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1. INTRODUCTION

Among depth estimation techniques, DFD is a passive monocu-
lar approach relying on the relation between depth and defocus
blur. Fig. 1 illustrates this relation in the case of a simplified cam-
era. Using geometrical relations and thin lens approximations,
the width ε of the Point Spread Function (PSF) is:

ε = 2Rs
(

1
f
− 1

s
− 1

z

)
, (1)

where R and f are the camera aperture radius and focal length,
respectively, s is the distance between the lens and the sensor,
and z the distance between the lens and the point source.

The DFD thus gives access to depth with an extremely simple
and compact optical system. However, the simplicity of the
experimental set-up comes at the cost of a complex algorithmic
problem, since it is necessary to estimate the blur while the ob-
served scene is unknown. In addition, the depth range over
which the estimation is accurate is limited. As highlighted in
Fig. 1 there a blind zone near the in-focus plane (IFP) and, more-
over, the points situated in-front or behind this plane lead to
identical blur sizes. To avoid ambiguities, the estimation is then
often restricted to the depth domain located beyond the IFP.

In order to overcome these issues, much of the literature on
DFD leverages on the acquisition of multiple images and/or use
of unconventional optics. Some papers use multiple images with
various camera settings [1, 2] or apertures [3]. The processing
hence benefits from the fact that all the images are generated
from the same scene. However, they require the scene to remain

static during settings changes. Many recent works focus on sin-
gle image DFD with coded aperture that reinforces the depth
information contained within the defocus blur [4, 5]. References
[6–8] exploit RGB images from a color camera equipped with an
unconventional lens leading to a spectral variation of the rela-
tionship between blur and depth. This is obtained by changing
the aperture shape with the color [6] or by using a lens with
chromatic aberration [7, 8]. Some of these unconventional lens
used for DFD are illustrated in Fig. 2.

An essential challenge is to characterize the performance of
DFD solutions. This is useful for qualifying an existing DFD
system, and also for designing such a system based on certain
performance requirements. The brief review of the DFD that
we have just done implies that such an analysis should high-
light the variation in estimation precision with depth or, at least,
provide the range of depth where estimation is accurate. It
should also be able to take the parameters of unconventional
optics into account, offering a tool to optimize them for a given
use-case. In this paper, we propose a theoretical performance
model meeting these requirements. This model applies to any
(un)conventional, multiple or single image DFD system. We
evaluate experimentally its reliability on two unconventional
DFD systems using either a coded aperture or a lens with chro-
matic aberration. Finally, we exploit this model to derive an
end-to-end methodology for the co-design of a DFD camera
with a lens with chromatic aberration.
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Fig. 1. Principle and limitations of DFD. (a) The image of a
point source placed out of the in-focus plane (zIFP) as a geo-
metrical size of ε which depends on the depth z. (b) Example
of defocus blur variation with respect to depth according to
Equation (1). The blind area around the IFP and the depth am-
biguities on either side are highlighted in gray on the curve.

2. STATE OF THE ART AND CONTRIBUTIONS

Here we briefly review previous works on performance evalua-
tion of conventional and unconventional DFD systems, and then
outline our contributions.

A. Conventional DFD cameras
DFD performance is highly related to sensor parameters. Sev-
eral papers have proposed models for choosing the best camera
settings in multiple image DFD [9–13]. A depth estimation accu-
racy analytical formula is derived in references [10, 11] taking
into account geometrical defocus blur, diffraction and pixel sam-
pling for one in-focus and one out-of-focus image. Hence only
the influence of sensor parameters are considered. In references
[9, 12, 13] a Cramér Rao Bound (CRB) is derived to optimize the
blur ratio between a pair of images of a conventional camera to
maximize the DFD accuracy. These models take the influence of
processing on precision into account. However, they are derived
from a Gaussian or a pill-box PSF model and therefore cannot
be used for unconventional optics. Based on the CRB theory,
we have proposed a generic performance model of single image
DFD which is able to account for various models of sensor PSF,
and underlines the relation between blur size and estimation
accuracy[14].

B. Unconventional DFD cameras
Performance models dedicated to unconventional DFD camera
have been previously proposed [3–5, 15, 16]. In Levin et al. [4]
the coded aperture is optimized using the average Kullback
Leibler divergence, between each potential depths. In Zhou et

al.[3] is defined a cost function that measures the inconsistency
between the two defocused images when the estimated blur
deviates from the ground truth. Optimal apertures are those
for which the inconsistency is maximal, meaning that the coded
apertures increase the ability to discriminate defocus blurs. Ex-
tending this work, Levin [15] proposes a discrimination score
integrated in the frequency domain for any set of coded aper-
tures. In Martinello et al. [5], blurring is interpreted as a projec-
tion of the data onto a subspace which is learned on simulated
data for each potential depth. The coded aperture is optimized
in order to maximise the distance between the kernels of each
subspace. In Sellent et al. [16] the coded aperture is optimized
by maximization of the difference between the blurred images
at different depth levels.

These design approaches consider only a restricted part of
the system, here the aperture shape. They only provide a global
score on a given camera, that cannot be physically interpreted
as a depth estimation accuracy nor provide information on the
depth range of operation of the system.

C. Contributions
We present a generalisation of the performance model described
in reference [14] to the case of an unconventional camera. This
model can be used with any single or multiple images, con-
ventional or unconventional camera. It captures an important
feature of DFD methods, that is the variation of accuracy with
respect to depth itself. The reliability of the model is validated
experimentally on two unconventional DFD camera in section 4
and 5. Finally we leverage this model to conduct the end-to-end
co-design of a chromatic 3D camera dedicated to the use-case of
small UAV navigation in section 6, taking into account jointly
image quality and depth estimation performance models. In
Section 7 we discuss the conclusions and the perspectives of this
work.

3. GENERIC DFD PERFORMANCE MODEL

In this section we describe the proposed generic performance
model for DFD. It is based on a Cramér Rao lower bound de-
rived, within a Bayesian framework, from a scene prior and the
sensor PSF(s) at a given depth.

A. Image formation model
Defocus blur is a spatially varying blur. The standard "con-
volution and additive noise" model of observation is therefore
applied to image patches where the PSF of the sensor (i.e. here
the depth) can be considered constant. A generic formulation of
the DFD problem is simply :

Y = HzX +N , (2)

where Y (respectivelyX) is a vector that collects pixels of the
image (resp. scene) patch(es) in the lexicographical order. N
stands for the noise process, which is modeled in this paper
as a zero mean white Gaussian noise with variance σ2

N . Hz is
convolution matrix with non zero parameters corresponding to
the samples of the PSF(s) describing the DFD system. It has a
block Toeplitz structure, each block being itself Toeplitz [Section
4.3.2 17]. Note that as we consider small patches, some care has
to be taken concerning boundary hypotheses. In particular the
usual periodic model associated with Fourier approaches is not
suited here. In the sequel we use "valid" convolutions where
the support of the scene is enlarged with respect to the one of
the image according to the PSF support [Section 4.3.2 17]. In
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Fig. 2. Examples of unconventional optic devices used for DFD. (a): coded aperture of [4], (b): colored aperture shape of [6], (c):
add-on with chromatic aberration of [8] and (d): the 3D camera with chromatic aberration of [7] which is further studied in Sec-
tion 6.

sections 4.1 and 5.1, a more precise description of quantities Y ,
X and Hz will be given, specific to the considered application.

B. Generic scene prior and data likelihood
In the context of local PSF estimation, a Gaussian prior on the
scene is often very effective [18–20]. Hence, we also propose to
use a scene Gaussian prior written as:

p(X ; σ2
X) ∝ exp

(
−‖DX‖

2

2σ2
X

)
. (3)

Matrix D refers to a derivative operator and will be discussed
in more details in Sections 4 and 5 depending on the sensor
type. The only parameter of the prior is the variance σ2

X , which
corresponds to the variance in pixel level of scene variations
between neighbour pixels. As we assume a centered Gaussian
random noise of variance σ2

N also in pixel level, the likelihood of
the observation Y reads:

p(Y |X ; σ2
N) ∝ exp

(
−‖Y − HzX‖2

2σ2
N

)
. (4)

C. Marginalized likelihood and Fisher information
Akin to reference [14], we derive a marginalized data likelihood
with respect to the scene [18–20], which is tractable for the Gaus-
sian prior of Equation (3):

p(Y ;θ) =
∣∣∣∣Qθ

2π

∣∣∣∣ 1
2

+
exp

(
−1

2
Y tQθY

)
, (5)

where θ = {z, σ2
N , σ2

X} and |Qθ |+ is the product of the non zero
eigenvalues of Qθ which can be written as:

Qθ =
1

σ2
N

[
I − Hz(Ht

z Hz + αDtD)−1Ht
z

]
. (6)

Parameter α = σ2
N/σ2

X can be interpreted as the inverse of a
signal to noise ratio. Now by writing Pψ = σ2

N Qθ and ψ = {z, α}
one can evaluate the Fisher Information matrix:

FI(ψ) =
1
2

tr
(

P+
ψ

dPψ

dψ
P+

ψ

dPψ

dψ

)
. (7)

Where + denotes the pseudo-inverse. Details on the derivation
of the marginalized likelihood and the Fisher information ma-
trix, specially in the case of D being singular, can be found in
reference [14]. The Cramér-Rao bound on the standard devi-
ation of the depth estimation can be deduced from the Fisher
information matrix by:

σCRB(ψ) = FI(ψ)−1/2. (8)

It provides a computable performance index with a clear physi-
cal interpretation for DFD depth estimation.

D. Computation of the performance model

In this paper our aim is to characterize the depth estimation
accuracy in DFD, hence to simplify we assume that the signal to
noise ratio (i.e., α) is known and focus only on depth estimation.
This amounts to assume that ψ = {z}. For a depth z and given
a small depth variation δ, we compute the PSFs at respectively
{z, z− δ, z + δ} using an optical model such as a simple Gaus-
sian model, Fourier optics, or an optical design software (see
Appendix A). Then, the convolution matrices Hz,Hz−δ,Hz+δ are
derived according to the image formation model which varies
with the DFD application. Given a value of α, that sets the signal
to noise ratio, the matrices Pz, Pz+δ and Pz−δ are computed using
:

Pz = I − Hz(Ht
z Hz + αDtD)−1Ht

z. (9)

As in the generic case no analytical formula for the derivative of
Pz over z is available, we compute the derivative that appears in
Equation (7) using the central finite difference:

dPz

dz
' Pz+δ − Pz−δ

2δ
. (10)

After the computation of the pseudo-inverse of Pz, the Fisher
information is given by Equation (7). Finally, taking the inverse
square root of the result according to Equation (8) gives the theo-
retical minimum standard deviation σCRB(z) of depth estimation
at the current depth z.

4. APPLICATION TO DFD WITH A CODED APERTURE

In this section we use the proposed performance model in the
case of depth estimation using a single image from a camera with
the coded aperture proposed in [4] and illustrated in Figure 2. In
order to evaluate the reliability of the proposed model, experi-
mental validations are conducted to compare the theoretical and
the experimental performances.

A. Image formation model

In the case of single image DFD, X (resp. Y ) of equation (2)
simply concatenates the M (resp. L) pixels of a scene (resp. an
image) patch. Hz is then directly the convolution matrix of size
L×M relative to "valid" convolution with the PSF associated to
depth z [Section 4.3.2 17].
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Fig. 3. Lens with the coded aperture from Levin et al. [4].

B. Scene prior

As in reference [14], D is defined as the concatenation of the con-
volution matrices corresponding to the vertical and horizontal
first order derivative, i.e., the convolution matrices relative to
filters [−1 1] and [−1 1]T . This model, which can be physically
interpreted as a 1/v2 decrease of the scene spectrum, has pre-
viously shown good results in single image blur identification
[18, 20]. Note that matrix D is singular, as D1 = 0, with 1 corre-
sponding to a homogeneous patch of pixels equal to 1. In such
a case, the scene prior is said to be improper. However depth
inference can still be derived from such a prior (see reference
[14]).

C. Comparison of coded aperture and conventional aperture
DFD performance

C.1. Camera settings

We consider here two identical lens of focal 35 mm used with
a Nikon D200 camera, having pixels of size 6µm. The coded
aperture shown on the left image of Fig. 2 is inserted within the
aperture of one of the lens. For the other lens, the f-number is
fixed at 3.2 so that the aperture has the same size as the coded
aperture. For both lenses the camera in-focus plane is set at 1.5 m.
To avoid unwanted effects of demosaicking on defocus blur, we
consider here a subsampled image extracted by taking one of
the two green pixels from the raw data. The processed image
resolution is then divided by two with respect to the full sensor
resolution. Figure 3 shows the lens with the coded aperture.

C.2. Theoretical performance

To simulate the camera PSF, we use a spatial integration over
the sensor pixel of the optical PSF given by Fourier Optics as
described in Appendix A. As we process the green channel
extracted from the raw data, in the PSF simulation the pixel
size is simply assumed to be twice as large as the actual pixel
size. We also neglect chromatic aberration and simulate the PSF
at the wavelength 532 nm only. Figure 13 shows the variation
of σCRB calculated using simulated PSF, with and without the
coded aperture, for a patch size of 25×25 pixels and α = 0.001.
In the region from 1.8 to 2.2 m, the performances of the two
configurations are similar, with an increase of the theoretical
standard deviation. Then after approximately 2.2 m, the coded
aperture clearly shows better performance than the conventional
one, which confirms the results of a performance gain using the
coded aperture rather than a conventional one [4]. We can see
here that this gain is getting more significant as the defocus blur
increases.

It should be emphasized that the influence of the coded aper-
ture on the DFD performance varies with the depth of observa-
tion. This is in favour of a performance model depending on the
depth, rather than a global score.

Fig. 4. Theoretical depth estimation accuracy of a camera with
a conventional or the coded aperture proposed in [4].

C.3. Experimental performance

Experimental setup Experimentally, the PSFs of the lenses with
and without the coded aperture are calibrated on axis from 1.6 m
to 4 m with a step of 5 cm using the calibration pattern and codes
from Delbracio et al. [21]. This method relies on acquisition of a
known high frequency texture and estimation of the PSF using
an inverse problem algorithm. True depth value is given by a
telemeter. To evaluate depth estimation, a textured planar scene
is put at different distances from the lens and an image is ac-
quired. This scene, shown in image (b) of Figure 13, is made of a
collection of patches generated to follow the Gaussian prior of
Equation (3). Experimentally, the signal to noise ratio is main-
tained comparable for both lenses by increasing the integration
time for the coded aperture case.
Depth estimation results At each scene position, depth is esti-
mated using the algorithm presented in Appendix B on patch
size of 25 × 25 pixels, within a central crop of the image. Stan-
dard deviation and mean value of the depth estimation are calcu-
lated on 17k patches with 50% overlapping extracted from this
crop. Figure 5 shows experimental error bars of depth estima-
tion with respect to the true depth, measured with a telemeter:
(a) with the coded aperture and (b) with the conventional aper-
ture. Figure 5 (c) shows root mean square error (RMSE), for both
configurations with respect to depth.

Without the coded aperture the depth estimation seems cor-
rect near the in-focus plane, but it shows a significant increase
of the standard deviation after 2.5 m, then bias becomes pre-
dominant after 3 m. For the coded aperture, the bias remains
negligible on all the studied depth range, with a regular increase
of the standard deviation, as expected in the theoretical perfor-
mance model. The comparison of theoretical and experimental
performance curves shows that the theoretical model allows a
reliable comparison, depth by depth, of the influence of the dif-
ferent forms of apertures on the DFD. However, the theoretical
standard deviations σCRB appear lower than the empirical ones.
First, it should be noted that the theoretical model depends on
the choice of the noise standard deviation σN which may be too
optimistic here. Besides, bias is not considered in the derivation
of the CRB, while it does contribute to the experimental error.
Ultimately this difference comes from the fact that the model
is a simplification of reality: the scene does not exactly follow
the prior distribution, the acquisition depends on non-modeled
phenomena (aberrations, variable illumination), the PSF are esti-
mated by calibration, etc. Nevertheless, we show here that the
theoretical model can provide a useful prediction of the relative
performance of two DFD systems over a range of depths.
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(a)

(b)

(c)

Fig. 5. Depth estimation experimental error bars using (a)
a coded aperture and (b) a conventional camera having the
same focal length, f-number and focus.(c) RMSE with and
without coded aperture.

5. APPLICATION TO DFD WITH A LENS WITH CHRO-
MATIC ABERRATION

In this section, we use the proposed performance model to eval-
uate the theoretical performance of a camera with a lens having
chromatic aberration and a color sensor. We compare the perfor-
mance of two focus setting of such a camera.

A. Image formation model with a color sensor

Assuming a color sensor, in a single acquisition are produced
three sub-images corresponding to the red, green and blue pixels

of the sensor. As we consider a lens with chromatic aberration,
there is a different PSF for each color channel — this is precisely
the benefit of chromatic DFD where each depth is encoded by a
triplet of PSFs [7]. At the same time, each color channel sees a
different spectral bandwidth of the scene. When dealing with
colored data the components in the RGB decomposition are
usually correlated. Hence a separable scene prior on RGB com-
ponents is not suited. Following [7, 22] we propose to use the
luminance (L) and the red-green (C1) and blue-yellow chromi-
nance (C2) decomposition instead of the RGB decomposition
using the transform:

xR

xG

xB

 = T


xL

xC1

xC2

 (11)

with T =


1√
3

−1√
2

−1√
6

1√
3

1√
2

−1√
6

1√
3

0 2√
6

⊗ IM, (12)

where ⊗ stands for the Kronecker product and IM is the identity
matrix of size M×M. According to reference [22], the three com-
ponents of the luminance/chrominance (LC) decomposition can
be assumed uncorrelated. LetX t = [xL,xC1 ,xC2 ] be vector of
length 3M made of concatenation of the luminance and chromi-
nances vectors, and Y t = [yR,yG,yB], the vector of length 3N
that concatenates the R,G and B color vectors. Then the observa-
tion model (2) applies with matrix Hz of size 3L× 3M defined
as:

Hz =


HR(z) 0 0

0 HG(z) 0

0 0 HB(z)

 T. (13)

where each HC matrix corresponds to the N ×M convolution
matrix associated to the PSF of channel C. Note that most of
the color sensors are actually made of a set of R,G,B color filters
regularly organized in front of the sensor pixels according to the
Bayer pattern. Hence, the RGB color channels extracted from
the raw data are actually subsampled versions of the full sensor
data. To model this sampling, two approaches are possible. First,
one can remove adequate lines from the convolution matrices
HR, HV and HB corresponding to the missing pixels. The second
approach is to model the system as a 3CCD sensor and to double
the size of the sensor pixel size. This reduces the PSF size with
a factor of 2. As the size of the convolution matrix depends on
the PSF size, to limit the computational cost, we use the second
approach here.

B. Scene prior
Assuming that the luminance and chrominance decompositions
are uncorrelated, we propose to use the generic Gaussian prior
defined in (3) with D such as:

D =


√

µcD0 0 0

0 D0 0

0 0 D0

 . (14)

D0 is the vertical concatenation of the convolution matrices rel-
ative to the horizontal and vertical first order derivation oper-
ator, and µ is the ratio of the luminance and the chrominance
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variances, fixed at 0.04 as in [7]. Note that D has three zero
eigenvalues, one for each component.

C. Performance comparison of two settings of a chromatic
DFD camera

C.1. Camera settings

We consider the camera introduced in reference [7], see image
(d) in Figure 2, and study the influence of the in-focus plane
(IFP) position. The camera lens has chromatic aberration. Its
focal length for the green channel is of 25 mm with an f-number
of 4 and the amount of longitudinal chromatic aberration is of
200 µm. It is mounted on a Stingray F-504 color camera of pixels
3.45 µm.

C.2. Theoretical performance

We consider two different camera settings: the IFP of the green
channel put at 2.8 m (denoted IFPG2.8 in the following) which
corresponds to the original setting of [7], or put at 3.8 m (de-
noted IFPG3.8). Change of focus are obtained by modifying the
position of the sensor and PSFs are then directly extracted from
the optical design software Zemax available from our previous
work [7].

Fig. 6. Theoretical depth estimation results using two different
focus of the same chromatic camera and the same illumination
conditions.

Figure 6 shows the theoretical performance of both settings.
The influence of a change of focus is variable with the depth
range that is considered. Both configurations show similar per-
formance before 2.5 m, then in the (2.5, 3.5) m interval the
IFPG2.8 setting has a slightly better performance. After 3.5 m
IFPG3.8 takes over, while the σCRB of IFPG2.8 begins to increase
sharply.

C.3. Experimental performance

Experimental setup Experimentally, for the two focus settings,
the camera PSF(s) are calibrated using the method proposed in
Delbracio et al. [21] using a known high frequency pattern put
at different distance from the camera. Then as in Section C.3,
a fronto parallel textured pattern (corresponding to the target
(a) of Figure 13) is put on a tripod at various depths given by a
telemeter from the camera.
Depth estimation results Depth is estimated within a central
crop of the acquired images using the DFD algorithm presented
in Appendix B and patch size of 21 × 21 pixels. Standard de-
viation and mean value of the depth estimation are calculated
on the depth estimation results from which we remove 5% of
outliers. According to Figures 7(a) to (c) both configurations
show similar RMSE before 3 m, with a slightly better perfor-
mance for IFPG2.8. After 3.5 m the performance of the original

focus setting IFPG2.8 the performance of depth estimation starts
to degrade after 3.5 m, while it is still acceptable on the whole
tested depth range for IFPG3.8. These experimental results are
consistent in relative value with the theoretical performance
shown in Figure 6.

(a)

(b)

(c)

Fig. 7. Experimental depth estimation results using (a) the
original focus of the green channel at 2.8 m (IFPG2.8) of [7],(b)
focus at 3.8 m (IFPG3.8). (c) Comparison of experimental
RMSE for both settings.

As for the coded aperture case, this experiment validates
the ability of the proposed theoretical model to predict the best
settings for a chromatic DFD system.

6. APPLICATION IN THE END-TO-END DESIGN OF A
CHROMATIC DFD CAMERA

In this section, the performance model is applied to the end-to-
end co-design of a DFD camera (this work has been partially
presented in [23]). The camera is designed for the specific use-
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case of a small UAV navigation. We first present the proposed co-
design methodology before describing the chosen use-case and
then the results of each design step. In contrast with previous
co-design works, we use two different performance models here,
one for depth estimation, and the other for image quality, and
discuss the trade off between these requirements. Finally we
present experimental results of the co-designed camera.

A. Co-design proposed methodology
Starting from scratch, we propose the following template pro-
cedure for the co-design of the camera. First, we define the
requirements on the camera from the use-case, then we choose
an optical DFD concept and algorithm. Then, we define design
criteria and conduct a preliminary system specification. Finally,
we fine-tune of the system parameters.

B. Use-case description
We consider the design of a compact 3D camera for the payload
of a small UAV with autonomous flight capabilities in close
range outdoor or indoor environments. The imaging system
should allow the UAV to detect, recognize and avoid objects
in front of it including thin objects such as electric wires or
posts. Hence, we aim at an accurate depth estimation close to
the image axis, while maintaining a reasonable image quality
for recognition tasks. Taking into account the speed and evasive
capabilities of the UAV, the depth estimation range is fixed at
(1-5) m with a required depth accuracy of 10 cm, and a field of
view of 25o. To simplify the co-design, we fix the sensor type
before the lens optimization. We choose a Stingray F-504 color
sensor which has a pixel size of 3.45µm with a resolution of
2046× 2452 pixels.

C. Requirements from the use-case
As the sensor parameters and the field of view are fixed, the
lens focal length is then of 25 mm. We choose a f-number of 3
in order to have sufficient light intensity to use the camera for
indoor and outdoor scenes without having too strong optical
design constraints. To be able to identify thin obstacles, the
depth map spatial X-Y resolution is fixed to approximately 2 cm
at 3 m. Thus the depth map spatial resolution has to be around
160 µm in the image plane. This resolution limits the patch size
to 46× 46 pixels on the sensor.

D. Choice of an optical concept and algorithm
As we have chosen a color camera, in particular to facilitate
recognition tasks, we turn towards chromatic DFD since it en-
larges the depth estimation range thanks to the one-to-one re-
lation between depth and defocus blur triplet. On the other
hand, chromatic aberration reduces image quality, and a restora-
tion process has to be included in the image processing to make
recognition tasks tractable. The proposed vision payload is then
made of a lens with chromatic aberration and two image on-
board processing softwares: one for depth estimation and one
for image restoration. The DFD algorithm is the one presented
in Appendix B in the case of a color sensor. As for image quality
restoration, we propose to use a high frequency transfer guided
by the estimated depth map, as in reference [7].

E. Joint performance models
We define two performance models for the camera, one that
evaluates the depth estimation accuracy, and the other the image
quality.

E.1. Depth estimation accuracy

In order to optimize depth estimation for some given depth
range Dr we propose a design criterion named C1 based on the
mean value over Dr of the σCRB described in Equation (8):

C1(Dr) =< σCRB(z) >z∈Dr . (15)

E.2. Image quality

To manage the high frequency transfer, one needs to have at least
a sharp channel at each depth. This property can be related to
the depth of field (DOF), whose formal definition can vary with
the chosen optical model. In the case of a camera with chromatic
aberration, there is a different DOF for each color channel. Thus
we define an image quality criterion that measures the union of
these DOFs inside the sought camera depth range Dr:

C2(Dr) = GDOF = Dr
⋂( ⋃

c=R,G,B
DOFc

)
. (16)

This criterion C2 can be interpreted as a generalized depth of
field (GDOF) of the camera after image restoration, a quantity
illustrated in Figure 8.
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Fig. 8. Illustration of the image quality criterion generalized
depth of field (GDOF): the union of the R,G,B depth of fields
(DOF). Note that in this example, the GDOF does not stand
within a single continuous depth range.

F. Preliminary system specification
One needs to have a rough idea of the amount of chromatic
aberration that is required for the system. To explore efficiently
a large domain of possible systems we use a simple model of
a lens having chromatic aberration in this preliminary design.
The PSF for each color channel are Gaussian, with standard
deviation σ = ρε, with ε given by Equation (1) and ρ = 0.3[14].
In this case, the DOF is simply defined as the depth range where
|ε| ≤ tpx. We simulate the PSFs associated to various chromatic
imaging systems, having a focal length of 25 mm at the green
channel, an f-number of 3, and a pixel size of 6.9 µm, which
corresponds to twice the original pixel size, in order to simply
take the Bayer pattern into account. Each system has a different
triplet of RGB in-focus planes obtained by variations of the R
and B focal lengths and sensor position. We calculate the criteria
C1 and C2 in the depth range from 1 to 5 m for each potential
system. We use a patch size of 23× 23 pixels and α = 0.001.

However, maximisation of C2 or minimisation of C1 do not
lead to the same in-focus planes. Hence, a trade-off has to be
found. Here the critical purpose is obstacle avoidance, hence the
accuracy of the depth estimation is our prime criterion. There-
fore we choose to reorder the triplets according to increasing
σCRB and select the triplets having a value of C1 less than 10%
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above the minimal value of C1. We select the triplet having the
maximum value of C2 among these selected triplets. This cor-
responds to a longitudinal chromatic aberration d f = fR − fB
around 130 µm and the green channel focused around 3.4 m.

G. Fine-tuning of the system parameters

The first order lens parameter optimization gives the approx-
imate optimal position of the RGB in-focus planes and the re-
quired amount of longitudinal chromatic aberration. According
to these constraints, a first architecture is designed using the
optical software Zemax. This architecture shown in Figure 9
is inspired from a Double Gauss reference architecture, where
doublets become single lenses to reduce the number of lenses.

� �
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Fig. 9. Architecture of the co-designed lens.

The symmetrical lens position with respect to the aperture
avoids odd order aberrations such as lateral chromatic aber-
rations. In contrast to Section F, we now deal with the real
physical lens parameters such as lens curvature radius, thick-
ness or glass type. We optimize these parameters starting from
the initial architecture. The spectral bandwidths of each color
channel are taken into account during the optimization using
three wavelengths for each color. To slightly diversify the po-
sitions of the R,G,B in-focus planes a new optimization of the
lens is conducted with imposed chromatic aberration amounts
(df) near the optimized value obtained in Section F. For each
value of chromatic aberration, and for different sensor plane
positions near the original position, the criterion C1 and C2 are
then evaluated. To do so, we use the optical polychromatic PSF
simulated by Zemax for each configuration, integrated according
to a sensor of pixel size of 6.9 µm, to get a simplified model of
the Bayer pattern. Here, the optical design software can directly
provide the FTM of the system at any wavelength, so we eval-
uate the C2 criterion as the depth range where 50% of the PSF
encircled energy is below one pixel. Note that this is not a severe
threshold as we only require a reasonable image quality here.
Figure 10 presents the variation of C1 and C2 obtained for each
system.

As for the case of preliminary system optimization with sim-
ulated Gaussian PSFs, we observe that the setting maximizing
the generalized depth of field does not fit with the setting that
minimizes the depth estimation standard deviation. We finally
choose a trade-off having a longitudinal chromatic aberration
of 100µm, with RGB in-focus planes respectively at 2.2, 2.6 and
3.8 m, that corresponds to the black rectangle in Figure 10. Figure
11 shows the theoretical performance of the optimized system
in the depth range 1 to 5 m.

Fig. 10. C1 and C2 scores obtained for systems simulated us-
ing Zemax having various amount of chromatic aberration (df
is in µm corresponds to the focal length difference between the
red and the blue color channel).

Fig. 11. Theoretical performance of the codesigned lens.

H. Experimental validation
H.1. Experimental setup

We have realized the co-designed lens, according to the spec-
ifications obtained in Section G. Figure 12 shows a picture of
the codesigned camera. In the following, we evaluate its exper-
imental performance. Note that for this experimental perfor-
mance validation, the camera is not embedded on a real UAV
but simply attached to a tripod. The PSFs of each channel of the
co-designed lens are calibrated from 1 to 5 m with a step of 5 cm,
with a ground truth given by a telemeter using the method of
Delbracio et al.[21]. Acquisitions are made of colored textured
plane scenes put at different distances from the lens. Because of
the PSF variation with field angle, PSF calibration is also carried
out off-axis for 9 image regions where the PSF is assumed to be
constant.

Fig. 12. Co-designed 3D camera.



9

H.2. On axis depth estimation accuracy

For each scene and at each distance, depth is estimated with
the DFD algorithm of Appendix B on image raw patches of size
46× 46 pixels, from which we extract three R,G,B patches of size
23× 23 pixels, inside a centred region of size 240× 240 pixels,
where the PSF is supposed to be constant and with a patch
overlapping of 50%. Figure 13(a) to (d) show four of the scenes
used in the experiment and Figure 14 shows experimental results
analyses: errorbar for the target (c) of Figure 13 and RMSE for
each of the targets.

Fig. 13. Experimental targets.

(a)

(b)

Fig. 14. Experimental depth estimation results using the
CAM3D prototype. (a) Error bar for the target (d) of figure
13. (b) RMSE for the four targets.

For each scene, bias is comparable to the PSF calibration
step (5 cm) and standard deviation is on the order of 10 cm.
These results show that the obtained 3D camera matches our
performance requirements for depth estimation in the specified
depth range.

H.3. Depth map

Figure 15 shows an example of depth map obtained with our
camera compared to the depth map given by the Kinect camera.

4 m

3 m

2 m

Fig. 15. From left to right: RGB image, Kinect camera and
codesigned camera depth maps. Black label is for homoge-
neous regions.

To take into account off-axis PSF variation, the image is sepa-
rated into 9 regions where the PSF is assumed to be constant.
Depth estimation is then conducted on these regions with cor-
responding set of calibrated PSF(s). On textured regions, both
3D camera give the same depth levels. In contrast to the Kinect
camera, which is an active system, we do not estimate depth on
homogeneous regions (black label), because they are insensitive
to defocus. On the other hand, the wire is visible in our depth
map whereas it does not appear with the Kinect. This can be
particularly interesting for the use-case of autonomous drone
navigation.

H.4. Restored image

Figure 16 shows example of the restored image corresponding
to the image of Figure 15, using a high frequency transfer. As
in [7, 8], the weights of the transfer is defined with respect to
the estimated distance from the depth maps. The zoom on the
image allows to see the improvement of image quality due to
the restoration process.

7. CONCLUSION

In this paper we have proposed a generic performance model
for DFD camera leveraging from the calculation of the Cramér
Rao lower bound with generic prior on image and scene. This
model captures an important feature of DFD methods: the vari-
ation of the accuracy with the depth itself. The model can be
used to compare the performance of DFD systems based on
single or multi-image acquisition and use of conventional or
unconventional optics, as far as its PSF(s) is(are) known for the
depth under investigation. The proposed model has been ap-
plied on two DFD unconventional optics: coded aperture and
lens with chromatic aberration. In both cases the relative perfor-
mance comparison given by the theoretical model is confirmed
experimentally.

Then we have used the proposed model for the end-to-end
design of a chromatic camera. We used a coarse to fine approach
where the camera PSF is firstly modeled using a simple Gaus-
sian model to get a rough camera parameters estimation, and
then modeled using an optical design software to conduct a
fine-tuning of the parameters of the camera. The joint design is
conducted using two performance models, one for depth estima-
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(a)

(b)

Fig. 16. Results of image restoration using a high frequency
transfer between the color channels. (a) Left : original image.
Right : Restored image.(b) Zooms. Top line : Original image,
Bottom line : Restored image.

tion accuracy and one for image quality, requiring the choice of
a trade-off in the design. A prototype of the codesigned camera
has been built and its depth estimation accuracy was empirically
assessed on the order of 10 cm from 1 to 5 m range, matching the
requirements of the use-case of UAV navigation. Future works
involve embedding such camera on a small UAV to assess the
performance on real usage condition.

In this paper, image processing has been conducted using
unsupervised methods for both depth estimation and image
restoration. However, efficient processing based on neural net-
works, as in [24] for image restoration or [25] for DFD could
be considered to improve the results. Prediction of the camera
theoretical performances using such methods is a new challenge.
End-to-end design of lens and neural networks has been re-
cently investigated for various applications such as depth of
field extension [24], HDR [26], and depth estimation [27] using
unconventional optics. These works benefit from the neural
network optimization framework to optimize jointly optical
and processing parameters, without an explicit definition of a
performance model. In future works, we intend to study the
potential interaction of analytical performance models such as
the one proposed in this paper with end-to-end imaging system
optimization using tools from the deep learning domain.

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper
are not publicly available at this time but may be obtained from the
authors upon reasonable request.

A. PSF SIMULATION

The proposed performance model relies on the knowledge of the
PSF at any depth. The PSF can be modeled by several ways such

as parametric models, Fourier optics or optical design software.
We briefly present here models that are used in the paper.

A. Parametric model
In the DFD literature [1, 2, 9, 12, 13], the PSF is usually modeled
using Gaussian with standard deviation σ = ρε with ε given
by Equation (1). Parameter ρ is usually empirically chosen,
here as in [7] we fix it at 0.3. This model is reasonable near the
in-focus plane, where diffraction, defocus and sampling effect
can be modeled with a Gaussian model of the blur. It is less
appropriate for large defocus where geometrical optic effects are
more predominant.

B. Fourier optics
When assuming a diffraction limited optical system and in the
Fresnel approximation, the amplitude PSF can be modeled as the
Fraunhaufer diffraction pattern of the exit pupil [28]. In the case
of lens with aberrations, the complex amplitude transmittance
at the exit pupil plane at the point of coordinate (u, v) reads :

P(u, v) = A(u, v) exp
2iπ
λ

W(u, v), (17)

where A(u, v) corresponds to the aperture shape at pupil coor-
dinates u, v. W is the path-length error between the aberration
free spherical reference wavefront and the actual wavefront. In
particular when only defocus error is considered, W reads:

W(u, v) =
1
2
(u2 + v2)

(
1
s
+

1
z
− 1

f

)
, (18)

where R and f are the camera aperture radius and focal length,
respectively, s is the distance between the lens and the sensor,
and z the distance between the lens and the point source, as
shown in Figure 1. The optical intensity PSF is then the square
of the modulus of the Fourier Transform of P. Note that other
aberrations can be introduced within W. Finally this optical PSF
is then be integrated over the pixel to get the intensity PSF at the
sensor resolution.

C. Optical design software
Any optical design software can extract the PSF from the com-
plete lens parameters and ray tracing. This approach requires
to know all the parameters of the lenses (radius of curvature,
glass type, thickness...) but it provides a finer PSF model than
parametric or Fourier optics models that assume thin lens. More-
over, residual aberrations that may appear due to element mis-
alignement or mismanufacturing can be modeled using such a
software.

B. GENERIC DFD ALGORITHM

In this paper we use a DFD algorithm previously published in
reference [20] for single monochrome image and in reference [7]
for color image. Here, we briefly describe it using the generic
formalism of Section 3 for image and scene prior. It is based on
a maximum likelihood approach using the likelihood defined
in Equation (4). Note that this likelihood depends on three
parameters, including the depth. To reduce this number of
parameters, a maximisation of the marginal likelihood over σ2

N
can be conducted, the maximum being reached for the value
σ2

N = Y tPψY /(L− m) (see [17], [Section 3.8.2]). Introducing
this value in Equation (4) leads to a generalized likelihood that
depends only on ψ :

p(Y ; ψ) ∝ |Pψ|2+(Y tPψY )−(L−m)/2, (19)
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where N is the length of Y and m the number of zero-
eigenvalues of Pψ. Maximizing this generalized likelihood is
equivalent to minimizing the function:

GL(ψ) = |Pψ|−1/(L−m)
+ Y tPψY . (20)

Finally, for each patch, the DFD problem reduces to the opti-
mization of a cost function over two parameters:

k̂, α̂ = arg min GL(zk, α). (21)

Parameter α > 0 fixes the inverse SNR for the considered patch.
k is the index of depth within the finite set of K potential depth
values z1, ..., zk, ..., zK . Details on the implementation of Equa-
tion (20) can be found in reference [20].
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