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IRIT,Université Paul Sabatier
boughane@irit.fr

Yannick Loiseau

IRIT,Université Paul Sabatier
loiseau@irit.fr

Henri Prade

IRIT,Université Paul Sabatier
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Abstract

‘Fuzzy pattern matching’ (FPM) has
been in use for two decades, in partic-
ular for querying fuzzy databases. FPM
returns two matching degrees: for each
piece of fuzzy data in the base, the pos-
sibility and the certainty that it matches
a pattern representing a flexible request,
are computed. The same idea has been
suggested in information retrieval for
distinguishing between keywords which
certainly apply for describing a docu-
ment, and those which are only optional.
A counterpart of FPM has been recently
proposed for estimating levels of match-
ing between a request and pieces of data
expressed with words which are related
through a qualitative ontology, where
approximate synonymy and specializa-
tion relations are encoded in terms of
certainty and possibility degrees respec-
tively. The paper outlines an extension
and an adaptation of these ideas to the
retrieval of multilingual documents.

1 Introduction

Querying processes in information systems may
take into account user’s preferences, by allowing
for flexible queries (e.g. [1]), which then enables
the system to rank-order results. Fuzzy set-based
approaches have been developed for representing
flexible queries, and can be applied to regular as
well as fuzzy databases. A tool, called ‘fuzzy pat-
tern matching’ (FPM)[4, 6] has been proposed in

the framework of possibility theory, which com-
putes to what extent it is possible and certain
that a piece of information satisfies a flexible re-
quest expressed by means of fuzzy sets represent-
ing the user’s preferences. This idea can be also
extended to information retrieval. Documents are
then described by keywords which are more or less
certainly, or only possibly, relevant to some ex-
tent. Similarly, the request may involve keywords
which are more or less compulsory, as well as oth-
ers which are only optional [12].
In FPM, each label appearing in the request or
in the database is represented by a fuzzy set.
Fuzzy sets defined on the same attribute domain
can be compared, by means of possibility and
necessity measures. Recently, a qualitative ap-
proach has been proposed where these features
are adapted to handle symbolic labels [10]. The
intended purpose of the approach is to deal with
queries stated in terms of linguistic labels, which
may be weighted for expressing preferences. The
matching between the labels in the request and
the data is a matter of semantic similarity com-
puted by means of a weighted network associated
with each attribute domain. Thus, the labels are
no longer explicitly associated with fuzzy set rep-
resentations, but their semantic relationships are
still assumed to be estimated in terms of the two
above-mentioned measures.
The purpose of this paper is to apply the
above ideas to multilingual information retrieval
where documents are represented by extracted
terms and request involves weighted conjunctions
and/or disjunctions of keywords. Section 2 pro-
vides a short background on FPM. Section 3 sum-
marizes the handling of symbolic labels in qual-
itative pattern matching. Section 4 discusses its



application to multilingual information retrieval
and illustrates it on an example.

2 Fuzzy Pattern Matching

A pattern is a set of elementary requirements en-
coded by labels of properties referring to attribute
domains. The basic idea is to attach to each label
of a pattern the membership function of a fuzzy
set restricting the values which are more or less
compatible with the meaning of the label. These
values belong to the domain of the attribute which
the label refers to. For instance, the label tall

refers to a scale of heights, and corresponds to a
fuzzy subset of this domain, which depends on the
context. In place of a numerical domain, we may
have a discrete set of elements as well. Besides,
data are also represented by lists of labels whose
components are associated with fuzzy sets. These
fuzzy sets are viewed as possibility distributions
which model the imprecision pervading the data,
and restrict the more or less possible values of
the considered attributes. Such lists contain pos-
sibly ill-known attribute values pertaining to the
description of objects. Namely, a component in
a list refers to only one (ill-located) value of the
domain of the concerned attribute (which is sup-
posed to be single-valued).
Thus, a fuzzy pattern represents an imprecisely
described class of objects which are looked for.
Namely, let T and T ′ be respectively a pattern
label (i.e. a requirement) and an item component
pertaining to the same single-valued attribute (i.e
a piece of data), which are to be compared. T
and T ′ refer to fuzzy sets of the same domain U
conveying their meanings. Let µT be the mem-
bership function associated to label T and πT ′ be
the possibility distribution attached to T ′. Both
are mappings from U to [0, 1]. Let u be an ele-
ment of U . Then µT (u) is the grade of compat-
ibility between the value u and the meaning of
T . Namely, µT (u) = 1 means full compatibility
with T and µT (u) = 0 means total incompati-
bility with T . By contrast, πT ′(u) is the grade
of possibility that u is the value of the attribute
describing the considered item. T ′ is a fuzzy set
of possible values (only one of which is the gen-
uine value of the ill-known attribute), while T is a
fuzzy set of values more or less compatible with

the preferences expressed by the user. For in-
stance, πT ′(u) = 1 means that u is totally possi-
ble (there may exist distinct values u and u′ such
as πT ′(u) = πT ′(u′) = 1), while πT ′(u) = 0 means
that u is totally impossible as an attribute value
of the object to which the item pertains. Here,
µT and πT ′ are supposed to be normalised, i.e.
there is a value which is totally compatible with
T , and a value totally possible in the range T ′.
Two scalar measures estimate the compatibility
between a pattern element T and its counterpart
T ′ in the considered piece of data, namely a degree
of possibility of matching Π(T ; T ′) and a degree
of necessity of matching N(T ; T ′) respectively de-
fined by [4]:

Π(T ; T ′) = supu∈U min(µT (u), πT ′(u)) and
N(T ; T ′) = infu∈U max(µT (u), 1 − πT ′(u)).

The basic asymmetry of the pattern-data match-
ing is preserved by the second measure, since N
computes a degree of inclusion between fuzzy sets,
while Π estimates the non-emptiness of an inter-
section. The atomic measures of possibility and
necessity are aggregated separately in order to ob-
tain two global measures between the whole pat-
tern and the whole item. When the pattern ex-
presses a conjunction of elementary requirements
“T1 and . . .Tn”, this aggregation is performed us-
ing the min operation, and preserves the respec-
tive semantics of the measures in terms of possi-
bility and necessity [6].

3 Ontology-Based Matching

FPM estimates the possibility and the necessity
that the meanings of two labels represented by
fuzzy sets coincide. However, such a representa-
tion is not always available for computing match-
ing degrees. Measures of semantic similarity be-
tween words have been thoroughly studied in the
information retrieval literature, taking advantage
of distances between nodes in a taxonomy, or
based on common probabilistic information con-
tent (e.g. [13]). Alternatively, one commonly in-
vestigated strategy when a user’s query fails (be-
cause data encoded in perfectly identical terms
cannot be retrieved), is to generate approximately
similar queries in place of the initial one (e.g [2])
on the basis of ontologies. Generally speaking,



these concerns could also be related to the “com-
puting with words” research trend [14]. Keeping
inspiration from FPM, we now summarize a re-
cent approach for evaluating approximate simi-
larities, based on semantic networks weighted in
terms of possibility and necessity degrees.
Let’s consider a database whose items are de-
scribed by a set of identified attributes i = 1, n.
Let Ti be the vocabulary relative to the attribute
i. Let us assume first that each attribute value
T ′

i is given by a single label or term t′ij , i.e.
T ′

i = {t′ij}. Since each attribute contributes to
the information description, a piece of data is a
conjunction of labels, which can be symbolically
written: T ′ =

∧
i∈[[1;n]] T

′

i .
In the same way, requests are conjunctions of
weighted disjunctions (i.e. fuzzy sets) of labels
pertaining to the same vocabulary. The request
is of the form: R =

∧
i∈A(R) Ti, with Ti =

∨
j∈R(Ti) λij/tij where A(R) is the set of attributes

involved in the query, R(Ti) is the set of the terms
involved in R for attribute i, and λij is the level of
preference of using tij for describing the request.
However, using compound values , one can define
new concepts that are not in Ti for describing im-
precise or fuzzy queries.
The terms are related through “possibilistic on-
tologies” Oi i=1,n [7]. Relations in Oi’s are
modelled by necessity and possibility degrees :
Π(tij , tik) = Π(tik, tij) assesses to what extent tij
and tik can refer to the same thing. N(tij , tik)
assesses to what extent it is certain that tik is
a specialization of tij . Some important prop-
erties can be deduced from the characteristic
properties of possibility and necessity measures:
Π(tij , tij) = N(tij , tij) = 1 and Π(tij , tik) =
Π(tik, tij), Π(tij , tik) ≥ N(tij , tik) (specialization
supposes that the meanings overlap), N(tij , tik) >
0 ⇒ Π(tij , tik) = 1 (if it’s somewhat certain, it has
to be fully possible). Ontology’s relations can be
extended using these properties together with the
two following ones:

N(tij , tih) ≥ min (N(tij , tik), N(tik, tih)) , (1)

which expresses the transitivity of the specialisa-
tion, together with the “hybrid transitivity” [5]:

Π(tij , tih) ≥ N(tij , tik) ∗ Π(tik, tih). (2)

with a ∗ b = b if b > 1− a and a ∗ b = 0 otherwise.
Request evaluation consists in retrieving all

data T ′ such that Π(R, T ′) or N(R, T ′)
are non zero, which is made by computing
Π(R, T ′) = mini=1,n πi, N(R, T ′) = mini=1,n νi,
with πi = maxj∈R(Ti) min(λij , Π(tij , t

′

ik)),
νi = maxj∈R(Ti) min(λij , N(tij , t

′

ik)), for possibil-
ity and necessity respectively, where T ′

i = {t′ik}
for each i. Results are sorted first according
to the decreasing values of N(R, T ′) and then
according to the decreasing values of Π(R, T ′) for
T ′ sharing the same value of N(R, T ′) [10].
Moreover, a weight ωi can be added to each
fuzzy set Ti of terms pertaining to attribute i
in the request, in order to express the relative
importance of each attribute in the query. This
leads to [6]:
Π(R, T ′) = mini∈R(i) max(1 − ωi, πi),
N(R, T ′) = mini∈R(i) max(1 − ωi, νi).
Lastly assume data are imprecise. Attributes
values are then disjunctions of labels weighted
with priority degrees. So the attribute value T ′

i is
a fuzzy set of labels: T ′

i =
∨

j∈D(T ′

i
) λ′

ij/t
′

ij where

D(T ′

i ) is the set of terms involved in the attribute
value, and λ′

ij ∈ [0, 1] is the term’s weight. We
then have to use extended expressions [10]:
πi = maxj∈R(Ti) min(λij , mink∈D(T ′

i
)(λ

′

ik, Π(tij , t
′

ik))),
νi = maxj∈R(Ti) min(λij , mink∈D(T ′

i
) nik)

where nik = max(1 − λ′

ik, N(tij , t
′

ik)).

4 Multilingual Information Retrieval

Applying the ideas of section 3 to multilingual in-
formation retrieval (IR) systems raises some non-
trivial issues. We first restate what multilingual
IR is about, before defining a multilingual ontol-
ogy and its use in a symbolic pattern matching
procedure. The purpose of an IR system is to
retrieve relevant documents in a collection. Rel-
evance is defined according to a user query, typ-
ically a list of keywords, may be weighted, and
aggregated using operators like and and or. Doc-
uments are stored as weighted lists of their sig-
nificant words. The weight of a term ti is esti-
mated by combining the term frequency in the
document, that is the number tfij of occurrences
of ti in document Dj , and the inverse document
frequency of the term: idfi = log(d/dfi), where dfi

is the number of documents containing ti and d is
the total number of documents. idfi can be con-
sidered as the entropy of ti, that is the informa-



tion it gives. A document Dj is thus represented
by: Dj = {ρij/ti, i = 1, n} where n is the total
number of terms in the ontology and ρij is the
weight of the term ti in document Dj , computed
from tfij and idfi, often as their product [8]. In
multilingual IR system, documents are in differ-
ent languages and whatever the query’s language,
the system has to retrieve the relevant documents.

4.1 Multilingual Ontology

As just seen, and unlike in section 3, data repre-
senting documents are lists of weighted keywords.
As a consequence, we have only one ontology,
since there is only one domain for keywords. The
ontology is used to define a controlled vocabulary
which gathers valid terms for document indexing
and for expressing requests. In the following, we
will suppose that every term in the query and in
the document index are in the ontology. By mul-
tilingual ontology we mean the following, based
on EuroWordNet [11]. A “synset” is a set of syn-
onymous labels, that is a clique of terms such as :
Sh = {thi ∈ T } with ∀(i, j), thi 6= thj ,
Π(thi, thj) = 1 and N(thi, thj) = N(thi, thj) = 1.
i.e. the terms in a synset are supposed to be per-
fect synonyms.
Each term belongs to only one synset and w.r.t.
(1) and (2) is synonymous of any other term in
the synset, considering that a term tij is charac-
terised by its meaning, and not only its label (in
case of polysemic terms). Possibility and neces-
sity relations for assessing approximate synonymy
and specialisation are defined between synsets,
as between the nodes of an ontology in section
3. A multilingual ontology is composed of a set
of ontologies in the different languages. Synsets
of different ontologies are related to each other
with necessity and possibility degrees equal to 1
for modeling equivalences of terms between the
language (Fig. 1). As in the monolingual ontol-
ogy, the inter-lingual relations can be expanded
using (1) and (2). Since these properties are lan-
guage independent, we can deduce the matching
of a query in some language with a document
in any other language. However, both ontolo-
gies in two languages can have a different ar-
chitecture, as in Fig. 1. Indeed, in this exam-
ple, synset Sa can be translated into S ′

a, and Sc

into S′

c. But Sb has no translation defined in
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1
0.60.3

0.3

ABN(A,B):
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ABΠ(A,B):  

1
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S'a
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Figure 1: Multilingual ontology

the ontology. However, using transitivity prop-
erty, the possibility and necessity relations be-
tween Sb and S′

a can be evaluated. Namely, we
have N(Sa, Sb) = 1 and N(S′

a, Sa) = 1. We can
deduce that N(S ′

a, Sb) = 1, but we have no infor-
mation about N(Sb, S

′

a).

4.2 Possibilistic Indexing

To apply the symbolic pattern matching as
defined in section 3, we have to estimate the rele-
vance of terms in the request w.r.t. the contents
of the document, using possibility and necessity
degrees. If these degrees can be estimated w.r.t.
the terms in the document, using the ontology,
request evaluation can be performed.

To be homogenous with the ontology repre-

0.6

1 1

1

1
0.6 0.6

ABN(A,B):

synset:

ABΠ(A,B):  

0.3

0.3
0.3

Document

Figure 2: Document integrated in the ontology
using possibility an necessity

sentation, a possibility and necessity degree of
matching between the document and the synsets
must be evaluated taking into account the weights
of the terms in the document. Let us consider
each document as a fuzzy set (e.g. [3, 9]). A
weight ρhij of a term thi in a synset Sh w.r.t.
document Dj is thus the grade of compatibility
between thi and Dj : ρhij = µDj

(thi). Given a
synset Sh = {thi, i = 1, p}, we want to estimate
to what extent the synset describes the document



Dj , i.e. Π(Sh, Dj) and N(Sh, Dj). As the terms
in the synset are synonymous, we assume that
each of them can describe the document as well.
Note that in classical IR systems, synonyms are
often aggregated with an or operator to expand
the query. We have Π(Sh, Dj) = maxi(Π(thi, Dj))
and N(Sh, Dj) = maxi(N(thi, Dj)). See Fig.3 .
Considering that the weight ρhij is an intermedi-

th1

th2

th3

th4

Sh

Dj

ρh1j

ρh3j

Π(Sh,Dj)

N(Sh,Dj)

Figure 3: Linking a document to the ontology

ary degree between possibility and necessity that
the term describes the document, the possibility
and the necessity degrees will be estimated as
[12]:
if ρhij < 1

2 , Π(thi, Dj) = 2ρhij and N(thi, Dj) = 0
if ρhij ≥ 1

2 , Π(thi, Dj) = 1 and N(thi, Dj) =
2ρhij − 1.
Fig.4 shows an example of partial ontology
between French and English. Documents are

Computer science

Data Management,!

Information management

Database, DB

Artificial Intelligence,AI

Machine Learning,ML

Informatique

Bases de données,BD

Intelligence Artificielle, IA

Apprentissage

ABN(A,B):

ABΠ(A,B):  

Translation:

1

1

0.8

1

1 1

1

Figure 4: Example ontology

indexed using this ontology and statistical
measures. Let’s consider an English docu-
ment D, with the index shown in Table 1.
This suggests that this document deals with

Table 1: Document Index
Term ρ Π N

Computer Science 0 0 0
Database 0.6 1 0.2
Artificial Intelligence 0.2 0.4 0
AI 0.7 1 0.4
Machine learning 0.8 1 0.6

artificial intelligence, more specially with ma-

chine learning, applied to databases. Notice
that despite “artificial intelligence” and “AI”
have exactly the same meaning (they are in
the same synset), their weights are different,
since from a statistical point of view, the term
“AI” is more frequent than “artificial intelli-
gence” (the abbreviation is widely used instead
of the full term). Thus, the (Π, N) degrees
with the synset {ArtificialIntelligence, AI}
is (max(0.4, 1), max(0, 0.4)) = (1, 0.4). The
Computer Science degree is 0 due to statistical
reasons, even if the document subject deals with
computer science.

4.3 Query Evaluation

Evaluating a query means estimating to what
extent the expression of the query provides a
good description for the document, or at least
a part of it. Let’s use the above example to
illustrate the evaluation, considering the query
in French: R = BD ∧ IntelligenceArtificielle
that is DB ∧ AI in English. We have
Π(BD, Database) = N(BD, Database) = 1 since
they belong to synsets in one-to-one correspon-
dence. Using (1) and (2), we can say that
N(BD, D) = 0.2 and Π(BD, D) = 1. In
the same way, Π(IntelligenceArtificielle, AI) =
N(IntelligenceArtificielle, AI) = 1. But to
match D, we have to consider both the synset
{ArtificialIntelligence, AI} and the singleton
{Machinelearning}. Indeed, even if the term
“Artificial Intelligence” is less frequent than “Ma-
chine learning”, we know that Machine learning

(the concept) IS in Artificial Intelligence, thus
the document D can be relevant. Evaluating
{ArtificialIntelligence, AI} is obvious since it is
the same case as BD and Database (i.e (Π, N) =
(1, 0.4)), but for {Machinelearning} there is two
ways to evaluate possibility and necessity values,
using transitivity: Intelligence Artificielle → AI

→ Machine Learning gives: N(IA, ML) = 1 and
Π(IA, ML) = 1.
Intelligence Artificielle → Apprentissage → Ma-

chine Learning gives: Π(IA, ML) = 1 and
N(IA, ML) ≥ 0.8 . In addition, Π(ML, D) = 1
and N(ML, D) = 0.6. This gives us degrees
using Machine Learning path: Π′(IA, D) = 1
and N ′(IA, D) = 0.6. Since both values (direct



IA, and using expansion through Machine Learn-

ing) are possible, they are considered as disjunc-
tive (as it is usual in IR systems) and we keep
the max values between (1, 0.6) and (1, 0.4), thus
Π(IA, D) = 1 and N(IA, D) = 0.6.
We have supposed here that more specific docu-
ments (i.e containing more specific terms) are also
relevant. If the user only wants to retrieve general
documents, it should be possible to disable spe-
cific expansions, or to weight expanded results to
reflect user’s preferences. Note that only the score
degrees from Machine Learning influence the re-
sult, as if the query were BD∧ML (for this docu-
ment), since ML is actually IA. Identically, if the
query where Informatique, the score wouldn’t
have been null, expanding the query.
The final query score will be: Π(R, D) =
min(Π(BD, D), Π(IA, D)) = 1 and N(R, D) =
0.2. Several documents can then be sorted like in
[10]. This simple example can be expanded using
importance weights, as in section 3.

5 Concluding remarks

This paper is preliminary in many respects. Issues
to be developed include: i) the assessment of the
necessity and possibility degrees, especially in the
ontology of each language, ii) the handling of the
importance of keywords in the request, iii) the in-
tegration of classical FPM techniques for dealing
with attributes such as date, size of documents,
etc., iv) the modeling of the genuine focus of the
request excluding documents which are too gen-
eral or too specific. Moreover, the ideas presented
here need to be tested in an implementation.
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