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Coherent structures in fully-developed pipe turbulence

A. P. WILLIS , Y. HWANG , C. COSSU

Laboratoire d’Hydrodynamique (LadHyX),École Polytechnique, 91128 PALAISEAU (France)

Résuḿe :
Un profil moyen turbulent est prescrit dans une conduite cylindrique, en ad́equation avec les observations expérimentales.
Nous consid́erons ensuite la nature des perturbationsà cetécoulement synthétique. Le calcul des croissances optimales
prédit deux types de structures, associées respectivement aux structures de proche-paroi et de grandeéchelle. Un ex-
cellent accord quantitatif est trouvé avec les ŕesultats exṕerimentaux quant̀a la longueur d’onde transversale. La réponse
harmonique est́egalement́etudíee, et la croissance lińeaire observ́ee compaŕeeá des simulations nuḿeriques directes de
turbulence forćee. Malgŕe de l’hypoth̀ese simple de type ‘Eddy viscosity’, cette approche linéaire pŕedit efficacement la
croissance spectaculaire des modes de grandeéchelle au coeur de l’écoulement.

Abstract :
A turbulent mean profile for pipe flow is prescribed which closely matches experimental observations. The nature of
perturbations superimposed upon this profile is then considered. Optimal growth calculations predict two distinct classes
of structures, clearly associated with near-wall and large-scale structures. Quantitative correspondence of the spanwise
wavelength of wall-structures with experimental observations is very good. The response to harmonic forcing is also
considered, and the linear growth tested with direct numerical simulation of forced turbulence. Despite the very simple
eddy viscosity assumption, this linear approach predicts well the surprisingly large growth of outer-scale modes in the
bulk flow.

Mots clefs : Turbulence, Optimal growth, Pipe flow

1 Introduction
The discovery of nonlinear solutions to the Navier–Stokes equations for Pipe and Couette geometries has led to
significant progress of late. For pipe flow, these travellingwave solutions were discovered by adding a forcing to
the Navier–Stokes equations to induce axially independentrolls. As the forcing is increased a three-dimensional
wave instability arises. Three-dimensional states could then be traced back, using continuation methods, to the
original equations upon reduction of the forcing [1, 2]. Whilst successful at finding the first nonlinear states,
the nature of this method leads to solutions that are only just self-sustained. As a consequence, the majority
of known solutions (of the sinuous variety) were shown to be characteristic of the boundary between laminar
and turbulent states. Initial states either side of this boundary develop into either turbulence or relaminarise
[3, 4, 5, 6]. Only later were higher branches found (being also highly symmetric) with higher friction factors
typical of turbulence [7]. The highly organised structure of these states, however, does not appear to be typical
of turbulence, nor do they display the strongly deceleratedcore of the mean flow. It is perhaps more intuitive,
therefore, that one should begin with perturbations to thismean flow.

2 Method
Here we consider perturbations to a close approximation to the mean flow profile for pipe flow. The equations
are normalised by the bulk flow speedUb and the radius of the pipeR. Reynolds numbers are definedRe =

2UbR/ν andReτ = uτR/ν, where the wall velocityuτ = (ν ∂rU(r))
1

2 |r=R is derived from the mean stress
at the boundary. The mean profileU(r) is inverted from theθ,z-averaged Navier–Stokes equations
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where the normalised effective viscosity isνT (y) = 1 + E(y), andy = 1 − r is the distance from the pipe
wall. The radially dependent eddy viscosity is prescribed ([8], after [9]),
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We have updated the fitting parametersA+ = 27 andκ = 0.42 to be compatible with the observations of [10]
and different scalings lead to the adjusted parametersR̂ = Re/ 2, B̂ = 2B.
Perturbations,u, to the mean profile are first considered in the linear framework. The Navier–Stokes equa-
tions with radially-dependent viscosity are linearised aboutU(y) ; note that the perturbations aboutU are also
subject to the elevated effective viscosity. Rather than the usual progression to Orr–Sommerfeld–Squire form,
eigenvalues and eigenvectors are found directly from the linearised primitive variable system with explicit so-
lenoidal condition. Given the eigenfunctions and eigenvalues, using standard methods [11] one may calculate
the optimal growth,

G(α,m; t) = max
u0

||u(t)||

||u0||
and Gmax = max

t
G(t). (3)

The wavelengths of the perturbations areλz = 2π/α (streamwise) andλθ = 2π/m in azimuth (spanwise).
Harmonic forcing is also considered in the following discussion. For a forcing of the formf(t) = f̃ eiωt, a
harmonic responseu(t) = ũ eiωt is expected. The optimal response is then

R(α,m;ω) = max
f̃

||ũ||

||f̃ ||
and Rmax = max

ω
R(ω). (4)

The eigenfunction calculations were performed with up toN = 200 points onr ∈ [0, 1] using a Chebyshev
collocation method. The number of (non-infinite) eigenvalues plus vectors obtained, being the number of de-
grees of freedom, is2N−3. Of these, 95% were kept for the optimal growth analysis. At the highestRe = 106,
for which Reτ = 19200, the power spectral drop-off of the optimal mode was of8 orders of magnitude (for
both ‘inner’ and ‘outer’ modes, see below).

3 Results
The structure of optimal modes in strongly sheared flows is well known to reflect the lift-up mechanism,
whereby rolls aligned with the flow raise slow fluid from the boundary into the faster flow, leading to extended
streaks. While shearing is certainly present in the turbulent flow, it is subject to a significantly larger effective
viscosity,νT (r).
Optimal growths relative to the turbulent profile (figure 1) are significantly smaller than for the laminar case,
although the greatest growth still occurs for the largest mode m = 1. For the turbulent case, however,νT

reduces to the laminar value as one approaches the wall, and growth of similar magnitude is also possible in
the boundary region, provided that the length scale is not sosmall that diffusion again dominates.
This secondary peak, for which rolls are located close to thewall, is shown in figure 2 to scale in ‘inner’ units,
where in the absence of any other length scale, all units are inferred from the stress at the wall and the kinematic
viscosity,r = r+ν/uτ , t = t+ν/u2

τ . It is clear from the figure that such scaling is appropriate at high Reτ ,
where theGmax collapse with a peak forλ+

θ = 2π Reτ/m at92.
This peak in spanwise wavelength compares very favourably with experimental results. Using apparatus flush
with the floor of the Utah desert [12] using smoke visualisation, a peak at was found atλ+ = 93, for a Reτ

as large as1.5 × 106. In [13] similar values (±10) were observed forReτ in the range1000 to 5000. Our
predicted valueλ+ = 92 is in excellent agreement. In the present study, this secondary inner peak is observed

 1

 2

 3

 1  10  100

0.3

1

3

10
30

Re = 5300
Reτ = 187

G
m

a
x

m

α = 0

 1
 1  10  100  1000  10000

0.3

1

3

10
30 100

300

1000

3000

Re = 106

Reτ = 19200

G
m

a
x

m

α = 0

FIG. 1 –Left : Optimal growth at moderate Reynolds numbers. While the peak is for m = 1, it is clear that for
largerα only modes of largerm persist.Right : At largeRe a distinct peak appears at largem.
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FIG. 2 –Left : An inner peak occurs for spanwise wavelengthλ+

θ = 92. Right: The timeT+ s.t.G(T ) = Gmax.

FIG. 3 – Structure of the optimal inner-mode (left) and its response (right). Each is normalised by the maximum
of |u|. The initial condition consists of rolls, and the response is dominated by streaks.

to be distinct from the large-scale peak (m = 1) for Reτ of order1000, andλ+

θ being immediately close to the
above value from the outset. Indeed, at lowerReτ , far before the peak becomes distinct for theα = 0 case, it
is clear that modes of finite streamwise extent select similar λ+

θ .
In figure 3 the optimal initial condition and response are plotted for the caseRe = 5300 (Reτ ≈ 180) for
m = 12 (λ+

θ ≈ 98). The rolls are typical of those of the wall mode at much greaterRe.
The growth of an initial condition is all very well, but how easy is it to invoke such an initial condition ? The
response to streamwise independent forcing is plotted overa range of harmonic frequencies,ω, in figure 4. The
steady forcing,ω = 0, is most effective at generating a response for this case. While this is not true for non-zero
α, the peak response remained smaller than that for the axially independent case in all our calcuations. The
code described in [14] has been modified to include radially dependent viscosity. The extreme difference in
response to forcing differentm modes was verified by timestepping relative to the prescribed mean profile. The
structure of the optimal forcẽf , however, is essentially identical to that of the optimal growth initial condition
u0 (see figure 3) ; similarly for their respective responses.
Unlike the transient growth, steady forcing provides a convenient platform for testing the model, whereby
statistical measures averaged over much longer times may beaccumulated. Consider the timestepped velocity
field, u(t), obtained from direct numerical simulation of the originalNavier–Stokes equations subject to a
forcing f̃ . Thenuf (t) = (u(t) · ˆ̃u) ˆ̃u is the component ofu(t) in the direction of the the expected normalised
response field̂̃u. The observed quantity||uf (t)||/||f̃ || may be compared with the expected responseRmax.
Figure 5 shows the response of the turbulent flowRe = 5300, computed in a domain of length10 radii
(λ+

z ≈ 1800) at a resolution(60,±64,±64) before dealiasing. The calculations clearly demonstrate that large
amplification may occur, as predicted by the model. Note alsothat for intermediate forcing, drag reduction is
possible.

4 Conclusions
The model has been shown to successfully predict large growth, to good quantitive agreement, despite the
assumptions of linearity upon a turbulent state and the isotropic eddy viscosity assumption. It shows the huge
response to forcing of large scale modes, and accurately predicts the peak spanwise wavelength,λ+

θ = 92, of
the near-wall modes.
Analogue studies for optimal growth in turbulent channels [15, 16], the boundary layer [17] and the Couette
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FIG. 4 – Response to harmonic forcing ;Reτ = 19200. Forα = 0, steady forcing is largest (ω = 0). The outer
mode (m = 1) is many orders more responsive for all moderateω than the inner mode (m = 1314).
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2

∫

| · |2dV . The expectedRmax is 280. A similar order value is achieved for||f̃ ||2 = 10−6

and decreases as the force increases. The amplitude of the induced flow is already as large as 5 to 10% of the
mean flow for all cases. The forcing has a significant affect onthe skin-friction coefficientCf = 2(uτ/Ub)

2,
the horizontal line being the unforced average.
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flow [18], all show close spanwise wavelengths for the wall mode. It is surprising, however, that the optimal
growth calculations suggest small growth of the wall modes,despite clear observational evidence that such
structures exist.
The results from harmonic forcing, on the other hand, suggest that the large scale modes are easily excited.
Such relative difficulty of forcing motion on small scales has consequences for control of turbulence. It clearly
requires considerable effort to locally manipulate structures in the neighbourhood of the wall. It is possible
that it is more straight forward to control indirectly via forcing of larger, or possibly even very large scales,
taking advantage of the much greater linear response. Indeed, such a possiblity has been shown in principle for
channel flow [19], and is verified here for a significantly larger ratio of ‘large’ (imposed roll) to ‘small’ (streak
spacing) scales. The nature of suppression by a large-scalemotion deserves further investigation.
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