N

N

Coherent structures in fully-developed pipe turbulence
Ashley Willis, Yongyun Hwang, Carlo Cossu

» To cite this version:

Ashley Willis, Yongyun Hwang, Carlo Cossu. Coherent structures in fully-developed pipe turbulence.
CFM 2009 - 19¢éme Congres Francais de Mécanique, Aug 2009, Marseille, France. hal-03378720

HAL Id: hal-03378720
https://hal.science/hal-03378720

Submitted on 14 Oct 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-03378720
https://hal.archives-ouvertes.fr

Coherent structures in fully-developed pipe turbulence

A. P.WiLLis, Y.HwANG, C. Cossu
Laboratoire d’Hydrodynamique (LadHyXIicoIe Polytechnique, 91128 PALAISEAU (France)

Résune :

Un profil moyen turbulent est prescrit dans une conduitenclylgue, en aéquation avec les observations éximentales.
Nous consiélrons ensuite la nature des perturbatiansetécoulement synétique. Le calcul des croissances optimales
prédit deux types de structures, as§ed respectivement aux structures de proche-paroi et dedgiechelle. Un ex-
cellent accord quantitatif est tro@vavec lesé&sultats exprimentaux quara la longueur d’onde transversale. Laponse
harmonique estgalemenétudée, et la croissance lgaire obserge compageé des simulations nueniques directes de
turbulence forée. Malgé de I'hypotlese simple de type ‘Eddy viscosity’, cette approchedlire pédit efficacement la
croissance spectaculaire des modes de grautelle au coeur deé&coulement.

Abstract :

A turbulent mean profile for pipe flow is prescribed which elgsmatches experimental observations. The nature of
perturbations superimposed upon this profile is then carsidl Optimal growth calculations predict two distinct stes

of structures, clearly associated with near-wall and lagmle structures. Quantitative correspondence of thegjise
wavelength of wall-structures with experimental obséorat is very good. The response to harmonic forcing is also
considered, and the linear growth tested with direct nugersimulation of forced turbulence. Despite the very sempl
eddy viscosity assumption, this linear approach predicl the surprisingly large growth of outer-scale modes ie th
bulk flow.

Mots clefs : Turbulence, Optimal growth, Pipe flow

1 Introduction

The discovery of nonlinear solutions to the Navier—Stolgsions for Pipe and Couette geometries has led to
significant progress of late. For pipe flow, these travelimye solutions were discovered by adding a forcing to
the Navier—Stokes equations to induce axially indepenadiat As the forcing is increased a three-dimensional
wave instability arises. Three-dimensional states cduéd e traced back, using continuation methods, to the
original equations upon reduction of the forcing [1, 2]. '8hsuccessful at finding the first nonlinear states,
the nature of this method leads to solutions that are onlygel-sustained. As a consequence, the majority
of known solutions (of the sinuous variety) were shown to baracteristic of the boundary between laminar
and turbulent states. Initial states either side of thisngiawy develop into either turbulence or relaminarise
[3, 4, 5, 6]. Only later were higher branches found (being &lghly symmetric) with higher friction factors
typical of turbulence [7]. The highly organised structufetese states, however, does not appear to be typical
of turbulence, nor do they display the strongly deceleratwé of the mean flow. It is perhaps more intuitive,
therefore, that one should begin with perturbations toresn flow.

2 Method

Here we consider perturbations to a close approximatiohdariean flow profile for pipe flow. The equations
are normalised by the bulk flow speé&@ and the radius of the pipB. Reynolds numbers are definétd =

2UyR/v andRe, = u,R/v, where the wall velocity., = (v 8TU(r))§ |—r is derived from the mean stress
at the boundary. The mean profll§r) is inverted from the,z-averaged Navier—Stokes equations

Re

where the normalised effective viscosityus(y) = 1 + E(y), andy = 1 — r is the distance from the pipe
wall. The radially dependent eddy viscosity is prescrilj&§i after [9]),
1
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We have updated the fitting parametdrs = 27 andx = 0.42 to be compatible with the observations of [10]

and different scalings lead to the adjusted paramdtetsRe /2, B = 2 B.

Perturbationsy, to the mean profile are first considered in the linear frantew®he Navier—Stokes equa-
tions with radially-dependent viscosity are linearised@d/ (y) ; note that the perturbations abdutare also
subject to the elevated effective viscosity. Rather thanugual progression to Orr—Sommerfeld—Squire form,
eigenvalues and eigenvectors are found directly from thesliised primitive variable system with explicit so-
lenoidal condition. Given the eigenfunctions and eigemes) using standard methods [11] one may calculate
the optimal growth,

A [lu()| _
G(a,m;t) = max o] and Gpax = max G(t). (3)

The wavelengths of the perturbations are= 27 /a (streamwise) andy = 27/m in azimuth (sp~anwise).
Harmonic forcing is also considered in the following dissios. For a forcing of the fornf(t) = fel“?, a
harmonic response(t) = @ e“* is expected. The optimal response is then

R(a,m;w) = max M and Rpax = max R(w). (4)
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The eigenfunction calculations were performed with up\to= 200 points onr € [0, 1] using a Chebyshev
collocation method. The number of (non-infinite) eigenealplus vectors obtained, being the number of de-
grees of freedom, i8 N —3. Of these, 95% were kept for the optimal growth analysishathiighesze = 10°,
for which Re, = 19200, the power spectral drop-off of the optimal mode was @frders of magnitude (for
both ‘inner’ and ‘outer modes, see below).

3 Results

The structure of optimal modes in strongly sheared flows i laeown to reflect the lift-up mechanism,
whereby rolls aligned with the flow raise slow fluid from theumalary into the faster flow, leading to extended
streaks. While shearing is certainly present in the tumiflew, it is subject to a significantly larger effective
viscosity,vr(r).

Optimal growths relative to the turbulent profile (figure 1¢ aignificantly smaller than for the laminar case,
although the greatest growth still occurs for the largestieva = 1. For the turbulent case, however;
reduces to the laminar value as one approaches the wall,ramdhgof similar magnitude is also possible in
the boundary region, provided that the length scale is netisall that diffusion again dominates.

This secondary peak, for which rolls are located close toméakk is shown in figure 2 to scale in ‘inner’ units,
where in the absence of any other length scale, all units)eed from the stress at the wall and the kinematic
viscosity,r = rTv/u,, t = ttv/ul. It is clear from the figure that such scaling is appropriathigh Re.,
where the(7 .« collapse with a peak fok(j = 27 Re,/m at92.

This peak in spanwise wavelength compares very favourallyexperimental results. Using apparatus flush
with the floor of the Utah desert [12] using smoke visualimatia peak at was found at™ = 93, for a Re,

as large ad.5 x 10°. In [13] similar values £10) were observed foRRe, in the rangel000 to 5000. Our
predicted value\™ = 92 is in excellent agreement. In the present study, this seayridner peak is observed
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FIG. 1 —Left: Optimal growth at moderate Reynolds numbers. While thé jegor m = 1, it is clear that for

Re = 5300
Re, =187

Gmax

Re = 10°
Re, = 19200

largera only modes of largem persist.Right: At large Re a distinct peak appears at large
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FIG. 2 —Left: Aninner peak occurs for spanwise wavelenggh: 92. Right: The timeT* s.t. G(T) = Gax-

FiG. 3 — Structure of the optimal inner-modeff) and its responsei¢ht). Each is normalised by the maximum
of |u|. The initial condition consists of rolls, and the resporssdaminated by streaks.

to be distinct from the large-scale peak & 1) for Re. of order1000, and/\g+ being immediately close to the
above value from the outset. Indeed, at lov#er., far before the peak becomes distinct for the- 0 case, it

is clear that modes of finite streamwise extent select simjja

In figure 3 the optimal initial condition and response aretteld for the casére = 5300 (Re, = 180) for
m=12 ()\; ~ 98). The rolls are typical of those of the wall mode at much gre&t.

The growth of an initial condition is all very well, but how ®ais it to invoke such an initial condition ? The
response to streamwise independent forcing is plottedaxemge of harmonic frequencies,in figure 4. The
steady forcingw = 0, is most effective at generating a response for this casde\fis is not true for non-zero
a, the peak response remained smaller than that for the wimlependent case in all our calcuations. The
code described in [14] has been modified to include radiadyesthdent viscosity. The extreme difference in
response to forcing differemt modes was verified by timestepping relative to the presdnbean profile. The
structure of the optimal forc¢, however, is essentially identical to that of the optimaivgth initial condition

ug (see figure 3); similarly for their respective responses.

Unlike the transient growth, steady forcing provides a @ment platform for testing the model, whereby
statistical measures averaged over much longer times magdwenulated. Consider the timestepped velocity
field, u(t), obtained from direct numerical simulation of the origilddvier—Stokes equations subject to a
forcing f. Thenu,(t) = (u(t) - u) u is the component ok(t) in the direction of the the expected normalised

response field:. The observed quantityu(¢)||/|| f|| may be compared with the expected respoRggx.
Figure 5 shows the response of the turéulent fleRwv = 5300, computed in a domain of lengttD radii
(AF ~ 1800) at a resolutior{(60, +64, +64) before dealiasing. The calculations clearly demonstteelarge
amplification may occur, as predicted by the model. Note tidabfor intermediate forcing, drag reduction is
possible.

4 Conclusions

The model has been shown to successfully predict large grawtgood quantitive agreement, despite the
assumptions of linearity upon a turbulent state and thedpat eddy viscosity assumption. It shows the huge
response to forcing of large scale modes, and accuratetiigtsehe peak spanwise Wavelenglkg, = 92, of

the near-wall modes.

Analogue studies for optimal growth in turbulent channés, [16], the boundary layer [17] and the Couette
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FIG. 4 — Response to harmonic forcinge, = 19200. Fora = 0, steady forcing is largest.(= 0). The outer
mode (n = 1) is many orders more responsive for all moderatihan the inner moden{ = 1314).
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Fic. 5 — Response of a turbulent flow to forcinge, ~ 180, o« = 0,m = 1 and||f]|? = 1076,107%,10~%.
Here|| - || = 1 [| - |?dV. The expected®ax is 280. A similar order value is achieved fgif||> = 1076
and decreases as the force increases. The amplitude oftiveeih flow is already as large as 5 to 10% of the
mean flow for all cases. The forcing has a significant affecthenskin-friction coefficienC; = 2(u,/Us)?,

the horizontal line being the unforced average.



flow [18], all show close spanwise wavelengths for the walldendt is surprising, however, that the optimal
growth calculations suggest small growth of the wall modEspite clear observational evidence that such
structures exist.

The results from harmonic forcing, on the other hand, sugiped the large scale modes are easily excited.
Such relative difficulty of forcing motion on small scalesl@nsequences for control of turbulence. It clearly
requires considerable effort to locally manipulate stines in the neighbourhood of the wall. It is possible
that it is more straight forward to control indirectly viaréing of larger, or possibly even very large scales,
taking advantage of the much greater linear response. thdeeh a possiblity has been shown in principle for
channel flow [19], and is verified here for a significantly krgatio of ‘large’ (imposed roll) to ‘small’ (streak
spacing) scales. The nature of suppression by a largesaaien deserves further investigation.
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