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Résumé :
La région spatiale autour d’une interface, qui affecte réellement la réponse de cette interface, et donc le champ d’onde
réfléchi, est d’intérêt majeur pour la caractérisation des réflecteurs sismiques et l’interprétation sismique basée sur les
méthodes AVA. Nous montrons que pour des milieux homogènes élastiques et isotropes en contact, son extension latérale
maximale correspond à la zone de Fresnel à l’interface, tandis que son extension verticale maximale peut quelquefois
dépasser une longueur d’onde sismique. Pour un synclinal (respectivement, un anticlinal), cette région est plus grande
(respectivement, plus petite) que celle décrite pour une interface plane.

Abstract :
The spatial region in the vicinity of an interface which actually affects the interface response and, hence, the reflected
wavefield is of particular interest for the characterization of reflectors from a seismic viewpoint and for seismic interpre-
tation using AVA methodologies. We show that for homogeneous, isotropic, and elastic media its maximum lateral extent
corresponds to the lateral extent of the Interface Fresnel zone, and that its maximum vertical extent may be sometimes
greater than the seismic wavelengths. For a syncline (respectively, an anticline) the spatial region is larger (respectively,
smaller) than described for a plane interface.

1 Introduction
The basis of many seismic studies is the ray theory [1]. Nevertheless, as measured seismic data have a finite
low-frequency content, it is accepted that seismic wave propagation is not limited to an infinitely narrow line
called ray, but that it is extended to a finite volume of space around the ray path (i.e. the 1st Fresnel volume
[1]) which contributes to the received wavefield for each frequency. The 1st Fresnel volume (hereafter, denoted
FV) and its intersection with an interface, called the Interface Fresnel zone (IFZ), have received broad attention
over past decades. These concepts are continually being developed and have found so many applications in
seismology and in seismic exploration, that it is impossible here to review all the books and articles which pay
attention to them in seismic wave propagation. Nevertheless, we shall mention the works of Červený and his
co-authors compiled in [1].
Of particular interest are the size of the IFZ and the size of the volume of the reflector involved in reflection time
measurements because each one can be related to the horizontal and vertical resolutions of seismic methods [2].
Until now, only the IFZ and the penetration depth of the FV below the interface have thus been considered in
studies [3]. If seismic amplitudes at receivers have to be evaluated, the interface reflectivity must be determined.
The underlying question is then : Considering an isolated interface, how thick are the spatial regions above and
below the interface which may actually affect the interface response and, hence, the reflected wavefield ? To
our knowledge, the spatial region above the plane interface in the incidence medium which also affects the
interface response has never been identified. In addition, very few works are devoted to the computations of
the IFZ at a curved interface. Moreover, most of them are mainly concerned with the case of normal wave
incidence onto the interface [2].
We extend these studies to the case of the oblique wave incidence onto a spherically shaped interface of anti-
cline or syncline type between two homogeneous, isotropic and elastic media. We derive analytical expressions
for the size of the IFZ (i.e., the maximum lateral extent of the reflector volume). We also estimate analytically
the maximum vertical extension of the volume which actually contributes to the seismic amplitude. Some
illustrative results for a given medium configuration and for the three types of interface (e.g., plane, anticline
and syncline) are presented. The influence of the wave incidence onto the interface, and the influence of the
interface curvature, on the size of the reflector volume are more particularly investigated. In the remainder of
the paper we assume that the interface of interest is isolated from all others. In addition, we only consider the
P-P reflection.
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2 Maximum lateral extent of a reflector
We consider two homogeneous isotropic elastic half-spaces in welded contact at a curved interface. The sphe-
rically shaped interface which can be of anticline or syncline type is tangent at the point M(0,0,zM ) to the
plane z = zM which will represent the plane interface of interest in our study. The xy-plane includes the
point source S (−xS ,0,0) and the receiver R (xS ,0,0). The vertical z−axis is directed downwards. A spherical
wave with a constant amplitude is generated by the source in the upper half-space. The spherical wave can
be decomposed into an infinite sum of plane waves (PW) synchronous with each other at the time origin. We
consider the harmonic PW with the frequency f which propagates in the upper half-space with the velocity
VP1 from S to R, after being reflected by the interface at the point M in a specular direction θ with respect to
the normal to the interface (Figure 1). Let the traveltime of the specular reflected wave be tSMR which is the
sum of the wave traveltime tSM from the source S to the point M and the wave traveltime tMR from the point
M to the receiver R. The set of all possible rays SMiR with constant traveltime tSMR defines the isochrone
for the source-receiver pair (S,R) relative to the specular reflection SMR. This isochrone describes an ellipsoid
of revolution tangent to the interface at M, and whose rotational axis passes through S and R, defined by

x2

(
zM

cos θ

)2 +
y2 + z2

z2
M

− 1 = 0 . (1)

This equation is valid whatever the curvature of the interface. The frequency-dependent spatial region which
actually affects the reflected wavefield is known to be the 1st Fresnel volume (FV) corresponding to the pair
(S,R) and associated with the wave reflection at M. By definition, the FV is formed by virtual diffraction points
F such that the waves passing through these points interfere constructively with the specular reflected wave.
This condition is fulfilled when the path-length difference is less than one-half of the wavelength λ1 = VP1

f

corresponding to the dominant frequency f of the narrow-band source signal [1], or in other terms :

|tSF + tFR − (tSM + tMR)| ≤ 1
2 f

, (2)

the quantity tXY denotes the traveltime from X to Y. The FV is represented by only the part of the volume,
bounded by two ellipsoids of revolution with foci at S and R which are tangent to fictitious planes parallel to
the plane z = zM and located at a distance λ1

4 below and above the plane z = zM (Figure 1), which is situated
above the interface of interest (e.g., plane, anticline, or syncline) in the upper half-space. The two ellipsoids of
revolution are defined by

x2

(
zM

cos θ ± λ1
4

)2 +
y2 + z2

(
zM

cos θ ± λ1
4

)2 − z2
M tan2 θ

− 1 = 0 . (3)

The IFZ is defined as the extent of intersection of the FV by the interface which is here spherically shaped.
Unlike the case of a plane interface, the IFZ is not represented by an ellipse centered at the reflection point
M when the source S and the receiver R are situated at the same distance from the interface. Depending on
whether the interface is of anticline or syncline type, the IFZ alters in shape appropriately and its size may
not be determined in the same way for both types. The radius of the interface curvature Rint is considered
positive if the interface appears convex to the incident wave. The radius Rint is then chosen positive for an
anticline and negative for a syncline. The critical parameter is actually the ratio between the radius of curvature
Riso of the ellipsoid of revolution describing the isochrone for the pair (S,R) relative to the specular reflection
SMR and the radius of the interface curvature Rint, the radius Riso being equal to the depth zM for normal
wave incidence. Depending on whether this ratio is less or greater than unity, the size of the IFZ is defined
as the extent of intersection of the ellipsoid of revolution located at the distance λ1

4 either above, or below the
plane z = zM by the syncline. On the contrary, the size of the IFZ for an anticline is defined as the extent of
intersection of the ellipsoid of revolution located at the distance λ1

4 below the plane z = zM by the anticline,
whatever the value of its radius of curvature Rint. For the sake of brevity, we refer the reader to [4] for the
complete derivation of the equations for determining the size of the IFZ for an anticline. We only present here
the final results. The results relative to the syncline can be easily derived by replacing the (positive) radius of
the anticline curvature Rint by the (negative) radius of the syncline curvature Rint.
For an anticline the maximum lateral semi-extent xmax of the IFZ following the x-axis in the xz-plane (i.e., in
the plane of incidence) is defined by

xmax = a

(
1− z2

1,2

b2

)
. (4)

where a = zM

cos θ+λ1
4 and b =

(
a2 − z2

M tan2 θ
) 1

2 . The quantity z1,2 = zM+Rint±∆
1
2

1− a2

b2

, where ∆ = (zM + Rint)
2−

(
1− a2

b2

) [
a2 + zM (zM + 2Rint)

]
is always positive, is chosen so that the inequality 1− z2

b2 > 0 is satisfied.

2
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The maximum lateral semi-extent ymax of the IFZ following the y-axis in the yz-plane (i.e., in the direction
perpendicular to the plane of incidence) is given by

ymax =

{
b2 −

[
zM +

λ1

4

(
zM

cos θ
+

λ1

8

)
(zM + Rint)

−1

]2
} 1

2

, (5)

where the quantity in the square root bracket is always positive. The characteristics xmax and ymax of the IFZ
at the surface of the anticline depend on the position of the source-receiver pair, and also on the incidence
angle θ of the ray SM. Moreover, larger portions of the interface are involved for low-frequency than for high-
frequency components of the wavefield. The characteristics xmax and ymax of the IFZ also depend on the
radius of the interface curvature Rint. For sufficiently great radius Rint, the IFZ for the anticline is identical to
the IFZ for the plane interface z = zM . It is represented by an ellipse centered at the reflection point M whose
in-plane semi-axis xmax and transverse semi-axis ymax are expressed as in [3].
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FIG. 1 – Representation, in the xz-plane, of the FV involved in the wave reflection at the point M at a curved
interface of anticline or syncline type under the incidence angle θ = 35˚. Left : The FV is given by the volume
between the ellipsoids of revolution with foci at S and R and located in the upper half-space. Right : Focus on
the FV in the vicinity of the interfaces. The dashed line describes the isochron for the source-receiver pair (S,R)
relative to the specular reflection SMR.

3 Maximum vertical extent of a reflector
It is well-known that the FV of the reflected wave is not limited by the interface, but penetrates across the
interface in the lower half-space. The penetration depth can be evaluated approximately in an analytical way
following traveltime measurements or in a numerical way using the network ray tracing [1]. We proposed in [4]
to derive analytically, in a straightforward manner, an approximate expression for the penetration depth of the
FV across the curved interface, valid in the plane of symmetry between S and R and for subcritical incidence
angles. By using the curvature transmission law and the concept of the fictitious source-receiver pair, we can
obtain a new expression for the maximum penetration depth D2 in the lower half-space that provides more
accurate results than those given in [3]

D2 =
(

z2
S′ +

λ2 zS′

2 cos θ′
+

λ2
2

16

) 1
2

− zS′ (6)

with zS′ = zM VP1 cos3 θ′

VP2 cos3 θ +
zM

Rint
(VP2 cos θ−VP1 cos θ′)

, where VP2 denotes the velocity in the lower half-space and the

transmission angle θ′ is connected to the incidence angle θ through Snell’s law. As this expression is evaluated
locally in the plane of symmetry between S and R and for subcritical incidence angles θ, it is valid whatever
the radius of the interface curvature Rint. Expansion of equation 6 shows that for the values of the incidence
angle θ close to zero, and then for great position zS′ , the 1st-order approximation to penetration depth D2 with
respect to 1

z2
S′

(
λ2 zS′
2 cos θ′ + λ2

8

)
corresponds to the approximation given by equation 38 in [3].

Following the same reasoning, a region above the interface in the upper half-space also contributes to the
interface response and, hence, to the reflected wavefield. The maximum thickness D1 of this region can be
evaluated in the plane of symmetry between S and R and for subcritical incidence angles θ in the same way as
above

D1 =
(

z2
S” +

λ1 zS”

2 cos θ
+

λ2
1

16

) 1
2

− zS” . (7)

with zS” = zM Rint cos2 θ
2 zM+Rint cos2 θ .
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A reflector is therefore a volume of integration of the medium properties above and below the interface. Its
maximum lateral extent corresponds to the lateral extent of the IFZ and its maximum vertical extent corres-
ponds to the thickness D = D1 + D2. In this work we consider that the elastic media in contact are homoge-
neous and isotropic. The presence of heterogeneities or anisotropy in the media body may modify the size of
the reflector volume. In addition to provide more physical insights into wave reflection process, our study may
have significant implications on seismic interpretation using AVA methodologies. On one hand, when ampli-
tude measurements are considered, we have to evaluate the interface reflectivity by considering the effective
reflector volume which actually affects it, and by accounting for the heterogeneities located within. However,
in the absence of heterogeneity located within the reflector volume, we only have to account for the IFZ for
modeling the interface response. In previous works [5, 6], we have pointed out the consequences of ignoring
the IFZ in forward and inverse modelings of seismic wave reflection. On the other hand, when only traveltime
measurements are considered, for instance for locating the reflectors in the media, only the region below the
interface with the thickness D2 has to be considered.

4 Results and discussion
In order to illustrate the theoretical derivations, two cases of curved interfaces and one case of plane interface
between elastic half-spaces are chosen. The source-receiver plane is located at a distance zM = 3000 m from
the plane tangent to the curved interfaces which can be of anticline or syncline type. The radius of the interface
curvature Rint is equal to± 5000m. It is positive for an anticline and negative for a syncline. The plane z = zM
represents the plane interface of interest. The velocities of the upper and lower half-spaces are VP1 = 2000
m/s and VP2 = 2800 m/s, respectively. The frequency f being chosen is 25 Hz, and the seismic wavelengths in
the upper and lower half-spaces are then λ1 = 80 m and λ2 = 112 m, respectively. The critical angle is equal
to θC = 45.58˚.
Figure 2 depicts the variation in the size of the IFZ for an anticline and a syncline as a function of the incidence
angle θ, for the given value of the radius of the interface curvature Rint. The variation in the size of the IFZ
for a plane reflector is also shown for comparison. For θ = 0 and for a given type of interface, the in-plane
semi-extent xmax and the transverse semi-extent ymax are equal. Following the type of interface, the IFZ is
then represented either by a plane, or by a curved disk. With increasing θ the IFZ becomes larger and larger in
the incidence plane than in the transverse plane. This feature is more particularly pronounced for the syncline,
the maximum size in the incidence plane being reached at a particular incidence angle θ where the radius of
the interface curvature Rint approaches the radius of curvature Riso of the ellipsoid of revolution describing
the isochrone for the source-receiver pair relative to the specular reflection SMR. This is more clearly shown
in Figure 3 which depicts the variation in the size of the IFZ for an anticline and a syncline as a function of
the radius of the interface curvature Rint, for a given incidence angle θ. When the radius Riso is greater than
the threshold value leading to the maximum size of the IFZ in the incidence plane, the in-plane semi-extent
xmax then decreases because the IFZ is no longer defined as the intersection of the ellipsoid of revolution
located at the distance λ1

4 below the plane z = zM by the syncline, but rather as the intersection of the
ellipsoid located at the distance λ1

4 above the plane z = zM by the syncline (Figure 1). As suggested above,
the critical parameter is therefore the ratio between the radius Riso and the radius Rint. We can easily show
after straightforward calculations that for the syncline (respectively, anticline) the IFZ in the incidence plane
is increased (respectively, decreased) in size, as compared to that for a plane interface, approximately by the
factor

FS,A =
(

1 +
zM

Rint

β2

β2 − z2
M tan2 θ

)−1

, (8)

with negative (respectively, positive) radius Rint and β = zM

cos θ ± λ1
4 , the sign + (respectively, -) corresponding

to the choice of the ellipsoid of revolution located at the distance λ1
4 below (respectively, above) the plane

z = zM (respectively, β = zM

cos θ + λ1
4 ). The factors FS and FA tend to those given in [2] when the wave

incidence is normal to the interface.
Similar conclusions can be drawn for the variation in the maximum semi-extent ymax of the IFZ in the trans-
verse plane for the anticline and the syncline. The critical parameter which influences the length ymax is the
ratio between the radius of curvature Riso of the ellipsoid of revolution describing the isochrone for the source-
receiver pair relative to the specular reflection SMR in the transverse plane (i.e. the depth zM of the reflection
point M) and the radius of the interface curvature Rint. For the anticline (respectively, the syncline) the IFZ
in the transverse plane is decreased (respectively, increased) in size, as compared to that for a plane interface,
approximately by the factor

F =
(

1 +
zM

Rint

)−1

, (9)

with positive radius Rint for the anticline and negative radius Rint for the syncline. Note in Figure 3 that when
the value of the radius of the interface curvature Rint tends to infinity the size of the IFZ for a curved interface
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FIG. 2 – Variation in the size of the IFZ at the
surface of an anticline (dashed line) and a syn-
cline (dash-dot line), as a function of the inci-
dence angle θ, as compared with the results for a
plane interface (solid line). Light curves are asso-
ciated with the in-plane semi-extent xmax , while
bold curves represent the variation in the trans-
verse semi-extent ymax.
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FIG. 3 – Variation in the in-plane semi-extent
xmax (solid lines) and in the transverse semi-
extent ymax (dashed lines) of the IFZ at the sur-
face of an anticline (positive radius of interface
curvature) and a syncline (negative radius of in-
terface curvature), as a function of the radius of
interface curvature Rint. The incidence angle θ is
equal to 30˚.

tends to that for a plane interface.
Figure 4 shows the variation in the penetration depth D2 as a function of the incidence angle θ, for the given
value of the radius of the interface curvature Rint for the anticline and the syncline. It also presents the variation
in the penetration depth D2 as a function of the incidence angle θ for a plane interface. In order to check the
accuracy of our approximation, the approximate results provided by equation 6 have been compared with
the exact values [4] for the anticline and the syncline. For θ = 0, the penetration depth D2 equals the well-
known value λ2

4 [3], as for the plane interface. The penetration depth D2 increases with increasing subcritical
angle θ, but is always less than the seismic wavelength λ2. For the syncline it can be greater than the seismic
wavelength λ1 for subcritical incidence angles θ close to the critical angle θC = 45.58˚. Moreover, the values
for the depth D2 provided by our approximation deviate only slightly from the exact values for the syncline,
the discrepancies being less than 0.01 % up to to the angle θ = 43˚ which is in the vicinity of the critical
angle θC . For the anticline the discrepancies between them do not exceed 0.01% up to the angle θ = 40˚
and 7.5% up to the angle θ = 43˚, our approximation underestimating the exact value for the penetration D2.
Note that whatever the type of interface, the penetration depth D2 has the same values for incidence angle θ
lying between 0 and approximately 30˚. For subcritical angles lying above 30˚ the penetration depth D2 for
the syncline is, however, greater than that for the anticline. By comparing the curves obtained for the curved
interfaces and those obtained for the plane interface, we can note that the penetration depth D2 for the syncline
is increased in length, as compared to that for a plane interface, approximately by 16%, while the penetration
depth D2 for the anticline is decreased approximately by 10%. Similar conclusions can be drawn for the case
of a plane interface. The variations in the penetration depth D2 as a function of the incidence angle θ provided
by our approximation (equation 6), compared with the values obtained with the approximation of Kvasnička
and Červený and with the exact values [4], are also shown in Figure 4. With increasing subcritical angle θ the
penetration depth D2 increases, but is always less than the seismic wavelength λ2. Moreover, the values for D2
provided by our approximation deviate only slightly from the exact values. The discrepancies between them do
not exceed 0.44% up to the angle θ = 40˚ and 4% up to the angle θ = 43˚ which is in the vicinity of the critical
angle θC = 45.58˚. On the contrary, the discrepancies between the values for D2 given by the approximation of
Kvasnička and Červený and the exact solution strongly increase with increasing angle θ, more particularly for
angles above 30˚. For θ = 43˚ the discrepancies exceed 23%. As a consequence, the part of a reflector below
the interface which actually affects the interface response is smaller than described by previous estimates. This
conclusion has been found to come true whatever the medium configuration chosen.
Figure 5 displays the variation in the thickness D1 above the interface in the upper half-space, as a function of
the incidence angle θ, for the given value of the radius of the interface curvature Rint for the anticline and the
syncline. In order to check the accuracy of our approximation, the approximate results provided by equation 7
have been compared with the exact values [4]. The approximate values for D1 deviate only slightly from the
exact values, the discrepancies between them lying below 0.05% up to the angle θ = 43˚. Figure 5 also depicts
the variation in the distance D1 as a function of the incidence angle θ, for a plane interface. In this case, the
distance D1 provided by equation 7 is evaluated exactly. Whatever the type of interface and for the normal wave
incidence (θ = 0), the distance D1 equals the value λ1

4 . The thickness D1 increases with increasing incidence
angles θ, but is always less than both the seismic wavelength λ1 and the penetration depth D2. Moreover, the
thickness D1 is not much influenced by the interface curvature, the dicrepancies between the curves associated
with the syncline and the anticline being less than 1%.

5
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FIG. 4 – Variation in the penetration depth D2, as a function of the incidence angle θ, (left) for an interface of
anticline (light curves) or syncline (bold curves) type. Comparison of results provided by our approximation
(dashed lines) with the exact solution (solid lines) ; (right) for a plane interface. Comparison of results provided
by our approximation (dashed line) with exact solution (solid line) and results predicted by the approximation
of Kvasnička and Červený (dash-dot line).
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FIG. 5 – Variation in the maximum thickness D1 as a function of the incidence angle θ, for an interface of
anticline (light curves) or syncline (bold curves) type and for a plane interface (dotted line). Comparison of
results provided by our approximation (dashed line) with the exact solution (solid line).

Conclusion
We have identified the zone in the vicinity of a (plane or curved) interface which actually affects the interface
reflectivity, and we have established the spatial limits of the effective reflector volume which merits further
investigation. Although these spatial limits may vary following the complex properties of the bulk media in
contact, defining these limits for homogeneous and isotropic media in contact enables us to fix ideas and to
provide a road map for future applications to real media. For this case, the effective reflector volume has got
its maximum lateral extent equal to the lateral extent of the IFZ, and its maximum vertical extent equal to a
thickness which may be greater than the seismic wavelength of the incident wave for great incidence angles
close to the critical angle.
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