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Synchronising a database of stock specific news with 5 years worth of order book data on
300 stocks, we show that abnormal price movements following news releases (exogenous) exhibit
markedly different dynamical features from those arising spontaneously (endogenous). On aver-
age, large volatility fluctuations induced by exogenous events occur abruptly and are followed by
a decaying power-law relaxation, while endogenous price jumps are characterized by progressively
accelerating growth of volatility, also followed by a power-law relaxation, but slower than for ex-
ogenous jumps. Remarkably, our results are reminiscent of what is observed in different contexts,
namely Amazon book sales and YouTube views. Finally, we show that fitting power-laws to individ-
ual volatility profiles allows one to classify large events into endogenous and exogenous dynamical
classes, without relying on the news feed.

I. INTRODUCTION

Earthquakes, disease outbreaks, volcanic eruptions,
avalanches, species extinctions, traffic jams, economic
crises and financial crashes are but a few examples of a
long list of extreme events that upend natural and social
systems. Given their ubiquitous presence (and their rel-
evance in our everyday life), they have received a great
amount of attention from different scientific communi-
ties [1–4]. A central question that researchers have tried
to answer is whether these events are caused by exogenous
events (like the meteorite which probably triggered the
Cretaceous–Paleogene extinction event) or result from
some amplifying feedback mechanism internal to the sys-
tem, in which case the shock is endogenous [5].

This topic is particularly important in the context of
financial markets, and is related to the long-standing Ef-
ficient Market controversy. If markets are efficient, signif-
icant price movements can only be due to unpredictable
exogenous shocks. On the other hand, if self-reflexive
feedback loops are present, extreme price displacements
can be triggered by small (and seemingly irrelevant) fluc-
tuations, which can ultimately generate substantial ex-
cess volatility.

Is it really possible to categorize extreme events into
exogenous and endogenous? Answering this question in
a general context is highly non-trivial [5]. Nevertheless,
building on the idea that endogenous shocks can only ap-
pear in systems that are somehow “fragile”, i.e. close to
an instability, a methodology to differentiate exogenous
from endogenous events in empirical data has been pro-
posed in a very interesting series of papers [6]. Hawkes
processes, in particular, provide a convenient and versa-
tile modelling framework consistent with the assumption
of a near-critical system. In fact, Hawkes processes were
introduced to model self-exciting earthquakes [7, 8], but
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have been shown to be relevant in many other contexts,
such as financial market activity [9], crime outbursts [10],
or banking and corporate defaults [11], to name a few.

The proximity of an instability suggests the use of criti-
cal Hawkes processes, characterised by a power-law mem-
ory kernel. Such a specification has allowed the authors
of [12] to efficiently discriminate endogenous from exoge-
nous bursts of views among 5 millions YouTube videos.
Views spikes which result from a contagion process on the
underlying social network of influence are characterised
by a slow (power-law) post-shock relaxation to the base-
line views’ number distribution and by an almost mirror-
image pre-shock growth. On the other hand, spikes that
are chiefly induced by exogenous shocks are characterised
by a faster post-shock decay, almost without any pre-
shock growth (see Fig. 1 for an illustration in the case of
market price jumps). Quite remarkably, similar results
also hold for a dataset of Amazon books sales [13, 14].

In the context of financial price time series, such allur-
ing findings are still lacking. Nevertheless, several past
studies hint at the possibility of dividing exogenous and
endogenous extreme events in a similar manner. The ob-
servable of interest of most of these studies is the instan-
taneous volatility profile of stocks (log-)returns. First
of all, it has been shown in [15–20] that the rate of ab-
normally large absolute returns after a large exogenous
shock decays as a power-law (which corresponds to the
so-called Omori law in the context of earthquake after-
shocks [21]). A similar behaviour has also been observed
in the absolute value of the returns [15, 22] (sometimes
restricting to abnormally high returns [19, 23, 24]) and
in the dynamics of the bid-ask spread [20, 25]. Quite
strikingly, these findings seem to hold independently of
the considered type of exogenous event, asset type or
timescale over which returns are computed and therefore
hint to the existence of a possible universality class. This
is the “Efficient Market Class” (EMC), in the sense that
the market price strongly reacts to unexpected large ex-
ternal shocks. Such strong reactions to exogenous events
are not only limited to prices and are indeed known to
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be present in market activity as well [26, 27].
Within the Efficient Market picture, all extreme events

are exogenous, and no endogenous “Self-Exciting Class”
(SEC) should be detectable. However, this view has long
been challenged by a series of investigations, starting
with the seminal work of Cutler, Poterba and Summers
in 1989 [28] where they conclude that the evidence that
large market moves often occur on days without identi-
fiable major news releases casts doubt on the view that
stock price movements are fully explicable by news. This
conclusion, drawn using daily returns, was confirmed in
later studies [29, 30] looking at different time granular-
ity. In particular, the authors of Ref. [31] found that
most large intra-day price fluctuations for single stocks
(called “jumps” henceforth) happen independently from
news releases.

These latter findings point to the possibility that a
non-efficient, SEC exists and that it can be successfully
identified in empirical data, with jumps induced by a
direct feedback loop between trades and volatility. To
expose the existence of such endogenous jumps, some
studies take a granular approach and calibrate a Hawkes
process on trade-by-trade data [32–35] while others fo-
cus on macroscopic quantities like volatility, volumes or
trends [36–38].

In this study we follow this latter stream of literature.
In particular the present work builds upon the observa-
tions presented in Ref. [31]. By using a database of news
concerning single or multiple stocks, it has been empir-
ically established that the average volatility profile fol-
lowing a news-induced, EMC jump is markedly different
from the one following an SEC jump.

We broadly confirm and significantly extend the re-
sults of Ref. [31], using a more recent database (300
different stocks traded at the NYSE from 01/01/2015
to 01/01/2020). We show that it is indeed possible to
classify extreme price moves into two distinct dynamical
classes, EMC and SEC. Inspired by seismology studies,
we argue that instead of individual price jumps and indi-
vidual news one needs to focus on clusters of jumps and
clusters of news. We show how SEC clusters of jumps
(not triggered by news) display very different properties
from EMC clusters (closely following a cluster of news).
Consistent with previous studies on YouTube views and
Amazon book sales [12, 13], we find that the average
volatility profile of SEC events is much more symmet-
ric than the average profile of EMC events and that,
while they both decay as power-laws, they are charac-
terised by different relaxation exponents. In fact, the
observed values of these exponents are remarkably close
to those reported for YouTube views and Amazon book
sales [12, 13]. In agreement with the recently introduced
endogenous liquidity crises model [38], SEC cluster of
jumps appear to be preceded by a slow increase in volatil-
ity and price trends.

Having established the average profile of EMC and
SEC jumps, we then turn to analyzing individual volatil-
ity profiles around large clusters of jumps. Determining

FIG. 1: Examples of endogenous (top) and exogenous
(down) bursts of volatility. We draw in orange the best fits
using the functional form given by Eq. 3 below. Exogenous
shocks are characterised by a slow power-law precursory
growth and an almost symmetric relaxation. Endogenous
shocks are asymmetric around the instant of the shock and
display a faster relaxation toward the pre-shock activity lev-
els.

the shape (parameterized by a power-law before and after
the first jump of a cluster) and asymmetry of these pro-
files allows us to classify jumps into EMC and SEC types
with remarkably high degree of success, as measured by
the Area Under Curve of the corresponding classification
tasks. Finally, we discuss several wider implications of
our findings.

II. EXTREME EVENTS IN ELECTRONIC
MARKETS

A. The Limit Order Book

In the present days, most of the world’s financial mar-
kets use an electronic trading mechanism called a Limit
Order Book (LOB) to facilitate trade of a given asset.
The LOB L(t) is the collection of all active limit orders
at any given time t and, as such, it can be thought as
a concise representation of the supply and demand of
any electronically tradable asset. The LOB is usually
divided into the ask side (the set of active sell limit or-
ders) and the bid side (the set of active buy limit orders).
The highest (lowest) occupied buy (sell) price level is
called the ask at (bid bt). The difference between the
two is called the spread st = at − bt while their average
mt = (at + bt)/2 is called the mid-price and it is usually
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used as a proxy for the price of an asset (see [39] for more
on this topic). Each price level at or below the bid (above
the ask) is populated by volumes Vb, Vb−1, . . . Vb−n, . . .
(Va, Va+1, . . . Va+n, . . . ). This means in particular that a
buy market order of sizeQn = Va+Va+1+· · ·+Va+n leads
to an immediate ask price move up by n ticks. (Note that
some price levels maybe empty). The quantity n/Qn can
be thought of as a measure of sparsity of the LOB on the
ask side, with a similar definition for the bid side. We
refer the interested reader to Ref. [40–42] for extensive
reviews on the empirical properties of LOBs.

B. Dataset description

1. Order book data

We conduct the analysis by using the four best price
levels (2 for the bid and 2 for the ask) from the LOB of a
selection of 300 stocks continuously traded on the NYSE
from 01/01/2015 to the 01/01/2020. Each LOB is sam-
pled on a minute timescale. These snapshots portray the
time evolution of the price and the supply and demand of
a given stock. We only consider data collected during the
regular US trading session (which start at the 9:30 a.m.
and ends at the 4:00 p.m.) and only those sessions with
a moderate or high trading activity (we only keep trad-
ing days with at least 300 recorded price changes). The
reasons for this latter filtering step are threefold. First
of all, to uniformise our sample: some stocks are always
characterised by a continuous moderate or high trading
activity while others are not. Secondly, to avoid spurious
effects: our jump detection methodology assumes that
the returns (after standardization) are approximately dis-
tributed as a standard normal; this assumption crumbles
when the market activity is low, leading to the detec-
tion of numerous spurious jumps [43]. Lastly, estimation
accuracy: estimating scaling laws is a notoriously hard
task [12], especially in highly noisy environments [44].
We noted that removing from our samples those days
with an exceedingly high amount of zeros or missing val-
ues in the volatility series led to a more accurate esti-
mation process. Coherently with the moderate activity
requirement, we selected the stocks based on their 2019
turnover. For a complete list of all the stocks included in
our analysis, as well as a detailed description of the data
pre-processing, see the Appendix.

2. News data

We use a generic (i.e. not only finance related) news
database which contains articles published on Bloomberg
during the same period (01/01/2015 to 01/01/2020).
Each news item is characterised by its title, the time at
which it was been posted online and a list of tickers (i.e.
unique stocks identifiers) which the news may concern.
For this study we will only consider those news which

are marked as relevant for at least one of the 300 stocks
we consider and which explicitly display in the title the
ticker of

1. at least one of the stocks it may concern, or

2. at least one of their companies’ names, or

3. at least one of their companies’ abbreviated names
(i.e. IBM instead of International Business Ma-
chines, or Abbott instead of Abbott Laboratories).

See the Appendix for summary statistics of the news, as
well as their distribution across times and stocks.

C. Price Jumps Detection

The observable we shall focus on in our analysis is
the mid-price mt. Before exposing possible differences
between exogenous and endogenous extreme mid-price
movements, we need a way to assess which variations
mt − mt−1 can be considered extreme or abnormal. In
order to do so, we follow the non-parametric price jumps
detection methodology proposed in Ref. [45] and further
refined in Ref. [46]. The intuition behind such procedure
is very straightforward: fluctuations of the mid-price mt

are first normalized so that, in the absence of jumps,
their distribution is as close as possible to a standard
normal distribution. Once this normalization is properly
defined, Extreme Value Theory can be used to derive a
threshold above which a fluctuation can be classified as
a jump within a given probability level.

We consider the 1-minute return time series rt =
log mt

mt−1
. Mid-price returns are known to have approx-

imately zero mean but a strongly fluctuating variance,
with both intra-day seasonalities and long-memory, in-
termittent dynamics (see e.g. [33, 37, 47–49]). As such,
any standardization procedure must take into considera-
tion both the instantaneous evolution of the variance as
well as any possible seasonality. We therefore define the
“jump-scores” J as:

Jt =
rt
σtft

, (1)

where σ2
t = π

2K

∑K
i=1 |rt−i| |rt−i+1| is an estimator of

the local volatility over a rolling time window of length
K = 390 (i.e. one day worth of data, but dropping any
overnight contribution) and ft is an estimator of the in-
traday periodicity component (see the Appendix for its
detailed definition).

Under the null hypothesis of no jumps and a vanishing
sampling frequency, the statistics of the maximum of |Jt|
converges to a Gumbel distribution. One can therefore
reject, with a statistical significance α = 0.01, the null
hypothesis of absence of jumps whenever we observe:

|Jt| > CK − SK log (log
1

1− α
) ≈ 4.36, (K = 390).
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The constants SK = (2 logK)−0.5 and CK =
(2 logK)0.5 − (log π + log(logK))/(2(2 logK)0.5) are de-
pendent on the window size and are meant to correct
for the fact that, within each window, we are performing
multiple hypothesis tests. As such, by using this thresh-
old, one expects to find only α spurious jumps in a given
sample of K observations.

In a nutshell, we mark as “jumps” those price move-
ments with associated z-scores that are approximately
4-sigma away from zero. In order to avoid effects due to
market opening or closing, we discard jumps happening
in the first or last 15 minutes of the trading day.

D. Clusters of jumps

We run the price jumps detection methodology out-
lined above on all the 300 mid-prices time series. We
record a total of 258,671 jumps. The daily average num-
ber of jumps of a given stock ranges from 0.25 to 3.26,
with an average value of 0.70 and a standard deviation
of 0.42.

As such, on average, we would expect a stock to jump
about once per day (which is, in passing, much more fre-
quent that the expected number of news that can shake
the value of a given stock). However, if we look at the
inter-time distribution between two consecutive jumps
within the same day (Fig. 2a)) we observe clear devia-
tions from a Poisson law. Rather, the distribution is well
fitted by a power-law behaviour. Power law distribution
of waiting times is a typical fingerprint of many social ac-
tivities [50], including trading in financial markets, but
also seismic activity or epileptic activity, see e.g. [51, 52].
Such “bursty” time series are often modelled in terms of
self-exciting Hawkes-like point processes [9]. Indeed, our
empirical findings are consistent with previous observa-
tions, see e.g. [43].

Such long-memory effects in the dynamics of jumps
can potentially induce spurious effects when an aggregate
analysis is performed. Consequently, and following com-
mon practice in seismology [8], we move away from earlier
studies on price jumps [31, 53] and instead of analysing
single jumps, we focus on clusters of jumps.

We adopt a simple and intuitive clustering technique
to group jumps together: we compare the observed inter-
times between any two consecutive jumps against the one
prescribed by a Bernouilli null-hypothesis, corresponding
to independent jumps occurring with probability p. If,
under the null hypothesis, the probability of observing
the given inter-time is smaller than a significance level ε,
we cluster the two jumps together.

It is straightforward to show that, under this simple
null model, given the presence of a jump at time t0, a
second jump occurring at time t1 is assigned to the same
cluster when:

t1 − t0 <
log (1− ε)
log (1− p)

− 1 . (2)

We set ε = 0.05 and we determine p in order to have our
null model preserving, on average, the number of jumps
of each stock within any given month.

After running our clustering methodology, we find a
total of 197,197 clusters of jumps (most made out of one
single jump). The daily average number of clusters of
jumps for a given stock ranges from 0.17 to 2.77 with an
average value of 0.53 and a standard deviation of 0.37.
The normalized inter-time distribution of those clusters
happening in the same day is now well described by an
exponential distribution (Fig. 2a). This feature validates
that such clusters can be reasonably considered to be
independent, and therefore that spurious effects induced
by any aggregation procedure are reasonably reduced.

E. News Related Jumps

Similarly to jumps, we also observe that news releases
tend to cluster in time. We therefore perform on news
the same clustering procedure applied to jumps. We then
mark as news related (or exogenous) those clusters of
jumps which started up to one minute before and up to
four minutes after the beginning of a cluster of news. This
is done in order to account for the fact that a particular
news may have become available to some market partic-
ipants before our recorded news release timestamp and
to account for possible misalignments between the news
feed and the LOB data. We mark as not news-related,
or endogenous, the remaining clusters of jumps. For sim-
plicity, we exclude from our analysis those endogenous
clusters which start within a cluster of news.

Another effect that one should need to consider is
the role of macroeconomic news (not specific to a given
stock), which might trigger clusters of stock price jumps.
A systematic identification of possibly relevant macroeco-
nomic news would entail contextual word recognition and
goes beyond the scope of the current work. To circum-
vent such a limitation, we remove from our list of clusters
those which participate in a market-wide or sector-wide
event, as any relevant macroeconomic news would trig-
ger. Hence we compute, for each cluster of jumps, the
number of stocks which display an overlapping cluster
of jumps during the same time interval. Whenever we
observe a number of overlapping clusters higher than 30
(10% of the stocks in our pool), we mark them as belong-
ing to a market-wide or sector-wide event. Changing this
threshold to 15, 60 or to one prescribed by a null hypoth-
esis of clusters independence (detailed in the Appendix),
does not significantly affect our findings.

As a final safe-guard, we also exclude from our samples
clusters of jumps, of a given stock, happening within 100
minutes from each other. This is done following Ref. [53]
in order to completely avoid any contamination effect
that may happen in our analysis.

Finally, we are left with a total of 106,680 clusters of
jumps, out of which only 1073 are news related (note
that most major, company related news happen outside
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FIG. 2: Characterization of identified clusters of jumps. (a) Inter-times distribution of jumps and clusters of jumps. We
normalize with the minimum time granularity to detect the given event, i.e one minute for jumps and L minutes (Eq. 2) for
clusters of jumps. The blue line is the best fitting power law (exponent 0.88) and the red line is the best fitting exponential
(rate 0.11). (b) Distribution of the number of jumps within exogenous (“news”) and endogenous (“no news”) clusters. (c)
Distributions of Kendall’s tau rank correlations between the amplitude ranking of the jumps in a given cluster with N jumps
and their chronological ranking.

market hours).

III. RESULTS

A. The Internal Structure of Clusters

We now compare the composition of endogenous and
exogenous clusters. In Fig. 2b, we observe that news-
related clusters are characterised by a higher average
number of jumps. In Panel Fig. 2c, we compare the dis-
tribution of Kendall’s tau correlation [54] between the
chronological ranking of jumps and the ranking of jumps
based on their amplitude. A value τ = 1 corresponds
to the case where the jump happening first is also the
largest, the second jump is the second highest and so
on. A value τ = −1 corresponds to a sequence of jumps
happening in “reverse order”, the largest one being the
last of the cluster. Beside accommodating more jumps,
news-related clusters are more naturally ordered in time
than endogenous clusters, consistent with the idea that
exogenous events are strong and sudden responses to an
external shock while endogenous events are the result of a
self-exciting stochastic process, with a progressive build-
up.

Motivated by this consideration, and by the well-
documented assertion that instantaneous mid-price vari-
ations can be described by means of Hawkes processes
(see Ref. [9] for a recent review), we now show how ex-
ogenous (EMC) and endogenous (SEC) events are char-

acterised by markedly different profiles of instantaneous
volatility, price trend and LOB sparsity.

B. Average Profile of EMC and SEC Jumps

In order to show that clusters of jumps which are trig-
gered by a news release display markedly different char-
acteristics from those which are not, we focus on the fol-
lowing five quantities:

• Instantaneous jump-score: |Jt|;

• Exponential moving average of past excess volatil-
ity, defined as:

Σt = κ|Jt|+ (1− κ)Σt−1 ,

where κ defines the averaging timescale, here cho-
sen to be κ = 0.12 (corresponding to a decay time
of 16 minutes, see [37, 38]). Note that we exclude
from the exponential average calculations the stan-
dardized returns Jt marked as a jumps;

• Normalized past price trend:

Tt = κJt + (1− κ)Tt−1 ,

using the same value of κ as above, and the same
exclusion of jumps in the computation;
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FIG. 3: Differences between clusters of jumps which happened in close proximity to a news release and those which did not.
(a) In blue we show the average of the absolute jump-score |Jt| only when news related clusters are considered, in red we
highlight the average across the remaining clusters. The 0.01 confidence bands (lighter colours) on those averages are ob-
tained using bootstrapped samples. For each point in time and for each of the two sub-samples, we perform a Welch’s t-test
against the distribution of |Jt| coming from the first 20 minutes of our observation window. We use a marked dot whenever
we can reject, at 0.01 significance, the null hypothesis that the two distributions have the same mean. We apply the FDR
method to account for the multiple tests performed. Note that the power of the test is different between the news and no
news case given their different sample sizes. We use a log scale to highlight the power law behaviour of the instantaneous
volatility. (b) Same plot for past excess volatility Σt, in linear scale. (c) Same plot for the instantaneous normalized LOB
sparsity St, in linear scale. Notice the small decrease of liquidity starting 15 minutes before no-news jumps. (d) Same plot
for past binarised trends Bt, in linear scale. (e) Same plot for past trends Tt, in linear scale. Note that the averaging is per-
formed on the absolute values of Tt and Bt.

• Binarized past price trend:

Bt = κ
Jt
|Jt|

+ (1− κ)Bt−1 ,

using the same value of κ as above;

• Instantaneous average LOB sparsity st, defined us-
ing the 2 best limit prices:

st = max

[
pat − pb+1

t

ψ(1 + log V bt )
,

pa+1
t − pbt

ψ(1 + log V at )

]
,

where ψ is the tick size (here ψ = 0.01$ for all
stocks in our sample). Note that we define the
sparsity using the less dense side of the LOB. Given
that st is sensitive to the local market activity and
posses non-negligible intra-day periodicity, we de-
fine the associated z-score

St =
st
ftσt

− µt,

where σt is the standard deviation of st over a
rolling window including the last day worth of data
(K = 390), ft is the average value of st/σt across
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all the points with the same intra-day periodicity
and µt is the average value of st/ftσt over a rolling
window including the last day worth of data

In Fig. 3, we show how the average profiles of these five
measures differs when calculated only on SEC clusters of
jumps (not preceded by any news) or only on EMC clus-
ters (in close proximity of a news). Averaging is done
by shifting time such that for each cluster, t = 0 corre-
sponds to the first jump of the cluster. Given that we are
not interested in the sign of past trends, but only their
magnitude, the averaging is performed on the absolute
values of Tt and Bt.

The panels clearly show that SEC clusters are preceded
by a slow increase of volatility and trends. The volatil-
ity increase starts to be statistically relevant up to 75
minutes before the occurrence of the first jump. The
sparsity of the order book does increase, albeit weakly,
15 minutes before no-news jumps (see Fig. 3, panel c).
We however expect that the final drop of liquidity takes
place at higher frequency, due to the fierce competition
between High-Frequency liquidity providers.

EMC clusters, on the other hand, happen much more
abruptly, and their average profiles before the first jump
hardly show any increase at all for all five metrics.

Consistent with observations for other social systems,
we also see a clear difference in the relaxation of the
volatility after the first jump. Endogenous clusters, even
containing fewer jumps, revert to the average baseline
volatility more slowly than exogenous clusters. Relax-
ation after EMC jumps is not only faster, it actually un-
dershoots the baseline volatility: two hours after the first
jump, four out of five indicators appear to be lower than
the values recorded two hours before the first jump. This
was also noted in Ref. [31], and interpreted by arguing
that after the release of news, uncertainty about price is
actually reduced. In contrast, endogenous jumps cannot
be rationalized by market participants, and uncertainty
remains high for a longer period.

Following previous work [3, 12, 15, 19, 20, 31] we now
quantify the speed of the pre-jump and post-jump dy-
namical profiles by fitting a double power-law function
of the form:

|Jt| = f(t) =

{
N`

|t−tc|p` + d, (t < tc)
Nr

|t−tc|pr + d, (t > tc),
(3)

where d is the baseline volatility, tc ∈ [tj−1, tj] is the time
of the shock and tj is the time at which the first jump of
the cluster occurs. To estimate the coefficients appearing
in Eq. (3), we use a non-linear least squares fitting and
discard the first jump of a cluster. We then check that
the normalized residuals are normally distributed using a
Shapiro-Wilk test [55] at the 0.01 statistical significance.

For the exponents, we find p` = 0.36 ± 0.02 and pr =
0.40 ± 0.02 for SEC clusters and p` = 0.08 ± 0.01 and
pr = 0.68 ± 0.01 for the EMC clusters. These values of
pr are different, but not very far, from those reported in
[31], i.e. pr ≈ 0.5 for SEC and ≈ 1 for EMC.

For the amplitudes N`/r, we find N` = 0.235 ± 0.009
and Nr = 0.59 ± 0.01 for SEC clusters and N` =
0.68± 0.01 and Nr = 4.76± 0.06 for EMC clusters. The
estimated SEC baseline volatility is d = 0.66±0.01 while
we find d = 0.48±0.01 for EMC. This discrepancy in the
baseline volatility is because, as we can observe in Fig-
ure 3, the asymptotic post-cluster volatility of the EMC
cluster is lower than the pre-shock baseline.[64] The es-
timated jump time of the SEC cluster tc = tj ± 0.08 co-
incides with the time of the first jump of a cluster while,
for the EMC class, we find tc = tj − 1.00± 0.03, which is
consistent with a pre-shock explosive growth.

Note that the relaxation of the LOB sparsity after a
jump can also be fitted by a power-law with pSr ≈ 0.4 for
SEC jumps and pSr ≈ 0.7 for EMC jumps, not very dif-
ferent from the ones governing the relaxation of |Jt|. On
the other hand, the pre-jump SEC profiles start picking
up too close to tj to allow for a meaningful fit with our
one minute resolution time.

C. Predictions of a Hawkes Model

Besides confirming the different volatility relaxation
speeds between endogenous and exogenous jumps, as in
other studied systems, our results show that there ex-
ist an asymmetry between the pre-jump growth and the
post-jump relaxation even for SEC. To rationalize their
findings Refs. [12, 13] postulate the existence of a self-
exciting process of the form

λ(t) = λ0(t) +
∑
ti<t

φ(t− ti) , (4)

where λ(t) the instantaneous rate of price moves, λ0(t) is
the exogenous rate of price moves, ti is the time at which
previous price moves took place, and φ(τ) is the memory
kernel of the system, which captures the way past events
enhance the probability of current events.

The rationale for using the self exiting process of
Eq. (4) is fairly intuitive. Given the fact that the LOB
is a public source of information, any change (exogenous
or endogenous) in the instantaneous volatility may trig-
ger a reaction in some market participants whose actions
will have an effect on the volatility itself which will then
trigger a second generation effect on other market partici-
pants and so on and so forth. This impact of a trader onto
other traders, or of past volatility onto future volatility,
is not instantaneous and it is modelled by the memory
kernel φ(t− ti).

By simply assuming a power-law memory function
φ(τ) ∼ 1/τ1+θ with 0 < θ < 1, Eq. (4) elegantly pre-
dicts two different profiles for exogenous and endogenous
jumps [13, 56] when the process is marginally stable (i.e.
when n :=

∫∞
0

dτφ(τ) → 1). One finds the following
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behaviour for the pre- and post-jump profiles:

|Jt| ∝


(t− tj)θ−1, EMC, t > tj, t− tj � (1− n)−

1
θ ;

(t− tj)−θ−1, EMC, t > tj, t− tj � (1− n)−
1
θ ;

|t− tj|2θ−1, SEC, t ≶ tj,

(5)
with a flat profile (no precursor) for EMC, t < tj.

Comparing these predicted profiles with the average
ones plotted in Fig. 3, we see that a post-jump dynam-
ics with θ = 0.3 is consistent with our data for which
pSECr ≈ 0.4 = 1− 2θ, and pEMC

r ≈ 0.7 = 1− θ, positing,
as argued in [33], that financial markets are indeed close
to criticality (n ≈ 1). Note that Wehrli et al. [57] have re-
cently questioned this assumption, asserting that the low
frequency kernel contribution to n :=

∫∞
0

dτφ(τ) is dom-
inated by the exogenous dynamics of the rate λ0(t) in Eq.
(4). While this may well be the case, we satisfy ourselves
in this work with the idea that critical Hawkes processes
provide an effective description of feedback effects in fi-
nancial markets, and treat Eq. (5) as a convenient fitting
function.

Within this framework, the value we observe for θ is,
quite remarkably, exactly the same as the one reported
in previous studies on other social systems [12, 13]. Note
that our value for the relaxation exponent pSECr ≈ 0.4
is quite close to the one estimated in Ref. [20], where
post-jump volatility profiles of liquid US stocks were also
studied (in the period 2000-2002).

However, the pre/post jump symmetry predicted by
the model for SEC jumps is (mildly) violated – see the
values of N` and Nr. We conjecture that such an asym-
metry could be captured by the generalization of Eq. (4)
recently proposed in [37], where not only past activity,
but also past price trends, feedback on the current rate
of activity. Such a coupling indeed leads to a measurable
time reversal asymmetry in the volatility dynamics [37]
and therefore can potentially produce an asymmetry be-
tween pre- and post-shock volatility dynamics as the one
we observe [65]. We leave this question open for further
investigation. It is worth mentioning that another pos-
sible explanation for such asymmetry is that a non neg-
ligible portion of the jumps we marked as endogenous
are driven by exogenous information not detected by our
news database.

IV. CLASSIFICATION OF SINGLE
VOLATILITY PROFILES

In this final section we show that, even in a highly noisy
environment such as financial markets, the classification
of different jumps into SEC and EMC provided by the
news feed can be successfully reconstructed only using
individual volatility profiles.

Even if the Hawkes model (Eq. (4)) is not fully compat-
ible with average profiles, as shown in the previous sec-
tion, we attempt to use the functional forms suggested by

Eq. (3) to fit individual volatility profiles and infer from
such fits the nature of the observed events.

To do so, we fit the functional form of Equation 3 to
each single volatility profile. In line with Refs. [12, 13]
and with the discussion of the previous section, we expect
the following characteristics:

• pEMC
r ≈ 1− θ > pSECr ≈ 1− 2θ: higher relaxation

exponents for those clusters which happen in close
proximity of the release of a piece of news.

• pEMC
` � 1 or � 1: the unanticipated, explosive

nature of EMC jumps leads to a numerically de-
termined exponent that is either very large or very
small.

• Defining the asymmetry A of a jump from inte-
grated area under the pre- and post- region of the
profiles (see the Appendix for an operational defi-
nition) we expect |AEMC | > |ASEC |: the endoge-
nous class is characterised by a rather symmetric
pre-jump growth and post-jump relaxation, while
exogenous events are strongly asymmetric.

Naturally, we do not expect such a sharp distinction
between EMC and SEC at the level of individual events.
For example, there are cases where the news leaks before
announcement, leading to an increase of volatility ahead
of the jump. Conversely, some endogenous events may
show very little pre-jump activity since they can be trig-
gered by “fat-fingers”, by rogue algorithms or by some
exogenous piece of information not present in our news
database. Nevertheless, we will show that a relatively
robust classification can still be performed by only con-
sidering the shapes of the single volatility profiles.

Given the high level of noise in price movements, we
restrict our analysis to relatively high intensity clusters,
i.e. to those clusters made up of at least two jumps.
This leave us with a total of 10,491 clusters of jumps,
out of which 391 happened in proximity of news releases.
For each volatility profile, we perform a direct non-linear
least squares fit of Eq. 3 (see the Appendix for a detailed
description of the procedure) and we keep only those fits
with a median relative error on the coefficients smaller
than one. This leaves us with 5,461 SEC and 321 EMC
events. In Figure 4, we plot the empirical distribution of
the fitted values of p`, pr and A for both types of events.

First of all, we observe that the results we obtain are
remarkably consistent with the results on average profiles
reported in the previous section. Indeed, one finds that
the post-jump exponents pr tend to be larger for EMC
jumps than for SEC jumps; the difference |pEMC

` − 1| is
large. Moreover, we see that, whereas the values of ASEC
are clustered around zero, the peak of the distribution of
AEMC is clearly shifted towards negative values, as ex-
pected. Moreover, we notice that the median values of
the empirical pr distribution are, respectively, 0.43 and
0.7 for the SEC and EMC jumps, values that are ex-
tremely close to the relaxation exponents found for the
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FIG. 4: Results of the double power-law fitting on the instantaneous volatility profiles. The name of the best fitting param-
eter each plots represents can be read directly on the plots.

Logit Probit
p` -0.432∗∗∗ -0.199∗∗∗

(0.080) (0.036)

pr 0.469∗∗∗ 0.300∗∗∗

(0.131) (0.070)

A -1.897∗∗∗ -0.906∗∗∗

(0.211) (0.104)

const. -3.623∗∗∗ -2.001∗∗∗

(0.110) (0.052)

AUC 0.73 0.73
pseudo-R2

adj 0.069 0.070

Standard errors in parentheses. Two-tailed test.
∗∗∗ p < 0.001

TABLE I: Results of the regression of p`, pr and A against
the class of each volatility time series obtained by using the
news data. We use both a probit and a logit model to per-
form the regression.

aggregated volatility profiles, and again consistent with
the predictions of the Hawkes model 5 with θ = 0.3.

In order to confirm that exogenous and endogenous
events are genuinely characterised by different volatility
profiles, we use the values of p`, pr and A fitted on in-
dividual profiles to perform a regression on the given a
priori EM and SE classes using both a Probit and a Logit
model. The results of the two regressions are reported in
Table I. First of all we observe that the classification task
can successfully be performed using the three selected
features, as witnessed by the values of the Area Under
the Curve (AUC) and of the pseudo-R2.

Moreover we see that the three features (higher pre-
shock explosiveness, stronger asymmetry and faster post-
shock relaxation) predicted for the EMC (marked as 1 in
the regression) are indeed attested by the values of the
parameters associated with each regressor.

In order to show that the results obtained are genuine,
we randomly split our pool of jumps into a training and

FIG. 5: Average ARI scores of a K-nn exploration of the
space around each time series at different K levels. In blue
we report the results when each time series is considered in
its bare form, while in red we report the results obtained
when each time series is embedded in the space (p`, pr,A).
The bands are the upper and lower 0.01 quantiles of the
ARI distribution for a particular k when a bootstrapped
subsample of the endogenous class is performed to match
the number of elements in the exogenous class.

a test set (using a 80/20 ratio). We then train the re-
gression models of Table I using only the former set and
we test in on the latter (i.e. we test the model on unseen
data) by means of the AUC metric. We repeat the pro-
cess 1000 times. The average values of the out-of-sample
AUC coming from this experiment are 0.72 ± 0.03 for
both the Logit and Probit model, very close to the full
sample result.

To further corroborate that the three features we have
selected provide a meaningful low dimensional embed-
ding for the classification of jumps into EM and SE
classes, we explore the neighbourhood of each volatil-
ity profile by means of a distance weighted K-nearest
neighbors algorithm [58]. First, we perform a bootstrap
down-sampling of the SEC sample in order to have the
same number of endogenous and exogenous time series.
For each time series, we consider, using the euclidean dis-
tance, its first K neighbours and their (known) classes.
We then assign each time series to the class most repre-
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sented among thoseK neighbours. We repeat the process
for each time series.

We then compare the resulting classification with the
correct one. This comparison is performed using the so-
called Adjusted Rand Index [59] (ARI), which is 0 for
a random classifier. In Fig. 5 we plot the result of this
K-nn exploration at various values of K. We observe
that, for low K values, using the bare time series or its
lower dimensional embedding gives comparable ARI val-
ues, which are low but both distinguishable from 0. As
soon as we move away from K = 1 (and the so called
“curse of dimensionality” kicks in for the full time se-
ries) we see that the average ARI of the K-nn classifica-
tion becomes 0 for the full time series, while it rapidly
converges to 0.15 for the three dimensional embedding
we propose. This latter observation suggests that, in
the space (p`, pr,A), exogenous and endogenous jumps
are overlapping but distinguishable clusters of points and
therefore that SEC and EMC are distinguishable classes
also when the intrinsic noise of the systems is not filtered
out by an aggregation procedure.

To further strengthen our results, we have also per-
formed the very same analyses using a fitting procedure,
similar to the one suggested in Refs. [12, 13], and we
find qualitatively similar results (see the Appendix for a
detailed explanation).

V. CONCLUSIONS

Building upon the literature characterising the relax-
ation properties of financial systems after large exogenous
shocks, we have argued that such fingerprints can fruit-
fully be used to disentangle exogenous and endogenous
events, in close analogy with what has been observed in
other social systems where self-exciting effects play an
important role.

Using 5 years of minute by minute data collected from
the Limit Order Books of 300 different NYSE stocks, we
have shown that the average characteristics of clusters
of abnormally large price variations in close proximity of
a news release differ significantly from those occurring
without any triggering event in the news feed. In partic-
ular, we have shown how the average profiles of the in-
stantaneous volatility, past volatility and normalised past
trends all display specific fingerprints that discriminate
between exogenous and endogenous jumps. We have also
focused on individual volatility profiles and have shown
that, despite a modest signal to noise ratio, the parame-

ters of the fitted power-laws allow one to reconstruct the
classification provided by the news feed of large jumps
into the “self-excited” and news induced class.

Whereas the existence of exogenous and endogenous
types of shocks in financial systems may appear natural
to many, it should be stressed that it is still a matter
of intense skepticism in the current economic literature,
given the difficulty to reconcile this view with the endur-
ing Efficient Market Theory. We hope that the present
work will help convince researchers that, while markets
do indeed strongly and rapidly react to outstanding news,
small and seemingly unimportant fluctuations may lead
to a cascade of events that trigger large price jumps. In
fact, most jumps appear to be of such type – market
participants do endemically interact, both directly and
indirectly. The very existence of public sources of in-
formation – such as the price itself and the Limit Order
Book – leads to global interactions and destabilising feed-
back loops.

Our study can be seen as supporting a micro-structural
interpretation of the excess volatility puzzle [60]: if large
price jumps can appear out of the blue, as a result of
intrinsic market fragility, then it is not surprising that
prices are also too volatile. In fact, dissecting the mech-
anisms that lead to clusters of jumps using a multi-
dimensional Quadratic Hawkes processes calibrated on
tick-by-tick order data would be a very interesting follow
up which we leave for future work (see [61]).

Finally, while we are confident that our results have a
large degree of universality, extending them to other asset
classes, market places or timescales would certainly be
of interest and would bolster our claim that endogenous
price jumps fall in the wider class of self-excited events.
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Appendix A: Data handling and descriptive statistics

1. Financial data preprocessing

The full list of the stocks’ tickers included in our analysis is the following: TSLA, AMZN, AAPL, MSFT, FB,
NVDA, GOOGL, GOOGL, NFLX, AMD, ZM, BA, INTC, V, PYPL, ADBE, JPM, BRK/A, MA, BAC, CSCO, JNJ,
DIS, UNH, QCOM, CMCSA, COST, CRM, PG, XOM, GILD, MU, T, PEP, PFE, HD, ROKU, C, AVGO, BKNG,
WMT, TXN, MRNA, AMGN, CHTR, SBUX, WFC, VZ, MRK, UAL, CVX, KO, BYND, LRCX, MCD, REGN,
TMUS, DOCU, ABBV, ORCL, SQ, NKE, BMY, BIIB, ATVI, PTON, AMAT, EBAY, AAL, TMO, IBM, FISV,
VRTX, GS, NEE, ISRG, UBER, INTU, UTX, NOW, LLY, LULU, CRWD, UNP, ABT, TTD, HON, LMT, ILMN,
MMM, MS, MELI, TWTR, LOW, AMT, MDLZ, TGT, ADP, DXCM, ADI, EQIX, GE, BLK, EA, WDAY, ADSK,
DAL, MAR, CME, UPS, XLNX, CSX, DHR, CAT, SPGI, SPLK, FIS, TWLO, PM, CVS, NEM, AXP, COUP,
WYNN, ORLY, TDOC, WBA, FDX, BDX, SNAP, ECL, NVAX, TJX, ETSY, PLD, F, EXPE, MCHP, SCHW,
ROST, OKTA, KLAC, SWKS, ANTM, CI, DKNG, DDOG, DG, GM, MO, SPG, DLR, CMG, NKLA, ALGN, DUK,
CTXS, XEL, EL, TTWO, CCI, CL, COP, OXY, HUM, EXC, CTSH, SHW, VIAC, NOC, ALXN, WORK, BSX,
APD, ULTA, ZS, WDC, ENPH, MCK, D, SBAC, LUV, GPN, LYFT, ZTS, CLX, PENN, ICE, DE, W, SYK, USB,
DD, KMB, MXIM, SO, DLTR, KR, DPZ, PINS, MPC, MTCH, KHC, CDNS, MNST, SNPS, AEP, LHX, INO, ZG,
ITW, SEDG, NSC, PNG, TROW, FTNT, FSLY, IAC, IDXX, MET, EW, RNG, AKAM, CNC, CTAS, TIF, VLO,
GD, FAST, PANW, LVGO, MMC, EOG, PAYX, WM, HCA, AZO, PSX, MCO, PGR, QRVO, TER, CSGP, FCX,
TSCO, MDB, PCAR, GIS, TFC, LVS, ANSS, BAX, PSA, BK, CZR, VEEV, HPQ, VRSN, SRE, HLT, TDG, CMI,
CERN, ROP, VRSK, STZ, EMR, MGM, KMI, SGEN, CPRT, TRV, DHI, DOW, CVNA, COF, SYY, PLUG, INCY,
MSI, ALL, CHRW, AIG, FLT, AVB, FE, MSCI, PPG, BBY, RUN, BMRN, YUM, WMB, QDEL, ODFL, ED, LEN,
PXD, PAYC, NLOK, AMTD.

For each stock, we have a complete description of the first 6 price levels of its LOB. If we record a missing value
in the volumes or the prices at any price level which is not the best bid/ask, we simply consider the associated LOB
sparsity as missing and we exclude it from any calculation performed in the main text. If we record a missing value
at the best bid or at the best ask, we move the last available observation forward in time. If, in doing so, we obtain
an impossible price level (i.e. the price at the best bid/ask is lower/greater than the price at the second best or
greater/lower than the price at the best ask/bid), we mark as missing the associated mid-price. We also mark as
missing any mid-price associated with a minute when both the best bid and best ask prices are missing. We exclude
from our analysis any day with more than 25 consecutive missing mid-prices. We also exclude from our analysis the
days with more than 25 consecutive minutes without any recorded price movement and the days that do not have at
least 300 minutes with a recorded price movement (i.e. a return which is not 0 nor missing). To further discount the
possibility of detecting a spurious jumps due to an interval of missing values, we follow Ref. [62] and we rescale the
returns computed after a missing period with the square root of the period length. For example, given the price series
p0, p1,−,−, p4, p5, we construct the following log-returns series log p1

p0
,NA,NA, 1√

3
log p4

p1
, log p5

p4
.

2. Returns standardization

As mentioned in the main text, the log-returns rt time series in not suitable for the identification of price jumps
and must be standardize by passing from rt to Jt = rt

σtft
. As a jump-robust estimator of the local volatility, we use,

as suggested in Refs. [45, 46], the square root of the average realised bipower variation:

σ2
t =

π

2K

K∑
i=1

|rt−i| |rt−i+1| .

To estimate the periodicity component ft of the volatility, we perform a two step procedure based on Refs. [45, 46].
First of all, let’s define r̂t = rt

σt
. Let r̂1,i, . . . , r̂ni,i be the set of standardized returns having the same periodicity factor

as ri, i.e. the returns of a given stock, all recorded at the given time interval i. We define the periodicity factor fi of
the time interval i as:

fi =
Wi√

T−1
∑
jW

2
i−j

, where Wi =

√
1.081

∑ni
j Θ(−r̂2j,i + x)r̂2j,i∑ni
j Θ(−r̂2j,i + x)

.

Beside being normalised so that the squared periodicity factor has mean one over any local window of length T , fi is
a simple weighted standard deviation of the squared standardized returns r̂j,i. The weights are 1 for those squared
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standardize returns which are below a threshold value x and 0 otherwise. To estimate the periodicity we perform a
two-fold procedure. First we estimate f0i using x = 42, i.e. by excluding from the calculation those rescaled returns r̂t
more than 4 standard deviation away from the average. Then, using r̂t/fi (which are now very close to be normally
distributed), we perform a second periodicity estimation f1i with a threshold value x = 6.635, i.e. the 99% quantile
of the χ2 distribution with one degree of freedom. We then define the final periodicity factor ft as ft = f1t f

0
t . We

use as periodicity cycle one day and we therefore consider as having the same periodicity factor all the returns of a
stock which happen in the same minute of different days. In Panel (c) of Figure 6 we plot the estimated periodicity
factors of two different stocks. As it can be seen, the two-fold procedure we used puts a final higher factor on the first
15 minutes of the day and leaves the rest almost untouched. It is therefore less prone to detect jumps at the opening
of the trading day. We also remind that, to further discount for spourious effects due to the opening and closing,
we excluded from the jump pool those jumps detected in the first/last 15 minutes of the day. We also explored the
possibility of having a cycle of one week (i.e. we consider as having the same periodicity factor all the returns of a
stock which happen in the same minute of the same day of different weeks) but we do not find any sizable difference
in the final Jt.

To show that the final jump statistics Jt is indeed effective, in Panel (a) of Figure 6, we plot the autocorrelation
function of |Jt| for two different stocks. As it can be seen, Jt does a fairly good job in taking out from the volatility
most of its seasonal components as well as most of its internal dynamics. To give the reader a better understanding
of the jump statistics we use, in Panel (d), we plot the final probability density function of |Jt| with respect to that
of the absolute standard normal distribution. Finally, in Panel (b) we show how the unconditional jump probability
PJ resulting from Jt evolves over time for two selected stocks.

3. News data

In Panel (a) of Figure 7 we display the number of stock-specific news for each minute of the day. In Panel (b) and
(c), we respectively report the empirical distribution of news per stock and the average number of news per stock.

Appendix B: Power law fitting

In this section we detail the fitting procedure used in the main text as well as the secondary fitting procedure. First
of all it should be noticed that fitting power law scaling laws is a subtle topic that has been vastly debated in the
literature [63]. Here, we are trying to fit a double power law function to very noisy data, as such every step should
be done with extreme care.

The secondary procedure we adopt is similar to the one suggested in Refs. [12, 13]. We consider the following
functional form:

f1(t|N`, Nr, p`, pr, tc) = Θ(−t+ tc) log
N`

|t− tc|p`
+ Θ(t− tc) log

Nr
|t− tc|pr

(B1)

Note that no baseline volatility d is added to the fit. This is done in order to keep the problem analytically solvable.
To amend for this lack of a constant parameter, instead of fitting Eq. B1 to log |Jt|, we fit it against log |Jt|J0 , i.e.
against the instantaneous volatility profile normalised for the size of the first jump of a cluster. Doing so minimizes
the influence of the baseline volatility on the fit, normalises all the fits and does not modify the values of the best
fitting exponents of the power laws. Performing a least square fit of Eq. B1 on an empirical volatility series log

|Jti |
J0

means to solve the following optimization problem:

min
N`,Nr,p`,pr,tc

∑
i

(
f1(ti)−

|Jti |
J0

)2

.

Calling |ti − tc| = ∆ti, A`/r = logN`/r, L =
∑
i|ti<tc 1, R =

∑
i|ti>tc 1, s` =

∑
i|ti<tc log ∆ti, sr =

∑
i|ti>tc log ∆ti,

S` =
∑
i|ti<tc log2 ∆ti, Sr =

∑
i|ti>tc log2 ∆ti, D` =

∑
i|ti<tc

|Jti |
J0

, Dr =
∑
i|ti<tc

|Jti |
J0

, setting the partial derivatives
with respect to A`/r, p`/r to zero and solving the system of equations, gives:

p?` = D`
L− s`
s2` − LS`

, A?` = D`
s` − S`
s2` − LS`

, p?r = Dr
R− sr
s2r −RSr

, A?r = Dr
sr − Sr
s2r −RSr

.

Note that these values of the best-fitting parameters are all functions of the unknown t?c . To find the best-fitting
shock time t?c able to minimize the sum of the squared residuals, we perform a numerical grid search inside the open
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FIG. 6: (a) Autocorrelation functions of the absolute returns |rt| (black), of the absolute rescaled returns |rt|/σt (blue) and
of the absolute jump statics |Jt| (red) at different lags for TSLA and INTC stocks. (b) Evolution of the unconditional jump
probability for TSLA and INTC stocks. (c) Estimated periodicity factors ft for TSLA and INTC stocks. (d) Probability
distribution of the absolute value of the jump statics J for two selected stocks. In orange we display the pdf of the absolute
value of a standard normal distribution.



15

FIG. 7: (a) Number of news recorded for each minute of the day across all stocks and for two selected stocks. (b) Empir-
ical distribution of the number of news (recorded within each trading day) across stocks. (c) Empirical distribution of the
average daily number of news across stocks.

interval (tj − 1, tj), where with tj we indicate the time of the first jump of a cluster of jumps. The lest square fit
defined in this way is unique given an empirical time series Jti which is also uniquely defined by an interval [t1, tN ].
As such, we fix the fitting interval to a centered interval of length 160 minutes around tj.

After finding the optimal values of p`, pr and A, we perform with them both the logistic regression exercise and
the k-nn exploration detailed in the main text. As it can be seen from Table and Figure, the results we obtain are
consistent with the one reported in the main text.

The procedure adopted in the main text to find the best fitting parameters is a non-linear lest square performed
using the SciPy Python package. Fitting directly the functional form:

f2(t|N`, Nr, p`, pr, tc, d) =
N` Θ(−t+ tc)

|t− tc|p`
+
Nr Θ(t− tc)
|t− tc|pr

+ d ,
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Logit Probit
p` -15.06∗∗∗ -7.7379∗∗∗

(2.13) (1.04)

pr 21.53∗∗∗ 10.86∗∗∗

(1.99) (0.97)

A -16.91∗∗∗ -8.24∗∗∗

(1.73) (0.82)

const. -7.87∗∗∗ -3.97∗∗∗

(0.25) (0.12)

AUC 0.82 0.82
pseudo-R2

adj 0.198 0.198

Standard errors in parentheses. Two-tailed test.
∗∗∗ p < 0.001

TABLE II: Results of the regression of p?` , p
?
r and A against the class of each volatility time series obtained by using the

news data. We use both a probit and a logit model to perform the regression.

0 50 100 150 200
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0.00
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0.20
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reduced

FIG. 8: Average ARI scores of a K-nn exploration of the space around each time series at different K levels. In blue we
report the results when each time series is considered in its bare form, while in red we report the results obtained when each
time series is embedded in the space (p`, pr, |A|). The bands are the upper and lower 0.01 quantiles of the ARI distribution
for a particular k when a bootstrapped subsample of the endogenous class is performed to match the number of elements in
the exogenous class.

on the empirical volatility series |Jti | can become hard given the notoriously low signal-to-noise ratio of financial data.
As such, we fit its cumulative sum F2(ti) =

∑i
k=1 f2(tk) to Di =

∑i
k=1 |Jtk |. We restrict tc ∈ (tj − 1, tj) and d > 0.

Appendix C: Market-wide jump detection

In order to mark a cluster of jumps as market-wide, one possibility (not used in the main text) is to compare
the empirical number of clusters (of other stocks) it overlaps, against the one expected under a null-hypothesis of
cluster independence. In order to create a null model of independent clusters, we perform the following randomization
procedure. We call the beginning of a cluster, the time tl at which the first jump of a cluster is recorded. We call the
ending of a cluster, the time tL at which the last jump of a cluster is recorded. Finally, we refer to L = tL − tl as the
length of a cluster. Given a cluster of jumps C, we fix its position [tCl , t

C
L ] and we perform a numerical shuffling of

all the remaining clusters beginning and ending positions so that no cluster of the same stock can overlap, the length
of each cluster is preserved and no cluster may be moved outside the month/year it has been observed. Once this is
done, we compare at the 0.05 statistical significance the empirical number of cluster overlapping with C against the
ones expected under our null model. Whenever we observe a cluster C with an higher number of overlaps then those
accounted for by our null model, we mark it as market-wide.
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Appendix D: Definition of A

As a time asymmetry measure A we consider the following formula:

A =
A` −Ar
A` +Ar

, (D1)

where f∗(t) is the best fitting curve 3, A` =
∑tj−1
t=tmin

f∗(t) and Ar =
∑tmax
t=tj

f∗(t). Equation D1 simply compares the
area of the fitted curve before the shock time t∗c with the normalised area after the shock.
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