Briefly, each 184 

variable was associated with lower and an upper uncertainty limits accounting for the 185 

analytical or monitoring uncertainty or calculation steps, depending on the variable (SI, 186 

Table S4). All combinations of lower and upper uncertainty limits for the selected 187 

variables were then included to propagate uncertainties and estimate the lower and 188 

upper uncertainty limits associated to each scenario for each pixel independently. 189 
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 190 

 191 

RESULTS AND DISCUSSION 192 

Prediction of Total Copper in Topsoil.  193 

Ten variables governing Cut in vineyard topsoil were considered (see above Materials 194 

and Methods and SI, Figure S4. b). Using these climate and soil variables, the ENS 195 

accurately predicted Cut (slope of 1.13, intercept of 0.01; SI, Figure S4. a), and 196 

predictions were fairly precise (averaged R2 = 0.61). Comparison between ENS and CV 197 

(averaged R2-CV = 0.58 ± 0.06) indicates no over-fitting of the ENS. For the three 198 

machine learning technics, Cupred fit Cut, dat (SD Cupred/Cut, dat × 100 = 13 ± 2%), 199 

indicating a good overall agreement of predictions between the three technics. Average 200 

uncertainty of the Cupred falls within ± 11 mg Cu kg–1 for 75% of the data (RMSE of 0.63 201 

± 0.06). The scattering observed in the predictions (SI, Figure S4) mainly concerns data 202 

above 130 mg Cu kg–1, corresponding to 6.3% of the dataset only. ENS predictions 203 

failed to reproduce observed Cut in the corresponding vineyard areas, which potentially 204 

received larger historical Cuf applications than other areas under similar climatic and 205 

soil conditions. Additional model performances and limits are provided in SI. 206 

 207 

Climate Variables rather than Soil Variables Determine Total Copper in Topsoil. 208 

Climate variables (i.e., rainfall and aridity index) mainly determined Cupred at the 209 

European scale, possibly by controlling physicochemical processes, including Cu 210 

leaching and the redox state of soil. Hydro-climatic conditions likely determined regional 211 

Cu application practices as ‘Downy Mildew’s’ pressure increases in more humid and 212 
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warmer areas in early summer.30,31 In contrast, soil physicochemical properties (i.e., pH) 213 

predominantly governed Cut on the local scale and under homogeneous climatic 214 

conditions. The averaged relative importance (ARI) from the ENS and the sensitivity 215 

analyses confirmed the relationship between climate variables and Cupred. Cupred 216 

correlated positively with both the annual rainfall (rain; R2 = 0.71) and the aridity index 217 

(AI; potential evapotranspiration divided by rainfall; R2 = 0.79), while the combined 218 

effect of rainfall and AI accounted for 32.6% of the Cupred ARI (rainfall = 17.4 ± 0.9%, AI 219 

= 15.2 ± 1.3%; SI, Figure S4. b). 220 

Although rainfall was negatively correlated with AI, both variables were positively 221 

correlated to Cupred, suggesting that two different mechanisms control Cut in vineyard 222 

soil. First, rainfall could increase temporally soil water content and reduce oxygen 223 

diffusion in water, leading to reducing soil conditions.43 Under anoxic conditions, 224 

biological activity may decrease Cu mobility by precipitating soluble Cu(II) to Cu(I),44,45 225 

which is strongly complexed and stabilized with reduced organic sulfur.46 Additionally, 226 

depending on the solutes present in soil, e.g., carbonate, sulphide, biotic and abiotic 227 

processes may form minerals and further reduce the Cut mobility.33, 47, 48 228 

In contrast, higher AI leads to drier soil,49 which facilitates the formation of soil 229 

macropores favoring oxygen transfer.50 As a result, Cu(I) may partly re-oxidize into 230 

mobile Cu(II) in oxic soil. However, an opposite trend is observed as AI may indirectly 231 

increase the Cu-binding affinity of soil organic matter (ARI of 13.1 ± 0.1%). Indeed, the 232 

oxidation of organic matter under oxic conditions increases the contribution of carboxylic 233 

and hydroxylic groups as preferential binding partners for Cu in organic matter.51 In 234 
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addition, pH (ARI of 7.5 ± 1.3%) directly controls the deprotonation of sorption sites on 235 

soil constituent. Hence, higher pH increases available sorption sites for Cu binding.19 236 

 237 

Distribution of the Total Copper in Topsoil Across European Vineyards. 238 

Cupred in European vineyards were successfully made as the datasets covered the 239 

range of predictive variables within the domain of prediction. The ENS also displays 240 

good model transferability in space evaluated on four equivalent geographical sub-241 

domains (average R2 = 0.84 ± 0.07, details in SI). This suggests a homogenous 242 

influence of predictive variables within the European vineyards. Overall, Cupred for 243 

vineyards is 25.4 mg Cu kg–1 which is 30.5% higher than Cubgd including geogenic and 244 

atmospheric non-agricultural anthropogenic Cu (Figure 1. a–b). 245 

 246 
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 247 

Figure 1. Distribution of the total copper content in vineyard topsoil (Cut), accumulation 248 

and net export of Cu in European Vineyards. (a) Observed background Cut. (b) 249 

Predicted Cut (Cupred). (c) Estimated net accumulation of Cut. (d) Estimated net export of 250 

Cut. Dark grey: Area of the European Corine Land Cover (CLC). Pixels depict average 251 

predictive values at a spatial resolution of 20 km2. Net accumulation was not computed 252 

for Turkey due to absence of background data. Overall, Cupred were higher for vineyards 253 
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in the alpine regions (Figure 1. b; average = 57 mg Cu kg–1) than in other European 254 

biogeographic regions (SI, Table S5).  255 

 256 

The threshold of contamination (>100 mg Cu kg–1)5 was reached for 2% of Cupred 257 

within the prediction domain. Contaminated areas were mainly located in central 258 

Western Europe, i.e., northern Italy, eastern France, Switzerland and Slovenia. In those 259 

regions, Corg is medium (up to 14%) while Cupred >100 mg Cu kg–1 accounted for 70% of 260 

vineyard soil.52 Data points above the contamination threshold in those regions are 261 

characterized by high AI, soil moisture and annual rainfall, although only Corg was 262 

significantly higher (>9.0%) than in other regions of southern Europe (t-test; p-value 263 

<0.01). This suggests that higher annual rainfall correlates with higher temperature in 264 

central Western Europe. This may favor ‘Downy Mildew’ emergence and concomitant 265 

use of higher doses and more frequent applications of Cuf. In central Western Europe, 266 

soil with higher Corg may influence the Cupred predominantly and locally, although Corg 267 

accounted in total for 13.1% ARI of the Cupred.  268 

 269 

Accumulation and Export of Copper in Topsoil. 270 

The estimated average net accumulation and net export of Cu in topsoil in European 271 

vineyards are 24.8 (SD = 42.7) and 0.29 kg Cu ha–1 (SD = 0.64), respectively (Figure 1 272 

c–d). This corresponds to 112,400 tons of Cu accumulated over time, and a yearly Cu 273 

export from vineyards of 1,466 tons across Europe. The distribution of Cu net export 274 

fitted with that of Cupred (R2 = 0.65). On average, predicted loss rate of vineyard soil 275 

(9.47 tons ha–1 year–1) is 3.5 times greater than any other European arable land due to 276 
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low vegetation and sloping area in vineyards. Consequently, net Cu export is 277 

particularly large in the Southern Alps due to intense soil erosion. Large soil loss is 278 

associated to higher slope (>25°) and greater rainfall amounts (>1,600 mm year–1) in 279 

the Southern Alps than in other vineyard areas.21 
280 

 281 

Potential Future Copper Accumulation in European Vineyards. 282 

Overall, the proportion of European vineyard area exceeding PNEC values (i.e., 283 

ranged from 30 to 290 mg Cu kg−1 according to soil properties calculate elsewhere,53, 54 284 

details in SI) may largely vary in the future depending on the application dose of Cuf 285 

(Figure 2). Cu accumulation due to Cuf application doses of 2, 4 and 8 kg Cu ha–1 year–1 286 

may be balanced with Cu export after 1,200, 750 and 150 years, with 75, 89, 97% of 287 

European vineyards areas exceeding PNEC values, respectively. Assuming constant 288 

soil properties, we speculate that the current European regulation with a maximum 289 

application of 4 kg Cu ha–1 year–1 will increase by only 2% the proportion of vineyard 290 

areas exceeding PNEC in the next 100 years.  291 

In contrast, 94% of vineyard areas may exceed PNEC in the historical application 292 

scenario of 8 kg Cu ha–1 year–1. With an application of 2 kg Cu ha–1 year–1, vineyards 293 

areas exceeding PNEC values may increase by less than 0.5% for the next 100 years. 294 

In contrast, a substitution of Cuf (0 kg Cu ha–1 year–1) may decrease the proportion of 295 

vineyard areas exceeding the background Cubgd from 48 to 38% after 100 years. Such 296 

long-term indicative estimation for different Cu application dose provides critical 297 

temporal trend to support the reduction of Cu application in vineyard. 298 
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 299 

Figure 2. Proportion of European vineyards area exceeding predicted no-effect 300 

concentration (PNEC) values of total Cu in topsoil (scenarios with Cuf application dose 301 

of 2, 4, 8 kg ha–1 year–1) or equal to or lower than the background (bgd) Cu content 302 

(scenario with no Cuf application). Predictions account for the balance between yearly 303 

Cuf application at a given application dose and Cu export over time. Dashed lines 304 

indicate the upper and lower uncertainties of predictions. 305 

 306 

Our back-envelope is a first attempt to evaluate Cu accumulation and export at the 307 

European scale and the proposed mass balance approach may lead to inaccurate 308 

estimations of Cut export. For instance, freshly applied Cuf is a soluble Cu pool that can 309 

be directly exchanged with the labile cation present in vineyard soil following Cuf 310 
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application. Depending on the time following Cuf application, Cuf may be partly mobilized 311 

during rainfall-runoff events14 and thus bias estimations of Cut in soil. Since rainfall 312 

erosivity is predicted to increase by 18% in Europe over time, Cuf export may also 313 

increase.55 In addition, estimations using the semi empirical model account for Cu aging 314 

in contaminated soil and rely on realistic desorption experiments, which may 315 

underestimate Cuf export.12 However, Cuf accumulation over time may be also 316 

underestimated. Climate change models predict an average of 10% increase of soil 317 

organic matter content by 2100 in regions of European vineyards,56 which may in turn 318 

reduce Cut mobility and increase the amount of Cu accumulated in the vineyard soil. 319 

 320 

Implications for Winegrowing Practices. 321 

Cu is an element that cannot be degraded in soil and soil remediation processes, 322 

such as phyto-extraction57 or enhanced mobilization by plants,58 have limited 323 

efficiencies. The most efficient strategies to limit the increase of Cut is thus to reduce 324 

application doses of Cuf. Reducing strategies consist in applying Cuf during long humid 325 

periods only42 and in reducing preventively the use of Cuf. Forecast models of 326 

grapevine ‘Downy Mildew’
59 relying on climate variables can help to improve the 327 

efficiency of Cuf reduction strategies. Alternatives to Cuf include replacing current grape 328 

varieties with new grape varieties with a higher resistance to fungus pests,60 using 329 

microorganisms for biocontrol,61 introducing plant defense stimulators62 and/or applying 330 

plant extracts to substitute Cuf.
63 Alternative scenarios without Cuf are still debated, but 331 

are currently used in some Biodynamic approaches accounting for only ca. 1% of 332 

vineyards worldwide (http://www.demeter.net). Additional benefits of biodynamic wine 333 
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growing include the higher soil biodiversity and microbiological activity10 and potentially 334 

greater resilience to climatic and pathogenic threats in vineyards64 as opposed to most 335 

conventional wine growing.65 336 

Cu export is mainly driven by soil erosion with concomitant loss of solid-bound Cu, 337 

which should be prevented and lessened in regions prone to soil loss to reduce 338 

contamination of connected aquatic ecosystems. In fact, 10% of the vineyards are 339 

located close to a river (<500 m)66 and the associated catchment may act as a point 340 

source of contamination. The transport of solid-bound Cu into aquatic ecosystems may 341 

also affect the downstream areas due to the progressive release of toxic Cu(II) resulting 342 

from a change in pH and/or redox conditions. Anti-erosion soil management strategies 343 

should thus be prioritized and designed to retain Cu on the vineyard plots. In particular, 344 

traditional soil management strategies, including grass or mulch cover, reduced tillage, 345 

contour planting and terraced vineyards are most effective in limiting soil erosion and 346 

associated Cu runoff.35 Complementarily, stormwater wetlands may be deployed at the 347 

outlet of vineyard catchments. Stormwater wetlands have the potential to retain >68% of 348 

the dissolved Cu and >92% of the solid-bound Cu, the principal contributions to Cu 349 

export in runoff.14 350 

 351 
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Texts, tables, and figures provide detailed methods (total copper in the topsoil dataset, 356 
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